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Abstract 
 
Background 
The diagnostic rate in Mendelian disorders continues to hover around 50% after genomic 

testing, meaning that around half of families and clinicians are left with no actionable answer. 

Variants affecting splicing motifs are particularly challenging to interpret. To conclusively 

link a splicing variant to disease it’s necessary to determine the consequences of altered 

splicing on the final mRNA transcript and subsequent protein. Consequently, most probable 

splicing variants are classified as VUS and unactionable.  

 

A range of powerful but opaque algorithms have proliferated for predicting whether a variant 

alters splicing. Many are based on machine learning and deep learning, with the data and 

features used to make a specific prediction usually unavailable to be verified and weighted by 

clinicians. Without detailing the nature and source(s) of evidence used to make each 

prediction, these algorithms are relegated to the lowest evidence weighting according to 

globally-accepted, gold standard variant classification rules, established by the ACMG-AMP. 

 

In addition, most algorithms currently make no attempt to predict mis-splicing outcomes 

which will occur as the result of a variant, meaning that bespoke functional testing is still 

required to discover the variant impact on pre-mRNA splicing and allow ACMG-AMP 

guided variant reclassification for a definitive molecular diagnosis. 

 

There is an urgent need for evidence-based, clinically-validated tools for pathology 

interpretation of splicing variants. 

 

Aims 
To bridge the gap between data science and genetic pathology, by developing methods based 

on empirical evidence to predict if and how a DNA variant will disrupt RNA splicing in rare 

disease. 

 

To determine empirical features that accurately inform: 
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1) spliceosomal selection of a cryptic-donor, in preference to the ‘authentic-donor’ 

(positioned at the exon-intron junction), and other nearby decoy-donors (any GT or GC) that 

are not used by the spliceosome, and  

2) The mis-splicing events which will occur because of a variant precluding use of the 

authentic-donor or authentic-acceptor. 

 

Methods 

We use empirical and clinically relevant data to define and evaluate measurable features 

enriched in (1) cryptic-donors selected by the spliceosome vs decoy-donors (any GT/GC 

motif) which were not selected by the spliceosome and (2) mis-splicing events (exon 

skipping or cryptic activation) which occurred because of a splicing variant.  

 

Results 
For 1) we evaluated the use of current algorithms to show that while intrinsic splice-site 

strength and proximity to the authentic-donor strongly influence spliceosomal selection of a 

cryptic-donor, these factors alone are not sufficient for accurate prediction. 

 

For 2) we find that natural, stochastic mis-splicing events seen in population-based RNA-Seq 

are remarkably prescient of the mis-splicing events that will occur predominantly after the 

inactivation of an authentic splice site. 

 

Conclusions 
We’ve created an accurate, evidence-based method to predict the nature of variant -induced 

mis-splicing. The ability to confidently predict the outcome of a splicing variant is a major 

step forward which will greatly aid in genetic diagnosis of families with Mendelian disorders. 
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Introduction 
 
 
1.1 Variation in genes can lead to Mendelian disorders 

 

Mendelian disorders derive their name from their inheritance patterns within families - 

likened to the inheritance of traits in the pea plants studied by Gregor Mendel1. These 

disorders each have a genetic cause and fall under the umbrella of ‘rare diseases’, which are 

defined by their rarity but a large subset of which have a genetic aetiology. As of December 

2021, 4,188 genes have been linked to one or more Mendelian disorders2. Although 

individually rare, cumulatively Mendelian disorders affect around 1 in 50 individuals of 

European descent3, and an estimated 300 million people worldwide at any point in time4. 

Genetic rare disorders disproportionately affect the nervous systems of children, are chronic 

and progressive, and often lead to severe life-long intellectual and physical disabilities3. 

Mendelian disorders are a leading cause of critical illness and mortality in infancy5, and in 

one study Mendelian disorders were found to underlie 71% of paediatric hospital 

admissions6. 

 

Due to the severity and distinctive presentation of many Mendelian disorders, their diagnosis 

usually begins with the observance of a patient’s phenotype. Initial clinical investigations 

may allow a provisional clinical diagnosis and suggest likely gene candidates, however a 

precise genetic diagnosis is still crucial to allow accurate prognosis, treatment and family 

planning3. Additionally, diagnosis of Mendelian disease based on clinical features alone is 

challenging due to phenotypic overlap between the ~10,000 currently known disorders7,8. 

 

The diagnosis of genetic disease has been revolutionised by recent technological advances 

and the drop in cost of Massively Parallel Sequencing (MPS)9, with genetic investigation of a 

Mendelian phenotype now frequently beginning with sequencing of the patient’s whole 

genome (‘whole genome sequencing’, WGS) (Figure 1.1A)7,10–12. WGS sequences the whole 

genome of a patient and compares it to a reference human genome, to allow identification of 

all the nucleotides that differ (‘variants’). The ~3.5 million variants identified per patient13 
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undergo filtering to prioritise those most likely to cause a pathogenic defect in the encoded 

gene product (Figure 1.1B).  

 

 

 
Figure 1 Whole Genome Sequencing (WGS) for rare disease diagnosis. A) Exponential growth in individuals undergoing 

WGS since 2014, when the cost of sequencing dropped to $1000. adapted from 7.B) The ~3.5 million variants13 identified in 

an individual who has undergone WGS must be filtered to identify those most likely to cause their phenotype. Familial 

segregation = the variant identified with the phenotype within the individual’s family; frequency filtering = the variant is 

rare in the healthy population; functional effect on protein filtering = the variant can confidently be predicted to cause Loss-

of-Function of the gene or cause disease by some other deleterious mechanism. 

 

If deleterious variants in a high-likelihood candidate gene are found, these can be pursued as 

the likely causative variant(s). The identification of the causative gene defect can then 

establish a definitive and accurate genetic diagnosis, which is critical for patient care14,15. 

Genetic diagnosis provides information to clinicians, affected individuals, and their families 

on prognosis and the best course of treatment16. Due to the inherited nature of Mendelian 

disorders, it also allows family planning, through understanding of the risk of recurrence and 

enabling disease prevention via prenatal counselling and Preimplantation Genetic Diagnosis 

(PGD)17.  

 

Oftentimes however no causal variant is found, and individuals must embark on a 

‘Diagnostic Odyssey’ to find the genetic explanation for their disorder, spanning on average 

~5 years, involving more than 7 physicians and specialists, and causing significant burden 

and distress to affected patients and their families. In the last 10 years, a bottleneck has 

formed as variant interpretation lagged behind rapid advances in genomic sequencing 

technologies18, leading to the classification of many patient variants as ‘Variants of Uncertain 

Significance’ or VUS. A VUS cannot be used in clinical decision-making and leaves patients 

and clinical teams with no genetic answer19. By 2019, 48% of all variants in ClinVar, the 
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public archive of human genetic variants, were classified VUS20,21. This interpretative 

bottleneck has critical implications for patient care, with ~50% of patients being left without 

a genetic diagnosis even after WGS22–24. 

 

In cohorts of VUS,  ~20-30% of variants have been found to affect the molecular process 

called splicing20,25, which in longform is actually ‘precursor messenger RNA (pre-mRNA) 

splicing’.  Due to challenges interpreting exonic or intronic variants that may or may not 

disrupt pre-mRNA splicing underpinning as genetic disorder,  splicing variants are 

overrepresented among variants currently classified as VUS as they are frequently 

overlooked by diagnostic pipelines26. 

 

1.2 The role of variants affecting RNA splicing in rare disease. 

 

1.2.1 RNA splicing in protein-coding genes 

 

Human genes are split into intercalated regions called exons and introns, defined based on 

their role in the mRNA transcript. After being transcribed from DNA into pre-mRNA (Figure 

1.2A, Transcription), introns must be removed from the pre-mRNA transcript in a 

biochemical reaction called splicing27 (Figure 1.2A, Splicing). The remaining exons are then 

ligated together to form the mature mRNA transcript. mRNA is then translated into protein 

according to the amino acid code, wherein three nucleotide units (called ‘codons’) in the 

mRNA each encode a specific amino acid, and consecutive amino acids are linked together to 

create a polypeptide chain that forms a mature protein (Figure 1.2A, Translation).  

 

The splicing reaction is completed by a large, super-complex made up of protein and RNA 

components called the ‘spliceosome’, which must be directed to the intron borders by signals 

embedded in the mRNA transcript. These signals are short stretches of sequence called 

‘splice sites’ and ensure that the splicing reaction occurs at the precise nucleotide border 

between exon and intron. Splice sites are often represented as consensus sequences which 

represent how commonly each nucleotide is seen at each position in the motif (Figure 1.2B). 
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Figure 2 RNA splicing in protein coding genes. A) The central dogma of molecular biology, adapted from Clancy & 

Brown 200828 to include splicing. After being transcribed from DNA into pre-mRNA, introns must be removed from the 

pre-mRNA transcript in a biochemical reaction called splicing (represented here as a pair of scissors). The remaining exons 

then form the mature mRNA transcript which can be translated into a polypeptide according to the amino acid code, and 

then folded and processed to become the final protein. B) Consensus splice motifs at the exon-intron junctions. 
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In molecular biology parlance, the splice site at the beginning of the intron is called the 

‘donor’ and the splice site at the end of the intron is called the ‘acceptor’. The donor and 

acceptor sites across the human genome each have an essential dinucleotide: for the donor, 

GT (or in rare cases, GC), and for the acceptor AG. Neighbouring these dinucleotides is a 

more variable but still important stretch of sequence – the splicing ‘motif’. The acceptor site 

additionally requires a ‘polypyrimidine tract’ (a run of variable length containing an 

enrichment of Ts and Cs) and a ‘branchsite’ (Figure 1.2B).   

 

In the splicing reaction, the transcript is spliced first at the donor, and the donor then loops 

over to base pair with the branchsite to form a lariat structure27 (Figure 1.1A, splicing). The 

sequence after the branchsite is then scanned in the 3’ direction for the acceptor, to cleave 

specifically at that location, precisely excise the intron, then ligate the exons together. Due to 

this ‘AG-scanning’ mechanism to identify the acceptor, there is an ‘AG Exclusion Zone’ 

(AGEZ) where decoy AGs appear very infrequently between branchsite and real acceptor, as 

they are highly likely to cause splicing at the incorrect nucleotide29–31 (Figure 1.2B). 

 

In addition to the donor, acceptor and branchsite motifs, the recognition of the exon-intron 

junction can either be enhanced or suppressed by further Splicing Regulatory Elements 

(SREs).  These may be exonic or intronic stretches of sequences that are complementary to 

RNA binding proteins (RBPs) or form an RNA structure32. There have been significant 

efforts made to characterise SREs, either through in vitro measurements of RBP binding to 

random RNA sequences33–38, mutational scanning of minigene transcripts for changes 

affecting splicing39–49, or in silico analyses of enriched or conserved sequences surrounding 

splice-sites50–56. These studies have identified many degenerate motifs which are plentiful in 

the human genome, however it remains difficult to interpret the cumulative effect and 

interactions between the many possible SREs in the vicinity of any one splice-site on in vivo 

splicing decisions. 

 

1.2.2 Alternative splicing and mis-splicing 

 

The same stretch of pre-mRNA sequence may be spliced at different splice sites in different 

transcripts, a process called ‘alternative splicing’57–60. The ‘building blocks’ (exons) can be 
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assembled into a final product (mature mRNA transcript) in different ways. For example, a 

whole exon could be excluded from a transcript (Figure 1.3A, Exon Skipping), or an intron 

could be included (Figure 1.3A, Intron Retention). There could also be multiple donor or 

acceptor sites flanking the same exon which may be used at different proportions or in 

different tissues (Figure 1.3A, alternative donor / alternative acceptor)61–63. These 

alternatively spliced mRNA transcripts are called ‘isoforms’ (Figure 1.3A). Alternative 

splicing is ubiquitous in the human genome64; 86% of human genes have a minor isoform 

with a frequency of 15% or higher, relative to the major isoform61. 

 

Correct splicing requires the coordination of large multi-protein/RNA spliceosomal 

complexes that identify and bind to the short (and degenerate) consensus splicing motifs 

amidst many kilobases of pre-mRNA, with high specificity. Alternative splicing additionally 

requires tight regulation of the relative abundances of different transcripts in different cellular 

contexts. Therefore, it’s no surprise that the spliceosome commonly makes mistakes - 

referred to as ‘mis-splicing’65.  

 

The consequences of mis-splicing for the resultant protein are often dire. Due to the protein-

code being written in 3 nt subunits called ‘codons’, the aberrant inclusion or exclusion of 

even 1 or 2 nt will disrupt the code for the whole remainder of the transcript, pushing it ‘out 

of frame’. A common result of this is the introduction of a Premature Termination Codon 

(PTC) into the transcript, where one of the three Termination Codons (TAA, TAG, TGA) 

which signal that the end of the mRNA transcript has been reached is detected in an aberrant 

position. PTCs are detected by a cellular surveillance mechanism which degrades and 

eliminates these transcripts (‘nonsense-mediated decay’ or NMD) (Figure 1.3B, absent 

protein)66.  

 

The most well-defined model of the molecular mechanism of NMD posits that as ribosomes 

scan the spliced mRNA, if a stop codon is detected more than ~50 bases upstream of an 

exon-exon junction complex (EJC, multi-protein assemblies which bind near exon-exon 

junctions after the splicing reaction), a protein complex called SURF is recruited66,67. This is 

detected as abnormal, as usually the stop codon appears downstream of any transcript bound 

EJCs. The binding of the SURF complex then triggers a series of steps which expose the 

mRNA molecule to degradation by exonucleases66,67. The efficiency of NMD, i.e. what 

proportion of aberrant transcripts are degraded, has been measured at variable rates in 
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different tissues and cellular conditions as well as according to the position of the PTC68–70, 

The variable efficiency of NMD makes it difficult to determine the true abundance of 

aberrant transcripts with PTCs produced, without inhibiting NMD.  

 

In-frame events or encoded PTCs which do not trigger NMD may also nevertheless produce 

pathogenic transcripts. Even if the included or excluded length of DNA is divisible by 3 and 

the reading frame is retained, the missing amino acids may be crucial for protein function 

(Figure 1.3B, dysfunctional protein), or the added amino acids may sabotage the protein or 

also encode a PTC71,72. 

 

The same mechanisms that produce alternative isoforms (i.e., Exon Skipping, Intron 

Retention, Alternative Donors/Acceptors) can occur aberrantly, resulting in a transcript 

degraded by NMD, or a dysfunctional protein missing or disrupting a functional domain 

(Figure 1.3B). Reference databases cataloguing detected RNA transcripts have been 

developed (for example the Ensembl73 and Refseq74 databases), however it remains difficult 

to ascertain if a given transcript, even an annotated one, constitutes a biologically functional 

alternate isoform or one aberrantly produced by a splicing error. Gene- and disease-specific 

expertise is often required to decisively call an isoform ‘alternate splicing’ or ‘mis-splicing’. 
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Figure 3 Alternative Splicing and Mis-splicing. A) the same pre-mRNA transcript can be alternatively spliced to produce 

several different mRNA transcripts and resultant polypeptides via the mechanisms of exon skipping, intron retention, and 

alternative splice-sites (donors and acceptors). B) Exon skipping (example shown), intron retention and alternative splice-

site events (not shown) constitute mis-splicing if they produce transcripts which encode a Premature Termination Codon 

(PTC) and undergo nonsense-mediated decay (NMD) or else are translated into dysfunctional proteins. 

1.2.3 RNA splicing variants in Mendelian disorders 

 

In Mendelian disease, pathogenic mis-splicing can be caused by genomic variants. A 

‘splicing variant’ usually refers to a genomic variant affecting a splice site – either the donor, 

acceptor, polypyrimidine tract or branchsite26,75. When splice sites are modified by a genomic 

variant it can compromise their recognition by the spliceosome and subsequent intron 

excision, causing mis-splicing and an aberrant mRNA transcript that will commonly encode a 

PTC. Additionally, a genetic variant may introduce a new splice motif in a location where 

there wasn’t one before, or modify the sequences surrounding a naturally occurring decoy or 

cryptic ‘GT/C’ or ‘AG’ in the genome, so that the spliceosome mistakenly splices at these 

cryptic splice-sites instead of the bonafide splice-sites at the exon-intron junction76.  In some 
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cases, genetic variants outside of the more well-defined splicing motifs and instead occurring 

in SREs can nevertheless disrupt splicing, however these remain difficult to study 

systematically and remain largely limited to individual reports of disease-associated SREs in 

individual exons/introns77–79. 

 

1.3 Clinical interpretation of splicing variants 

 

Many splicing variants remain classified as VUS due to the difficulty of interpreting them 

clinically20,80. Whilst the triplet amino acid code allows us to consider the biochemical effect 

that an exonic variant has on the encoded gene product (protein).  In contrast, the impact of 

coding or noncoding variants affecting splicing motifs are much more difficult to 

interpret75,81, due to absence of a comprehensive equivalent ‘splicing code’ reflecting our 

incomplete understanding of splicing regulation. Outside the essential dinucleotides, a large 

proportion of splicing variants remain classified VUS in Clinvar (Figure 1.4A), and the 

number of VUS added has grown steadily over the past several years (Figure 1.4B). 

 

 
Figure 4 Variants at splicing motifs in Clinvar 2021. A) Synonymous or intronic variants at the exon-intron boundary. 

Donor +1/+2 and Acceptor -1/-2 variants are overwhelmingly pathogenic, with a large proportion of VUS outside this 

‘essential splice-site’ region. B) The number of VUS among the same set of variants has grown steadily over the last decade, 

along with Benign and Pathogenic classified variants. 

 

In 2015, The American College of Medical Genetics and Genomics (ACMG) and 

Association of Molecular Pathologists (AMP), released a set of guidelines for the clinical 

interpretation of short sequence variants in Mendelian disease which have since become the 

internationally accepted standard for variant interpretation82. According to ACMG/AMP 

guidelines, clinical geneticists can apply the ‘pathogenic very strong’ criterion (PVS1) for 

predicted loss-of-function to any essential dinucleotide variant in a gene where loss-of-

function is a known mechanism of disease: these nucleotides are essential to the splicing 
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reaction, and so virtually guaranteed to cause mis-splicing82,83. This criterion partly explains 

why most essential dinucleotide variants in ClinVar are classified pathogenic (Figure 1.4A).  

 

However, even this criterion can only be applied after theoretical consideration of likely mis-

splicing outcomes induced by the variant. Different mis-splicing outcomes will result in 

different aberrant transcripts, which may be degraded if they introduce a PTC. The outcome 

of intron retention, exon skipping, and cryptic splicing events must therefore be considered 

before even an essential dinucleotide variant can be confidently predicted to cause a loss-of-

function83. 

 

Beyond the application of the PVS1 criterion, the specific mis-splicing events induced by a 

splicing variant are crucial to pathology interpretation. For example, splicing mutations in the 

DMD gene can have two main outcomes: If the variant leads to mis-splicing events that 

disrupt the reading frame, no functional protein will be produced, resulting in Duchenne 

Muscular Dystrophy that is associated with loss of ambulation and use of a wheelchair 

around 11-13 years of age and a median life expectancy of 28 years 84,85. If a variant in DMD 

leads to mis-splicing events that retain the reading frame, truncated or otherwise slightly 

modified dystrophin protein will be produced and lead to Becker muscular dystrophy, a 

milder form of disease that can have a later-onset and slower progression86–88. 

 

For most variants affecting splicing motifs outside the essential dinucleotide, it is currently 

impossible to clinically interpret whether spliceosomal recognition will be impaired or 

ablated, and if so, exactly how splicing will be affected. Variants which modify splicing 

motifs without abolishing the splice site may cause partial mis-splicing, meaning that while 

aberrant transcripts are produced, some proportion of transcripts remains correctly 

spliced26,89,90. The amount of correctly spliced transcript that is required to avoid a pathogenic 

outcome varies from gene to gene, and even from exon to exon, and its determinants are 

largely unknown. In addition, common alternative splicing of genes in different tissues lends 

extra complexity: it is important to consider impact of variant-associated mis-splicing of a 

given gene in the manifesting tissue(s) relevant to that disorder, to confidently call a variant 

benign or pathogenic. 

 

In ClinVar, 83.5% of splicing variants that have been classified pathogenic are essential 

dinucleotide variants91 (Figure 1.4A). In contrast, a large scale unbiased analysis of splicing 
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variants in a cohort undergoing genetic sequencing found that up to 39% of splice-disrupting 

mutations were outside the essential dinucleotide, suggesting that ~35-40% of pathogenic 

splicing variants which don’t modify the essential dinucleotide may be missed in routine 

clinical practice91. Many of these ‘extended splice-site’ variants likely remain classified as 

VUS, a class which has been steadily growing since the introduction of MPS into clinical 

practice (Figure 1.4B). These issues mean that functional studies of the effects of genetic 

variants on splicing are critical to assess variant pathogenicity92. 

 

1.3.1 RNA functional studies for variant interpretation 

 

The traditional workhorse of RNA functional studies is Reverse-Transcription PCR (RT-

PCR), where mRNA derived from a patient sample is reverse-transcribed and amplified using 

‘primers’- short oligonucleotides (~18-24 nt) complimentary to patient cDNA to selectively 

amplify sections using PCR cycling (Figure 1.5B). Primers can be designed to specifically 

amplify canonical splicing or mis-splicing to provide diagnostically useful information; for 

example, the end and beginning of subsequent exons which would indicate correct splicing. 

RT-PCR could demonstrate a splicing defect if this stretch of sequence is absent in the patient 

and present in controls. Researchers also design primers to amplify mis-splicing events likely 

to result from the variant, such as exon skipping, intron retention and possible cryptic sites, 

and see if they’re amplified in the patient compared to controls.  

 

RT-PCR is highly sensitive as PCR amplifies the specific targeted sequence by many orders 

of magnitude over 30 or 40 PCR cycles. This sensitivity can be very important, as many mis-

splicing events are out-of-frame, meaning NMD will degrade the aberrant transcripts in 

patient RNA, making false negatives feasible.  

 

An alternate approach is RNA-sequencing or ‘RNA-Seq’. The technological advances that 

have made large-scale DNA sequencing feasible have equally applied to the sequencing of 

RNA. Modern sequencing methods involve fragmenting DNA/RNA into many short 

fragments which can be rapidly sequenced in parallel, and then reassembled by informatic 

alignment back to a reference sequence (much like assembling a jigsaw puzzle using the 

picture on the box). Researchers then inspect how the reads are mapped in the region  
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Figure 5 Schematic representation of RT-PCR and RNA-Seq for the detection of two mRNA isoforms. A) The same 

pre-mRNA transcript may yield two alternative isoforms, in this example through skipping of the central exon. B) RT-PCR 

requires the design of primers amplifying portions of the cDNA sequence. In this case three unique primer pairs amplify 

isoform 1, while only one primer pair amplifies isoform 2. C) RNA-Seq detection of splicing isoforms requires the 

alignment of short reads spanning exon-intron junctions (‘split-reads’).  
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surrounding the variant using ‘sashimi plots’ in the Integrative Genomics Viewer 93, and 

compare with controls which don’t have the variant (Figure 1.5C). 

 

While DNA has one reference sequence to align the sequence reads to, RNA sequencing 

requires alignment back to a complicated ‘transcriptome’ of alternative and tissue-specific 

splicing. This vastly different property of RNA means that functional studies must be 

carefully planned and interpreted, and standardised processes are only just beginning to be 

established89,94. 

 

RNA-Seq is designed to capture the entire transcriptome, meaning primers targeting specific 

splicing events are not required, making it a more agnostic, hypothesis-free and generalisable 

approach. However, it requires adequate expression of a gene in the specimen the RNA is 

extracted from, to provide adequate sequencing read-depth of the region of interest95,96.  As 

many genetic disorders are recessive, and correctly spliced transcripts are arising from the 

allele in trans, high sequencing depth is often needed to detect lowly expressed genes and/or 

to ensure mis-spliced transcripts being effectively targeted by NMD are detected. Standard 

guidelines for sequencing depth have not been set and in practice cost is usually the limiting 

factor 97. 

 

Another important consideration is the length of RNA sequenced in each read (‘read length’), 

which can affect the accuracy of alignment back to the reference transcriptome. The longer 

the reads are (or: the more information each puzzle piece has) the easier it is to trace them 

back to their originating location in the genome, especially for ‘split reads’ which cover the 

end and beginning of two exons spliced together (Figure 1.5C)98,99. A common read length is 

150 nucleotides (nt). The 'overhang', or proportion of the read aligned to one or the other 

exon may be only a few nucleotides, and with the beginning and ends of exons being part of 

conserved splice motifs, this length may not be enough to unambiguously map a given short 

read to a specific exon-intron junction. Additionally, the popular alignment tool STAR allows 

a small number mismatches between the read and the reference genome, and also prioritises 

the alignment of annotated events (requires 1 nt overhang) over unannotated events (requires 

5 nt overhang), introducing biases which may affect the veracity of aligned reads100,101. The 

shorter the sequencing read, the more likely it is to be mis-mapped to the wrong spot or 

discarded altogether.  
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While RNA-Seq has incredible potential as a diagnostic technology, the diagnostic ambiguity 

conferred by informatic shortcomings correctly mapping short-sequencing reads to a gene, no 

way to be sure in recessive disorders whether canonically spliced transcripts detected are 

arising from the splicing variant allele or the allele in trans, the comparatively high cost and 

lack of uniform quality standards mean its currently difficult to bring into standard practice.  

 

RT-PCR is highly sensitive and is supporting by an existing quality framework established 

for Sanger sequencing of PCR amplicons for segregation studies, enabling its use as an 

accredited RNA testing pathway in a diagnostic setting. For this reason, it’s the current gold 

standard for RNA studies, does not require bioinformatic expertise in read alignment, 

quantification and analysis necessitated by RNA-Seq studies102,103. RT-PCR has it’s own 

technical caveats that can have great diagnostic impact: you only detect what your primers 

are capable of amplifying under the PCR cycling conditions employed. Therefore, the 

bespoke nature of RT-PCR design for each case, and the necessity of designing primers for 

all theorised mis-splicing events, makes RT-PCR a slow and low throughput functional RNA 

testing pipelines and consequently incompatible with routine diagnostic medicine.  

 

Samples are therefore rarely sent for RNA diagnostic testing without well-founded suspicion 

of a defect in RNA splicing or transcription. In silico tools that predict the impact of variants 

on splicing (‘splicing algorithms’) have thus become instrumental in the process of narrowing 

down possible variants to make the most of expensive, time-consuming, and technically 

challenging RNA studies76. A plethora of splicing algorithms have been developed over the 

last few decades and have greatly aided in the prioritisation of splicing variants92,104. 

However, predictions of different algorithms are often discordant, greatly hampering their use 

in a clinical context.  Optimised use of in silico splicing prediction tools requires a solid 

understanding of how each algorithm works and their strengths and weaknesses in different 

genetic contexts. 
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1.4 In silico tools used for the interpretation of splicing variants 

 

1.4.1 Motif-based Algorithms 

 

Before the completion of the human genome project in the early 2000s, the main purpose of 

in silico splicing prediction tools was as ‘gene finders’, to identify genuine exon-intron 

boundaries in the genome and annotate a complete list of transcribed human genes. To aid in 

annotation efforts, researchers developed statistical models to assist computational 

recognition of the degenerate, short donor and acceptor splicing motifs.  These statistical 

models were based on known exon-intron boundaries (from humans and model organisms) 

and used to search for splicing motifs in the genome that flank exons, enabling mapping of 

genes and gene structures. 

 

One of the earliest developed gene finders is the position weight matrix (PWM) model 

developed by Shapiro and Senapathy105 (Figure 1.6, 1987). To score a sequence of 

nucleotides, the PWM simply multiplies the probability (‘weight’) of finding each nucleotide 

at its position in the sequence if that sequence were a donor or acceptor105. In the PWM 

model all positions of the motif are considered independent, meaning that for example 

finding a G at position -1 doesn’t affect the calculated probability of finding a G at position 

+5. While this makes the model easy to calculate and understand, it ignores important 

dependencies between nucleotides.  
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Figure 6 Timeline of Splicing Algorithm development. 10 years after the initial discovery that eukaryotic genes were split 

into exons and introns (1977), the Shapiro and Senapthy PWM splicing algorithm was published. Orange: Subsequent 

motif-based algorithms (1.4.1). These algorithms calculate the predicted strength of a splice-site motif, usually based on 

some staitstical model of the ideal splice-site. Blue: Contemporary machine learning algorithms (1.4.2.1-2). Left: Predicting 

splice-site usage (1.4.2.1). These algorithms use sequence features to predict Percent Spliced In (PSI) Right: Predicting 

pathogenicity (1.4.2.2). These algorithms use sequence features to predict the probability of a variant being pathogenic (or 

benign). Green: Deep learning algorithms (1.4.2.3). These algorithms use a large sequence window to calculate the 

probability that that sequence is a donor. 

 

In 1997 NNSplice was developed, a neural network trained to differentiate real from decoy 

splice sites, using short stretches of sequence106 (Figure 1.6). Neural networks automate the 

process of finding patterns in training data, making it easier to analyse large datasets and 

identify real from decoy splicing motifs. In 2001 GeneSplicer was developed, similarly 

trained to differentiate between real and decoy splice sites using a statistical Markov model, 

which takes dinucleotide as well as nucleotide preferences into account107. In addition to 

short donor and acceptor motifs GeneSplicer created models of coding and noncoding 

sequences using 80 bp on either side of real splice sites, which helped it identify sequence 

contexts that are more typical in exons versus introns, to improve accuracy107. In 2004 Yeo 

and Burge created MaxEntScan, which uses a maximum entropy model to differentiate real 
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from decoy splice sites108. This model considers not only dinucleotide preference but other 

higher-order dependencies between non-adjacent positions in the splice site motif.  

 

Due to their original purpose as gene finders, all four models are based on incomplete 

annotations of human transcripts. They are trained on between ~3,000 to ~17,000 annotated 

splice sites, excluding the majority of the almost half a million splice sites now annotated in 

the GRCh38 genome assembly (Figure 1.6, 2013). They also all exclude the small, but 

important, subset of real splice donors that use a ‘GC’ essential splice site rather than the far 

more common ‘GT’, and a rare class of essential splice motifs that recruit a specialised 

spliceosome called the minor spliceosome (U12) that splices only around 800 human 

introns109. Despite these caveats, these historical splicing algorithms are still commonly 

appropriated for use in clinical genetics to assess impact to splice sites by genetic 

mutations89. This is in part due to their integration into the commonly used program Alamut 

Biosoftware ® Rouen, France, which integrates predictions from multiple tools in a user-

friendly data visualisation tool.   

 

The program also integrates an additional two algorithms: 1) SpliceSiteFinder-like (SSF-like) 

which is a now deprecated and unavailable algorithm based on Shapiro and Senapathy’s 

PWMs105. 2) Human Splicing Finder (HSF)110, created in 2009 based on Shapiro and 

Senapathy’s PWMs includes PWMs based on the Branchsite and additional Splicing 

Regulatory Elements, and an additional constraint that an AG cannot appear in the 

polypyrimidine tract of an acceptor.  Furthermore, There have been recent efforts to 

maximise the accuracy of these traditional motif-based algorithms by combining them: 

Splicing Prediction in Consensus Elements (SPiCE) combines predictions of 

SpliceSiteFinder-like  and MaxEntScan108 to train an algorithm on 142 BRCA1/BRCA2 

variants they’d assayed in vitro111. 

 

All these algorithms use short stretches of sequence to predict the strength of splice sites – 

between 7 and 16 nt for the donor and between 15 and 41 nt for the acceptor. While this 

encapsulates the regions with a high degree of sequence conservation and the motifs known 

to be necessary to complete splicing (Figure 1.2B), it does not sufficiently capture the 

constellation of sequence factors that regulate a splicing decision. This can be seen by the 

fact that sequences which either partially or perfectly match splicing motifs, yet which are not 

used commonly as splice sites (‘decoy splice sites’) are common throughout the human 
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genome - 98% of the true donor sequences used by MaxEntScan are also contained in the 

false donor (decoy) set112. In addition, it’s been known for decades that usage of a splice site 

by the spliceosome does not necessarily correlate with how well its sequence agrees with the 

consensus113. These conundrums are likely due to ill-understood long-range sequence 

regulatory elements (SREs) that influence splicing decisions. For example, SREs have been 

identified throughout the exon40,42,44, surrounding the exon-intron border43 as well as deep 

into the intron114.  

 

In the last decade, several splicing algorithms have been developed using machine learning 

methods able to integrate these additional sequence factors outside short splice-motifs, with a 

variety of approaches and use-cases (Figure 1.6, blue). 

 

1.4.2 Contemporary Machine Learning Algorithms 

 

In machine learning, instead of explicitly programming or defining the rules of a statistical 

model, researchers provide a ‘machine’ with many examples of what they’re trying to 

predict, as well as information or ‘features’ they think can discriminate between these two 

groups (Figure 1.6, blue).  The machine then tries to iteratively learn rules to allow this 

discrimination and minimise mis-classification. Machine learning algorithms can learn and 

incorporate rules based from numerous discriminating features, making them a promising 

tool for representing splice site strength more comprehensively than statistical models of 

short splice site motifs. 

 

There have been three main approaches to training machine learning algorithms for splicing 

prediction.  

 

1.4.2.1 Predicting splice site usage 

 

The concordance of a splice site motif with a consensus sequence strength is known to 

incompletely correlate with experimentally determined splice site usage, so one group of 

algorithms instead uses experimental measures of splice site usage to train algorithms to 

provide a more functional prediction of splice site strength. These algorithms are trained to 

predict a measure of splice site usage called PSI (Percent Spliced In), using pre-selected 
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sequence features. PSI is the fraction of transcripts where the splice site is used, and is 

measured using RNA-seq splice-junction data (Figure 1.6, ‘Predicting Splice Site usage’). 

SPANR was trained using RNA-seq from 16 human tissues in the Illumina human body Map 

2.0 project 115 (Figure 1.6, 2015)  and Hexamer Additive Linear (HAL) was trained using 

data from a Massively Parallel Reporter Assay (MPRA) wherein they measured PSI after 

introducing millions of random sequences into an exon-intron junction in a plasmid43 (Figure 

1.6, 2015).  

 

As the name implies, Modular Modelling of Splicing (MMSplice) is made up of several 

modules each trained to predict some dimension of splicing116. One module predicts PSI, and 

was trained using the same MPRA assay data generated by Rosenberg et al. (2015) 43, and 

another predicts the impact of variants on exon skipping trained using a dataset called Vex-

seq, where relative splicing efficiencies were measured after the introduction of 2,059 

variants into reporters117. The MMSplice authors have since expanded their algorithm to 

predict PSI of exons in a tissue-specific manner across 56 tissues (MTSplice)118 

 

1.4.2.2 Predicting splicing variant pathogenicity 

 

Given that the most common usage of splicing algorithms is to predict the outcome of genetic 

variants in a clinical setting, several algorithms are trained to directly predict the 

pathogenicity of splicing variants using clinical variant information (Figure 1.6, ‘Predicting 

Pathogenicity’).  

 

Most algorithms of this class use a largely overlapping set of features: strength of donor and 

acceptor motifs, SRE motifs and conservation, intron/exon length and the distance of the 

variant to an annotated splice site. These features are used in MutPred Splice (Figure 1.6, 

2014)119, Transcript-inferred Pathogenicity (TrAP) (Figure 1.6, 2017)120, Splicing Clinically 

Applicable Pathogenicity Prediction  (S-CAP) (Figure 1.6, 2019)121 and Super Quick 

Information-content Random-forest Learning of Splice Variants (SQUIRLS) (Figure 1.6, 

2021)122. Most algorithms use one or more unique features in addition to these, such as: 

 

> TrAP, which uses the number of transcripts which overlap the variant 120. 
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> S-CAP, which uses SPANR PSI predictions, measures of gene and regional constraint 

and an additional measure of ‘splice site constraint’ made by measuring the number of 

rare vs common variants in the splicing motif region observed in population databases 
121. 

> SQUIRLS, which notes whether an AG is introduced in the AGEZ (defined as -50 to 

+3 relative to the acceptor). 

 

In addition, MMSplice contains a module trained using the predictions from its other 

modules (donor and acceptor strength and delta-PSI) as features to predict pathogenicity 116 

(Figure 1.6, 2019). 

 

Effective machine learning requires a large amount of training data, so this class of 

algorithms require a large and comprehensive dataset of both pathogenic and benign splicing 

variants.  

 

The training set of pathogenic splicing variants for most algorithms is derived from public 

databases of clinically classified variants; ClinVar21 (MMSplice116), The Human Gene 

Mutation Database (HGMD)123 (MutPred Splice119), or a combination of the two (S-CAP121). 

TrAP is trained on pathogenic variants curated from literature alone120. Due to the extreme 

bias in classification of essential dinucleotide variants among pathogenic splicing variants in 

clinical databases (Figure 1.4A), many algorithms are severely underpowered in their training 

data for pathogenic non-essential splice site variants. While the authors of SQUIRLS tried to 

counter this bias by filtering out essential dinucleotide variants122, the ability to reliably 

assess extended splice site variants continues to be a major issue in clinical practice. 

 

Forming a large, high-quality training set of benign splicing variants is also difficult – as 

costly RNA functional studies are performed rarely for variants deemed as unlikely to affect 

splicing. Nevertheless, diverse approaches have been taken to create a training set of benign 

splicing variants. While MMSplice and SQUIRLS used ClinVar variants classified as benign 

and within 100 nt of splice sites116,122, MutPred Splice uses HGMD variants classified as 

pathogenic that have published functional data showing no detectable disruption in splicing, 

as well as high frequency SNVs from the 1000 Genomes Project119, deemed as too common 

to be likely to affect splicing (as mis-splicing induces a frameshift in two-thirds of instances).  
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Similarly, S-CAP uses a set of synonymous SNVs observed in at least 1% of the 

population121 and TrAP uses a set of de novo synonymous variants observed anywhere within 

a coding transcript in healthy individuals120.  

 

While high frequency in the general population is suggestive that a variant is not pathogenic, 

it is no guarantee. The authors of S-CAP show that 18% of presumed benign variants in their 

training set were predicted to affect splicing by MaxEntScan or LaBranchoR (a branchsite 

prediction algorithm)121, suggesting these training sets of ‘benign variants’ are highly 

compromised. 

 

Importantly, confirmed variant-associated mis-splicing can be functionally benign.  While a 

synonymous or intronic variant proximal to a splice site classified pathogenic can be inferred 

as causing pathogenic mis-splicing, a synonymous or intronic variant classified benign can 

either be associated with no change in splicing, or the variant can cause some degree of mis-

splicing that nevertheless has benign clinical consequences for the encoded protein.  

 

1.4.2.3 Predicting splice site recognition with deep learning 

 

To avoid training data compromised by mis-annotation and ascertainment bias, newer 

algorithms have been trained to predict the outcome of splicing variants directly from the 

DNA sequence, using deep learning. Deep learning is an extension of the idea of machine 

learning. Instead of the researcher deciding on input features, the algorithm instead breaks up 

the input itself and finds features that can be used in prediction (Figure 1.6, green). In this 

way the algorithm can perhaps learn features directly from the DNA sequence that are 

unaccounted for by current research data. 

 

Deep-learning algorithm SpliceAI (Figure 1.6, 2019) is transforming splicing variant 

prediction124. Splice AI is trained only on the raw sequence of 20,287 human pre-mRNA 

transcripts. It assesses up to 10,000 nt of sequence surrounding each splice site, with 

unprecedented accuracy in correctly identifying real, annotated splice sites in the human 

genome.  Splice AI shows a 95% top-k accuracy - which is the proportion of correct 

predictions at the threshold where the predicted number of splice sites equals the actual 

number of splice sites.  
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The top-k accuracy increased from 57% when using 80 nt of sequence context flanking each 

splice-site, to 95% with 10,000 nt, lending further credence to the importance of long-range 

sequence determinants for spliceosomal selection of splice-site motifs. The authors showed 

SpliceAI had independently learnt to recognise splicing regulatory element motifs directly 

from the DNA sequence, such as the SR-protein motif and branchsite sequence motifs124. 

 

As it is based on transcript annotations rather than transcript abundance, SpliceAI primarily 

predicts splice site recognition rather than a quantitative prediction of splice site usage and is 

not tissue-specific. Pangolin125 uses a deep learning model to quantitatively predict splicing 

across four tissues (heart, liver, brain and testis) (Figure 1.6, 2021). The authors also trained 

Pangolin using 10,000 nt of sequence around splice sites however included sequences from 

rhesus, mouse and rat genomes in addition to human genomic sequence125. Pangolin 

marginally outcompeted SpliceAI on top-k accuracy125. 

 

1.5 Integrating in silico splicing tools into clinical practice 

 

Contemporary machine learning splicing algorithms hold great promise as tools to prioritise 

clinical variants likely to affect RNA splicing. In silico algorithms are one of the eight 

evidence sources recommended for variant interpretation by the ACMG/AMP, and can 

currently be used as supporting evidence to classify a splicing variant as benign (criteria BP4) 

or pathogenic (criteria PP3)82. Importantly, ACMG/AMP criteria carry the condition that all 

in silico predictions must be concordant for computational evidence to be used at the level of 

supporting evidence82. For variants outside essential dinucleotides, historical algorithms 

implemented into Alamut® (which is commonly used by diagnostic laboratories) rarely 

produce concordant predictions89, however they remain some of the most cited splicing 

algorithms each year (Figure 1.7, orange).  

 

With the explosion of machine learning and deep learning methods developed since the 

ACMG/AMP guidelines were published in 201582, all trained using different source data and 

designed to predict subtly but importantly different metrics, this ACMG/AMP stipulation has 

become increasingly difficult to apply meaningfully and subsequently decreasingly relevant. 
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A more robust approach is to apply in silico tools according to independently benchmarked 

thresholds set using large sets of clinical variants with known, experimentally studied 

outcome at the RNA level126.  

 

Clinical uptake of contemporary machine learning methods has thus far been limited (Figure 

1.7, blue), due primarily to absence of clinical validation for pathology use. Benchmarking 

studies have begun being conducted on the newer machine learning tools92,127, and many 

expert ClinGen panels (e.g. Clinical Genome Resource, ClinGen128) are now shifting to the 

use of more contemporary algorithms such as MMSplice and SpliceAI based on published 

evidence of their improved accuracy over historical algorithms92. In particular, SpliceAI is 

having a significant impact and is already heavily cited (Figure 1.7, green). 

 

Additionally, a recent preprint evaluated missense pathogenicity predictors within a statistical 

framework that aligns thresholds specifically with ACMG levels of evidential strength 

(supporting, moderate, strong and very strong)129. A similar approach which assesses in silico 

splicing prediction tools considering ACMG levels of evidence would likely be beneficial. 

 

 

 

 
Figure 7 Citations by year of Splicing Algorithms published prior to 2021.  
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Despite the growing sophistication of splicing algorithms over the last few decades their 

implementation into diagnostic practice remains fraught with issues and filled with caveats. 

Splicing variants continue to be classified as VUS in ClinVar at a very high rate (Figure 

1.4B). With the advent of targeted splice-modifying therapeutics that have the capacity to 

correct splice defects in patient cells130–132, genetic and transcriptomic diagnosis of patients 

with Mendelian disease is becoming even more crucial and time-sensitive. The diagnostic 

potential of under ascertained splicing variants must be met to benefit patients and families 

and integrate splicing diagnostics and therapeutics into clinical care 97. 

 

1.6 Thesis aims and outline 

 

In the last decade, the clinical uptake of MPS for rare disease diagnosis has generated 

massive levels of sequencing data, motivating the parallel development of software tools to 

assist pathology interpretation of vast numbers of genetic variants. Simultaneously, 

awareness of RNA splicing variants as a major causal basis of disease for patients 

undiagnosed by DNA testing has been increasing, calling for consensus among the 

international clinical genetic community on a quality standard framework for RNA diagnostic 

testing. Rapid development of new splicing algorithms, each using different methods, and 

often still offering discordant predictions for many variants, presents the incipient challenge 

of how best to integrate contemporary machine-learning and deep-learning splicing 

prediction tools into standard diagnostic care.  

 

The aim of my PhD thesis was to develop pragmatic, ‘big data’ informatic solutions that 

bridge the gap between the data science of splicing algorithms, and genetic pathology 

interpretation of splicing variants; specifically, by developing methods based on empirical 

evidence to predict if and how a DNA variant will disrupt RNA splicing in rare disease. 

 

Chapter two analyses 5,145 cryptic-donors activated by 4,811 variants to determine features 

that dictate which cryptic donor(s) are most likely to be activated when a genetic variant 

compromises an annotated donor splice-site, among the plethora of decoy donors in the 

genome. We show that while splice site strength (as measured by six predictive algorithms) 

and distance from the annotated donor splice-site are influential, these features alone do not 

dictate spliceosomal selection of a cryptic donor splice site.  We found the answer lies in 
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natural splicing mistakes mined from 40,233 RNA-sequencing samples (40K-RNA database).  

Simply, ranking the most common cryptic splice sites used in natural splicing mistakes 

around each annotated splice-site predicts with 87% accuracy the cryptic-donor(s) activated 

by genetic variants.  

In Chapter three we extend our empirical method for predicting cryptic-donor activation to 

predict exon-skipping and cryptic splice-site activation arising from donor or acceptor 

variants. We update our 40K-RNA database to source unannotated splicing events (mis-

splicing mistakes) from 335,301 publicly available RNA-Seq samples (300K-RNA) and 

create an easy-to-use web portal called SpliceVault that hosts both 40K-RNA and 300K-

RNA.  We show that the same ranking method applied to 300K-RNA accurately predicts 

96% of exon-skipping events and 86% of cryptic splicing events activated by 88 variants 

across 74 genes and 140 affected individuals or heterozygotes subject to RNA Diagnostics in 

our lab.  We also adapt SpliceAI to offer predictions of how RNA splicing will be disrupted 

and compare the accuracy of SpliceAI’s deep-learning with SpliceVault’s empirical evidence. 
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Empirical prediction of variant-activated cryptic splice donors 
using population-based RNA-Seq data 
 
2.1 Overview 
 
One significant barrier to clinical interpretation of splicing variants has been the fact that they 

often activate / upregulate one or more of the latent ‘decoy’ splice sites scattered throughout 

the human genome (‘cryptic’ splicing). The activation of an out of frame cryptic splice site 

will cause degradation of mRNA transcripts by NMD, whereas the activation of an in-frame 

cryptic splice site can produce aberrant protein, with vastly different implications for 

pathology interpretation.  

Whether a cryptic splice site will be activated and if so, which of the many decoy splice sites 

present will be activated, has been an intractable question in pathology interpretation of 

splicing variants. In Chapter 2 I undertook an analysis of the empirical features which 

distinguish 5,145 cryptic-donors activated in the event of a splicing variant, from the 86,963 

decoy-donors which were not used surrounding those same splice sites.  

I assessed the ability of three motif-based measures of splice-site strength (including a novel 

method developed by our lab), and one deep-learning method (SpliceAI) to distinguish 

cryptic splice sites from decoy splice sites and found that while cryptic donor activation may 

be influenced by these measures of splice-site strength, there are other factors likely not being 

accounted for. Notably, a genome-wide analysis of the depletion of competitive decoy-donors 

surrounding annotated-donors, as well as the rare stochastic use of decoy-donors across 

40,233 publicly available RNA-seq samples (40K-RNA), revealed that the distance between 

the cryptic-donor and annotated-donor is likely a key determinant, as well as sequence 

features differentiating the ends of exons and the beginning of introns. 

 

Strikingly, we found that ranking the most common cryptic donors surrounding each splice-

site in 40K-RNA provided potent predictive information for which cryptic-donors may be 

activated in the event of a variant at that splice-site. 40K-RNA showed higher sensitivity than 

SpliceAI in predicting cryptic-donor activation in the event of a variant at the annotated 

splice site. We’ve defined an accurate, evidence-based method to predict cryptic-donor 
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activation in the context of a variant affecting the annotated-donor, substantially improving 

the interpretability of donor splicing variants.  

This chapter was published as an article for which I was first author:  

Dawes, R., Joshi, H. & Cooper, S.T. Empirical prediction of variant-activated cryptic splice 

donors using population-based RNA-Seq data. Nat Commun 13, 1655 (2022). 

https://doi.org/10.1038/s41467-022-29271-y 
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Predicting which cryptic-donors may be activated by a splicing variant in patient DNA is

notoriously difficult. Through analysis of 5145 cryptic-donors (versus 86,963 decoy-donors

not used; any GT or GC), we define an empirical method predicting cryptic-donor activation

with 87% sensitivity and 95% specificity. Strength (according to four algorithms) and

proximity to the annotated-donor appear important determinants of cryptic-donor activation.

However, other factors such as splicing regulatory elements, which are difficult to identify,

play an important role and are likely responsible for current prediction inaccuracies. We find

that the most frequently recurring natural mis-splicing events at each exon-intron junction,

summarised over 40,233 RNA-sequencing samples (40K-RNA), predict with accuracy which

cryptic-donor will be activated in rare disease. 40K-RNA provides an accurate, evidence-

based method to predict variant-activated cryptic-donors in genetic disorders, assisting

pathology consideration of possible consequences of a variant for the encoded protein and

RNA diagnostic testing strategies.
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Genetic variants affecting the conserved sequences of the
consensus splicing motifs can alter binding of spliceoso-
mal components and induce mis-splicing of precursor

messenger RNA (pre-mRNA)1, making them a common cause of
inherited disorders2–5. Splicing variants can simultaneously
induce different mis-splicing outcomes, including skipping of one
or more exons, activation of a cryptic splice-site(s), and/or
retention of one or more introns1. Whether induced mis-splicing
disrupts the reading frame or affects a region of known functional
(and clinical) importance, has significant diagnostic implications.
Therefore, knowing the specific mis-splicing outcome of genetic
variant is necessary to conclusively link it to a disease. While the
accuracy of in silico algorithms in predicting whether a variant
will cause mis-splicing has been comprehensively assessed6–9,
there is currently no reliable means to predict which mis-splicing
event(s) may occur in response to a variant that activates mis-
splicing. As a result of this and other factors, the vast majority of
splice site variants are classified as variants of uncertain sig-
nificance (VUS); a non-actionable diagnostic endpoint in geno-
mic medicine10.

We recently evaluated the accuracy and concordance of Spli-
ceAI (SAI)11 and algorithms within Alamut Visual® (Interactive
Biosoftware, Rouen, France)12,13, to predict splicing outcomes
arising from genetic variants identified in 74 families with
monogenetic conditions subject to RNA diagnostic studies (79
variants; 19% essential GT-AG splice-site variants and 71%
extended splice-site variants)14. Algorithmic predictions of the
strengths of activated cryptic splice sites were highly discordant,
especially for cryptic donors. SAI’s deep learning showed the
greatest accuracy in predicting activated cryptic splice-site(s)
(66% true positive with 34% false negative), whereas historical
algorithms within Alamut Visual® resulted in 34–69% false
negatives14.

In this study we focus on determining empirical features that
inform prediction of variant-associated spliceosomal selection of
a cryptic-donor, in preference to the annotated-donor and other
nearby decoy-donors (any GT or GC not used by the spliceo-
some). Through analysis of 4811 variants in 3399 genes, we show
that while splice-site strength and proximity to the annotated-
donor strongly influence spliceosomal selection of a cryptic-
donor, these factors alone are not sufficient for accurate predic-
tion. Importantly, we show that the most common mis-splicing
events seen at each exon-intron junction across 40,233 publicly
available RNA-seq samples compiled within the 40K-RNA
database, predict with accuracy which cryptic-donor will be
activated in rare disease.

Results
Reference database of variants activating a cryptic-donor. We
collate a database of cryptic-donor variants, defined as variant-
associated erroneous use of a donor other than the annotated-
donor. Variants were derived from several sources11,15,16 (Fig. 1a,
see methods). The genomic locations and extended sequences of
the annotated-donor, cryptic-donor(s), as well as any decoy-
donors (any GT/GC motif within 250 nucleotides (nt) of the
annotated-donor), were compiled for analysis. We define the
extended donor splice-site region as spanning the fourth to last
nucleotide of the exon (E-4, E= exon) to the eighth nucleotide of
the intron (D+8; D= donor), as constraint on sequence diversity
eases beyond this point (supplementary Fig. 1).

Cryptic-donor variants fall into three categories (Fig. 1b,
Box 1): A) Annotated-Modified (AM): a genetic variant modifies
the annotated-donor resulting in activation one or more
unmodified cryptic-donors (n= 2186) (Fig. 1c–e). AM-variants
which are SNVs and DNA insertions commonly affect the E-1,

D+1, D+2 and D+5 positions of the annotated-donor (Fig. 1c),
and AM-variants which are DNA deletions ranged from 1 to 57
nts in length (Fig. 1d). 89% of AM-variants result in use of a
single cryptic-donor, 9% activate 2 cryptic-donors and 2%
activate 3 or more cryptic-donors (Fig. 1e).

B) Cryptic-Modified (CM): a genetic variant modifies a cryptic-
donor and does not affect the annotated-donor (n= 2252)
(Fig. 1f, g). CM-variants most frequently affect the D+2 position
of the cryptic-donor (Fig. 1f), with 32% of all CM SNVs changing
the cryptic-donor essential splice motif from GC to GT (Fig. 1g).

C) Annotated-Modified/Cryptic-Modified (AM/CM): a genetic
variant that simultaneously modifies the annotated-donor and
nearby cryptic-donor (n= 373) (Fig. 1h–j). AM/CM-variants
which are SNVs and DNA insertions also most frequently affect
the D+2 position (122/373) of the cryptic-donor (Fig. 1h), with
31% of SNVs converting a GC to GT (Fig. 1i). AM/CM-variants
which are DNA deletions range from 1 to 36 nts in length
(Fig. 1j).

87% of cryptic-donors lie within 250 nt of the annotated-
donor. 99% of cryptic-donors activated by AM-variants and 71%
of cryptic-donors activated by CM-variants, lie within 250 nt of
the annotated-donor (87% collectively, Fig. 2a, b). By definition,
AM/CM-variants activate a cryptic-donor that spatially overlaps
the annotated-donor; 26% of AM/CM cryptic-donors lie at either
the E-4 or D+5 position (Fig. 2c). For exonic cryptic-donors
activated at E-4, the GT at D+1/+2 of the annotated-donor
becomes D+5/+6 of the cryptic-donor; conversely for intronic
cryptic-donors activated at D+5, the GT at D+5/+6 of the
annotated-donor becomes D+1/+2 of the cryptic-donor).

While decoy-donors are present everywhere, which ones are
selected as cryptic-donors by the spliceosome in the context of a
genetic variant appears strongly influenced by their proximity to
the annotated-donor (Fig. 2a, b), as shown by their enrichment at
proximal locations relative to all decoys present in the genome
(Fig. 2d). The steep decline in exonic decoys (Fig. 2d, left) is due
to the shorter lengths of exons limiting their frequency at these
distances (50th and 90th percentile for exon length shown).
Notably, each annotated-donor has on average 36 decoy-donors
within+ /−250 nt not used by the spliceosome – indicating that
features other than proximity to the annotated-donor define a
usable cryptic-donor (Fig. 2e).

Only 31–67% of1 cryptic-donors are stronger than the
annotated-donor. We examined the ability of four algorithmic
measures of splice-site strength to predict cryptic-donor activa-
tion (Fig. 3). We compared the performance of MaxEntScan
(MES)13, NNSplice (NNS)12 and SpliceAI (SAI)11 as well as our
own method termed Donor Frequency (DF) (see methods and
supplementary Fig. 1 for details, supplementary Fig. 2a–c for full
plots). DF measures donor strength based on how many
annotated-donors in the human genome have the exact same
sequence. DF calculates the median frequency of four consecutive
windows of nine nucleotides in length (between E-4 and D+8)
among all annotated-donors, converted to a cumulative frequency
distribution. For example, if an E-3 to D+6 sequence has a raw
frequency of 222, this combination of nine bases occurs at the
analogous position for 222 annotated-donors, corresponding to
the 35th percentile of a cumulative frequency distribution across
the human genome (see supplementary Fig. 1c). For these and all
further analyses, we excluded the 1113 cryptic variants in the
database derived from SAI predictions already validated on GTEx
RNA-seq data11. Our nomenclature of REF and VAR corre-
sponds to the reference (REF) or variant (VAR) donor sequence.
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The four algorithms use different methods to measure the
intrinsic strength of a given donor splice-site. In the following
discussion we use the term stronger and weaker to denote a donor
that has a higher or weaker score, respectively, according to that
algorithm. Comparisons such as weaker by >50% denote that the
donor score has been reduced by more than half by the variant.

For AM-variants, activation of a cryptic-donor typically occurs
in the context of a variant that weakens the annotated-donor to
less than half of its original strength (Fig. 3a, dark blue). While
many AM cryptics are stronger than the annotatedVAR (Fig. 3c,
example shown in Fig. 3b), a substantial subset are not the
strongest decoy-donor within 250nt (Fig. 3d). In fact, many
activated cryptic-donors are not recognised as bona fide donors
by the respective algorithms, notably NNS (Fig. 3e).

Intuitively, for most CM-variants the cryptic is strengthened by
the variant (Fig. 3f, orange, example shown in Fig. 3g). However,
less than half of activated cryptics are stronger than the
annotated-donor (Fig. 3h). Along similar lines, for a majority of
AM/CM-variants the annotated-donor is weakened (Fig. 3i, blue)
while the adjacent cryptic is strengthened by the variant (Fig. 3j,
orange, example shown in Fig. 3k). However, only 29–67% of
AM/CM-crypticsVAR are stronger than the annotated-donorVAR
(Fig. 3l). Despite similar overall performance for each algorithm,
they showed discordance in variant outcome predictions (Fig. 3M,
N) and measures of splice-site strength (Supplementary Fig. 2d).

In summary, four independent algorithms concur that cryptic-
donor activation typically occurs in response to weakening of the
annotated-donor (85–99% of variants) or strengthening of the
cryptic-donor (67–98% of variants). However, only 35–70% of
activated cryptic-donors are stronger than the annotated-
donorVAR, and for unmodified cryptic-donors, 29–62% are not
the strongest decoy-donor within 250 nt. Thus, while relative
strength of the annotated- and cryptic-donor influence spliceo-
somal use, there are other factors at play.

Competitive decoy-donors are depleted close to annotated-
donors. Decoy-donors of comparable or greater strength to the
annotated-donor rarely occur within 150 nt (Fig. 4a, red).
However, exonic and intronic regions around donors have
characteristic single and dinucleotide frequencies which may
contribute to the rarity of decoy-donors (supplementary Fig. 3).
In particular, the first 50 nt of the intron often shows enrichment
in G and T dinucleotides, with distinct patterns: 1) G repeats are
enriched in the shortest of introns and T repeats in the longest
(supplementary Fig. 3c); 2) Introns with G (or C) at the D+3

position are enriched in G dinucleotides whereas introns with A
(or T) at the D+3 position are enriched in T dinucleotides
(supplementary Fig. 3d); 3) Introns with rare donors (low DF) are
enriched in T-repeats compared to introns with the most com-
mon donors (supplementary Fig. 3e). Therefore, we adapted a
previously used method17 which takes dinucleotide preferences
into account, to assess if decoy-donors occur more or less

commonly than expected by random chance (see Methods and
supplementary Fig. 4).

GT decoy-donors show increasing exonic depletion approach-
ing the annotated-donor, with out-of-frame decoys (red) depleted
more than in-frame decoy-donors (orange), while showing
negligible depletion in the intron (Fig. 4b). GC decoy-donors
show no depletion in either the exon or the intron (supplemen-
tary Fig. 5a).

We next assessed what proportion of decoy-donors in the
genome are used, albeit rarely, via unannotated splice-junctions
detected across 40,233 publicly available RNA-seq samples from
GTEx18 and Intropolis19 (40K-RNA). Unannotated splice-
junctions (representing stochastic mis-splicing), seen rarely in
RNA-seq samples aggregated across a population, constitute
empirical evidence that both splicing reactions can be executed
using a decoy-donor. Therefore, we mined 40K-RNA for splice-
junctions representing the use of cryptic-donors within 250 nt of
any annotated-donor, and ranked them according to the number
of samples they were present in (see methods). Overall, ~7% of all
unannotated decoy-donors are in fact present as rare, stochastic
mis-splicing events in 40K-RNA.

The proportion of exonic GT decoy-donors present in 40K-
RNA (relative to all decoys) dramatically increases with proximity
to the annotated-donor, with intronic decoys showing only a
modest change (Fig. 4c). This mirrors depletion patterns (Fig. 4b)
and confirms that decoy-donors closer to the annotated-donor
are inherently more likely to be used by the spliceosome. Less
than 4% of exonic GC decoy-donors are present in 40K-RNA,
even very close to the exon/intron junction, in line with their
observed lack of depletion (Supplementary Fig. 5b).

The ability of DF to measure donor strength is evidenced by
Fig. 4d, e. While there is negligible depletion of decoy-donor
sequences that do not exist as a bona fide donor at any exon-
intron junction in GRCh37 (DF= 0, grey), there is clear depletion
of exonic decoy-donors closer in DF (50–90% DF, mid-blue), or
of similar or greater DF ( ≥90% DF, dark blue) (Fig. 4d, left),
relative to the annotated-donor. Depletion is even evident for
decoy-donors that have DF of only 10% relative to the annotated-
donor, and so we define a competitive decoy-donor as one above
this threshold. Interestingly, except for the most competitive
decoy-donors (≥90% DF; Fig. 4d, right, dark blue), decoy-donors
show no depletion in the intron. Concordantly, the proportion of
exonic decoy-donors present in 40K-RNA increases with
increasing relative DF, and to a lesser extent at the start of the
intron (Fig. 4e).

Why are intronic decoy-donors less likely to be used by the
spliceosome? The fact that intronic decoy-donors are less
depleted and less likely to be seen in 40K-RNA (Fig. 4b–e) was
initially perplexing, given that cryptic-donors are just as common
in the intron as in the exon (Fig. 2a, b). However, we reasoned
distinctive nucleotide preferences in the first ~50 nt of the intron

Box 1 | Glossary

Annotated-donor: A donor in an ensembl-annotated transcript.
Decoy-donor: Any essential donor dinucleotide (GT/GC) that is not an annotated-donor.
Cryptic-donor: A decoy-donor shown to be activated (i.e. used by the spliceosome) by a genetic variant.
Annotated-Modified (AM): A genetic variant modifies the annotated-donor resulting in activation one or more unmodified cryptic-donors.
Cryptic-Modified (CM): A genetic variant modifies a cryptic-donor and does not affect the annotated-donor.
Annotated-Modified/Cryptic-Modified (AM/CM): A genetic variant that simultaneously modifies the annotated-donor and nearby cryptic-donor.
Donor Frequency (DF): A measure of donor strength based on how many annotated-donors in the human genome have the exact same sequence.
Competitive decoy-donor: A decoy-donor with a DF score at least 10% the score of the nearby annotated-donor.
40K-RNA: An aggregated database of splice-junctions detected across 40,233 publicly available RNA-seq samples.
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Fig. 2 Cryptic-donor activation is influenced by proximity to the annotated-donor. a, b Distribution of cryptic-donors activated by (a) AM-variants and
(b) CM-variants. Location (x-axis) denotes the distance of the cryptic-donor from the annotated-donor, with negative values upstream into the exon and
positive values downstream into the intron. c (Bottom) Distribution of cryptic-donors activated by AM/CM-variants. (Top) Pictograms showing the
Reference (REF) and Variant (VAR) sequences for AM/CM-variants. Activated cryptic-donors are prevalent at E-4 (left) and D+5 (right) due to conserved
GTs at D+1/+2 and D+5/+6 of the conserved donor splice-site sequence. d Frequency of naturally occurring decoy-donors (any GT or GC) +/− 250 nt of
annotated-donors in the human genome. Dashed lines indicate the 50th and 90th percentile for exon length. The decline in exonic donors is due to
relatively fewer longer exons. e Distribution of the number of decoy-donors in the +/−250 nt surrounding each annotated-donor in the human genome.
Dashed line shows that there are an average of 36 decoy-donors within 250 nt of each annotated-donor.
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NNSplice, MES MaxEntScan, SAI SpliceAI, DF Donor Frequency. Categories such as weaker by >50% are assigned based on how the score has been
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could affect measures of depletion, and/or, influence the usability
of decoy-donors in this region. For example, G-repeat splicing
regulatory elements (SREs) are abundant within the first ~50 nt of
the intron20–22.

We defined competitive decoy-donors as those with a DF of at
least 10% that of the associated annotated-donor (see Fig. 4d, e).
In the first 50 nt of the intron, competitive decoy-donors
overlapping G-triplets show no depletion and conversely appear
enriched (Fig. 5a, intron- orange). In contrast competitive decoy-
donors not overlapping G-triplets are depleted (Fig. 5a, intron-
grey). Additionally, a higher proportion of intronic decoy-donors
not overlapping G-triplets are seen in 40K-RNA than those
overlapping G-triplets (Fig. 5b, intron- grey). The reciprocity in
these data is consistent with a masking effect of intronic G-repeat

motifs on (competitive) decoy-donors, likely due to RNA
secondary structure and/or RNA binding proteins preventing
their use.

Figure 5c shows an example variant in gene GAA
(NM_000152.3:C.2646+ 2 T > A) identified in an individual
affected with glycogen storage disease type II23 that induces
splicing to an exonic cryptic-donor 21 nt upstream of the
annotated-donor. NNS, MES, and DF rank the decoy-donor at
+57 as the strongest donor - however this donor is enveloped
within a G-repeat rich region which may mask it, and accordingly
is not present in 40K-RNA. SAI instead predicts use of the
cryptic-donor at −21. Notably, this cryptic-donor is present in
137 samples in 40K-RNA, providing empirical evidence that
despite its weak primary motif, it can be used by the spliceosome.

0.01

0.10

1.00

10.00

+1
50

0.7%
6,989

35.0%
375,558

1.9%
20,340

53.8%
576,021

0.1%
983

8.6%
91,664

de
co

y-
do

no
r

R
el

at
ive

 D
F

−1
30

−1
10 −9

0
−7

0
−5

0
−3

0
−1

0
+1

0
+3

0
+5

0
+7

0
+9

0
+1

10
+1

30
Distance to annotated-donor

a

0.4

0.8

1.2

−1
50
−1

30
−1

10−9
0
−7

0
−5

0
−3

0
−1

0
+1

0
+3

0
+5

0
+7

0
+9

0
+1

10
+1

30
+1

50

Distance to annotated-donor

ob
se

rv
ed

 o
ve

r e
xp

ec
te

d
de

co
y-

do
no

rs

Distance to annotated-donor

Relative DF

< 10%
10−50%
50−90%
≥ 90%

DF=0

2.5%

5.0%

7.5%

10.0%

12.5%

−1
50
−1

30
−1

10−9
0
−7

0
−5

0
−3

0
−1

0
+1

0
+3

0
+5

0
+7

0
+9

0
+1

10
+1

30
+1

50

Distance to annotated-donor

%
 o

f d
ec

oy
s 

in
 4

0K
-R

N
A

in−frame
out of frame

0%

25%

50%

75%

100%

−1
50
−1

30
−1

10−9
0
−7

0
−5

0
−3

0
−1

0
+1

0
+3

0
+5

0
+7

0
+9

0
+1

10
+1

30
+1

50

Distance to annotated-donor

%
 o

f d
ec

oy
s 

in
 4

0K
-R

N
A

0.4

0.8

1.2

−1
50
−1

30
−1

10 −9
0
−7

0
−5

0
−3

0
−1

0
+1

0
+3

0
+5

0
+7

0
+9

0
+1

10
+1

30

ob
se

rv
ed

 o
ve

r e
xp

ec
te

d
de

co
y-

do
no

rs

b

c

d

e

stronger than
annotated-donor

weaker than
annotated-donor

Fig. 4 Competitive decoy-donors are specifically surrounding annotated-donors. a The relative Donor Frequency (DF) of all decoy-donors within 150 nt
of annotated-donors (decoy-donor DF / annotated-donor DF). Plots are shown for +/−150 nt of annotated-donors due to the steeply declining number of
exons longer than this. Decoy-donors with a stronger DF score than the annotated-donor are shown in red, otherwise grey. b Depletion of GT decoy-splice
sites (observed/expected) (see Methods and Supplementary Fig. 4). Exonic donors where use of the decoy-donor would be in-frame are shown in orange,
whereas those out-of-frame (or intronic) are shown in red. GT decoy-donors show increasing exonic depletion approaching the annotated-donor, and
negligible depletion in the intron. c Decoy-donors in-frame and closer to the annotated-donor are more likely to be present in 40,233 publicly available
RNA-seq samples (40K-RNA). At each distance from the annotated splice-site, the number of decoy-donors present in 40K-RNA is divided by the total
number of naturally occurring decoy-donors at that position d depletion of GT decoy-donors as in b, split according to decoy-donor DF relative to the
annotated-donor (decoy-donor DF/annotated-donor DF). There is negligible depletion of decoy-donor sequences that do not exist as a bonafide donor in
GRCh37 (DF= 0, grey), with increasing depletion of exonic decoy-donors closer in DF to the annotated donor (blue gradient). e Proportion of GT decoy-
donors seen in 40K-RNA as in c, split as in d. Decoy-donors closer to the annotated-donor and with higher DF relative to the annotated-donor are more
likely to be present in 40K-RNA. Lines show LOESS smoothing (locally weighted smoothing i.e., trendlines) with confidence bands in grey.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29271-y ARTICLE

NATURE COMMUNICATIONS | ��������(2022)�13:1655� | https://doi.org/10.1038/s41467-022-29271-y | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


0.4

0.8

1.2

*
TTATT CACACAGGTCATAA CTTCCTGGCCAGGAATAA GTGAGTCCTGGGGCTGCTCAGGCTGGTGGGCAGGGGCCGGCTCGGGGTTGAGAAGGGGTGAGGGGACCTGG

-21 +25 +57 +136

DF [0-1] 0.05 0.130.520.12

NNS [0-1] 0.64 ---

T > A

CCTATT GAGTGAGCAGTG... ...

MES [0-12] 4.222.07 4.81 5.50

0.97SAI [0-1] 0.46 -0.02

...

sample 1: 2 reads
sample 2: 2 reads
sample 3: 1 read

sample 1: 1039
sample 2: 727
sample 3: 62-21

137# samples

40K-RNA

Splicing algorithms

a

Distance to annotated-donor

ob
se

rv
ed

 o
ve

r e
xp

ec
te

d
de

co
y-

do
no

rs
overlapping GGG

no
yes

c Cryptic-donor variant
NM_000152.3(GAA):c.2646+2T>A cryptic splicing

normal splicing

b

−1
50
−1

30
−1

10−9
0
−7

0
−5

0
−3

0
−1

0
+1

0
+3

0
+5

0
+7

0
+9

0
+1

10
+1

30
+1

50
−1

50
−1

30
−1

10−9
0
−7

0
−5

0
−3

0
−1

0
+1

0
+3

0
+5

0
+7

0
+9

0
+1

10
+1

30
+1

50

Distance to annotated-donor

20%

40%

60%

cryptic-donor decoy-donor

−0.20
−0.15
−0.10
−0.05

0.00

0.00

0.25

0.50

0.75

1.00

SA
I s

co
re

 c
ha

ng
e

Nucleotide A C G T

d

+57-21

Mutating
improves
score

Mutating
worsens
score

0.46 > 0
1 > 0

7.8 > 0
0.93 > 0

Fig. 5 Utility of 40K-RNA to identify decoy-donors able to be used by the spliceosome. a, b Depletion (a) and proportion in 40K-RNA (b) of GT decoy-
donors that do or do not overlap G-triplets. Calculated as in Fig. 4b, c. Decoy-donors overlapping G-triplets are depleted in the exon but not in the intron,
where they show enrichment because: 1) G repeats are enriched in the first 50 nt of the intron (see supplementary Fig. 3) and 2) donor sequences are
commonly G-rich. Plots are limited to decoys with relative DF > 0.1 (defined as competitive with the annotated-donor, see Fig. 4d, e). Lines show LOESS
smoothing (locally weighted smoothing i.e. trendlines) with confidence bands in grey. c Top: Schematic of an AM-variant identified in an individual with
glycogen storage disease type II associated with gene GAA (NM_000152.3:C.2646+2 T > A)23 with algorithm scores for annotated- (REF > VAR) decoy-
and cryptic-donors. NNS NNSplice, MES MaxEntScan, DF Donor Frequency, SAI SpliceAI. The strongest donor for each algorithm (score range shown in
square brackets) is coloured orange. Below: Sashimi plot from three GTEx RNA-seq samples identifying use of the -21 cryptic-donor as present in 40K-RNA
(At least 1 read is detected in 137/30753 samples with detectable expression of transcript). SpliceAI (SAI) correctly scores the −21 cryptic-donor as the
most likely cryptic-donor. d Result of SAI in silico mutagenesis showing the bases contributing to predicted strength of the −21 cryptic-donor (left) and
+57 decoy-donor (right). SAI score change denotes the decrease (if positive) or increase (if negative) on the predicted strength of the donor when that
nucleotide is mutated (see methods). Note that the presence of the cryptic-donor at −21 and intronic G-repeats negatively impact the score of the +57
decoy-donor according to SAI.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29271-y

8 NATURE COMMUNICATIONS | ��������(2022)�13:1655� | https://doi.org/10.1038/s41467-022-29271-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


SAI in silico mutagenesis of the cryptic-donor at -21 and
decoy-donor at +57 show that SAI deep-learning perceives the
negative impact of the G-repeats on the usability of the +57
decoy-donor (Fig. 5d). Intronic G-repeats are known examples of
SREs20,24 (see Fig. 5 and additional examples supplementary
Fig. 5c–f). Whether or not a cryptic donor can be used is
influenced by a constellation of features: the consensus donor
sequence, as well as proximal and more distal splicing regulatory
elements. Regulatory elements are not factored by many
algorithms, though may be identified by SAI, likely underpinning
its enhanced capabilities in recognition of usable (cryptic) splice-
sites. In contrast, 40K-RNA uses empirical evidence from RNA-
Seq data that reveals which cryptic splice-sites are usable in the
context of the specimens tested.

90% of cryptic-donors in AM-variants are present in 40K-RNA.
We assessed whether 40K-RNA provides a viable means to
prioritise cryptic-donors likely to be activated in the context of a
genetic variant affecting the annotated-donor (i.e. AM-variants).
90% of AM-variant activated cryptic-donors are present in 40K-
RNA, while 91% of unused decoy-donors are absent. Therefore,
40K-RNA provides potent predictive information with respect to
both true positives (cryptic-donors) and true negatives (decoy-
donors). Notably, while cryptic-donors were observed in multiple
independent samples across 40K-RNA, they were typically very
low frequency splice-junctions (44% had a maximum of 4 reads
or less in any one sample, supplementary Fig. 6b).

We chose the top 4 40K-RNA events at each splice-junction (or
all events if there were less than 4 detected) as our predicted

cryptic-donors as this maximised sensitivity (87%) without
compromising specificity (95%) (Fig. 6a). Use of 40K-RNA had
a higher sensitivity than all four algorithms assessed (Fig. 6a, b,
supplementary Fig. 6a). The sensitivity of 40K-RNA is inherently
influenced by read-depth of the target transcript: more than 85%
of cryptic-donors are detected in transcripts with a read depth of
>250 for the annotated exon-exon splice-junction (normal
splicing); whereas only 29% of cryptic-donors are detected in
40K-RNA in transcripts where normal splicing had a maximum
read count of <100 (supplementary Fig. 6c). Consequently, we
assessed SAI as a complementary approach for situations where
our empirical method is underpowered or not well suited.

We define SAI prediction of cryptic-donor activation as a
donor-gain Δ−score of 0.1 or greater, which accurately predicts
75% of cryptic-donors and inaccurately predicts only 1% of
decoy-donors (Fig. 6b). SAI showed higher sensitivity then NNS,
and comparable sensitivity to MES and DF, while greatly
improving on their specificity (supplementary Fig. 6a). However,
the sensitivity of SAI is compromised for cryptics at increasing
distance from the annotated-donor - only 55% of cryptic-donors
further than 100 nt from the annotated splice site had a Δ-score
above 0.1 (supplementary Fig. 6d, e). If we take the union of SAI
and 40K-RNA cryptic-donor predictions (i.e., cryptics predicted
by either of the two methods), we accurately predict 2210/2389
(93%) of cryptic-donors (Fig. 6c) and inaccurately predict 6% of
unused decoy-donors.

Use of 40K-RNA has caveats for CM-variants and AM/CM-
variants, and cannot be used for variants that create a GT (or GC)
motif. However, for the subset of CM-variants and AM/CM-
variants where the variant modifies the extended splice site region

5% of decoy-donors

87% of cryptic-donors

0%

25%

50%

75%

≤ 2
0

≤ 1
6

≤ 1
2

≤ 8 ≤ 4  0
event rank in 40K-RNA

1% of decoy-donors

75% of cryptic-donors

0%

25%

50%

75%

100%

≥ 0
.1

≥ 0
.3

≥ 0
.5

≥ 0
.7

≥ 0
.9

SAI ∆-score

cryptic decoy

14%

86%

SAI ∆ < 0.1
4%

SAI ∆ ≥ 0.1
96%

SAI ∆ < 0.1
10%

SAI ∆ ≥ 0.1
90%

present
20%

present (top 4)
56%

absent
24%

New GT/C

Existing GT/C

SAI SAI 40K-RNA

cryptic-donors
40K-RNA (top 4)

SAI ∆ ≥ 0.1

decoy-donors

82,039

a Annotated-Modified (AM)

b

Cryptic-Modified (CM) & 
Annotated-Modified/Cryptic-Modified (AM/CM)

dc

SAI ∆ ≥ 0.1
501

3,633

790

148
160

441

1,599
cryptic-donors

40K-RNA (top 4)

Fig. 6 40K-RNA potently informs cryptic-donor activation. a, b The percentage of Authentic-Modified (AM) cryptic-donors correctly predicted, and
decoy-donors incorrectly predicted at different cut-offs for (a) event rank in 40K-RNA and (b) SpliceAI (SAI) Δ score (donorVAR -donorREF). a The dotted
line denotes cryptic- and decoy-donors predicted using a cut-off of events ranked 4 or less. 87% of cryptic-donors activated by AM-variants are among the
top 4 events present in 40K-RNA within 250 nt of the annotated-donor, with 95% of decoy-donors not in the top 4 events. b While SpliceAI (SAI)
outperforms other algorithms using a cut-off of Δ scores 0.1 and above (see supplementary Fig. 6a), it predicts only 75% of cryptic-donors (SAI Δ≥ 0.1).
SAI accurately excludes 99% of decoy-donors. c (top) Venn diagram showing the overlap of cryptic-donors with those predicted by SAI or our 40K-RNA
method, among the entire pool of decoy-donors. (bottom) magnification of internal Venn. d Cryptic-donors activated by CM- and AM/CM-variants. (top)
New GT/C (Light grey) denotes variants creating a GT or GC essential splice-site motif (40K-RNA is inherently unsuitable for these variants). Existing GT/
C (blue) denotes variants that modify a decoy-donor with a pre-existing GC or GT essential splice-site. (bottom) For 40K-RNA, the orange segment
denotes cryptic-donors in the top 4 events, yellow segment denotes where the cryptic-donor is present in 40k-RNA but is not in the top 4 events, and grey
denotes cryptic-donors absent from 40K-RNA.
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of an extant GT/C decoy-donor (1525 variants, Fig. 6d, top- blue),
76% are present in 40K-RNA, with 56% in the top 4 events.

40K-RNA is least sensitive for variants that most significantly
impact the strength of the cryptic-donor: For D+2 CM-variants,
only 32% of the cryptic-donors are present in the top 4 events, as
compared to 85% for E-3 variants (supplementary Fig. 6f; E-3 is
the third to last exonic base). Accordingly, even if a GC decoy-
donor is not present in 40K-RNA, conversion by a variant to a
GT donor presents high risk for cryptic-activation. SAI
performed well for CM-variants and AM/CM-variants, correctly
predicting 96% of variants that created an essential donor motif
and 90% which modified an existing essential motif (Fig. 6d).

Discussion
The ultimate goal of splicing predictions is to determine if and
how a genetic variant will induce mis-splicing of pre-mRNA.
Even for essential splice-site variants that almost invariably cause
mis-splicing, consideration of probable consequences of the
variant is critical for pathology application of the ACMG-AMP
code PVS125 (null variant due to presumed mis-splicing of the
pre-mRNA) and of equal importance to strategise functional
testing for RNA diagnostics14. While activation of a cryptic-donor
6 nucleotides away will remove or insert two amino-acids,
activation of a cryptic-donor 4 nucleotides away will induce a
frameshift, with vastly different implications for pathology
interpretation.

We learned five key lessons from our analyses of 4811 cryptic-
donor variants in 3399 genes: (1) Decoy-donors that show evi-
dence of natural stochastic use by the spliceosome in population-
based RNA-Seq data (i.e., are present in 40K-RNA) have the
greatest probability of activation as cryptic-donors. (2) Decoy-
donors closer to the annotated splice site are inherently more
likely to be used by the spliceosome, likely due to the presence of
all required sequence features that are facilitating use of the
annotated donor.

(3) Cryptic-donors do not necessarily need to be stronger than
the annotated-donor to present substantive risk for mis-splicing,
with decoy-donors only 10% of the strength of the annotated-
donor able to compete for spliceosomal binding. (4) Intronic
G-repeats can diminish the likelihood of spliceosomal recognition
and use of intronic decoy splice sites. (5) SAI’s deep-learning
appreciates the broader sequence context determining spliceoso-
mal usability of a cryptic-donor, though less accurately predicts
activation of more distal cryptic-donors (>100 nt from the
annotated-donor).

SAI’s deep learning presents a major improvement in pre-
dicting cryptic-donor activation. However, use of SAI in a
pathology context is limited by the challenge of deriving a
clinically-meaningful interpretation of a number on a 0–1 scale,
without independently verifiable evidence. In contrast, 40K-RNA
provides an accurate, evidence-based means to rank cryptic-
donors likely to be activated by genetic variants.

Brandão et al.26 used deep sequencing of twelve major cancer
susceptibility genes to catalogue all alternative and aberrantly
spliced transcripts. They found variant-activated cryptic splicing
was often seen at much lower levels in disease controls, suggesting
that the dominant transcript in rare disease may be seen as a
stochastic mis-splicing event in other samples. We use this
insight, mining the breadth of publicly available RNA-seq data
across numerous tissues to comprehensively catalogue stochastic
cryptic splicing events across all genes.

The heightened sensitivity and empirical nature of using 40K-
RNA is of vital importance for pathology assessment of variants
affecting the essential donor splice-site, as not considering a likely
cryptic-donor activated can lead to profound complications in

variant interpretation. Prospectively, the sensitivity of 40K-RNA
can be enhanced by ultra-deep sequencing. It is also easy to
envisage extending the method to predict other mis-splicing
events such as exon skipping, and mis-splicing events at the
acceptor splice site. 40K-RNA can reliably identify distal cryptic-
donors with high likelihood of activation, which may not be
identified by SAI. Conversely, SAI can reliably identify cryptic
donors with high likelihood of activation not detected in 40K-
RNA, due to low read depth of the target gene.

In conclusion, we define an accurate, evidence-based method to
predict cryptic-donor activation in the context of a variant affecting
the annotated-donor, based on stochastic mis-splicing events
observed in 40,233 publicly available RNA-seq samples (40K-
RNA). We provide a web resource that reports and ranks the most
commonly (mis)used cryptic donors proximal to every ensembl
annotated-donor27 (https://kidsneuro.shinyapps.io/splicevault-40k/
). Our research establishes that for AM-variants, if a cryptic-donor
is activated, in 87% of cases it will be among the top 4 events. We
hope this evidence-based method may improve clinical interpret-
ability of donor variants.

Methods
Creating a database of cryptic-donor variants. Variants were derived from
several sources: (1) 439 variants curated from literature, predominantly comprised
of 364 variants in DBASS515 and supplemented by curation from published lit-
erature of 75 additional variants28,29 (2) 4372 variants derived from RNA-seq
studies: Variant-associated aberrant cryptic-donor activation detected from RNA-
seq data identified by SAVnet in somatic tumor samples (n= 3259)16 and 1113
variants identified in GTEx samples by spliceAI and verified using RNA-seq data11.
The following inclusion criteria applied: (1) Variants had to occur within E-4-D+8

of the annotated or the cryptic-donor, otherwise they were excluded as outside the
bounds of this analysis. (2) annotated cryptic-donors were within the same exon/
intron as the variant (i.e., between the 5′ end of the exon and 3′ end of the intron
surrounding the affected donor). (3) The annotated cryptic-donor VAR sequence
had to have an essential GT/GC dinucleotide at D+1/D+2, to minimise mis-
annotated variants being included.

Annotating variant categories. We annotated variants with categories we defined– if
the variant occurred within E-4-D+8 of the annotated-donor, it was an AM-variant,
if it occurred within E-4-D+8 of the cryptic-donor it was a CM-variant, and if it
occurred within E-4-D+8 of both the annotated- and cryptic-donor it was an AM/
CM-variant. For 37/373 of AM/CM-variants, an additional unmodified cryptic-
donor was activated, in addition to the cryptic-donor modified by the variant- these
were excluded from analyses.

Compiling annotated-, cryptic- & decoy-donor sequences. The R package
BSgenome.Hsapiens.1000genomes.hs37d530 was used to extract (up to) 500 nt of
genomic sequence preceding and succeeding the annotated-donor (GRCh37). For
each variant in the cryptic-donor database, we extracted up to 250 exonic
nucleotides in the 5′ direction (i.e., if the exon was only 50 nt the window of
analysis would be 50 nucleotides), and up to 250 intronic nucleotides in the 3′
direction, in the same fashion (Fig. 1a).

From the (up to) 500 nt of sequence we pulled E-4-D+8 sequences for the
annotated- and cryptic-donor before and after each variant (REF and VAR
respectively). We also identified any other essential donor dinucleotides (i.e., GT or
GC) which were present in the sequence and extracted the E-4-D+8 sequence
surrounding them. These sequences we define as decoy-donor- sequences
containing the essential donor dinucleotides (i.e., a GT or a GC) but which weren’t
utilised by the spliceosome as a result of the variant (Fig. 1a, lower). For intronic
decoy-donors, we excluded any which would result in an intron too short to be
spliced (as defined by the 1st percentile for intron length in the human
genome= 80 nt)31. Importantly, without additional filtering, no cryptic-donors in
the database violated this rule.

Algorithms for splice site strength. We retrieved predicted scores for annotated-
donors, cryptic-donors and decoy-donors in the database in both the REF and
VAR sequence context, for four algorithms. (1) MaxEntScan (MES)13 scores were
retrieved using the perl script provided at http://hollywood.mit.edu/burgelab/
maxent/Xmaxentscan_scoreseq.html. MES scores below 0 were standardised to 0 as
predicted non-functional splice sites (2) NNSplice (NNS)12 scores were retrieved
using the online portal (https://www.fruitfly.org/seq_tools/splice.html), set to
human, with default settings (i.e., a minimum score of 0.4, with any scores below
predicting a non-functional splice site) (3) SpliceAI (SAI)11 scores were retrieved
using a script adapted from the SAI GitHub repository (https://github.com/
Illumina/SpliceAI) which allows spliceAI to score custom sequences. We rounded
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the scores to three decimal places, and scores at 0 when rounded as such (i.-
e., < 0.01) were termed non-functional splice site predictions. (4) Donor Frequency
(DF) calculates the median frequency among four 9 nt windows of sequence
spanning the donor (see supplementary Fig. 1b, c) converted to a cumulative
percentile distribution scale. DF measures donor strength based on how many
annotated-donors in the human genome have the exact same sequence. An
example of a DF calculation is shown in supplementary Fig. 1c, where a median DF
raw value of 179 lies at the 31st percentile of a cumulative frequency distribution.
After assessing several window lengths (supplementary Fig. 1a) we used 9nt win-
dows as optimally encompassing the splice site.

Naturally occurring decoy-donors. Our set of naturally occurring human decoy-
donors were derived from the set of all canonical Ensembl transcripts (Release
75)27, with first and last introns and single exon transcripts removed. We filtered
the set so that junctions were within the open reading frame for the given gene, so
we knew that cryptic splicing here would affect the protein. We also removed exons
with alternative 5′ or 3′ ends already annotated in different transcripts. We used
these criteria to form a set of 142,014 canonical exon-intron junctions that are not
alternatively spliced (or at least not annotated as such). We extracted sequences
surrounding annotated-donors and extracted all decoy-donors just as for the
cryptic database (see methods section creating a database of cryptic-donor
variants).

Decoy-donor depletion. Decoy-donor depletion was calculated using a method we
adapted from a previous study17 that controls for dinucleotide frequencies (sup-
plementary Fig. 4). For exonic sequences, we took up to 150 nt or the maximum
length of the exon, whichever was shorter (and similarly for the intron, stopping
50nt from the acceptor). We limited analysis to 150nt of exonic sequence as the
majority of exons are shorter than this. We then shuffled exonic and intronic
sequences separately, maintaining dinucleotide frequencies (using shuf-
fle_sequences with euler method from the universal motif R package32). We per-
formed the shuffle 15 times and took the average count of decoy-donors at each
nucleotide position as our expected count at this position. The observed count of
decoy-donors was then divided by the expected count at each position.

Creating 40K-RNA. We had two sources of data for 40K-RNA- RNA-seq data
from Intropolis19 and GTEx18. Intropolis is a set of ~42M splice-junctions found
across 21,504 human RNA-seq samples from the Sequence Read Archive (SRA).
Samples were aligned using Nellore et al. annotation-agnostic aligner Rail-RNA33.
Intropolis was downloaded from its dedicated github repository (https://
github.com/nellore/intropolis). Per sample splice-junction files were obtained from
GTEx (phs000424.v8.p2 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000424.v8.p2]). Using Datamash34, splice-junction read
counts were summarised across all samples for each unique splice-junction and
translated from GRCh38 to GRCh37 using liftOver35.

For each set of splice-junctions (Intropolis and GTEx), we cross-referenced and
located junctions within ensembl transcripts. We filtered to cryptic-donor events
by scanning for any unannotated donors used between the 5′ end of the exon and
the 3′ end of the intron for that respective exon-intron junction, where the junction
also spliced to the next annotated acceptor. Events from the two sources were
merged, sample counts were tallied across the two datasets, and splice-junctions
present in at least 3 samples and representing cryptic-donor use within 250 nt of
any annotated-donor were retained.

Sashimi plots. For Fig. 5c, and S6b, c sashimi plots were generated using 3 GTEx
bam files for each example, each from the tissue with the highest TPM for the
respective gene. Sashimi plots were created using ggsashimi36.

SpliceAI in silico mutagenesis plots. For Fig. 5d and S6b, c we performed the in
silico mutagenesis method described by Jaganathan et al11. That is, the importance
score of each nucleotide was calculated as:

sactual !
sA þ sC þ sG þ sT

4
ð1Þ

where sactual is the score calculated on the genuine sequence, and sA, for example, is
the score calculated when an A is substituted at this position.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The variants used in the cryptic-donor database are provided in the Source Data file. 40K-
RNA is available as a web-resource at: https://kidsneuro.shinyapps.io/splicevault-40k/.
Additionally, the full dataset is available under restricted access to limit hosting costs. Access
can be obtained by creating a google cloud billing account and downloading at this link
using google cloud tools- https://storage.googleapis.com/misspl-db-data/
misspl_events_40k_hg19.sql.gz. The GTEx v8 data used in this study were obtained from

dbGaP accession number phs000424.v8.p2 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000424.v8.p2]. Intropolis data used in this study were obtained
from the dedicated GitHub repository https://github.com/nellore/intropolis. Source data are
provided with this paper.

Code availability
All code required to replicate figures in the study are available in a GitHub repository:
https://github.com/kidsneuro-lab/cryptic_donor_prediction. Additionally, code required
to create 40K-RNA is available in a separate repository https://github.com/kidsneuro-lab/
40K-RNA.
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Supplementary Fig. 1 Calculation of Donor Frequency (DF) as a measure of donor strength. a-b) Frequency of 
unique combinations of donor sequences at each position of the exon-intron junction, spanning 6, 7, 8, 10 (a) or 9 (b) 
consecutive nucleotides. Black bars denote windows overlapping the E-4-D+8 donor sequence window. Four sliding 
windows of 9 nt spanning the annotated-donor (coloured black), spanning 12 nt from the fourth-to-last exonic base (E-

4; E = exon) to the eighth intronic base (D+8; D = donor), were used for DF calculation. These windows were chosen 
due to the jump in sequence diversity seen with windows upstream of/including E-5, and downstream of/including 
E+9. c) Donor Frequency is calculated as the median frequency across each 9nt window, converted to a cumulative 
percentile distribution.  DF measures donor strength by how many annotated-donors in the human genome have the 
exact same sequence. In this example, a median DF raw value of 179 lies at the 31st percentile of a cumulative 
frequency distribution. 



 

Supplementary Fig. 2 Algorithmic prediction of cryptic-activation. a-c) DF (Donor Frequency), MES 
(MaxEntScan), NNS (NNSplice) and SAI (SpliceAI) scores for (a) AM-variants (b) CM-variants and (c) AM/CM-
variants. Colour coding is explained in the Figure key. When a donor strength score of 0 is returned, we set it to 1x10-6 
to allow for the D calculations (VAR/REF; VAR = variant; REF = reference). d) Comparison of NNS, MES and SAI 
scores with DF for all cryptic-donors (scores for VAR sequence) in our Cryptic-Donor database. DF shows strongest 
correlation with MES. NNS does not recognise a subset of human donors to offer a strength prediction.  
 



 

Supplementary Fig. 3 G- and T- dinucleotide repeats show distinct patterns of enrichment in different introns. 
a-b) frequencies of each (a) nucleotide and (b) dinucleotide at each position surrounding annotated-donors. Vertical 
dotted lines denote boundaries at -10 and +10 where calculations start (i.e. excluding the conserved extended splice-
site region). Horizontal dotted lines denote a random frequency of a) 1/4 for single nucleotides and b) 1/16 for 
dinucleotides. Lines show LOESS smoothing (locally weighted smoothing i.e. trendlines) with confidence bands in 
grey. In (b) Panels are according to the first nucleotide and colours are according to the second nucleotide in the 
dinucleotide. Note enrichment of G- and T- dinucleotides in the first 50 nt of the intron. c-e) frequencies of 
dinucleotides GG, and TT at each position surrounding annotated-donors. Vertical dotted lines denote boundaries at -
10 and +10 where calculations start, horizontal dotted line denotes a random frequency of 1/16. Lines show LOESS 
smoothing (locally weighted smoothing i.e. trendlines) with grey confidence bands. a) G-repeats are enriched in the 
shortest human introns whereas T-repeats are enriched in longer introns. Length bins: < 149 nt (< 10th percentile), 
149-627 nt (10 - 30th percentile), 628-3010 nt (30 - 70th percentile), 3011-9270 nt (70 - 90th percentile), > 9270 nt (> 
90th percentile). b) Annotated donors with D+3 G (or C) are enriched in G-dinucleotides whereas donors with D+3 A (or 
T) are enriched in T-dinucleotides. c) Rare donors (low Donor Frequency (DF)) show greater enrichment for T 
dinucleotide repeats compared with common donors (high DF).  

 



 

Supplementary Fig. 4 Schematic representation of how decoy depletion is calculated. Sequences in blue ‘exon’ 
and pink ‘intron’ boxes are shuffled separately (maintaining dinucleotide frequencies) and the number of actual decoy-
donors at each position is divided by the number in the shuffled sequence set.  
 



 

Supplementary Fig. 5 40K-RNA provides insight into natural use of decoy-donors by the spliceosome. a) The 
ratio of observed to expected ‘GC’ decoy-donors at each position +/-150 nt of annotated-donors. Yellow: In-frame 
exonic decoy-donors. Red: out-of-frame decoy-donors.  b) The percent of decoys present in 40K-RNA +/-150 nt of 
annotated-donors.  Red: ‘GT’ decoy-donors closer to the annotated-donor are more likely to be present in 40K-RNA. 
Blue: ‘GC’ decoy-donors are rarely seen in 40K-RNA. At each position the number of decoy-donors present in 40K-
RNA is divided by the total number of naturally occurring decoy-donors at that position. Lines show LOESS smoothing 
(locally weighted smoothing i.e. trendlines) with grey confidence bands. c-f) two examples of decoy-donors 
overlapping G-repeats that outcompete the annotated-donor according to Donor Frequency (DF) and MaxEntScan 
(MES), but are not present in 40K-RNA, and which SpliceAI (SAI) correctly identifies as non-functional donors. NNS = 
NNSplice c,e) Shows overlays of 3 GTEx RNA-seq samples from the tissues with the highest TPM for that gene. The 
numbers (e.g., 689;137;139) denote the detected reads in each respective sample for that splice-junction.   
Algorithmic strength scores for annotated- and decoy-donors are boxed. d,f) Result of SAI in silico mutagenesis 
showing the bases contributing to predicted strength of the annotated-donor (top) and decoy-donor (bottom). ‘SAI 
score change’ denotes the decrease (if positive) or increase (if negative) on the predicted strength of the donor when 
that nucleotide is mutated (see methods). Black dashed line indicates the position of the annotated- or decoy-donor 
and position on the x-axis denotes the position of the nucleotide relative to the annotated-donor. 
 



 

Supplementary Fig. 6 Effectiveness of 40K-RNA and SAI for prediction of cryptic-donor selection. a) Sensitivity 
(orange) and specificity (grey) of NNSplice (NNS) using a cut-off of 0.5, MaxEntScan (MES) using a cut-off of 1 and 
Donor Frequency (DF) using a cut-off of 0.05 to predict cryptic-donor activation in AM-variants. b) The maximum 
number of reads detected in any one RNA-seq sample across 40K-RNA for each cryptic-donor activated by an AM-
variant. c) Only 29% of cryptic-donors for target genes with < 100 max reads corresponding to normal splicing are 
present in 40K-RNA, rising sharply to > 82% sensitivity for transcripts with more than 100 max reads corresponding to 
normal splicing. d) Percent of AM-variant cryptic-donors with SAI D scores greater than or equal to 0.1 (left) or in the 
40K-RNA top 4 (right) in different bins according to cryptic distance to the annotated-donor. SpliceAI’s sensitivity for 
AM-variants drops to 55% for cryptic-donors more than 100 nt from the annotated-donor e) SAI D scores for AM 
cryptic-donors (n = 2,348) relative to their distance from the annotated-donor. Internal lines denote the median value, 
and the lower and upper limits of the boxes represent 25th and 75th percentiles. The whiskers extend to the smallest 
and largest values no further than 1.5 x inter-quartile range (IQR). f) The percent of CM- and AM/CM-variant cryptics 
detected in 40K-RNA, according to the position of the SNV within the extended splice-site region of the activated 
cryptic-donor.  
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SpliceVault predicts the precise nature of variant-associated mis-
splicing. 
 
3.1 Overview 
 
 
In Chapter 3, we extend the method developed in Chapter 2 for predicting cryptic-donor 

activation, to predict exon skipping events, as well as mis-splicing events at the acceptor 

splice site. We greatly expand the breadth of sequencing data used in predictions from 40,233 

(40K-RNA) samples to 335,663 (300K-RNA), and house them both in a resource we term 

‘SpliceVault’.  

 

To validate 300K-RNA we used a cohort of experimentally verified splice-altering variants, 

with RNA diagnostics performed by our lab, most of which were initially published in a 2022 

paper from our lab, led by Adam Bournazos89, which was outside the scope of this thesis. To 

aid in the readability of my thesis I’ve re-presented Figure S5 from Bournazos et al. 202289, 

and the source of variants and strategy of RNA diagnostic studies in producing this set of 

splice-altering variants is summarised here:  

 

74 families were recruited from local area health districts across Australia and New Zealand 

according to if they had splicing variants with high clinical suspicion of causality, using the 

following criteria: (1) a likely monogenic Mendelian disorder, (2) variant allele frequency in 

public databases consistent with disease incidence, (3) putative splicing variant in a clinician-

defined, phenotypically concordant gene, and (4) preferably segregating with disease).  RNA 

was derived either from clinically accessible tissues (blood, skin fibroblasts or urothelial 

cells) or biopsy specimens if available.  

 

The study established comprehensive procedural guidelines for RNA diagnostics via RT-

PCR (Figure 3-1): In essence, patient cDNA and age-, sex- and specimen-matched cDNA 

from at least two controls were interrogated for normal splicing as well as any potential exon 

skipping, intron retention, and cryptic splice site usage. Potential cryptic splice sites were 

identified using in silico algorithms.  
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Figure 3-1 Re-presented Figure S5 from Bournazos et al. 202289. Procedural guidelines for RNA Diagnostics via RT-

PCR and Sanger sequencing endorsed by Clinical Variant Curators (genetic pathologists and qualified diagnostic scientists). 

 

Using this high-quality set of variants with RNA diagnostic data with which we were 

intimately familiar, as well as two additional variant cohorts curated from literature, we 

assessed the sensitivity and positive predictive value of 300K-RNA predictions of cryptic 

activation and exon skipping events, across donor and acceptor variants. Additionally, we 

applied custom interpretive rules to SpliceAI output allowing it to offer predictions of exon 

skipping and intron retention events in addition to cryptic activation, to allow comparison 
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with 300K-RNA (no other algorithm currently predicts both exon skipping and cryptic 

activation).  

 

300K-RNA outperformed SpliceAI on average across three independent cohorts of variants, 

with a mean sensitivity of 92%.  Additionally, RNA reanalysis of several variants where 

300K-RNA Top-4 events were not detected revealed that they had been missed upon initial 

analysis, due to the difficulties of RNA studies. This highlights the danger of false negatives 

in RNA diagnostics and potential impact to variant interpretation, examined in my 

introduction.  

 

We found that despite the heterogeneity of 300K-RNA, top-ranked events were highly 

concordant across its component tissue-types and data sources. We propose new draft 

recommendations for the application of PVS1 to essential splice site variants, recommending 

consideration of 300K-RNA Top-4 events and intron retention.  

 

This chapter was accepted at Nature Genetics as an analysis article for which I am joint first 

author. My contributions were creation of the 300K-RNA database and cross-referencing 

predictions with experimental data generated by Adam Bournazos. I prepared Figure 1C, 

Figures 2-4, Extended Data Figures 1-6, and write and edited the manuscript along with co-

authors. I created the accompanying 300K-RNA web portal, with assistance from Himanshu 

Joshi with database management and tissue-specific capabilities. 

 

Dawes R, Bournazos AM, Bryen SJ et al. SpliceVault predicts the precise nature  

of variant-associated mis-splicing. Nat Genet (NG-AN59054R3). (2022).  
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Abstract 

Clinical interpretation of splicing variants depends critically upon the nature of variant-

associated mis-splicing and consequence(s) for the encoded gene product.  Arrestingly, 

ranking the four most common unannotated splicing events across 335,663 reference RNA-

sequencing samples (300K-RNA Top-4), identifies the nature of variant-associated mis-

splicing with remarkable prescience.  300K-RNA Top-4 correctly identifies 96% of exon-

skipping events and 86% of cryptic splice-sites induced by 88 variants across 74 genes and 

140 affected individuals or heterozygotes subject to RNA Diagnostics. 300K-RNA shows 

higher sensitivity and positive predictive value than SpliceAI in predicting exon-skipping and 

cryptic-activation events. Importantly, RNA re-analyses showed we had missed 300K-RNA 

Top-4 events for several clinical cases tested prior to 300K-RNA.  In conclusion, 300K-RNA 

provides an evidence-based method that predicts with high sensitivity the nature of variant-

associated mis-splicing. The SpliceVault web portal allows users easy access to 300K-RNA, 

to augment both pathology consideration of PVS1 and RNA diagnostic investigations. 
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Introduction 

Genetic variants that induce mis-splicing of precursor messenger RNA (pre-mRNA) are a 

common cause of inherited disorders1,2. Interpreting pathogenicity of a splicing variant 

depends on the nature of detected mis-splicing, relative to the known pathogenetic 

mechanism(s) of disease for that gene and disorder (i.e., loss-of-function/gain-of-function)3–8.  

 

Variants impacting essential splice-sites, the almost invariant GT-AG flanking each intron, 

are virtually guaranteed to induce mis-splicing.  Due to triplet codons, mis-splicing of pre-

mRNA commonly induces a frameshift or encodes a premature termination codon (PTC), 

supporting rationale for consideration of essential splice-site variants under the PVS1 Null 

Variant (Very Strong evidence level) criterion of the American College of Medical Genetics 

and Genomics and the Association for Molecular Pathology (ACMG–AMP) guidelines9.  In 

2018, revised PVS1 guidelines recommended application of the PVS1 code for essential 

splice-site variants, at varying strengths, based upon theoretical consideration of 

consequences from exon-skipping, intron retention and use of any cryptic splice-site within 

20 nucleotides (nt)10.  While only ~20% of variant-activated cryptic donors are within 20 nt11, 

consideration of a larger window is unfeasible in diagnostic genetic pathology, due to the 

large number of potential cryptic splice-sites present in the genome. In addition, factors that 

induce multi-exon skipping (or retention of multiple introns) associated with some splice-

altering variants are unknown. 

For RNA Diagnostic testing performed in our laboratory3, we routinely interrogate RNA 

sequencing (RNA-Seq) data from control specimens (in house or from GTEx12 or 

ENCODE13) to assess patterns of alternative splicing of the target gene between the 

manifesting tissues and clinically accessible specimens.  We observed that the predominant, 

variant-associated mis-spliced transcript(s) identified in specimens from affected individuals 

and heterozygotes were often observed as rare, stochastic splice-junctions in control RNA-

Seq data.  Brandão and colleagues detailed a similar finding, with dominant variant-induced 

mis-spliced BRCA1 or BRCA2 transcripts often seen as rare events in disease controls14. 

Additionally, Kremer et al., found that splicing ‘noise’ often forecast the location of variant-

activated pseudoexons and reasoned that a population-based RNA-seq compendium could aid 

in variant prioritisation15. 
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In Dawes et al., 202211, we analysed 5,145 variants activating cryptic splice-sites and 

established that 87% of activated cryptic splice-sites are those detected as rare, unannotated 

splice junctions in 40,233 RNA-Seq samples from GTEx12 and Intropolis15 (40K-RNA 

database11).  The key insight that cryptic donors activated by genetic variants are also seen as 

rare events in population-based RNA-Seq data, led us to explore whether other forms of 

variant-associated mis-splicing may be predicted by quantifying the relative prevalence of 

stochastic, natural, unannotated splicing events (referred to hereafter as mis-splicing events).   

We therefore created 300K-RNA, an expanded resource detailing the most common 

unannotated splicing events local to each exon-intron junction of Ensembl16 and RefSeq17 

transcripts, based on splice-junctions detected across 335,663 publicly available RNA-Seq 

samples from Genotype Tissue Expression dataset (GTEx)12 and Sequence Read Archive 

(SRA)18, processed in the recount3 project19 (300K-RNA).  300K-RNA is updated to the 

GRCh38 genome assembly and is hosted in a web resource called SpliceVault, together with 

40K-RNA (GRCh37)11. Unannotated splice-junctions in 300K-RNA constitute evidence that 

a splicing event is biophysically possible and possesses the requisite constellation of features 

for the splicing reactions to be executed.  Our central hypothesis is that a genetic variant 

impeding or precluding spliceosomal use of an annotated splice-site is most likely to enhance 

or activate stochastic mis-splicing events that occur naturally. 

 

Herein we demonstrate that 300K-RNA Top-4 ranked events correctly identifies 96% of 

exon-skipping events (including multi-exon skipping) and 86% of activated cryptic splice-

sites induced by 88 variants in 74 genes for 140 affected individuals or heterozygotes subject 

to RNA Diagnostics.  We additionally provide a comparison with SpliceAI20, applying 

custom interpretive rules to SpliceAI D-scores +/- 5000 nt of variants to infer predictions of 

exon skipping, intron retention and cryptic splice-site activation. 
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Results 

A set of experimentally verified splice-altering variants 

We performed retrospective analysis of 88 splice-site variants across 74 genes that are 

confirmed by RNA diagnostics3 to disrupt pre-mRNA splicing (Supplementary Table 1).  

Inclusion Criteria: Variants affecting an annotated splice-site and demonstrated to activate 

exon-skipping or cryptic splice-site use. Exclusion Criteria: Variants creating or modifying a 

cryptic splice-site (inappropriate for our method11). 

 

Reverse transcription PCR (RT-PCR) and/or RNA-Seq were performed on RNA isolated 

from clinically accessible specimens from 140 affected individuals or heterozygotes with 

diverse Mendelian conditions3,21–24 (Figure 1A and Supplementary Table 1). The majority of 

probands had neurological (n=29), skeletal muscle (n=22), or malformation syndrome (n=9) 

phenotypes.  32% of variants affect the essential GT (n=19) or AG (n=9) splice-sites and 

68% affect the extended donor or acceptor splice-site regions. The dataset included 76 single 

nucleotide variants (SNVs), 4 insertions, 6 deletions and 2 deletion-insertion variants (Figure 

1B). 

 

Half of the variants (44/88) induced two or more mis-splicing events (Figure 1C).  Variants 

most frequently caused skipping of a single exon (70/148 total events, 47%), followed by 

cryptic activation (44/148 events, 30%) and intron retention (29/148 events, 20%), and rarely 

caused multi-exon skipping (5/148 events, 3%) (Figure 1C).  

 

 
Figure 1. Variant cohort details A) Phenotypes associated with 88 experimentally-verified clinical splicing 
variants and B) Position of the 76/88 variants that are single nucleotide variants (SNVs) relative to the essential 
splice-sites. C) Nature of 148 unannotated splicing events (mis-splicing) induced by the 88 variants. IR = Intron 
Retention. 
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Unannotated splicing events in 300K-RNA 

The 300K-RNA database describes natural variation in splicing among 335,663 publicly 

available RNA-Seq samples from GTEx12 and SRA18, collected in the recount3 resource19 (see 

Methods).  For each donor and acceptor in Ensembl16 and RefSeq17 transcripts, we collate all 

unannotated, stochastic splicing events surrounding that splice-site (Figure 2A-C), detected in 

RNA-Seq samples processed in a unified pipeline in the recount3 resource19. Wilks et al., use 

splicing-aware alignment in an annotation-agnostic fashion, preventing bias against detection 

of unannotated events19.  

 

These splice-junctions provide experimental evidence for an executed splicing reaction using: 

a) a paired donor and acceptor from different introns, reflecting skipping of one or more 

consecutive exons normally present in that transcript (Figure 2A, exon skipping); or b) an 

annotated donor or acceptor, paired with an unannotated acceptor or donor, respectively, 

indicating cryptic splicing (Figure 2B, cryptic splicing).  Mis-splicing events detected at each 

splice-site in 300K-RNA are ranked by the number of samples in which at least 1 splice-

junction read was detected (Figure 2C). Highest sensitivity and PPV for 300K-RNA 

predictions were obtained using the Top-4 ranked events as a prediction of the nature of mis-

splicing - applying a filter of a maximum of two exons skipped and cryptic splice-sites within 

600 nt (Extended Data Figure 1; filter demarked hereafter by an asterisk).  Using this filter, 

300K-RNA Top-10* events identified all 119 exon-skipping and cryptic splicing events 

induced by the 88 variants (Figure 2D) with 64/119 (54%) the Top-ranked* event for that 

splice-site (Figure 2D, Extended Data Figure 2).  

 

 

Figure 2E shows the importance of sequencing breadth in 300K-RNA for detection of all 119 

true positive exon-skipping and cryptic splicing events.  Taking random subsets within the 

335,663 source specimens shows sensitivity only begins to maximise with ~100,000 samples. 

Deeper scrutiny of the 119 true positive events shows, on average, each event is detected as a 

single splice-junction read in 78% samples with this event – underpinning why all single read 

events are catalogued in 300K-RNA.  Figure 2F reinforces the stochastic nature of these mis-

splicing events, showing the Top-1 and Top-2 events around the splice sites affected by our 

88 variants typically occur in mutually exclusive specimens – with both events seen, on 

average, in only 5% of samples where either event was seen. 
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Figure 2. Unannotated splicing events seen in 300K-RNA A) Exon Skipping events are evidenced by split-
reads spanning non-consecutive exons within the transcript. Splice-sites (GT/AG motifs) shown bold and in 
black are those for which events are being ranked. B) Cryptic Activation events are evidenced by split-reads 
spanning: i) an annotated acceptor and an unannotated donor or ii) an annotated donor and an unannotated 
acceptor. C) Example showing the Top-4* events for NM_130786 (A1BG) Donor 2 (g.58353291). Exon/Intron 
lengths are not drawn to scale. Arc thickness corresponds to event rank. D) 119/119 (100%) exon-skipping and 
cryptic activation events detected across 88 variants are present in 300K-RNA, and 92% are in the Top-4* 
events for their respective splice-site. E) Percent of the 119 true positive events detected within random subsets 
of the 335,663 source specimens in 300K-RNA. Grey dots show proportion across 20 random samples, blue line 
shows mean proportions with LOESS smoothing. F)  Top-1* and Top-2* events around the splice-sites affected 
by our 88 variants typically occur in mutually exclusive specimens – with both events seen, on average, in only 
5% of total samples where either event was detected. Internal lines of boxplot denote the median value, and the 
lower and upper limits of the boxes representing 25th and 75th percentiles. Whiskers extend to the largest and 
smallest values at most 1.5IQR. * = skipping one or two exons and cryptic activation within 600 nt of the 
annotated splice-site.  
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Concordance of 300K-RNA events between tissues and datasets 

The ranking of the most common, natural mis-splicing events detected around each splice-

site in 300K-RNA is highly concordant between each tissue within GTEx and between GTEx 

and SRA (Figures 3A-B, our 88 variants: Extended Data Figure 3A-B, 98,810 annotated 

splice-sites in the Mendeliome).  This tells us that the spliceosome reproducibly makes the 

same mistakes across a diverse repertoire of tissues and cell lines. Additionally, sample 

counts of all 300K-RNA events were strongly correlated between different GTEx tissues 

(Figure 3C) and between GTEx and SRA (Extended Data Figure 3C, R = 0.91 for our 88 

variants, R = 0.84 for the Mendeliome). However only 20% of 300K-RNA Top-4* events are 

present in all four clinically accessible tissues in GTEx (Figure 3D, blood, fibroblasts, EBV-

LCL, muscle) – reflecting low expression of many Mendelian genes in these tissues. 

Sequencing breadth in GTEx (i.e., the number of specimens available for that tissue sub-type) 

increases the number of unannotated splice-sites detected (R = 0.91, p < 2.2e-16) (Extended 

Data Figure 3D). 

 

Importantly, GTEx Muscle Top-4* did not provide improved sensitivity over 300K-RNA 

Top-4* for 19/88 of our variants associated with muscle disorders subject to RNA 

Diagnostics on muscle samples (Extended Data Figure 3E).  Therefore, we recommend use of 

300K-RNA Top-4* as prediction of the probable nature of variant associated mis-splicing 

until we have great enough breadth and/or depth of RNA-Seq data to evaluate a tissue-

specific approach. We advise caution for genes with known tissue-specific or developmental 

alternative splicing where RNA-Seq from the relevant tissue is not represented, or poorly 

represented, within the 300K-RNA data sources. 
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Figure 3. 300K-RNA event rankings across tissues and data-sources. A) Heatmap showing the proportion of 
mis-splicing events* with the same event rank in each GTEx tissue subtype, as compared to all GTEx tissue 
subtypes combined - for the 88 splice-sites affected by our cohort of variants. Only tissues with ³ 100 GTEx 
samples are shown. The Top-1* event in individual tissues is concordant with the Top-1* event in ‘all GTEx 
tissues’ for ³ 80% of splice-sites. B) Concordance of top-ranked mis-splicing events* in GTEx versus SRA. The 
Top-1* event in GTEx is the Top-1* event in SRA for 80/88 (91%) splice-sites. C) Spearman correlation of all 
mis-splicing events* across 98,810 annotated splice-sites in the Mendeliome (see methods) in each GTEx tissue 
subtype versus GTEx overall. Only tissues with ³ 100 GTEx samples are shown. Black: clinically accessible 
tissues. D) Upset plot27 showing 300K-RNA Top-4* across the Mendeliome (4 events per splice-site, n = 
383677 in total), versus Top-4* specific to four clinically accessible tissues in GTEx. 77461/383677 (20%) of 
all 300K-RNA Top-4* across the Mendeliome are captured as Top-4* events among all four clinically 
accessible tissues (blood, fibroblasts, EBV-LCL, muscle). * = skipping one or two exons and cryptic activation 
within 600 nt of the annotated splice-site.  
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SpliceAI predictions using custom interpretive rules 

SpliceAI author’s 20 high sensitivity threshold of D ≥ 0.20 predicted mis-splicing for 76/86 

(88%) variants and for 63/86 (73%) variants with the high specificity threshold of D ≥ 0.50. 

Preliminary investigations using the default SpliceAI window of +/- 50 nt and high 

sensitivity threshold of D ≥ 0.20 identified 13/44 variant-activated cryptic splice-sites (only 

19/44 activated cryptics lie within 50 nt) and 3/73 exon skipping events. Therefore,  

we adapted SpliceAI to offer a fuller prediction of the nature of mis-splicing, by assessing all 

D-scores generated by inputting pre-mRNA sequence +/- 5000 nt of the variant (Figure 4A-

C).  

 

Two insertion-deletion variants could not be assessed by SpliceAI (Supplementary Table 1, 

Case 50 and 66). D-scores < 0.001 were excluded as nominal predictions of neutral impact, 

and all scores above this threshold were retained for subsequent precision-recall analysis (see 

Methods).  The remaining 2,836 D-scores returned for the 86 variants were interpreted 

according to the following rules: D-loss scores at the annotated splice-site constituted a 

prediction of mis-splicing.  Exon Skipping is inferred if both splice-sites flanking an exon 

have a D-loss score above threshold (Figure 4A). Double-Exon Skipping is inferred if the 

relevant splice-site of the upstream or downstream intron also has a D-loss score above 

threshold (Figure 4A).  Intron Retention is inferred if both splice-sites flanking an intron have 

a D-loss score above threshold (Figure 4B).  Cryptic Activation is predicted by D-gain score 

above threshold for any unannotated donor or acceptor within the bounds of the exon and 

intron flanking the variant splice-site (Figure 4C). D-scores that do not fall into these 

categories are annotated as ‘other’ (see Methods).  According to these rules, SpliceAI 

predicts at least one mis-splicing event for all 86 variants and up to 31 predictions for a single 

variant (Figure 4D, Extended Data Figure 4).  139/145 mis-splicing events elicited by the 86 

variants lie within the maximum +/- 5000 nt SpliceAI window (44/44 cryptics, 68/68 single-

exon skipping events, 4/5 double-exon skipping events and 7/12 intron retention events). 
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Figure 4. Comparison of 300K-RNA Top-4* with SpliceAI. A-C) Custom interpretive rules applied to 
SpliceAI D-scores to predict the nature of mis-splicing. Heights of red lines denote example D-scores that 
predict mis-splicing events according to our rules. A) Single-Exon Skipping is predicted if both splice-sites 
flanking the exon have a donor and acceptor loss D-scores above threshold, and Double-Exon Skipping was 
inferred if the splice-site of the upstream or downstream intron also had donor loss or acceptor loss D-score 
above threshold. B) Intron Retention was predicted if both splice-sites flanking an intron had donor loss and 
acceptor loss D-score above threshold. C) Cryptic Activation was predicted by donor gain or acceptor gain D-
scores above threshold for any unannotated donor or acceptor. D) Example showing SpliceAI predictions of 
exon skipping and cryptic activation in Case Number 6. E) Sensitivity and PPV of 300K-RNA and SpliceAI for 
exon-skipping and cryptic activation prediction at different thresholds, for the 86/88 variants that can be scored 
by SpliceAI. Points on the 300K-RNA curve (blue) show metrics when using Top-1*, 2*, 3*, 4* etc events as 
prediction of the nature of mis-splicing.  Points on the SpliceAI curve (red) show metrics at D-scores that predict 
the same number of exon-skipping and cryptic-activation as 300K-RNA top-1*,2*,3*,4* and so on. F) 300K-
RNA and SpliceAI predictions of exon skipping (seen/not seen in RNA studies across 86 cases). G) 300K-RNA 
and SpliceAI predictions of cryptic splice-site activation (seen/not seen in RNA studies across 86 cases). Dotted 
lines indicate the threshold of Top-4* and SpliceAI D-score ≥ 0.011 identified in (E). Black dots: mis-splicing 
events seen in RNA studies but not meeting the D-score threshold of 0.001. TP = True Positives, FN = False 
Negatives, FP = False Positives. * = filtering events to those skipping one or two exons and cryptic activation 
within 600 nt of the annotated splice-site.  
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Comparing predictive performance of 300K-RNA with SpliceAI 

Precision-recall curves show the sensitivity and positive-predictive value (PPV) of 300K-

RNA and SpliceAI to predict the 119 exon-skipping and cryptic-activation events induced by 

86/88 variants assessable by both methods (Figure 4E).  Top-4* showed higher sensitivity 

(92%) than SpliceAI (84%) at a D ≥ 0.011 threshold – this low threshold was selected 

because it identifies the same total number of mis-splicing events as Top-4* (Figure 4E) to 

compare true/false positive and negative rates.   

 

Top-4* correctly identifies 96% (70/73) of detected exon skipping events while SpliceAI D ≥ 

0.011 predicts 85% (61/73) (Figure 4F). 86% (38/44) of activated cryptics are in Top-4*, 

with SpliceAI D ≥ 0.011 predicting 84% (37/44) (Figure 4G).  Both methods show a low 

PPV: 39% (Top-4*) and 52% (Splice AI D ≥ 0.011) for exon-skipping (Figure 4F) and 24% 

(Top-4*) and 17% (Splice AI D ≥ 0.011) for cryptic-activation (Figure 4G). For intron 

retention events, which cannot be predicted using 300K-RNA, SpliceAI shows a sensitivity 

of 31% (9/29) and PPV of 36% (9/25) at the D ≥ 0.011 threshold.   

 

Sensitivity (S) and PPV of Top-4* and SpliceAI (using D ≥ 0.011 threshold) were similar 

across two additional sets of variants curated from literature; 58 variants tested in patient 

specimens (Top-4* S = 91%, PPV = 26%; SpliceAI S = 94%, PPV = 33%) and 63 variants 

tested using midi-gene assays (Top-4* S = 92%, PPV = 29%; SpliceAI S = 86%, PPV = 

29%) (Extended Data Figure 5 and Supplementary Tables 2,3).  

 

Analysis of features of Top-4* events reveals that relative to false positive, true positives tend 

to be: identified in more samples (Extended Data Figure 6A); represented by more 

unannotated splicing reads (Extended Data Figure 6B-C); with a higher maximum ratio of the 

unannotated event relative to read-depth for annotated splicing in any one sample (Extended 

Data Figure 6E).  However, there was no significant difference between true and false 

positives in the mean reads of annotated splicing in samples where events were detected 

(Extended Data Figure 6D) or in the mean ratio between unannotated and annotated splicing 

(Extended Data Figure 6F); showing these are trends rather than rules. Double exon-skipping 

is rarely activated by splice-site variants (Extended Data Figure 6G). 4/5 detected double 

exon skipping events were Top-1 (among 14 cases with double skipping ranked Top-1) and 

1/5 Top-2; 3) show no difference in the length of the spliced-out region for exon-skipping 
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events (Extended Data Figure 6H) or cryptic distance (Extended Data Figure 6I). We 

identified one false positive that may be due to alignment issues in the short-read splice 

junction dataset: the first few nucleotides of two sequential exons are identical and split reads 

with only a few post-junction nts can map to exon-skipping or normal splicing.  

 

We also emphasise that while a SpliceAI threshold of 0.011 was effective for this bespoke 

application to forecast the likely nature of any variant-elicited mis-splicing, we do not 

recommend use of a 0.011 delta score threshold as a prediction for mis-splicing generally, as 

our evidence from experimentally confirmed splice neutral variants (3 and cases studied 

since) indicates this will yield a high false positive rate of  > 50%. 

 

RNA re-analysis uncovers previously undetected Top-4* events 

We noted many Top-4* events not detected in our early RNA diagnostics cases (prior to 

40K-RNA or 300K-RNA) involved double-exon skipping events (42%) or cryptic activation 

events further than 250 nt from the annotated splice-site (11%), which may have been missed 

on initial analysis.  Prior to the development of 40K-RNA11, our laboratory practice included 

critical review of all cryptic splice-sites within 250 nt of the annotated donor3.  Scrutiny of 

24/88 variants where the top-1 event was not detected by RNA studies (Extended Data Figure 

2) showed: 16/24 were detectable via the RNA Diagnostic strategy deployed, but not 

observed, due to: a) the event was not activated by the variant; b) low expression of the target 

gene, potentially limiting sensitivity; c) the variant simultaneously weakened an annotated 

splice-site and spatially overlapping cryptic splice-site comprising a Top-1* event. 6/24 

events were observed, though available RNA assay data did not confidently establish 

elevated levels relative to controls. 1/24 event was detected upon review of Sanger 

sequencing trace file. We performed RNA reanalysis for 1/24 case with an undetected Top-

1* event and three additional cases where multiple Top-4* events were not detected (A024-

OPHN1 c.702+4A>G; A060-GSDME c.1183+5G>A; A014-SPG11 c.2317-13C>G; A205-

EMD c.266-3A>G)3.  We identified or clarified variant-associated enhanced use of 1/4 multi-

exon skipping events (Extended Data Figure 7A,B, SPG11, red), 4/4 cryptic splice-sites 

(Extended Data Figure 7C,D, GSDME and EMD, red), and 1 single-exon skipping event 

(Extended Data Figure 7D, EMD, red). Skipping of multiple exons associated with SPG11 

c.2317-13C>G was not detected initially by RT-PCR due to primer placement in exons too 

proximal to the splice variant, and undetected by RNA-Seq due to low read depth 

exacerbated by NMD.  Activation of two cryptic donors and two cryptic acceptors associated 
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with GSDME c.1183+5G>A and EMD c.266-3A>G, respectively, were missed initially due 

to competition inherent with multi-template PCRs, heteroduplex formation and challenges 

resolving multi-trace chromatograms by Sanger sequencing. 

 

Half of essential GT-AG variants induce ≥1 in-frame events 

49% (27/55) of essential splice-site (ES) variants across the three variant sets induced at least 

one in-frame event, with a similar proportion of 51% (45/88) for all variants in our cohort 

(Extended Data Figure 7E). When considering Top-4* and intron retention as a prediction of 

variant-induced mis-splicing, the number of ES variants with ≥ 1 in-frame event is 80% 

(45/55) and 81% (71/88) for all variants in our cohort.  

 

Discussion 

Clinical interpretation of splicing variants relies on predicting, or experimentally verifying, 

the nature of variant-induced mis-splicing to confirm variant impact on the encoded protein. 

This is of particular importance when applying the PVS1 (null variant) criterion to essential 

splice-site variants10.  While the impact of exon skipping and intron retention on protein 

reading frame can be theorized, it has remained difficult to predict whether exon-skipping or 

cryptic splice-site activation will occur - and if a cryptic splice-site is activated, which one of 

the many potential sites present in the vicinity will be selected by the spliceosome.   

 

Our empirical method of using 300K-RNA Top-4* accurately predicts the nature of variant 

associated mis-splicing with 92% sensitivity for 88 variants across a broad range of genes 

and disorders, outperforming SpliceAI on average to correctly predict exon-skipping, double-

exon skipping and cryptic splice site activation. We emphasize that Top-4* cannot be used 

for variants creating or modifying the essential splice-site motif of a cryptic splice-site and 

recommend use of SpliceAI for this category of variant11.  In addition, though intron 

retention cannot yet be quantified and ranked by 300K-RNA, Extended Data Figure 8 shows 

that intron retention induces a frameshift or encodes a premature termination codon in all 

three frames for at least 97% introns in the Mendeliome and is therefore consistent with null 

outcomes in most instances.   

 

It is important to acknowledge the low PPV of Top-4* when used as a prediction of the 

nature of mis-splicing.  However, we feel that prioritising sensitivity is of greatest 

importance, to avoid false negative predictions.  RNA re-analysis of 4 cases with one or more 
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undetected Top-4* events via our initial RNA Diagnostics testing revealed we had missed 6/9 

of these rare events, due to experimental design and/or technical limitations.  A priori 

knowledge of Top-4* mis-splicing events has been transformative for our research-led 

clinical RNA Diagnostics program, facilitating both variant curation and strategic 

experimental design of RNA assays to specifically target probable mis-splicing events; 

expressly important for RT-PCR where primer design and extension times strongly influence 

which products may be amplified.  

 

Our reinterrogation of early cases, showing we had missed several rare events, raises the 

possibility that Top-4* PPV could be higher than we currently estimate. It also reinforces 

clinical benefits of being able to reliably predict probable mis-splicing events to improve 

completeness and accuracy of conclusions drawn from RNA diagnostics. Importantly, we 

cross-checked all other early cases (before 300K-RNA) to confirm that interpretation of 

likely pathogenicity would not be impacted by any undetected Top-4* events that may have 

resulted (it was neither feasible nor economic to re-test all specimens).   

 

Top-ranked unannotated splicing events are highly concordant between tissues and between 

GTEx and SRA (Figures 3A-B and S3A-B), in line with previous analyses showing that 

transcription rates rather than alternative splicing patterns underpin most tissue-specific 

variation in GTEx25. We suspect the predictive accuracy of our ranking method may be 

improved further by: 1) higher read depth RNA-Seq data across the breadth of manifesting 

tissues in rare disorders (e.g. there is no data currently available for cochlear), 2) 

incorporation of RNA-Seq data from human fetal samples to catalogue developmental 

alternative splicing, 3) use of cycloheximide to inhibit nonsense-mediate decay, 4) a better 

understanding of contexts that influence variant-associated double exon skipping, 5) an 

ability to rank likelihood of variant-activated intron retention, and 6) improved bioinformatic 

methods in sequencing read alignment.  Consideration of Top-3* events in specific 

manifesting tissues, if shown to maintain > 90% sensitivity, could substantially improve PPV 

and clinical utility for variant classification. 

 

Long-read RNA may prospectively assist evaluation of new methods to improve fidelity of 

short-read alignment and reduce splice-junction artifacts in 300K-RNA, though has its own 

bioinformatic and technical challenges.  Extended Data Figure 9 shows that long-read RNA-

Seq (7M mean read depth, 740 nt average length) of 22 fibroblast specimens in GTEx v926 
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identifies only 15% (180K) of the 1.16M total splice-junctions detected in 504 GTEx v8 

fibroblast specimens (75 bp paired reads, Poly A enriched, 80M read depth).  For 

comparison, in-house RNA-Seq data from 7 fibroblast specimens (150 bp paired reads, rRNA 

depleted total RNA, 100 – 200M read depth) subject to CHX treatment identifies 36% 

(420K/1.16M), substantially more that DMSO treated specimens (340K/1.16M) or in two 

randomised sets of 7 fibroblast specimens from GTEx v8 (245K/1.16M). This preliminary 

evidence indicates CHX treatment and high read depth of human cell lines may substantially 

enhance our detection of unannotated mis-splicing events through inhibition of NMD. 

 

To our knowledge, 300K-RNA Top-4* is the first evidence-based method for predicting the 

nature of variant-associated mis-splicing and will assist clinical laboratories in application of 

PVS1 or PP3/BP4/BP7, prioritisation of VUS for RNA analysis, as well as guide RNA-

diagnostic testing to experimentally determine consequences for pre-mRNA splicing. 

Informed by the current investigation, Extended Data Figure 10 details our draft guidelines 

for possible use of 300K-RNA to assist application of the PVS1 criterion to essential splice-

site variants, aligning closely with revised PVS1 guidelines10.  Theorized consideration of 

intron retention and Top-4* events by genetic pathology workforces provides a pragmatic, 

evidence-based method to reliably assess variant-associated exon-skipping and/or cryptic 

splice-site use within a larger distance window of 600 nt.  Over 2022-23, the Australasian 

Consortium for RNA Diagnostics (SpliceACORD)3 will rigorously evaluate the clinical 

accuracy and usefulness of Extended Data Figure 10 draft guidelines for cases prospectively 

recruited into RNA Diagnostic testing pipelines. Extended Data Figure 7E indicates these 

draft guidelines will allow application of PVS1 for ~50% of ES variants (IR and Top-4* ≤ 2 

in-frame events). 

 

We provide SpliceVault, a web portal to access 300K-RNA (and 40K-RNA in hg19), which 

quantifies natural variation in splicing and potently predicts the nature of variant-associated 

mis-splicing: (https://kidsneuro.shinyapps.io/splicevault/). Users require no bioinformatics 

expertise and can retrieve stochastic mis-splicing events for any splice-junction annotated in 

Ensembl or RefSeq. Default settings display 300K-RNA Top-4* output according to the 

optimised parameters we describe herein, with the option to return all events, customise the 

number of events returned, distance scanned for cryptic splice-sites, maximum number of 

exons skipped, or list tissue-specific mis-splicing events.  We hope SpliceVault will improve 
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the ability to classify and study splicing variants with accuracy and completeness, avoiding 

the non-actionable diagnostic endpoint of a variant of uncertain significance (VUS). 
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Online Methods 

Ethics declaration 

Consent for diagnostic genomic testing was supported by governance infrastructure of the 

relevant local ethics committees of the participating Australian Public Health Local Area 

Health Districts. Kids Neuroscience Centre’s biobanking and functional genomics human 

ethics protocol was approved by the Sydney Children’s Hospitals Network Human Research 

Ethics Committee (protocol 10/CHW/45 renewed with protocol 2019/ETH11736 (July 2019 

– 2024)) with informed, written consent for all participants. 

 

Creating 300K-RNA 

The 300K-RNA database collates splice-junctions collated from 335,663 publicly available 

RNA-Seq samples from GTEx12 and SRA18 using a unified Monorail pipeline by Wilks et 

al19.  Splice-junction read counts derived from 316,449 human RNA-Seq samples from SRA 

and 19,214 human RNA-Seq samples from GTEx were downloaded from the public resource 

recount319. We then filtered split-reads to those which span at least one annotated splice-site, 

and for each splice-junction detected we tallied the number of samples it occurred in across 

the two data sources. For each splice-junction we filtered associated detected exon-skipping 

and cryptic-activation events according to the rules in Figure 2D-E.  

 

Unannotated splicing events were ranked according to the number of samples in which the 

event was detected. This ranking process was completed with respect to each annotated 

splice-junction in ensembl transcripts (v104) and refseq transcripts (GRCh38, downloaded 

Aug 2021) 
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300K-RNA enables customized access to ranked splice-junction data from individual GTEx 

tissue sub-types. SRA metadata precludes breakdown into specimen subtypes. As SRA 

contains data from cancer specimens (genetically heterogeneous), maximum read-counts 

output for each splice junction are derived from GTEx data.  Code used to create 300K-RNA 

is available at https://github.com/kidsneuro-lab/300K-RNA. The R package Snapcount28 was 

used to retrieve information on individual samples for Figures 2E-F and S6B-F.  

 

SpliceAI D-score interpretive rules 

By default, SpliceAI outputs four delta (D) scores: acceptor loss, acceptor gain, donor loss 

and donor gain; for each the maximum D-score within +/- 50 nt of the variant is reported.  To 

adapt SpliceAI to the prediction of mis-splicing, we instead retrieved all D-scores +/- 5000 nt 

of each variant, using a python script adapted from the SpliceAI GitHub 

(https://github.com/Illumina/SpliceAI). As input, we used the pre-mRNA sequence +/- 5000 

nt of the variant. Two D-scores returned at each base (variant nucleotide versus reference 

nucleotide) generated up to 20,002 D-scores per variant, of which we excluded all D-scores ≤ 

0.001 as neutral impact.  

 

Across the 86 variants which could be scored by SpliceAI, 2,836 D-scores returned were 

above the 0.001 threshold. 86 of these were donor loss or acceptor loss D-scores of the 

affected annotated splice-site, denoting a prediction of mis-splicing.  Our custom interpretive 

rules (see explanation of Figure 4A-C in the manuscript text) applied to any D-score > 0.001 

yielded predictions of erroneous use of: 161 cryptic acceptors, 340 cryptic donors, 215 exon 

skipping events and 49 intron retention events. Of the remaining 2,071 predictions; 1,637 

were decreases in scores of unannotated splice-sites, 33 were increases in scores of annotated 

splice-sites, 315 were increases in the scores of unannotated splice-sites outside the bounds of 

the exon and intron flanking the variant splice-site or increases in the scores of unannotated 

donors for acceptor variants and vice versa – and deemed uninterpretable within our 

paradigm. 

 

Clinically Relevant Mendelian Disease Genes (Mendeliome) 

Clinically relevant genes were extracted from the Genomics England Panel App29 (September 

2021 release) and Online Mendelian Inheritance in Man database30 (OMIM; February 2021 
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release). Genes were extracted from the Genomics England PanelApp using the Swagger 

PanelApp API (v1) (panelapp.genomicsengland.co.uk/api/docs/), excluding disease 

susceptibility panels, and all genes below a confidence level 3 (green; diagnostic-grade). 

OMIM listed genes were excluded when their only phenotype associations were non-

diseases, susceptibilities, provisional links, and somatic mutations.  

 

RNA re-analysis 

RNA extraction from whole blood, peripheral blood mononuclear cells or fibroblasts, and 

reverse transcription polymerase chain reaction and Sanger sequencing performed as 

described in Bournazos et al3. See Supplementary Table 4 for primers used for re-analysis of 

RNA by RT-PCR. 

 

Statistics and reproducibility 

No statistical method was used to predetermine sample size. All splicing variants were 

included in this study for which robust RNA assay data was available and met the following 

ascertainment criteria: Inclusion Criteria: Variants affecting an annotated splice-site and 

demonstrated to activate exon-skipping or cryptic splice-site use. Exclusion Criteria: Variants 

creating or modifying a cryptic splice-site. The experiments were not randomized. The 

Investigators were not blinded to allocation during experiments and outcome assessment. 

 

Data Availability 

Source data for 300K-RNA was downloaded from snaptron (http://snaptron.cs.jhu.edu/data). 

300K-RNA can be easily accessed and queried through SpliceVault 

(https://kidsneuro.shinyapps.io/splicevault/). The data used for the analyses described in this 

manuscript were obtained from the GTEx portal and dbGaP accession number 

phs000424.v8.p2 and phs000424.v9. 

 

Code Availability 

All code required to perform analyses and generate Figures 1C, 2D-F, 3, 4E-G and Extended 

Data Figures 1-6, 8 and 9 is available at https://github.com/kidsneuro-

lab/SpliceVault_figures. All code required to create 300K-RNA is available at 

https://github.com/kidsneuro-lab/300K-RNA. Code used to create SpliceVault is available at 

https://github.com/kidsneuro-lab/SpliceVault/. 
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Extended Data 
 

 
Extended Data Figure 1. Sensitivity and PPV of 300K-RNA using different filtering criteria for ranking 

mis-splicing events. The asterisk i.e ‘Top-4*’ is used denote application of a filter to limit ranked events to 
those involving skipping of one or two exons and cryptic activation within 600 nt of the annotated splice-
site. 

  

 
Extended Data Figure 2. Top-10* mis-splicing events seen in 300K-RNA* for our cohort of 88 variants, 
filled if they were seen in RNA studies.  Grey fill: multiple of 3 (maintains frame). Black fill: not a multiple of 
3 (disrupts frame). No fill: Event not seen in RNA studies. * = skipping one or two exons and cryptic activation 
within 600 nt of the annotated splice-site.  
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Extended Data Figure 3. 300K-RNA event rankings across tissues and data-sources. A) Heatmap showing 
the proportion of mis-splicing events* with the same event rank in each GTEx tissue subtype, as compared to all 
GTEx tissue subtypes combined, for 98,810 annotated splice-sites in the Mendeliome (see methods). The top-1* 
event is > 86% concordant across all tissues with > 100 samples in GTEx.  B) Concordance of top-ranked mis-
splicing events* in GTEx versus SRA. The top-1* event in GTEx is the top-1* event in SRA for 88% all splice-
sites in the Mendeliome. C) Sample counts are highly correlated between GTEx and SRA for all unannotated 
splicing events* in 300K-RNA at the splice-sites affected by our cohort of 88 variants (Spearman correlation, R 
= 0.91, p < 2.2e-16). D) Sequencing breadth in GTEx samples increases sensitivity i.e. the more specimens the 
greater the proportion of total mis-splicing events detected, with testis being a notable outlier (Spearman 
correlation, R = 0.91, p < 2.2e-16). E) Sensitivity and PPV of 300K-RNA Top-4* versus GTEx Muscle Top-4* 
derived from 881 samples in GTEx, for 19 variants associated with muscle disorders and where RNA testing 
was performed using muscle RNA. * = skipping one or two exons and cryptic activation within 600 nt of the 
annotated splice-site   
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Extended Data Figure 4. SpliceAI D-scores above 0.001 for 86/88 variants scored by SpliceAI. Predictions 
are coloured according to the event type assigned by our interpretive rules.   
 
 
 

Extended Data Figure 5. Comparison of 300K-RNA Top-4* with SpliceAI using two additional variant 
cohorts. A) Mis-splicing events induced by variants in two cohorts curated from literature for additional 
validation of the Top-4* approach: 58 variants studied in patient specimens and 63 variants studied through 
midi-gene assays (scrutinized to ensure technical design permitted detection of multi-exon skipping events, see 
Supplementary Tables 2,3 for references). B) Sensitivity and PPV of 300K-RNA and SpliceAI for exon-
skipping and cryptic activation predictions at different thresholds. Points on the curves correspond to thresholds 
used in Figure 2B. C) The average sensitivity and PPV of 300K-RNA and SpliceAI across three variant cohorts 
shown in (B). Points on the curves correspond to thresholds used in Figure 4B. * = skipping one or two exons 
and cryptic activation within 600 nt of the annotated splice-site.  
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Extended Data Figure 6. Investigating features of events seen/not seen in RNA studies for our 88 variants.  A) True 
positive (TP) events seen in RNA studies tend to be seen in higher sample numbers than false positives (FP) in the Top-4 
(two-sided Wilcoxon rank sum test; W = 20,222, p = 4e-11, n = 238 Top-4* FP and 119 TP biologically independent events).  
B-C) TP tend to be seen in a higher number of max (B) and mean (C) reads than FP (two-sided Wilcoxon rank sum test; W 
= 20,144, p = 7e-11 and W = 18,284, p = 7e-6 respectively, n = 238 Top-4* FP and 119 TP biologically independent events).  
D) There is no significant difference in the mean read-depth for the annotated splice-junction around which the unannotated 
event is detected, between TP and FP (two-sided Wilcoxon rank sum test; W = 12,848, p = 0.3, n = 234 Top-4* FP and 117 
TP biologically independent events). The mean read depth is taken only across samples where the event is detected. 4/238 
FP and 2/119 TP were detected only in samples where no annotated splicing was detected, so are excluded from D-F. E) The 
maximum ratio of the reads representing the unannotated event and the annotated event in any one sample tends to be higher 
in TP than FP (two-sided Wilcoxon rank sum test; W = 19,126 , p = 1e-9, n = 234 Top-4* FP and 117 TP biologically 
independent events), however there is no significant difference in the mean ratio (two-sided Wilcoxon rank sum test; W = 
15,181 , p = 0.1, n = 234 Top-4* FP and 117 TP biologically independent events) (F). G) Single-exon skipping events* are 
significantly more likely to be seen in RNA studies than double-exon skipping events* (Chi-squared test; !2 = 114.29, p = 
1.1e-26). H) Total length (nt) of the fragment excised from the pre-mRNA from single and double exon skipping was not 
statistically different between events seen/not seen in RNA studies (two-sided Wilcoxon rank sum test; W = 2,554, p = 
0.0502, n = 114 Top-4* FP and 75 TP biologically independent exon-skipping events). I) Relative distance between the 
annotated splice-site and activated cryptic splice-site was not statistically different between TP and FP (two-sided Wilcoxon 
rank sum test: W = 2,834, p = 0.70, n = 124 Top-4* FP and 44 TP biologically independent cryptic-activation events).  A-E 
and H-I are box-whisker plots, with internal lines denoting the median value, and the lower and upper limits of the boxes 
representing 25th and 75th percentiles. Whiskers extend to the largest and smallest values at most 1.5IQR. * = skipping of one 
or two exons or cryptic activation within 600 nt of the annotated splice-site. 
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Extended Data Figure 7. RNA re-analysis to check for undetected 300K-RNA Top-4 mis-splicing events. 
Black lines: mis-splicing identified during initial RNA analysis3.  Red lines: Top-4* events detected upon re-
analysis. Grey lines: Top-4* events undetected upon re-analysis. A) No additional Top-4 events were identified 
for OPHN1 c.702+4A>G. B) For SPG11 c.2317-13C>G, Top-1* exon 13 + 14 skipping was detected on re-
analysis (missed initially by RT-PCR due to primer positioning and by RNA-seq due to low read depth and 
NMD), but Top-4* event, exon 12+13 skipping, was not detected. C) RT-PCR using primers specific for two 
exonic cryptic donors shows their variant-associated increased use for GSDME c.1183+5G>A.  These rare 
events were missed during initial RNA analysis due to PCR biases and challenges resolving Sanger sequencing 
chromatograms due to heteroduplex formation. D) RT-PCR identifies rare use of two cryptic acceptors and exon 
4 skipping associated with EMD c.266-3A>G missed during initial RNA analysis due to PCR biases and 
heteroduplex formation. E) 49% (27/55) essential splice-site variants (ES) across the three variant datasets 
induce ≥ 1 in-frame events, with a similar proportion of 51% (45/88) in our overall cohort.  Use of Intron 
Retention (IR) and Top-4* as proxy for a prediction of variant-induced mis-splicing increases the relative 
number of ES variants with ≥ 1 in-frame event to 80% (45/55) and to 81% (71/88) for our overall cohort. 
P=proband, C1=control 1, C2=control 2, DMSO=dimethyl sulfoxide, CHX=cycloheximide, CD1=cryptic donor 
1, CD2=cryptic donor 2, CA1=cryptic acceptor 1, CA2=cryptic acceptor 2, CA3=cryptic acceptor 3, 
ES=essential splice-site, NMD=nonsense mediated decay. 
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Extended Data Figure 8. The consequence of intron retention upon the open reading frame for 49,448 
canonical introns in the Mendeliome (see methods). Variant-activated intron retention elicits a frameshift for 
66% introns or encodes a premature termination codon (PTC) in all reading frames for 31% introns.  In 
summary, IR will induce a frameshift or encode a PTC for at least 97% cases and is therefore consistent with 
null outcomes in most instances.  Intron coordinates were extracted from Ensembl (104) via the hg38 genome 
assembly. IR: intron retention; PTC: premature termination codon. 
 
 

Extended Data Figure 9. A) Upset plot showing splice-junctions concordantly and uniquely detected by GTEx 
and Monorail processing pipelines for 504 fibroblast specimens.  B) Upset plot showing GTEx V9 long-read 
RNA-Seq (7M mean read depth, 740 nt average length) for 22 fibroblast specimens identifies 15% 
(180K/1.16M) of all fibroblast SJ detected in 504 GTEx v8 fibroblast samples (75 bp paired reads, 80M depth, 
Poly A enrichment).  In-house RNA-Seq data from 7 fibroblast specimens (150 bp paired reads, 100 – 200M 
depth, rRNA depleted total RNA) subject to CHX treatment identifies 36% (420K/1.16M) of all SJ, 
substantially more that DMSO treated specimens (340K/1.16M) or in two randomised sets of 7 fibroblast 
specimens from GTEx v8 (245K/1.16M). Splice junctions present in GTEx v9 long read RNA-Seq data was 
reverse-engineered from the transcript count information generated using FLAIR26 
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Extended Data Figure 10. Draft Guidelines for potential use of empirical evidence from 300K-RNA to 
assist application of the PVS1 criterion for essential splice-site variants based on probable mis-splicing 
outcomes (being assessed in a clinical evaluation trial by the Australian Consortium for RNA Diagnostics 
(SpliceACORD)).  We recommend pathology consideration of Intron Retention (IR) and 300K RNA Top-4* for 
all disease relevant transcript(s).  PVS1 levels of evidence are influenced by the collective nature of probable 
induced mis-splicing, relative to evidence supporting null outcomes for the encoded gene product. For use of 
PVS1 at a Very Strong evidence level, IR and Top-4* events should all be consistent with null outcomes.  PVS1 
applied at Strong or Moderate should be considered when IR and Top-4* events include one or two in-frame 
events, adjusting the evidence weighting according to; the number and nature of in-frame events, known clinical 
relevance of the affected region of disease relevant transcript(s), and the established pathogenetic mechanism(s) 
associated with a given gene and disorder.  We favour weighting of known clinical relevance, biological 
function or evolutionary conservation of the disrupted gene region, over relative length of the in-frame 
disruption.  We recommend additional consideration of abnormal or alternative transcription initiation or 
termination for first intron and last intron variants, respectively.  We recommend use of the PM4 criterion for 
essential splice-site variants when IR and Top-4* events include three or more in-frame events.    
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5. Loss-of-function variants are a known causal basis for 
disease; 

5. Loss-of-function variants are a known causal basis for disease; AND/OR 
6. Truncating variants, missense variants and/or in-frame indels are a known causal basis for disease 

6. Transcripts with encoded PTCs are predicted to activate 
nonsense mediated decay 

6. Transcripts with encoded PTCs are predicted to activate 
nonsense mediated decay; AND/OR 

7. Transcripts with encoded PTCs are in a genetic context 
that may evade NMD.  However, there are one or more 
analogous truncating variants in the same region of the gene 
classified likely/pathogenic, OR, the truncated region is 
critical to function of the gene product. 

8. Transcript with an in-frame event altering length of the 
gene product disrupt a region of the gene with: i) evident 
clinical importance as shown by presence of one or more 
causal missense variants or in-frame indels; AND/OR ii) 
evident functional importance via disruption of a known 
domain critical to function of the gene product. 
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nonsense mediated decay; AND/OR 

7. Transcripts with encoded PTCs are in a genetic context 
that may evade NMD.  However, there are one or more 
analogous truncating variants in the same region of the gene 
classified likely/pathogenic, OR, the truncated region is 
critical to function of the gene product. 

8. Transcripts with an in-frame event altering length of the 
gene product disrupt a region of the gene with: i) evident 
clinical importance as shown by presence of one or more 
causal missense variants or in-frame indels; AND/OR ii) 
evident functional importance via disruption of a known 
domain critical to function of the gene product; AND/OR iii) 
inferred functional importance via disruption of an 
evolutionarily conserved region intolerant to genetic variation.   
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Discussion 
 
4.1 Developing a method to predict the mis-splicing outcomes of splicing variants 

 

4.1.1 Current splicing algorithms are not geared towards aiding pathology 

interpretation. 

 

Pathology interpretation of splicing variants requires consideration of likely outcomes for the 

mRNA transcript. 

 

Whether a splicing variant is causally linked to a rare disease (i.e. pathogenic) depends 

critically on its impact on the mRNA transcript(s) and downstream dysfunction of the 

encoded gene product, making pathology interpretation extremely challenging. The activation 

(or upregulation) of exon skipping, cryptic splicing, and intron retention events at a genetic 

locus can generate transcripts degraded by NMD, or transcripts producing aberrant protein, at 

different quantities and in different cell-types. The specific mis-splicing outcomes induced by 

a variant and the amount of normally spliced transcript still produced can have a critical 

impact on pathology interpretation, such as occurs for the differential diagnosis of severe-

lethal Duchenne, or milder Becker muscular dystrophy phenotypes based on either in-frame 

or out-of-frame consequences elicited by variants affecting DMD.  

 

The focus of algorithms so far has been variant prioritisation / triage to functional studies. 

 

In the past decade, new machine-learning and deep-learning algorithms that can predict with 

increased reliability whether a DNA variant is likely to disrupt splicing have 

emerged43,115,116,119,121,122,124,125,133. However, they have been largely geared towards triaging 

high-likelihood splice-altering variants for RNA functional studies that can ascertain the 

specific splicing defect(s) induced and inform clinical relevance. Most algorithms therefore 

predict simply whether mis-splicing will occur in some capacity or not, not the specific mis-

splicing outcome induced. While SPANR115 and MMSplice116 offer predictions of the 

likelihood of exon skipping, these predictions have not been validated in a clinical setting. 

Chapter 2 critically evaluates the performance of SpliceAI124 to predict variant-associated 
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activation of cryptic donors with 75% sensitivity and 99% specificity.  Chapter 3 shows 

SpliceAI output can also be adapted to predict exon skipping (85% sensitivity, 52% Positive 

Predictive Value). While current splicing algorithms are invaluable triage tools, my thesis 

responds to the need for evidence-based, clinically-validated tools for pathology 

interpretation of splicing variants. 

 

4.1.2 Past splicing behaviour is a potent predictor of future behaviour 

 

Variant-associated mis-splicing is upregulated ‘leaky’ mis-splicing. 

 

In chapter 2 and 3, we develop a novel method to predict the probable nature of variant-

induced mis-splicing of the pre-mRNA, based on empirical data. Split-reads representing the 

use of a cryptic splice-site or exon-skipping event seen in an RNA-seq sample constitute 

empirical proof that a given splicing event is biophysically executable: proof made even 

stronger by the recurrence of this split-read across hundreds or thousands of independent 

RNA-seq samples, across different tissues and sample sources. The key finding of my thesis 

is that in the event of a deleterious splicing variant, the spliceosome will revert to whatever 

common ‘mistakes’ are made usually at that splice-site, making predicting variant-associated 

cryptic activation and exon skipping events as simple as cataloguing past behaviour at that 

splice-site, using public databases of RNA-sequencing.  

 

Empirical evidence presents advantages for incorporation into clinical diagnostics 

 

While SpliceAI can be adapted to predict cryptic activation and exon skipping with success 

(Chapter 3), SpliceVault’s basis in the reporting of empirical data has inherent advantages for 

its incorporation into clinical diagnostics. Using empirical proof that a splice-site is useable 

by the spliceosome for predictive purposes negates the need for a priori knowledge of the 

constellation of short and long-range sequence features regulating any given splicing 

decision. While SpliceAI requires 5,000 nt of sequence context on either side of the intron-

exon border to provide a prediction of what may happen, SpliceVault simply reports what 

does in fact happen, even if we can’t yet understand exactly how or why.  
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This confers the advantage of providing empirical data that can be interpreted and weighted 

by human physicians to inform genetic diagnoses, which underpin prognosis, treatment, and 

family planning for patients and families.  A molecular diagnosis has profound implications 

for clinical care and must be supported by robust evidence.  ACMG/AMP guidelines are the 

current standard for clinical variant interpretation, and these rules are built around a 

framework of layering evidence from multiple independent sources and with different 

weighted ‘evidence levels’, to classify a variant. SpliceVault was developed with 

ACMG/AMP guidelines in mind, intended to provide evidence that can be weighted to 

directly inform diagnosis. 

 

In contrast, deep learning algorithms are essentially ‘black-boxes’, meaning that predictions 

lack transparency and human-understanding. Importantly, unlike other clinical applications of 

AI coming into use – for example the interpretation of radiology imaging, SpliceAI is not 

using deep learning to mimic something a human can already do (and a human physician can 

validate independently). Instead SpliceAI is using deep learning to do a task beyond human 

comprehension – predict the likelihood of bonafide exons and their flanking splice-sites 

among 10,000 nt of scanned pre-mRNA sequence constitutes a splice-site in the human 

genome. It’s therefore hard to imagine deep learning predictions underpinning clinical 

decision making in this context and at this point in time, without confirmation from an 

orthogonal method. 

 

4.1.3 Implications for variant interpretation and RNA functional studies. 

 

Variant-associated mis-splicing vs ‘leaky’ mis-splicing.  

 

We have shown that most, if not all, mis-splicing events caused by variants that deleteriously 

impact authentic splice-sites (as opposed to variants creating novel cryptic splice-sites), 

already happen sans variant as rare, ‘leaky’ mis-splicing events across the population. This 

has important general implications for the interpretation of splicing variants and additionally 

for the development of tools to detect aberrant splicing in patient samples. 
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RT-PCR methods 

 

SpliceVault can assist and augment RT-PCR based RNA-diagnostics by allowing informed 

design of primers to amplify expected mis-splicing events. In Chapter 3 we found that many 

300K-RNA Top-4 events not found in initial RNA studies were found upon reanalysis using 

primers designed specifically to amplify SpliceVault predictions. SpliceVault predictions will 

have great utility in guiding RT-PCR primer design, which strongly influence which products 

may be amplified and so detected.   

 

RNA-seq methods 

 

There has been recent interest in developing methods to detect ‘outlier’ splicing events in 

patient RNA-seq samples, by comparison to splicing events seen in either public RNA-seq 

databases (often GTEx) or else RNA-seq samples from disease controls94,134–139. However, in 

chapter 3, we show that 100% of mis-splicing events seen across our 88 splicing variants are 

present in at least 1 sample in GTEx or SRA, and 92% are among the 4 most ubiquitous mis-

splicing events at that site across samples in 300K-RNA. As we’ve shown that mis-splicing 

events induced by splicing variants represent abnormal levels of events which occur 

naturally, the level of mis-splicing that is within ‘normal range’ requires precise 

quantification to properly identify outliers. Importantly, approaches which aim to identify 

outliers by filtering mis-splicing events seen in disease-samples to those absent or seen in less 

than two138 or five139 or some other arbitrary number of control samples will need to be 

revisited. 

 

Implications for the application of PVS1 

 

According to revised PVS1 guidelines from 2018, the application of PVS1 for essential 

splice-site variants requires theoretical consideration of consequences from exon-skipping, 

intron retention and use of any cryptic splice-site within 20 nucleotides (nt)83- a task which 

currently amounts to guess work, or the use of in silico tools which have not been clinically 

validated for this purpose.  Chapter 3 details draft clinical guidelines for the application of 

PVS1 using an evidence-based method to theorise likely outcomes for the application of 

PVS1, rather than current guesswork. We recommend pathology consideration of Intron 

Retention and 300K RNA Top-4* for all disease relevant transcript(s). 
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Using evidence from emergent RNA Diagnostic testing pipelines, these draft guidelines 

developed in Chapter 3 for the use of SpliceVault in the application of PVS1 will undergo 

testing and revision by the Australasian Consortium for RNA Diagnostics (SpliceACORD) 

that comprises a group of >150 genetic experts89. 

 

4.2 Future Directions- improving and expanding SpliceVault 

 

Higher quality datasets will give us a better picture of ‘normal’ mis-splicing 

 

In Chapter 3, the bulk of RNA-seq samples that constitute 300K-RNA are derived from SRA- 

a heterogeneous database including for example single-cell RNA-seq samples and cancer 

samples. While using SRA data was useful to substantially increase the breadth of data used 

in SpliceVault (imperative when looking for very rare splicing events), the missing metadata 

and wide range of RNA-seq approaches, single-cell data, and cancer samples, means that 

300K-RNA likely does not yet faithfully represent ‘normal’ mis-splicing.  

 

Considering this, the high concordance of top-ranked events seen between SRA and GTEx in 

Chapter 3 (Figure 3B) is remarkable and encouraging for the robustness of our method. 

However, SpliceVault will likely be enhanced moving forward by increasing the 

homogeneity of its component RNA-seq samples and including samples from tissue-types not 

currently represented in GTEx, such as eye or cochlear (important for Mendelian disorders 

involving blindness or deafness). Value could also be added by the addition of developmental 

RNA-seq samples, which could provide key insights on how ‘normal’ mis-splicing changes 

over time, in different developmental contexts. As RNA-seq is more and more commonly 

deployed in clinical settings94,134–139 it’s likely we will not have long to wait for larger and/or 

deeper RNA-seq control datasets.  

 

Increasing sequencing depth may be the best way to increase tissue-specific sensitivity 

 

We show in Chapter 3 that using top-ranked events in GTEx Muscle to predict the mis-

splicing events associated with 19 variants associated with muscle disorders (and subject to 

RNA Diagnostics on muscle samples), showed lower sensitivity than using 300K-RNA Top-
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4* (Extended Data Figure 3E). This, along with the fact that the number of detected mis-

splicing events increases with the breadth of RNA-seq samples representing that tissue 

(Extended Data Figure 3D), indicates that current tissue-specific RNA-seq reference 

databases are likely insufficiently broad and/or deep to dig into tissue-specific mis-splicing 

differences. SpliceVault works by using a large breadth of RNA-seq data to improve 

detection of stochastic leaky events. However, in the future it’s likely more feasible and 

economical to go ‘deeper’ with higher read-depth on a per-sample basis, to detect these 

stochastic leaky events more reliably in individual samples. 

 

Cycloheximide treated specimens may improve sensitivity and alter top-ranked events. 

 

The sensitivity of SpliceVault for rare out-of-frame events which are degraded by NMD may 

also be increased by the integration of cycloheximide-treated specimens with NMD inhibited. 

In addition, cycloheximide-treated specimens may alter Top-4 ranking: In Chapter 3 we 

found evidence that in-frame events may be enriched in 300K-RNA Top-4, suggesting that 

out-of-frame events degraded by NMD may be incorrectly ranked lower than their true 

frequency. 

 

Interrogation of the alignment of individual splicing events may increase accuracy 

 

While our cut-off of predicting the Top-4 events in 300K-RNA showed high sensitivity 

(92%), the low positive predictive value (32%) is an area in need of improvement (Chapter 3, 

Figure 4E).  One possible avenue that could improve SpliceVault’s PPV is interrogation of 

the alignment of individual splicing events. 

 

Short-read RNA-sequencing requires the alignment of short reads (usually ~150 nt) to a 

reference transcript. Split-reads are especially vulnerable to either multi-mapping (mapped to 

multiple sites in the genome) or mis-mapping (mapped to the wrong spot in the genome) as 

they must be aligned to either side of an exon-intron junction which may or may not be 

annotated in transcript databases. It is therefore entirely possible that certain highly ranked 

300K-RNA events are in fact spurious and incorrectly aligned, no matter the number of 

samples that event is seen in (the RNA-seq aligner could easily and is in fact likely to make 

the same mistake across different samples, as it runs the same alignment algorithm 

independently each time). SpliceVault rankings could be further refined by inclusion of 
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quality metrics and precise read support of individual mis-splicing events, and there’s every 

possibility that both sensitivity and positive predictive values could be improved by this 

effort. 

 

Of course, this is just one possibility. There are likely many genuine, correctly aligned Top-4 

mis-splicing events that are nevertheless not upregulated in the event of a variant at that 

splice-site. Understanding why some Top-4 mis-splicing events are upregulated in the event 

of a variant and others are not (notably many double-exon skipping events, Chapter 3 

Extended Data Figure 6G) will require further investigation to exclude the caveat of mis-

alignment and elucidate a mechanistic explanation such that we can incorporate new 

evidence-based insight to improve the ranking method. 

 

Long-read sequencing may allow better detection of pseudo-exon and intron retention events 

 

In addition to improving predictions for the mis-splicing events currently encompassed by 

SpliceVault, future iterations could focus on intron retention and pseudo-exon events which 

aren’t currently represented as they cannot be directly quantified by split-reads in short-read 

RNA-seq data.  

 

Long-read sequencing, with reads up to 10 kb in length, may be able to encompass retention 

of long introns and pseudo-exons in a single split-read, and allow integration into our 

ranking. However there remain many caveats and difficulties with bioinformatic alignment of 

long-read sequencing data, which will have to be worked through before its full potential as a 

technology is known. Furthermore, detected intron retention is ambiguous as it can reflect 

pre-mRNA (a true ‘mis-splicing’ event) or splicing intermediates (not yet spliced).  

 

Long-read data may also allow us to better differentiate between pseudo-exon events and 

distal intronic cryptics. In Chapter Three we filter out ‘cryptics’ further than 600 nt away 

from authentic splice-sites to improve sensitivity and PPV of 300K-RNA Top-4 (Extended 

Data Figure 1). In fact, these split-reads may also represent pseudo-exon events, if they occur 

proximally to another ‘cryptic’ event associated with the other end of the intron. Long-read 

RNA-seq may be able to encompass an entire pseudo-exon in a single read and so avoid this 

ambiguity.  
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This would also allow the expansion of SpliceVault to the cataloguing of natural ‘leaky’ 

expression of pseudo-exons. It’s already been shown that pseudo-exon events upregulated in 

the event of a variant are commonly detected at lower levels in control samples140. An 

expansion of SpliceVault to include a genome-wide catalogue and per-intron ranking of 

pseudo-exons detected in control samples would open the door for interpretation of many 

currently intractable deep-intronic variants. 

 

4.3 Conclusions 

 

Until now, it has been impossible to predict the probable nature of variant-induced mis-

splicing of the pre-mRNA: a huge challenge for variant interpretation in diagnostic genomics. 

We’ve shown that simply ranking the most common ‘mistakes’ made by the spliceosome 

local to each exon-intron junction accurately predicts what happens when a genetic variant 

disrupts the splice-site at that exon-intron junction: Past behaviour is the best predictor of 

future behaviour.  

 

A priori knowledge of 300K-RNA Top-4 mis-splicing events has been transformative for our 

research-led clinical RNA Diagnostics program, facilitating both variant curation and 

strategic experimental design of RNA assays to specifically target probable mis-splicing 

events. SpliceVault is a critical advance for diagnostic genomic pathology and is likely to be 

used extensively by the clinical genetics community as RNA Diagnostics enters routine 

clinical practice.  300K-RNA will impact variant classification and improve accuracy and 

completeness of RNA diagnostic testing - to avoid the non-actionable diagnostic endpoint of 

a splicing variant of uncertain significance. 
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