
How much do we know about the
User-Item Matrix?:

Deep Feature Extraction for
Recommendation

TAEJUN LIM

SID:

Supervisor: Dr. Caren Han & Dr. Josiah Poon

A thesis submitted in fulfilment of
the requirements for the degree of
Master of Philosophy (Science)

School of Computer Science
The University of Sydney

Australia

3 November 2022

[REDACTION]

Student Plagiarism: Compliance Statement

I certify that:

I have read and understood the University of Sydney Student Plagiarism: Coursework Policy and Pro-

cedure;

I understand that failure to comply with the Student Plagiarism: Coursework Policy and Procedure

can lead to the University commencing proceedings against me for potential student misconduct under

Chapter 8 of the University of Sydney By-Law 1999 (as amended);

This Work is substantially my own, and to the extent that any part of this Work is not my own I have

indicated that it is not my own by Acknowledging the Source of that part or those parts of the Work.

Name: Taejun Lim

Signature: Date: 20/06/2022

ii

[REDACTION]

[REDACTION]

Abstract

Collaborative filtering-based recommender systems typically operate on a high-dimensional sparse

user-item matrix. Matrix completion is one of the most common formulations where rows and columns

represent users and items, and predicting user’s ratings in items corresponds to filling in the missing

entries of the matrix. In practice, it is a very challenging task to predict one’s interest based on millions

of other users having each seen a small subset of thousands of items.

We considered how to extract the key features of users and items in the rating matrix to capture their

features in a low-dimensional vector and how to create embeddings that well represent the characteristics

of users and items by exploring what kind of user/item information to use in the matrix. However, recent

studies have focused on utilising side information, such as user’s age or movie’s genre, but it is not

always available and is hard to extract. More importantly, there has been no recent research on how to

efficiently extract the important latent features from a sparse data matrix with no side information (1st

problem). The next (2nd) problem is that most matrix completion techniques have mainly focused on

semantic similarity between users and items with data structure transformation from a rating matrix to

a user/item similarity matrix or a graph, neglecting the position of each element (user, item and rating)

in the matrix. However, we think that a position is one of the fundamental points in matrix completion,

since a specific point to be filled is presented based on the positions of its row and column in the matrix.

In order to address the first (1st) problem, we aim to generalise and represent a high-dimensional

sparse user-item matrix entry into a low-dimensional space with a small number of important features,

and propose a Global-Local Kernel-based matrix completion framework, named GLocal-K, which is

divided into two major stages. First, we pre-train an autoencoder with the local kernelised weight matrix,

which transforms the data from one space into the feature space by using a 2d-RBF kernel. Then, the pre-

trained autoencoder is fine-tuned with the rating matrix, produced by a convolution-based global kernel,

which captures the characteristics of each item. GLocal-K outperforms the state-of-the-art baselines on

three collaborative filtering benchmarks. However, it cannot show its superior feature extraction ability

when the data is very large or too extremely sparse.

For the aforementioned second (2nd) problem and the GLocal-K’s limitation, we propose a novel

position-enhanced user/item representation training model for recommendation, SUPER-Rec. We first

iii

ABSTRACT iv

capture the rating position in a matrix using relative positional rating encoding and store the position-

enhanced rating information and its user-item relationship to a fixed dimension of embedding that is not

affected by the matrix size. Then, we apply the trained position-enhanced user and item representations

to the simplest traditional machine learning models to highlight the pure novelty of the SUPER-Rec

representation. We contribute to the first formal introduction and quantitative analysis of the position-

enhanced user/item representation in the recommendation domain and produce a principled discussion

about SUPER-Rec with the incredibly excellent RMSE/MAE/NDCG/AUC results (i.e., both rating and

ranking prediction accuracy) by an enormous margin compared with various state-of-the-art matrix com-

pletion models on both explicit and implicit feedback datasets. For example, SUPER-Rec showed the

28.2% RMSE error decrease in ML-1M compared to the best baseline, while the error decrease by 0.3%

to 4.1% was prevalent among all the baselines.

Acknowledgements

It is a genuine pleasure to express my deep sense of thanks and gratitude to my supervisors, Dr.

Caren Han and Dr. Josiah Poon, University of Sydney. Their constant encouragement, keen interest

and above all the overwhelming attitude to help the students had been solely and mainly responsible for

completing my dissertation. Their timely support, meticulous scrutiny and scholarly advice have helped

me to greatly accomplish my task.

Specially, I would like to thank Dr. Caren Han. It was like fate to get to know her for the first time,

and I am very fortunate to be able to do research as a student of the professor. She took the best care of

me so that I sometimes doubted whether I could receive this much attention and love, and I will never

forget this tremendous grace for the rest of my life. She gave me not only knowledge related to research,

but also wisdom for life and how to properly relate to others, and all of these things were applied in my

life as well as my studies so that I was able to grow up as a better person. Had it not been for her, I would

have had to live without knowing all these things and as a person who has lots of flaws. I am always

very grateful for her unconditional love and care that never asks for anything in return, and I never take

any of these for granted. Because I believe that doing well makes her shine, I promise that I will devote

myself diligently every day, always thinking about the relationship between problems and solutions, and

causes and effects when doing research. Once again, I express my sincere thanks to her.

Personally, I would like to say thank you to my parents for their full support. Thanks to them always

looking at me and giving me advice from an objective point of view, I was able to live my life in the

right direction. It is very vivid that they smiled brightly at me and greeted me with a happy voice, and

I miss them so much. I think the only thing I can do for them is to do my best in my position, so I will

learn steadily and enthusiastically under my excellent supervisor, Dr. Caren Han.

I would like to say thank you to David. As he treats me kindly and warmly, I feel like I have gained

a new strong support. I also learned from him how to thoroughly and accurately identify problems and

come up with solutions in research. Overall, I feel he is very similar to my father. But since my father is

my role model, I also want to be a person like him in the future.

v

ACKNOWLEDGEMENTS vi

Lastly, I thank my USYDNLP group friends. I would like to tell them that I was very grateful for

being friendly with me from the time we first met until now, and being attentive to me, even though my

English is not good. I hope that we will continue to have a good relationship in the future.

CONTENTS

Student Plagiarism: Compliance Statement ii

Abstract iii

Acknowledgements v

List of Figures x

List of Tables xiv

Chapter 1 Introduction 1

1.1 Contribution . 2

1.2 Thesis Structure . 3

Chapter 2 Literature Review 5

2.1 Collaborative filtering based recommender systems . 5

2.1.1 Traditional collaborative filtering models . 6

2.1.2 Neural collaborative filtering models . 7

2.1.3 Autoencoder-based collaborative filtering models . 9

2.1.4 Graph-based collaborative filtering models . 11

2.2 Feature Extraction in Collaborative Filtering . 13

2.2.1 Kernelised feature extraction techniques . 14

2.3 Feature Representation Learning in Collaborative Filtering . 15

2.3.1 Neighbourhood-based item feature representation approaches . 16

2.3.2 Item interaction-based user feature representation approaches . 17

2.4 Summary . 17

Chapter 3 Global and Local Kernel-based Feature Extraction 18

3.1 GLocal-K: Global-Local Kernel-based matrix completion framework 18

3.1.1 Pre-training with Local Kernel . 18

3.1.2 Fine-tuning with Global Kernel . 20

vii

CONTENTS viii

3.2 Evaluation setup . 22

3.2.1 Datasets . 22

3.2.2 Baselines . 22

3.2.3 Implementation Details . 24

3.3 Result . 24

3.3.1 Overall Performance . 24

3.3.2 Cold-start Recommendation . 26

3.3.3 Effect of Pre-training . 27

3.3.4 Effect of Global Convolution Kernel . 28

3.3.5 Extremely Sparse Dataset Analysis . 29

3.3.6 Effect of Integrating Global and Local Kernels . 32

3.3.7 Matrix Compression Analysis for Global Kernel Construction . 33

3.3.8 Encoding Dimension Analysis . 34

3.4 Summary . 34

Chapter 4 Position-Enhanced Feature Representation based on Surrounding Neighbor

Information 38

4.1 Surrounding Position-Enhanced Representation for Recommendation 38

4.1.1 User-item Matrix Positioning . 38

4.1.2 SUPER-Rec Training . 40

4.1.3 Matrix Completion with SUPER-Rec . 43

4.2 Evaluation Setup . 46

4.2.1 Datasets . 46

4.2.2 Baselines . 47

4.2.3 Implementation Details . 48

4.2.4 Evaluation Metrics . 49

4.3 Result . 50

4.3.1 Performance Comparison on Explicit Datasets . 50

4.3.2 Comparison of Rating Prediction Model Variant . 51

4.3.3 Large-scale Rating Dataset Analysis . 52

4.3.4 Performance Comparison on Implicit Datasets . 53

4.3.5 Impact of Sparsity Ratios . 54

4.3.6 Bilinear Neural Network for Matrix Factorisation . 55

CONTENTS ix

4.3.7 Window Size Analysis . 59

4.3.8 Impact of Embedding Dimension . 61

4.3.9 Comparison of Embedding Training Variants . 63

4.3.10 Dimension Pattern Analysis via Dataset Classification . 64

4.4 Summary . 69

Chapter 5 Conclusion 70

5.1 Future Work . 72

Bibliography 73

List of Figures

2.1 An example of item-based CF recommendation process. First, select the neighbour items

(i.e. Item 3, 5) based on the similarity measure (but here it is skipped) and predict the target

item rating (i.e. Item 1), given user 1, by calculating the weighted average. 6

2.2 Matrix factorisation example for CF-based recommendation, in which both users and items

are represented in a same size of feature vectors (|pu| = |qi|), and the ratings (R̃) of users for

items are predicted by multiplying the user (P) and item (Q) feature matrices. 7

2.3 The structure of AutoRec. 9

2.4 The structure of CDAE. 10

2.5 The structure of GCMC. 11

2.6 Illustration of graph convolution for each node with the connected neighbour nodes and

neighbourhood aggregation in Graph Convolutional Networks (GCN). 12

2.7 Summary of the thirteen introduced CF-based neural recommendation models with a distinct

characteristic-based breakdown approach, where the neural CF models are largely distinguished

into four model architectures/types. 13

2.8 Illustration of the kernel function in support vector classification. 14

2.9 Illustration of the item co-occurrence matrix with the original user-item history matrix. 16

3.1 The GLocal-K architecture for matrix completion. (1) We pre-train the AE with the local

kernelised weight matrix. (2) Then, fine-tune the trained AE with the global kernel-based

matrix. The fine-tuned AE produces the matrix completion result. 19

3.2 Weight reparameterisation via local kernelised weight matrix. 19

3.3 Item-based average pooling. 20

3.4 Global convolution kernel construction. 21

3.5 Convolution operation between the rating matrix and the global kernel. 21

3.6 Fine-tuning process. 22

x

LIST OF FIGURES xi

3.7 Performance comparison w.r.t. different sparsity levels on ML-100K. 26

3.8 Performance comparison w.r.t. different sparsity levels on Douban. 26

3.9 Performance comparison w.r.t. pre-training epochs on ML-100K. 27

3.10 Performance comparison w.r.t.pre-training epochs on ML-1M. 27

3.11 Performance comparison w.r.t. pre-training epochs on Douban. 28

3.12 RMSE test result comparison w.r.t. different user thresholds on Flixster and YahooMusic

datasets. 31

3.13 Performance comparison w.r.t. different dimensions of the hidden encoding vector in

autoencoder starting from 100 to 900 in every size of 200 based on three evaluation metrics

(RMSE / MAE / NDCG) on ML-100K. 35

3.14 Performance comparison w.r.t. different dimensions of the hidden encoding vector in

autoencoder starting from 100 to 900 in every size of 200 based on three evaluation metrics

(RMSE / MAE / NDCG) on ML-1M. 36

3.15 Performance comparison w.r.t. different dimensions of the hidden encoding vector in

autoencoder starting from 100 to 900 in every size of 200 based on three evaluation metrics

(RMSE / MAE / NDCG) on Douban. 37

4.1 The SUrrounding Position-Enhanced Representation for Recommendation (SUPER-Rec)

architecture 39

4.2 The training corpus C preparation by extracting the position and rate value of surrounding

neighbour items (j − 1, j + 1) within window size 1. Each item index of a matrix corresponds

to an item number, but each index of a vector is assigned by a vector position starting at 0. 39

4.3 First stage of SUPER-Rec training process: 1) concatenate the position and rating embedding

vectors 2) project the concatenated vector into two transformation matrices (W , Q). 40

4.4 Second stage of SUPER-Rec training process: After the input vector is projected into item

space and rating space, calculate 1) the loss between the predicted target item and the actual

target item and 2) the loss between the predicted target rating and the actual target rating. 41

4.5 Third stage of SUPER-Rec training process: calculate the final joint loss via the weighted

sum of item prediction loss and rating prediction loss. 43

4.6 Input representation with three different representations for matrix completion: 1) user

representation via weighted sum between user’s historical item representations and their

LIST OF FIGURES xii

ratings, 2) item representation and 3) user-item relation representation via element-wise product

between the item and user representations. 44

4.7 Matrix completion with SUPER-Rec by using the weighted sum of probability distribution

from a ML classifier and the rating type (i.e. {1,2,3,4,5}). 45

4.8 Performance comparison w.r.t. different sparsity levels ranging from 1.0 to 0.2 at every

0.2 interval between SUPER-Rec and the three baseline models via the three prediction

accuracy-based evaluation measurements on ML-100K. 56

4.9 Performance comparison w.r.t. different sparsity levels ranging from 1.0 to 0.2 at every

0.2 interval between SUPER-Rec and the three baseline models via the three prediction

accuracy-based evaluation measurements on ML-1M. 57

4.10 Performance comparison w.r.t. different sparsity levels ranging from 1.0 to 0.2 at every

0.2 interval between SUPER-Rec and the three baseline models via the three prediction

accuracy-based evaluation measurements on Douban. 58

4.11 Performance trend under different sizes of embedding dimension on ML-100K of density

6.30%. The red dotted round lines indicate the best performance results from the optimal

dimension size, which is determined by the RMSE result. 61

4.12 Performance trend under different sizes of embedding dimension on ML-1M of density

4.47%. The red dotted round lines indicate the best performance results from the optimal

dimension size, which is determined by the RMSE result. 61

4.13 Performance trend under different sizes of embedding dimension on ML-10M of density

1.30%. The red dotted round lines indicate the best performance results from the optimal

dimension size, which is determined by the RMSE result. 62

4.14 Performance trend under different sizes of embedding dimension on Douban of density

1.52%. The red dotted round lines indicate the best performance results from the optimal

dimension size, which is determined by the RMSE result. 63

4.15 Performance trend under different sizes of embedding dimension on Flixster of density

0.29%. The red dotted round lines indicate the best performance results from the optimal

dimension size, which is determined by the RMSE result. 63

4.16 Performance trend under different sizes of embedding dimension on YahooMusic of density

0.06%. The red dotted round lines indicate the best performance results from the optimal

dimension size, which is determined by the RMSE result. 64

LIST OF FIGURES xiii

4.17 Dataset classification based on handcrafted feature engineering among the six rating-based

benchmark datasets in three-dimensional space (x-axis: # ratings for each user, y-axis: training

matrix density(%), z-axis: ratio of # users and # items (when close to 1, the shape of a matrix

becomes nearly square). 66

4.18 Dataset classification based on handcrafted feature engineering among the six rating-based

benchmark datasets in three-dimensional space (x-axis: # ratings for each training user, y-axis:

training matrix density(%), z-axis: ratio of # users and # items (when close to 1, the shape of a

matrix becomes nearly square). 66

4.19 Dataset classification based on handcrafted feature engineering among the six rating-based

benchmark datasets in three-dimensional space (x-axis: # ratings for each user, y-axis: whole

matrix density(%), z-axis: ratio of # users and # items (when close to 1, the shape of a matrix

becomes nearly square). 67

4.20 Dataset classification based on handcrafted feature engineering among the six rating-based

benchmark datasets in three-dimensional space (x-axis: # ratings for each training user, y-axis:

ratings for each user, z-axis: ratio of # users and # items (when close to 1, the shape of a

matrix becomes nearly square). 67

4.21 Dataset classification based on handcrafted feature engineering among the six rating-based

benchmark datasets in three-dimensional space (x-axis: # ratings for each training user, y-axis:

ratings for each item, z-axis: ratio of # users and # items (when close to 1, the shape of a

matrix becomes nearly square). 68

4.22 Dataset classification based on handcrafted feature engineering among the six rating-based

benchmark datasets in three-dimensional space (x-axis: # ratings for each user, y-axis: whole

matrix density(%), z-axis: # ratings for each item. 68

List of Tables

3.1 Summary statistics of datasets. 22

3.2 RMSE test results on three benchmark datasets. The column Extra. represents whether the

model utilises any side information. All RMSE results are from the respective papers cited in

the first column, and the best results are highlighted in bold. 25

3.3 Performance comparison of RMSE test results w.r.t. different convolution kernel sizes. The

best results are highlighted in bold. 28

3.4 Performance comparison of RMSE test results w.r.t. different numbers of convolution layers.

The best results are highlighted in bold. 29

3.5 Performance comparison of RMSE test results w.r.t. different kernel aggregation

mechanisms. The best results are highlighted in bold. 29

3.6 Summary statistics of Flixster and YahooMusic. 29

3.7 RMSE test results on two extremely sparse datasets. All RMSE results are from the

respective papers cited in the first column, and the best results are highlighted in bold. 30

3.8 Summarisation of matrix statistics w.r.t different user thresholds. 31

3.9 Performance comparison with the two variants of GLocal-K: (1) without the local kernel and

(2) without the global kernel. 32

3.10 Performance comparison w.r.t different reconstructed information pooling methods based on

three evaluation metrics. Avg.(Average) pooling is the representative method, which is used by

our proposed GLocal-K. 33

4.1 Statistics of six explicit datasets and two implicit datasets used in the experiments. Note that

explicit feedbacks are represented with the specific ratings in different ranges (e.g. 1-5, 1-100)

and implicit feedbacks are based on the user’s action (Clicked or Not-Clicked). 46

4.2 Overall performance comparison with baseline models on the ML-100K and ML-1M

datasets. The baseline models are ordered in chronological order from top to bottom. IDCF and

GLocal-K were published in 2021. 49

xiv

LIST OF TABLES xv

4.3 Overall performance comparison with baseline models on the Douban, Flixstser and

YahooMusic datasets. The baseline models are ordered in chronological order from top to

bottom. IDCF and GLocal-K were published in 2021. 50

4.4 Performance comparison with three simple machine learning classification models (k-NN vs.

SVM vs. NN) with the SUPER-Rec on Flixster and YahooMusic. 51

4.5 Performance comparison of RMSE with baseline models on ML-10M. 52

4.6 Performance comparison of AUC and NDCG with baseline models on the two implicit

feedback datasets (Amazon-Beauty and Amazon-Books). 53

4.7 RMSE and NDCG test under different neural network-based MF models on ML-100K and

ML-1M. BNMF is a newly-introduced bilinear neural network-based MF model, and BNMF+

indicates that an interaction vector is additionally used within BNMF such as NNMF. 59

4.8 RMSE and NDCG test under different neural network-based MF models on Douban,

Flixster and YahooMusic, which are of relatively low density. BNMF is a newly-introduced

bilinear neural network-based MF model, and BNMF+ indicates that an interaction vector is

additionally used within BNMF such as NNMF. 59

4.9 Performance comparison w.r.t. different context window sizes of 1, 3 and 5 on ML-100K,

ML-1M and Douban. 60

4.10 Performance comparison w.r.t. different context window sizes of 1, 3 and 5 on Flixster and

YahooMusic. 60

4.11 Performance comparison w.r.t. different embedding methods on the three benchmark

datasets: ML-100K, ML-1M and Douban. 64

4.12 Performance comparison w.r.t. different embedding methods on the two benchmark datasets:

Flixster and YahooMusic. 64

CHAPTER 1

Introduction

Recommender systems aim to filter useful information and contents of user’s potential interests and

provide users with the most attractive and relevant items in the era of big data and thus have achieved

significant success in social media and e-commerce. Among different recommendation approaches,

Collaborative Filtering(CF) methods aim to discover the similarities in the user’s past behaviour and

make predictions to the user based on a similar preference with other users. To achieve the goal of CF,

Matrix Completion(MC) is one of the most common formulations that uses a user-item rating matrix

where rows and columns represent users and items, and predicts user’s interactions (ratings or actions)

in items corresponding to filling in the missing entries. (Candès and Recht, 2009; Bobadilla et al., 2013)

In practice, the matrix used for collaborative filtering is extremely sparse since it has ratings for only

a limited number of user-item pairs. Traditional recommender systems focus on generalising sparsely

observed matrix entries to a low dimensional feature space by using an autoencoder(AE) (Zhang et al.,

2020). AEs would help the system better understand users and items by learning the non-linear user-

item relationship efficiently, and encoding complex abstractions into data representations. GC-MC (Berg

et al., 2018) proposed a graph-based AE framework for matrix completion, which produces latent fea-

tures of user and item nodes through a form of message passing on the bipartite interaction graph. These

latent user and item representations are used to reconstruct the rating links via a bilinear decoder. Such

link prediction with a bipartite graph extends the model with structural and external side information.

Recent studies (Rashed et al., 2019; Strahl et al., 2020; Ugla et al., 2020) focused on utilising side in-

formation such as opinion information or attributes of users. However, in most real-world settings (e.g.,

platforms and websites), there is no (or insufficient) side information available about users.

Instead of considering side information, we focus on improving the feature extraction performance for

a high-dimensional user-item rating matrix into a low-dimensional latent feature space by applying two

types of kernels, one (local kernel) of which is known to give optimal separating surfaces for the data

1

1.1 CONTRIBUTION 2

transformation and the other (global kernel) of which is from convolutional neural network (CNN) ar-

chitectures. We propose a Global-Local Kernel-based matrix completion framework, called GLocal-K,

which includes two stages: 1) pre-training the auto-encoder using a local kernelised weight matrix, and

2) fine-tuning with the global kernel-based rating matrix. We demonstrate the RMSE results on three

benchmark datasets under the low-resource setting where no side information is available.

Moreover, existing MC-based recommendation models generally factorise the user-item rating matrix

into two classes of latent features (embeddings) for users and items, respectively. There are different

types of user/item embedding-based models such as graph-based, feature-based and inductive-based

embeddings. They commonly tried to transform or compress the matrix structure to learn the latent fea-

tures of users and items. However, those studies missed one of the fundamental points in the MC-based

recommendation models. Predicting users’ interest in items corresponds to filling in the specific points

of missing entries, which can be presented based on the positions of row and column in the matrix. We

consider that for accurate matrix completion we should recognise which user and item the target entry

to be predicted is associated with and where the user and item is located in the row and column of the

matrix. So, we focus on exploring the best way to capture and apply the location/position information

in the matrix. With this in mind, we propose a position-enhanced user/item representation learning

model for recommender systems, called SUPER-Rec, which covers the surrounding neighbour item in-

formation (i.e. positions and ratings). The SUPER-Rec recommendation consists of 3 main stages: The

first stage, User-Item Matrix Positioning, defines the position-fixed surrounding item context and forms

the training corpus for SUPER-Rec. Then, SUPER-Rec Training is conducted training a decoupled

SUPER-Rec item representation utilising the fixed surrounding item position correlated with user feed-

back taste. The final stage, Matrix Completion with SUPER-Rec, conducts the recommendation based

on the trained SUPER-Rec item representation and its derived user representation.

1.1 Contribution

In order to solve the data sparsity problem, which is the most common problem in CF and the problem

that there is no recent research that effectively extracts features in a general situation given only sparse

data, we propose a Global-Local Kernel-based matrix completion framework, named GLocal-K. The

main contributions of the GLocal-K are summarised as below:

1.2 THESIS STRUCTURE 3

• We introduce a global and local kernel-based autoencoder model (GLocal-K), which mainly

pays attention to extract the latent features of users and items.

• We propose a new way to integrate pre-training and fine-tuning for recommender systems.

• Without using any extra information, our GLocal-K achieves the smallest RMSEs on three

widely-used benchmarks, even beating models augmented by side information.

Furthermore, in order to address the fundamental problem in matrix completion that has not been prop-

erly addressed and solved, we focus on the most important essence of a matrix: position/location, and

then propose a position-enhanced user/item representation learning model for recommender systems,

called SUPER-Rec. The main contributions of the SUPER-Rec are summarised as below:

• We introduce a new position-enhanced user/item representation for recommendation (SUPER-

Rec) that leverages the positions and ratings of surrounding neighbour items.

• We propose a stand-alone and generally applicable position-enhanced user/item embedding

model, which can produce the outstanding rating prediction results on most recommendation

benchmark datasets (e.g. high or low density; small or large user/item/rating size; explicit or

implicit user’s action).

• The SUPER-Rec achieves the best RMSE/MAE/NDCG/AUC results by a significantly large

margin compared with various state-of-the-art matrix completion models on eight widely-used

recommendation benchmark datasets. The pretrained SUPER-Rec embedding for each dataset

will be released to the public and let researchers/developers use it as an input embedding for

their deeper and complex recommendation models.

1.2 Thesis Structure

The dissertation deals with collaborative filtering tasks on extremely sparse datasets using matrix com-

pletion techniques, but without additional side information and data structure transformation (e.g. sim-

ilarity matrix, graph). We first introduce a global and local kernel-based matrix completion framework

to efficiently extract the latent features of users and items from the user-item matrix with no side in-

formation, and present a position-enhanced user/item representation learning model for recommender

systems to be able to represent all entries in the user-item matrix based the users given and the items

rated. Next, we describe the model architectures and the role and principle of components in the pro-

posed models. Then, we discuss various model evaluations to validate the recommendation performance

1.2 THESIS STRUCTURE 4

and explore the additional model capability followed by the objective and contributions (e.g. robustness

under the extremely low resources, wide applicability to any size and sparsity of explicit rating/implicit

action(click)-based data).

Chapter 2 provides the background of the collaborative filtering-based recommendation approaches by

sorting them based on whether neural networks are used and then which type of architecture the model is.

Besides, it also discusses about the feature extraction techniques and representation learning approaches

in collaborative filtering.

Chapter 3 gives an overview of Global-Local Kernel-based matrix completion framework for recom-

mender systems (GLocal-K) along with the in-depth explanation of local and global kernels in two-stage

training process, and provides an overview of evaluation setup by introducing the benchmark datasets,

baselines and implementation details, and lastly overviews the overall performance evaluation, cold-start

recommendation, various component effectiveness analysis and hyperparameter test results in detail.

Chapter 4 gives an overview of SUrrounding Position-Enhanced Representation for Recommendation

(SUPER-Rec), consisting of three main stages: user-item matrix positioning for training item corpus

formation; SUPER-Rec training based on the surrounding item position and user feedback taste; ma-

trix completion with SUPER-Rec for recommendation, and provides an overview of evaluation setup,

including both explicit and implicit feedback datasets, baselines, implementation details and evaluation

metrics for rating and ranking prediction accuracy, and lastly overviews the performance evaluation

on explicit, implicit and large-scale datasets and with other simple ML-based classification models,

SUPER-Rec training variants testing, sparse training data testing and various embedding representation

analysis for exploring the relationship between the data statistics and the optimal embedding dimension.

Chapter 5 concludes this dissertation with observations from evaluation result and analysis. The future

work of this thesis is carried out at last.

CHAPTER 2

Literature Review

This chapter provides an overview of earlier and recent trends in collaborative filtering-based recom-

mender systems and feature extraction and representation learning approaches in collaborative filtering.

Firstly, we discuss about collaborative filtering-based recommender systems in Section 2.1, where the

systems are sorted by whether neural networks are used, and then are introduced based on general neu-

ral collaborative filtering models and particularly autoencoder- and graph-based recommender models.

Then, we discuss about feature extraction approaches in collaborative filtering in Section 2.2 and focus

on kernelised feature extraction techniques to deal with the sparse/large matrix issue in recommender

systems. Lastly, we discuss about representation learning approaches in collaborative filtering in Sec-

tion 2.3, where we overview the specific item and user representation approaches separately.

2.1 Collaborative filtering based recommender systems

Collaborative filtering (CF) is one of the most widely used techniques in recommender systems. CF

is based on the assumption that if a user A and user B show similar rating patterns, they will reveal

similar behaviors on other items. CF techniques focus on predicting the interests of a user by collecting

preferences from a large number of users. In practice, CF-based recommendation has proved a great

success in recommender systems, and has applied to a wide range of applications such as e-commerce,

information retrieval and so on. Nevertheless, there are several challenges for CF-based tasks. Data used

in CF algorithms is extremely sparse where ratings are derived from a very limited number of user-item

pairs. It is also required to have the capacity to scale the increasing numbers of users and items as well

as to prevent other problems such as cold start and grey sheep, that indicates users whose preferences

always agree or disagree with any group of users. It would be worthy to explore how widespread CF

models are designed to come up with a solution for the fundamental problems of CF. This section

provides a brief overview of existing CF-based recommender systems, largely classifying them based

5

2.1 COLLABORATIVE FILTERING BASED RECOMMENDER SYSTEMS 6

on their model architectures/types. We demonstrate the introduced CF-based neural recommendation

models via a distinct characteristic-based breakdown approach in Figure 2.7.

2.1.1 Traditional collaborative filtering models

Early CF directly uses rating data to calculate the similarity between users (user-based CF) or items

(item-based CF), and then makes predictions about the preference of users to items (Yang et al., 2016;

Breese et al., 1998; Delgado and Ishii, 1999; Nakamura and Abe, 1998).

User-based CF calculates the similarities between the target user and all the other users, and selects

the users with high similarities as the neighbour users. Then, it calculates the weighted average using

neighbour users’ ratings as weights for a specific item to predict the target user’s rating. The system can

also predict the rankings of all items for the target user based on the predicted ratings. As is expected,

item-based CF calculates the similarities among items. It is basically assumed that items with similar

ratings will have common characteristics. Neighbour items that are chosen based on similarity scores

are used to calculate the predicted ratings of a target item by calculating the weighted average. In

addition, there are several methods for similarity measure: 1) cosine similarity that measures the cosine

value between two user/item vectors within the range of 0-1; 2) pearson correlation coefficient (PCC)

measures the degree of linear correlation between two variables. Different from the cosine measure,

PCC selects co-rated items or users to calculate similarities.

FIGURE 2.1. An example of item-based CF recommendation process. First, select the
neighbour items (i.e. Item 3, 5) based on the similarity measure (but here it is skipped)
and predict the target item rating (i.e. Item 1), given user 1, by calculating the weighted
average.

Furthermore, matrix factorisation (MF) techniques are widely adopted to implement CF-based recom-

mendation tasks, in which a user-item rating matrix is decomposed into two low-rank matrices, the user

feature and item feature matrices, respectively (Koren et al., 2009). For example, when a set of users

2.1 COLLABORATIVE FILTERING BASED RECOMMENDER SYSTEMS 7

and items are denoted by U and I , R is the rating matrix of size |U |×|I|. The purpose of MF is to find

two matrices P and Q with L latent features as shown in Eq. 2.1:

R̃ = P ×Q ≈ R (2.1)

The user feature vector pu indicates how much user u is interested in each feature, and the item feature

vector qi measures the degree of each feature for item i. Based on these two vectors, the rating of user u

on item i can be calculated by Eq. 2.2:

ru,i = pTu qi (2.2)

An example of MF for CF-based recommendation is shown in Fig. 2.2, where the predicted (user-item

rating) matrix R̃ is completed by multiplying two latent matrices P and Q with five latent features, and

is compared with the original rating matrix R of five users and four items.

FIGURE 2.2. Matrix factorisation example for CF-based recommendation, in which
both users and items are represented in a same size of feature vectors (|pu| = |qi|), and
the ratings (R̃) of users for items are predicted by multiplying the user (P) and item (Q)
feature matrices.

However, the limitations of the linear nature of MF are revealed when dealing with large and complex

data that requires a thorough understanding ability, so neural network-based MF models are introduced.

2.1.2 Neural collaborative filtering models

While deep learning has advanced in a variety of fields including computer vision, speech recognition

and natural language processing, it has also brought new changes to recommender systems. The appli-

cation of deep learning in recommender systems has a strong advantage in training the representation of

large-scale and complex data from its latent feature capturing ability.

2.1 COLLABORATIVE FILTERING BASED RECOMMENDER SYSTEMS 8

The general objective of representation learning in CF is to learn user and item embedding matrices.

(Salakhutdinov et al., 2007) firstly introduced to model users and items from a user-item rating matrix,

using Restricted Boltzmann Machines (RBM) for neural CF. It is expected to show how a class of two-

layer undirected graph models (RBMs) can be used to model tabular data (e.g. user-item rating matrix).

DCF (Li et al., 2015) proposes a general deep architecture that incorporates probabilistic MF and

marginalized denoising auto-encoders (mDA) to learn effective latent representations via deep learn-

ing. Similarly, SDAE (Wang et al., 2015) proposes to integrate stacked denoising auto-encoders (SDA)

and collaborative topic regression (CTR). However, both are hybrid recommender models, exploiting

auxiliary information such as user profile and item content information with the CF-based approach.

In addition, while SDAE (Wang et al., 2015) requires a large number of hyperparameters for training,

using an expectation-maximisation (EM) algorithm, DCF (Li et al., 2015) computes the parameters in a

closed form and is thus highly efficient and scalable, however they are close with each other in terms of

the architecture.

Besides, CDAE (Wu et al., 2016) also adopts the idea of denoising auto-encoders (DAE) for top-N

recommendation, which learns the correlations between interacted items on a set of corrupted user pref-

erence, containing information about whether an item is preferred or not. Similar to the standard DAE,

the model proposed by (Wu et al., 2016) is represented as one hidden layer neural architecture, but the

key difference is that the input layer includes a user latent vector as well as the latent vectors of the items

observed by the user.

FISM (Kabbur et al., 2013) takes advantage of both latent factor and neighborhood approaches. It

learns an item-item similarity matrix as the product of two low-dimensional latent factor matrices, and

the recommendation for a specific unobserved item is performed by aggregating the products of two

different item latent vectors, where one has been rated by a user and the other has never observed. The

factored representation of the item-item similarity matrix is estimated via a structural equation modeling

approach, which leads to better estimation quality as the number of factors increases. However, in

practice, simultaneously integrating different historical items into one user behavior was not effective,

as they had different contributions to the preference of a user.

NAIS (He et al., 2018) proposes a neural item similarity model, which can differentiate which interacted

items are more important in the historical behavior of a user. It was built on the previous work (Kabbur

et al., 2013), while preserving its high efficiency but making a stronger representation power. It is

2.1 COLLABORATIVE FILTERING BASED RECOMMENDER SYSTEMS 9

achieved by adopting the recently advanced representation learning approach, the attention mechanism.

However, the standard attention network does not work well due to the large variance on the history

lengths of users (Bahdanau et al., 2014) and (Chen et al., 2017). To address this problem, it suggests

a variant of the softmax function, that reduces the punishment on the attention weights of active users

with a long history and accordingly decreases the variance of attention weights.

DeepICF (Xue et al., 2019) presents a neural item-based CF model, which exploits nonlinear neural

networks to consider the interaction among all item pairs, thereby going beyond second-order interaction

modeling. It aims to effectively capture higher-order item relations. It first models second-order item

interactions through an element-wise product on each item embedding pair in the low-level of the neural

architecture such as (Kabbur et al., 2013) and (He et al., 2018). In second-order interaction modeling,

there are two main methods. One method is to use the same weight to combine pairwise item interactions

and the other method is to use an attention mechanism to differentiate the importance of interacted item

pairs. Inspired by (He and Chua, 2017), it then stacks a multi-layer perceptron (MLP) to learn higher-

order item relations in a nonlinear way.

2.1.3 Autoencoder-based collaborative filtering models

AutoRec (Sedhain et al., 2015) introduces an autoencoder (AE)-based model for CF. As the proposed

item-based AE model takes the rating records of each item from all users as input, it learns each item

latent representation with an encoder network, and then feeds the learned item representations into a

decoder network to predict missing ratings. Note that it can also be designed as a user-based AE by

treating the historical records of each user as input.

FIGURE 2.3. The structure of AutoRec.

2.1 COLLABORATIVE FILTERING BASED RECOMMENDER SYSTEMS 10

The characteristics of the AutoRec are clearly viewed as compared to the RBM-based model (Salakhut-

dinov et al., 2007). While RBM-CF proposes a generative, probabilistic model based on RBM, AutoRec

is a kind of discriminative model. As for the objective, RBM-CF estimates parameters by maximising

log-likelihood, but AutoRec tries to minimise RMSE. Lastly, for efficient model learning, RBM-CF re-

quires a contrastive divergence algorithm, whereas AutoRec focuses on how back-propagation can be

much faster. Moreover, compared to MF approaches, which embed both users and items into a shared

latent space, AutoRec is required to embed only items or users into a latent space. While MF-based

models learn the linear latent representation, AutoRec learns the nonlinear latent representation via the

activation function.

FIGURE 2.4. The structure of CDAE.

CDAE (Wu et al., 2016) presents a CF-based AE framework for top-N recommendation, but it employs

the denoising technique (Vincent et al., 2008), which extends the classical AE by training to reconstruct

the original input from the intentionally corrupted input. It aims to encourage the hidden layer to discover

more robust features and to keep from learning the identity function.

REAP (Zhuang et al., 2017) proposes a collaborative ranking learning framework with user-item pairs,

which tries to adopt AE to simultaneously learn user and item latent representations, which are later used

to reconstruct the approximated rating matrix. The pairwise ranked loss is considered between the orig-

inal matrix and the approximated matrix, which imposes information preservation in the approximated

matrix. Specifically, it utilises a stacked AE (Hinton et al., 2006; Bengio et al., 2006; Vincent et al.,

2010) to initialise the weight matrices of an encoder and a decoder, and focuses on learning better rep-

resentations only on rating data, while most of the related works require the additional information and

do not make full use of the rating data. To get the full benefit from the rating data, it tries to incorporate

the pairwise ranked loss defined by user-item pairs into the representation learning framework.

2.1 COLLABORATIVE FILTERING BASED RECOMMENDER SYSTEMS 11

2.1.4 Graph-based collaborative filtering models

The interaction histories of users have an effect on CF for boosting the representation power, and they

can be represented as a user-item graph structure. With the success of graph neural network(GNN) (Kipf

and Welling, 2016) in modeling the graph-structured data, many works have arisen and proposed how

to model the graph structure for neural graph-based representation learning.

SpectralCF (Zheng et al., 2018) firstly introduced CF-based method, which directly learns latent user

and item factors from the spectral domains via a spectral convolution operation. It is found that the rich

connectivity information in the spectral domain of a user-item bipartite graph is effective in detecting

deep user-item connections, and thereby alleviates the cold-start problem for CF-based recommenda-

tion. Then, a deep recommender model with multiple layers of the spectral convolution operation is

introduced. Inspired by GCN (Kipf and Welling, 2016) and ChebNet (Defferrard et al., 2016) for the

node/graph classification problem, it proposes to leverage the broad information in the spectral domain

based on a spectral graph theory. Particularly, to overcome the difficulties of directly learning from the

spectral domain, it first employs a polynomial approximation, which dynamically adjusts the importance

of each frequency domain.

FIGURE 2.5. The structure of GCMC.

GCMC (Berg et al., 2018) considers matrix completion for recommender systems as a link prediction

problem on graphs by expressing rating data as a user-item bipartite graph with labeled edges denoted

as observed ratings, as shown in Figure 2.5. The benefit of formulating matrix completion as a link

prediction task is especially obvious when external information is incorporated into the rating data.

Therefore, the cold-start problem can be mitigated. It proposes a graph-based AE framework, which

learns latent user and item representations through message passing on the user-item bipartite graph.

The trained user and item representations are used to reconstruct rating links in the bipartite graph

through a bilinear decoder.

2.1 COLLABORATIVE FILTERING BASED RECOMMENDER SYSTEMS 12

NGCF (Wang et al., 2019a) proposes to integrate the graph structure into the embedding process. It

presents a GNN-based recommendation framework, which exploits the user-item bipartite graph via

an embedding propagation approach, based on which, the embeddings of interacted user-item pairs

are allowed to harvest the collaborative signal. This eventually leads to the expressive modeling in

high-order connectivity, injecting the collaborative signal into the embedding process in an explicit

way. Moreover, in the proposed framework, there are three components: (1) an embedding layer that

initialises the embeddings of users and items; (2) multiple embedding propagation layers that refine the

embeddings by injecting high-order connectivity relations; and (3) a prediction layer that aggregates the

refined embeddings from each propagation layer.

FIGURE 2.6. Illustration of graph convolution for each node with the connected neigh-
bour nodes and neighbourhood aggregation in Graph Convolutional Networks (GCN).

Meanwhile, Graph convolutional networks (GCN)-based recommender models show superior perfor-

mance compared to the traditional models. GCNs are designed by stacking multiple layers which itera-

tively perform the following two steps at each layer: neighborhood aggregation with a graph convolution

operation (Fig 2.6); a nonlinear transformation. However, many GCN-based recommender models suf-

fer from not only additional complexity from the nonlinear transformation but also the over-smoothing

problem in the graph convolution operation as layers are deeper. LR-GCCF (Chen et al., 2020) revisits

the current GCN-based models and proposes a simplified graph-based CF model with a linear residual

graph convolutional approach. In this proposed model, there are two main characteristics: At each layer

of the feature propagation step, it employs a linear embedding propagation, instead of the nonlinear em-

bedding propagation; To alleviate the over-smoothing problem, it adopts the residual preference learning

approach at each layer to better preserve the previous layer information.

2.2 FEATURE EXTRACTION IN COLLABORATIVE FILTERING 13

In addition, LightGCN (He et al., 2020) also aims to simplify the design of GCN, and proposes a graph-

based CF model, including only the most essential component of GCN, neighborhood aggregation. The

model largely consists of two main components: 1) light graph convolution and 2) layer combination.

In light graph convolution, it discards feature transformation and nonlinear activation, which are the

standard operations in GCN but increase the difficulty for model training. In layer aggregation, it con-

structs the final node embedding via the weighted sum of its embeddings from all layers. To sum up,

after associating each user/item with an ID embedding, it propagates the embeddings on the user-item

bipartite graph, and then combines the trained embeddings from all layers via weighted sum to obtain

the final embedding.

Neural CF Models

Attention Network

Autoencoder

Graph Neural Network

Matrix Factorization Item Similarity Matrix Factored Item Representation

High-order Item Relation

Historical Item Interaction

Discriminative Importance

Item/User-based AutoencoderItem/User Rating VectorsMatrix Completion

Denoising AutoencoderCorrupted Item/User Rating VectorsTop-N Recommendation

Stacked Autoencoder
Representation Learning

with Pair-wise Constraints
Collaborative Ranking

Graph Convolutional Encoder

Spectral Graph Convolution

Layer-wise Linear Model

Node Clustering & Pooling

Spectral domain

Graph Autoencoder

Bilinear Decoder

Embedding Propagation High-order Connectivity Modeling

Spectral Convolutional Filter

Semi-supervised Node Classification

Polynomial Approximation

Simplifying GCN

Residual Preference Prediction

Neighbourhood aggregation

Layer CombinationEmbedding Propagation

FIGURE 2.7. Summary of the thirteen introduced CF-based neural recommendation
models with a distinct characteristic-based breakdown approach, where the neural CF
models are largely distinguished into four model architectures/types.

2.2 Feature Extraction in Collaborative Filtering

Collaborative filtering (CF)-based recommender systems focus on making a prediction about the inter-

ests of a user by collecting preferences from large number of other users. Matrix completion (Candès

and Recht, 2009) is one of the most common formulation, where rows and columns of a matrix represent

users and items, respectively. The prediction of users’ ratings in items corresponds to the completion of

2.2 FEATURE EXTRACTION IN COLLABORATIVE FILTERING 14

the missing entries in a high-dimensional user-item rating matrix. In practice, the matrix used for CF is

extremely sparse since it has ratings for only a limited number of user-item pairs.

Traditional recommender systems for matrix completion tasks focus on generalising sparsely observed

matrix entries to a low dimensional feature space by using an auto-encoder (AE) (Zhang et al., 2020).

AEs would help the system better understand users and items by learning the non-linear user-item rela-

tionship efficiently, and encoding complex abstractions into data representations.

I-AutoRec (Sedhain et al., 2015) designed an item-based AE, which takes high-dimensional matrix

entries, projects them into a low-dimensional latent hidden space, and then reconstructs the entries in

the output space to predict missing ratings. Inspired by this, GC-MC (Berg et al., 2018) proposed a

graph-based AE framework for matrix completion, which produces the latent features of user and item

nodes through a form of message passing on the bipartite interaction graph. These latent user and item

representations are used to reconstruct the rating links via a bilinear decoder. Such link prediction with a

bipartite graph extends the model with structural and external side information. Recent studies (Rashed

et al., 2019; Strahl et al., 2020; Ugla et al., 2020) focused on utilising side information, such as opinions

or attributes of users. However, in most real-world settings (e.g. platforms and websites), there is no (or

insufficient) side information available about users.

FIGURE 2.8. Illustration of the kernel function in support vector classification.

2.2.1 Kernelised feature extraction techniques

To deal with the sparse/large matrix issue, kernelized models have been recently proposed in the area

of recommendation systems. Before we get into the models, matrix factorization (MF) has shown great

potential in the CF-based recommendation. Conventional MF models usually assume that the corre-

lated data pairs are distributed on a linear hyperplane (Funk, 2006; Paterek, 2007; Hofmann, 2004).

Kernel functions are used widely in support vector machines (SVMs) to classify linearly non-separable

2.3 FEATURE REPRESENTATION LEARNING IN COLLABORATIVE FILTERING 15

data (Schölkopf et al., 2002), as illustrated in Figure 2.8. The research (Liu et al., 2016) incorporates

kernel functions for MF (Lawrence and Urtasun, 2009; Zhou et al., 2012), which embeds the low-rank

feature matrices into a higher dimensional space, enabling to learn nonlinear correlations upon the rating

data in original space. This model can exemplify the benefits of kernelisation in recommender systems,

but it cannot solve the sparse and large matrix issue.

SparseFC (Muller et al., 2018) introduces the concept of kernelised weight matrices, which reduces

the number of learnable parameters as weight matrices are sparsified by kernel functions, and also de-

creases the computational cost in terms of the multiply-accumulate operation. So, this model can solve

computationally-expensive and overfitting problem (large matrix issue), but cannot solve the sparse ma-

trix problem. Even though a few models have been proposed, there are still no ideal models which can

deal with the sparse/large matrix issue.

To address those problems, we propose to apply multiple types of kernels that have strong ability in

extracting the latent features of a high-dimensional user-item rating matrix in a low-dimensional feature

space without any additional side information. The first kernel, named local kernel, is known to give

optimal separating surfaces by its ability to perform the data transformation from high-dimensional

space, and is widely used with support vector machines (SVMs). The second kernel, named global

kernel is from convolutional neural network (CNN) architectures. Based on the rationale that the more

kernels with a deeper depth, the higher their feature extraction ability, integrating these two kernels to

have best of both worlds successfully extract the low-dimensional feature space. With this in mind, we

propose a Global-Local Kernel-based matrix completion framework, called GLocal-K, which includes

two stages: 1) pre-training the auto-encoder using a local kernelised weight matrix, and 2) fine-tuning

with the global kernel-based rating matrix. The details about GLocal-K will be described in Chapter 3.

2.3 Feature Representation Learning in Collaborative Filtering

User/item-based Collaborative Filtering(CF) has achieved great success in the field of recommendation

systems, with the essence of modeling the user-item interaction based on the partially observed inter-

action matrix. Especially, item-side observation is shown to convey rich information for user modeling

and recommendation prediction (Wu et al., 2019). Some existing recommendation approaches demon-

strate similar intention of ours in terms of addressing item feature modeling. For instance, early works

such as SLIM (Ning and Karypis, 2011) and FISM (Kabbur et al., 2013) learn the latent item factors

2.3 FEATURE REPRESENTATION LEARNING IN COLLABORATIVE FILTERING 16

via decomposing the interaction matrix with a trainable coefficient matrix and an item-item similarity

matrix respectively for top-N recommendation. Besides, there are many auto-encoder (AE)-based rec-

ommender systems that learn the item embedding in a low-dimensional hidden space as a latent variable,

and reconstruct it in output space to predict the item’s ratings from users (Sedhain et al., 2015; Strub

et al., 2016; Muller et al., 2018). In order to reinforce the item feature modeling, GLocal-K (Han et al.,

2021) further proposes convolutional global kernel to the AE-based matrix completion framework that

effectively captures the characteristics of each item.

FIGURE 2.9. Illustration of the item co-occurrence matrix with the original user-item
history matrix.

2.3.1 Neighbourhood-based item feature representation approaches

A recent success has been made in exploiting both latent factor and word embedding models for item

representation learning in the recommender systems. On the one hand, there are some approaches, such

as CoFactor (Liang et al., 2016), RME (Tran et al., 2018), CDIE (Wang et al., 2019b) and CRML (Wu

et al., 2020) that implicitly factorize the item-context(neighbourhood) co-occurrence matrix (Fig. 2.9)

composed of the Pointwise Mutual Information (PMI) of the respective item and context pairs shifted

by a global constant, which is proved to be equivalent to applying the skip-gram model with negative

sampling for modeling the latent item embedding (Levy and Goldberg, 2014). However, those item

representations are integrated into the matrix completion model and thus is limited to the specific model

architecture. On the other hand, several works apply the Word2Vec model for learning item embeddings

directly with the semantically ordered item sequence, which can be decoupled from a separate embed-

ding like our SUPER-Rec (Guàrdia-Sebaoun et al., 2015; Wang and Caverlee, 2019; Huang et al., 2021).

Nevertheless, same to the other approaches above, the item representation learning is contextualized in

an inconsistent manner since the defined item-context varies among users due to their historical interac-

tion with items, e.g. (Liang et al., 2016) and (Tran et al., 2018), or/and the context is sequentialized based

on time/session series, e.g. (Wang et al., 2019b) and (Wang and Caverlee, 2019). None of them utilizes

2.4 SUMMARY 17

the original fixed position information from the user-item interaction matrix as in our SUPER-Rec for

enhancing the item feature representation, which is of great importance since the interaction matrix for

completion is composed of rows and columns that naturally entails a fixed context pattern for modeling

item-item correlations.

2.3.2 Item interaction-based user feature representation approaches

Especially, many of the aforementioned approaches utilize the item representations to form an effec-

tive user representation accordingly, which resolves the limitation of user-specific embeddings. For

instance, FISM (Kabbur et al., 2013) combines the rated items from the latent item representation of

users to compute user embedding. Those AE-based models such as AutoRec (Sedhain et al., 2015)

infer the user rating vectors based on the latent item embeddings modeled in the hidden space. La-

tentTrajectory (Guàrdia-Sebaoun et al., 2015) uses Word2Vec model to learn the item representation

contextualized by sequentially ordered items in the user trajectory. The user representation is then mod-

eled based on the mean of the translations needed to move from one item to the next one in the trajectory.

RRLC (Wang and Caverlee, 2019) also applies Word2Vec model and learns the item representation from

an timely ordered sequence of interacted items of the user, which is then used to represent the users based

on their nearest neighbours measured by the similarity of item representations. Similar to these works,

we will utilize our SUPER-Rec item representation to form the user representation and demonstrate its

effectiveness together with the SUPER-Rec.

2.4 Summary

In this chapter, we discussed about various approaches used over the past few years in the research

field of collaborative filtering-based recommender systems. Initial approaches were more aligned with

user/item similarity measure or linear correlation analysis with matrix factorisation. After deep learn-

ing has been applied to recommender systems, neural network-based collaborative filtering approaches

have arisen with various model architectures based on different feature representation methods. Then,

feature extraction approaches in collaborative filtering were discussed. Meanwhile, we focused on the

kernelised feature extraction techniques to address the sparse and large user-item matrix issue in col-

laborative filtering tasks. Lastly, we discussed about representation learning approaches from a separate

view for items and users in collaborative filtering.

CHAPTER 3

Global and Local Kernel-based Feature Extraction

Figure 3.1 depicts the architecture of our proposed GLocal-K model, which applies two types of kernels

in two stages respectively: pre-training (with the local kernelised weight matrix) and fine-tuning (with

the global-kernel based matrix)1. Note that we pre-train our model to make dense connections denser and

sparse connections sparser using a finite support kernel, and fine-tune the pre-trained model, extracting

the features of the original rating matrix that is produced from a convolution kernel by reducing the data

dimension and producing a less redundant but small number of important feature sets. In this research,

we mainly focus on a matrix completion task, which is conducted on a rating matrix R ∈ Rm×n with m

items and n users. Each item i ∈ I = {1, 2, ...,m} is represented by a vector ri = (Ri1, Ri2, ..., Rin) ∈

Rn.

3.1 GLocal-K: Global-Local Kernel-based matrix completion framework

3.1.1 Pre-training with Local Kernel

Auto-Encoder Pre-training

We first deploy and train an item-based autoencoder, inspired by (Sedhain et al., 2015), which takes each

item vector ri as input, and outputs the reconstructed vector r′i to predict the missing ratings. The model

is represented as follows:

r′i = f(W (d) · g(W (e) ri + b) + b′), (3.1)

where W (e) ∈ Rh×m and W (d) ∈ Rm×h are weight matrices, b ∈ Rh and b′ ∈ Rm are bias vectors,

and f(·) and g(·) are non-linear activation functions. The autoencoder (AE) deploys an auto-associative

1The idea of our pre-training and fine-tuning is different from transfer learning.

18

3.1 GLOCAL-K: GLOBAL-LOCAL KERNEL-BASED MATRIX COMPLETION FRAMEWORK 19

FIGURE 3.1. The GLocal-K architecture for matrix completion. (1) We pre-train the
AE with the local kernelised weight matrix. (2) Then, fine-tune the trained AE with the
global kernel-based matrix. The fine-tuned AE produces the matrix completion result.

neural network with a single h-dimensional hidden layer. In order to emphasise the dense and sparse

connection, we reparameterise weight matrices in the AE through a radial-basis-function (RBF) kernel,

which is known as Kernel Trick (Giannakopoulos et al., 2008).

Local Kernelised Weight Matrix

In Eq. (3.1), the weight matrices W (e) and W (d) are reparameterised by a 2d-RBF kernel, named local

kernelised weight matrix. As is illustrated in Figure 3.2, W’ indicates the local kernelised weight matrix,

which is reparameterised by a 2d-RBF kernel, and LK corresponds to the local RBF kernel.

FIGURE 3.2. Weight reparameterisation via local kernelised weight matrix.

The RBF kernel can be defined as follows:

Kij(U, V) = max(0, 1− ||ui − vj ||22), (3.2)

3.1 GLOCAL-K: GLOBAL-LOCAL KERNEL-BASED MATRIX COMPLETION FRAMEWORK 20

where K(·) is a RBF kernel function, which computes the similarity between two sets of vectors U , V .

Here, ui ∈ U and vj ∈ V . The kernel function can represent the output as a kernel matrix LK (see

Figure 3.2), in which each element maps to 1 for identical vectors and approaches 0 for very distant

vectors between ui and vj . Then, we compute a local kernelised weight matrix as follows:

W ′
ij = Wij ·Kij(U, V), (3.3)

where W ′ is computed by the Hadamard-product of weight and kernel matrices to obtain a sparsified

weight matrix. The distance between each vector of U and V determines the connection of neurons in

neural networks by making some elements of the weight zeros when two vectors from U and V are far

away from each other, and the degree of sparsity is dynamically varied as vectors are being changed

at each step of training. As a result, applying the kernel trick to weight matrices enables regularising

weight matrices and learning generalisable representations.

3.1.2 Fine-tuning with Global Kernel

Global kernel-based Rating Matrix

We fine-tune the pre-trained autoencoder with the rating matrix, produced by the global convolutional

kernel. Prior to fine-tuning, we firstly describe how the global kernel is constructed and applied to build

the global kernel-based rating matrix.

FIGURE 3.3. Item-based average pooling.

As shown in Figure 3.3, the decoder output of the pre-trained model is the matrix that includes initial

predicted ratings in the missing entries, and is passed to the item-based average pooling process, by

which we summarise each item information in the rating matrix as a single value.

µi = avgpool(r′i) (3.4)

3.1 GLOCAL-K: GLOBAL-LOCAL KERNEL-BASED MATRIX COMPLETION FRAMEWORK 21

Eq. (3.4) shows that the reconstructed item vector r′i of the matrix R′ from the pre-trained decoder is

passed to the average pooling process, and is interpreted as item-based summarisation.

Let M = {µ1, µ2, ..., µm} ∈ Rm be the pooling result, which plays a role as the weights of multiple

kernels K = {k1, k2, ..., km} ∈ Rm×t2 . Here, m is the number of items in the matrix and t is defined as

the one-side length of a square-shaped global convolution kernel.

FIGURE 3.4. Global convolution kernel construction.

GK =

m∑
i=1

µi · ki (3.5)

As shown in Figure 3.6, these kernels are aggregated via inner product with the pooling results, and the

aggregation result can be dynamically determined by different kernels and different rating matrices so

that it can be regarded as the rating-dependent mechanism. Then, the aggregated kernel GK ∈ Rt×t is

used as a global convolution kernel. Eq. (3.5) demonstrates the procedure for constructing the global

convolution kernel GK.

FIGURE 3.5. Convolution operation between the rating matrix and the global kernel.

R̂ = R⊗GK (3.6)

We apply a global kernel-based convolution operation to the user-item rating matrix to extract the fea-

tures of the raw rating matrix via the proposed global kernel (see Figure 3.6). In Eq. (3.6), R̂ is the global

kernel-based rating matrix, which is generated via convolution between the raw rating matrix and the

global kernel and is further employed as input for fine-tuning, and ⊗ denotes a convolution operation.

3.2 EVALUATION SETUP 22

Auto-Encoder Fine-tuning

We then explore how the fine-tuning process works.

FIGURE 3.6. Fine-tuning process.

The global kernel-based rating matrix R̂ is used as input for fine-tuning. It takes all weight matrices of

the pre-trained AE model and makes an adjustment of the model based on the global kernel-based rating

matrix, as depicted in Figure 3.6. The reconstructed result from the fine-tuned AE corresponds to the

final predicted ratings for matrix completion in recommender systems.

3.2 Evaluation setup

3.2.1 Datasets

We conduct experiments on three widely-used matrix completion benchmark datasets: MovieLens-100K

(ML-100K), MovieLens-1M (ML-1M) and Douban of density 0.0630, 0.0447 and 0.0152, respectively.

These datasets comprise of (100,000 / 1,000,209 / 136,897) ratings of (1,682 / 3,706 / 3,000) movies

by (943 / 6,040 / 3,000) users on a scale of r ∈ {1, 2, 3, 4, 5}. For ML-100K, we use the canonical

u1.base/u1.test data for training and test. For ML-1M, we randomly split into 90:10 train/test sets. For

Douban, we use the preprocessed subsets and splits provided by Monti et al. (2017).

TABLE 3.1. Summary statistics of datasets.

Dataset Users Items Ratings Density

ML-100K 943 1,682 100,000 0.0630
ML-1M 6,040 3,706 1,000,209 0.0447
Douban 3,000 3,000 136,891 0.0152

3.2.2 Baselines

We compare the RMSE with the nine(9) recommendation baselines:

3.2 EVALUATION SETUP 23

(1) LLORMA(Lee et al., 2016) is a matrix factorization model using local low rank sub-matrices

factorization. Instead of assuming that a user-item interaction matrix is globally approximated

by low-rank matrices, LLORMA assumes that the user-item matrix can serve as a low-rank

matrix via certain row-column combinations. Therefore, it proposes to construct a number

of low-rank approximations of the matrix, each of which makes accurate approximation in a

particular region of the matrix.

(2) I-AutoRec(Sedhain et al., 2015) is an autoencoder-based model, which takes high-dimensional

matrix entries, projects them into a low-dimensional latent hidden space, and then reconstructs

the entries in the output space to predict missing ratings. It considers either user or item embed-

dings in the encoder, so there are two kinds of autoencoder models: item-based and user-based

autoencoder.

(3) CF-NADE(Zheng et al., 2016) proposes a neural auto-regressive architecture for collaborative

filtering by replacing the role of the restricted Boltzmann machine (RBM) with the neural auto-

regressive distribution estimator (NADE) for rating reconstruction, which shares parameters

between different ratings of the same item to sufficiently optimise the parameters associated

with rare ratings.

(4) GC-MC(Berg et al., 2018) is a graph-based autoencoder framework that produces the latent

features of users and items via differentiable message passing on the bipartite user-item interac-

tion graph for rating link reconstruction. GC-MC can efficiently combine interaction data with

side information in the form of node features as GC-MC+Extra(Berg et al., 2018), which are

not fed directly into the graph convolution layer, but are included into the dense hidden layer

after graph convolution to alleviate the bottleneck problem of information flow on the graph.

(5) GraphRec(Rashed et al., 2019) is a matrix factorization model utilizing graph-based features

that are extracted from the Laplacian of the user-item co-occurrence graph to capture user and

item profiles. By proposing a simple model that co-embeds users and items into a joint latent

space, GraphRec can be applied to a variety of settings and can leverage additional external

side information through its numeral vector representation as GraphRec+Extra(Rashed et al.,

2019).

(6) GRAEM(Strahl et al., 2020) formulates a probabilistic generative model and uses expecta-

tion maximization to extend graph-regularised alternating least squares (GRALS) based on the

additional side information graph.

3.3 RESULT 24

(7) SparseFC(Muller et al., 2018) proposes an autoencoder-based matrix completion framework

whose weight matrices are sparsely reparameterised via interaction with the finite support ker-

nel, which provides the model to regularise weight matrices.

(8) IGMC(Zhang and Chen, 2020) is a graph-based matrix completion framework which applies

a graph-level GNN to the enclosing 1-hop subgraph to encode its structure, and maps it to the

corresponding rating to predict the missing entries of the matrix.

(9) MG-GAT(Ugla et al., 2020) uses an attention mechanism to dynamically aggregate neighbor

information of each user or item on a neighbour importance graph to learn latent user/item

representations.

3.2.3 Implementation Details

We use two 500-dimensional hidden layers for autoencoder and 5-dimensional vectors ui, vj for the

local RBF kernel. For fine-tuning, we employ a single convolution layer with a 3x3 global convolution

kernel. Inspired by (Sedhain et al., 2015), we train our model using the L-BFGS-B optimiser to minimise

regularised squared errors, where L2 regularisation is applied with different regularisation parameters

λ2, λs for weight and kernel matrices, respectively. Based on validation results, we choose the following

settings for (ML-100K / ML-1M / Douban): for L-BFGS-B optimiser, maxiterp = (5 / 50 / 5), maxiterf

= (5 / 10 / 5)2, and for L2 regularisation, λ2 = (20 / 70 / 10), λs = (0.6e-2 / 1.8e-2 / 2.2e-2). We repeat

each experiment five times and report the average RMSE results.

3.3 Result

3.3.1 Overall Performance

We first evaluated our GLocal-K model on ML-100K (u1.base/u1.test split)/-1M datasets as relatively

high-density data and compare with the baseline models. The RMSE test results are provided in Table

3.2. It can be easily observed from both GC-MC and GraphRec that incorporate side information im-

proves the recommendation performance, e.g., the error rates of GC-MC+Extra. and GraphRec+Extra.

are reduced by 0.005 and 0.007 respectively on ML-100K via side information inclusion. GC-MC

transforms a user-item rating matrix into a bipartite user-item interaction graph, and regards a matrix

2maxiter is maximum number of iterations (p=pre-training, f =fine-tuning).

3.3 RESULT 25

TABLE 3.2. RMSE test results on three benchmark datasets. The column Extra. rep-
resents whether the model utilises any side information. All RMSE results are from the
respective papers cited in the first column, and the best results are highlighted in bold.

Model Extra. ML-100K ML-1M Douban

LLORMA(Lee et al., 2016) - - 0.833 -
I-AutoRec(Sedhain et al., 2015) - - 0.831 -
CF-NADE(Zheng et al., 2016) - - 0.829 -
GC-MC(Berg et al., 2018) - 0.910 0.832 -
GC-MC+Extra.(Berg et al., 2018) O 0.905 - 0.734
GraphRec(Rashed et al., 2019) - 0.904 0.843 -
GraphRec+Extra.(Rashed et al., 2019) O 0.897 0.842 -
GRAEM(Strahl et al., 2020) O 0.917 - 0.732
SparseFC(Muller et al., 2018) - 0.895 0.824 0.730
IGMC(Zhang and Chen, 2020) - 0.905 0.857 0.721
MG-GAT(Ugla et al., 2020) O 0.890 - 0.727
GLocal-K (ours) - 0.890 0.822 0.721

completion task as link prediction between user and item nodes. It learns user and item latent repre-

sentations by passing the message of users (items) to the directly interacted/linked items (users), and

then predicts the ratings based on learned user and item representations. Similar to GC-MC, IGMC also

learns graph-structural relations on the bipartite user-item interaction graph derived from the rating ma-

trix using GNN, but outperforms GC-MC+Extra. by focusing on 1-hop subgraph structures, which can

more precisely understand the relation between a user and an item by representing each node embedding

in relation to the subgraph it belongs to. GRAEM focuses on the additional side information graph and

MG-GAT uses auxiliary information to represent user-user and item-item graph relations. Different from

those models above, the first three models in the table use only the rating matrix structure and achieve

better results on ML-1M. Our proposed GLocal-K also draws on the rating matrix structure and uses no

extra information, outperforming all the baseline models above on three datasets, including those with

additional side information, which illustrates the efficacy of combining the global-local kernels for rec-

ommendation tasks. Moreover, SparseFC also achieves higher accuracy than those baseline models on

three datasets except for MG-GAT, showing the benefit of proper kernel-approximations into the weight

matrix. Our GLocal-K surpasses SparseFC, further illustrating the effectiveness of a global kernel that

learns to refine and extract the relevant information from the sparse data matrix.

3.3 RESULT 26

3.3.2 Cold-start Recommendation

To validate the robustness of our proposed GLocal-K under substantially less user-item interaction infor-

mation, we varied the training ratio from 1.0 to 0.2 and compared the RMSE test results with SparseFC

on ML-100K and Douban in Figure 3.7 and Figure 3.8.

0.20.30.40.50.60.70.80.91.0
The amount of training data

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

RM
SE

ML-100K
GLocal-K
Sparse FC

FIGURE 3.7. Performance comparison w.r.t. different sparsity levels on ML-100K.

0.20.30.40.50.60.70.80.91.0
The amount of training data

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

RM
SE

Douban
GLocal-K
Sparse FC

FIGURE 3.8. Performance comparison w.r.t. different sparsity levels on Douban.

It can be seen that both models on the two datasets demonstrate a similar overall trend: the error rate

increases as the training size decreases, which complies with the conventional expectation. More specif-

ically, with training ratios of 1.0 to 0.4, both models present the RMSE results within 0.880 to 0.960

on ML-100K and within 0.710 to 0.775 on Douban, and GLocal-K outperforms SparseFC by a merely

constant gap on both ML-100K and Douban. This slight gap can be considered insignificant, but new

models are continuously being introduced to improve the performance even a little bit, since it deter-

mines the ranking of baseline models. So, this merely constant gap illustrates the superior effectiveness

of cooperation via global and local kernels of GLocal-K. In addition, when training size reduces from

3.3 RESULT 27

0.4 to 0.2 on Douban, the error rate of SparseFC deviates from the previous curve and goes up dramati-

cally while GLocal-K still rises at a stable rate as on ML-100K. This implies that the global kernel can

deal with scarce data via high-level feature extraction.

3.3.3 Effect of Pre-training

We conducted experiments to find the optimal number of epochs for pre-training on ML-100K, ML-

1M and Douban. The RMSE results for the three datasets using pre-training epochs from 0 (i.e., no

pre-training) to 60 are provided in Figure 3.9, Figure 3.10 and Figure 3.11.

0 10 20 30 40 50 60
Epochs

0.890

0.892

0.894

0.896

0.898

0.900

RM
SE

ML-100K

FIGURE 3.9. Performance comparison w.r.t. pre-training epochs on ML-100K.

0 10 20 30 40 50 60
Epochs

0.824

0.826

0.828

0.830

RM
SE

ML-1M

FIGURE 3.10. Performance comparison w.r.t.pre-training epochs on ML-1M.

Similar bowl-shaped curves are presented across all three datasets. The RMSE first keeps decreasing

from about 0.901 to 0.891 on ML-100K, from about 0.831 to 0.823 on ML-1M and from about 0.732

to 0.722 on Douban, as the pre-training epoch increases from 0. This indicates that pre-training benefits

GLocal-K to achieve better performance on all three datasets. Then, the RMSE starts to go up again

(= starts to get worse) after reaching its optimum at 30 epochs for ML-100K and 20 epochs for both

3.3 RESULT 28

0 10 20 30 40 50 60
Epochs

0.723

0.726

0.729

0.732

0.735

RM
SE

Douban

FIGURE 3.11. Performance comparison w.r.t. pre-training epochs on Douban.

ML-1M and Douban. We can also find that the earlier the optimum is reached, the steeper the slope of

RMSE is. This implies that there is only difference in optimising speed among the three datasets, but

they have the same effect of pre-training on GLocal-K. Referring to the summarised dataset statistics in

Table 3.1, we surmise that having more item numbers with lower density may lead to less pre-training

for optimal performance.

3.3.4 Effect of Global Convolution Kernel

We conducted several in-depth experiments to explore the effectiveness of convolution using a global

kernel. We first tried to vary the kernel sizes and the convolution layers. The RMSE results on the three

datasets are presented in Table 3.3 and Table 3.4.

TABLE 3.3. Performance comparison of RMSE test results w.r.t. different convolution
kernel sizes. The best results are highlighted in bold.

Kernel size ML-100K ML-1M Douban

3x3 0.890 0.822 0.721

5x5 0.891 0.823 0.723

7x7 0.891 0.823 0.723

It can be seen from Table 3.3 that using 3x3 sized kernel achieves the best performance on all three

datasets and the error rate goes up as the size increases to 5x5 or 7x7. It implies that focusing on more

local features with smaller kernel size might be more effective for extracting generalizable patterns over

the whole data matrix. Moreover, Table 3.4 shows an incremental performance degradation when the

convolution layer increases from 1 to 3, indicating a single convolution layer is enough and optimal for

feature extraction.

3.3 RESULT 29

TABLE 3.4. Performance comparison of RMSE test results w.r.t. different numbers of
convolution layers. The best results are highlighted in bold.

Conv. layers ML-100K ML-1M Douban

1 0.890 0.822 0.721

2 0.831 0.827 0.725

3 0.897 0.848 0.732

In addition, we also explored two variants of kernel aggregation mechanisms: (1) integrating the multiple

kernels based on the weights that are made by pooling the reconstructed ratings and (2) aggregating the

kernels via pure element-wise average.

TABLE 3.5. Performance comparison of RMSE test results w.r.t. different kernel ag-
gregation mechanisms. The best results are highlighted in bold.

Agg. mechanism ML-100K ML-1M Douban

Weight-based 0.890 0.822 0.721

Element-wise 0.894 0.822 0.730

As shown in Table 3.5, weight-based kernel aggregation reduces RMSE by 0.004 and 0.009 on ML-

100K and Douban while achieving similar performance on ML-1M. Overall, it can be seen that using

feature-indicative weights to aggregate the kernels is more effective than purely applying element-wise

averages.

TABLE 3.6. Summary statistics of Flixster and YahooMusic.

Dataset Users Items Ratings Density Rating type

Flixster 3,000 3,000 26,173 0.0029 0.5, 1.0, ..., 5.0

YahooMusic 3,000 3,000 5,335 0.0006 1, 2, 3, ..., 100

3.3.5 Extremely Sparse Dataset Analysis

We demonstrate that our GLocal-K contributes to improving feature extraction ability for matrix struc-

ture under low-resource settings. We further evaluate whether our GLocal-K can reveal its high efficacy

under much more extreme settings. We select two widely-used benchmark datasets with much lower

density in collaborative filtering-based recommendation tasks: Flixster of density 0.29% and YahooMu-

sic of density 0.06%. Note that the lowest density among the three benchmark datasets is 1.52% from

3.3 RESULT 30

Douban, which is about five or twenty-five times higher than the other two. As shown in Table 3.6, these

datasets consist of (26,173 / 5,335) ratings of (3,000 / 3,000) items by (3,000 / 3,000) users on a scale of

{0.5, 1.0, 1.5, . . . , 5.0} and {1, 2, 3, . . . , 100}, respectively.

We compared the RMSE test results with the baseline models, which are used in the aforementioned

overall performance evaluation (refer to Table 3.2). The RMSE results on Flixtser and YahooMusic

are provided in Table 3.7. While our proposed GLocal-K outperforms all the baseline models on ML-

100K, ML-1M and Douban, as shown in Table 3.7, GLocal-K highly increases RMSE by 0.108 and

14.9 on Flixster and YahooMusic, compared to the best performance result on each dataset. Similar

to GLocal-K, SparseFC is a kernel-embedded autoencoder that aims at efficient feature extraction from

rating matrix structure, but it also shows worse RMSE performance under much more extreme settings.

The graph-based CF models, including GCMC, IGMC and MG-GAT, outperform the aforementioned

two models, which implies that it is more effective to represent relations between users and items via

graph neural networks, if their interactions are highly scarce.

TABLE 3.7. RMSE test results on two extremely sparse datasets. All RMSE results are
from the respective papers cited in the first column, and the best results are highlighted
in bold.

Model Flixster YahooMusic
SparseFC (Muller et al., 2018) 0.981 34.0
GCMC (Berg et al., 2018) 0.917 20.5
IGMC (Zhang and Chen, 2020) 0.872 19.1
MG-GAT (Ugla et al., 2020) 0.876 18.9
GLocal-K (Han et al., 2021) 0.980 33.8

We further analysed the method to alleviate the worse recommendation performance of GLocal-K on

highly sparse rating datasets. As an item-based autoencoder model, GLocal-K feeds an item rating

vector into the hidden layers of the model and encodes it into a low-dimensional feature vector. We

found that the density of each item rating vector from the row of a user-item rating matrix affects the

model’s feature extraction ability more than the density of the whole matrix.

We suggest applying threshold to users’ interactions with items, which removes the users who interacted

with items less than the threshold provided. As shown in Table 3.8, we varied the user threshold from

1 (not applicable) to 5, and as the user threshold increases, users are continuously removed but items

are rarely removed on both Flixster and YahooMusic datasets. There is a small amount of variation on

Flixster across all user thresholds, but RMSE has substantially changed.

3.3 RESULT 31

TABLE 3.8. Summarisation of matrix statistics w.r.t different user thresholds.

Dataset Flixster YahooMusic
User threshold #users #items density #users #items density

1 (N/A) 2,341 2,956 0.0038 1,357 1,363 0.0029
2 1,979 2,956 0.0044 720 1,335 0.0049
3 1,694 2,955 0.0050 454 1,306 0.0074
4 1,480 2,955 0.0056 318 1,272 0.0093
5 1,327 2,952 0.0061 265 1,250 0.0107

As illustrated in Figure 3.12, compared to the first introduction of the user threshold (= 2), the RMSE

result is sharply reduced by about 0.06 and is even similar to the RMSE of GCMC. The trend of grad-

ually reducing RMSE is observed afterwards. Meanwhile, there is a density difference about 3.6 times

between the user thresholds of 1 (= not applicable) and 5 on YahooMusic. However, compared to the

first introduced user threshold (= 2) with 1, while the rating matrix density is only increases by 0.002,

RMSE is dramatically reduced by about 13, which is also at the similar level to the RMSE of GCMC.

The RMSE result gradually decreases as the user threshold increases. From the analysis of applying the

user threshold to extremely sparse datasets, we surmise that our proposed GLocal-K can achieve similar

performance to the state-of-the-art baselines under much lower-resource settings if the users who rarely

interacted with items are reduced.

(A) Flixster (B) YahooMusic

FIGURE 3.12. RMSE test result comparison w.r.t. different user thresholds on Flixster
and YahooMusic datasets.

3.3 RESULT 32

3.3.6 Effect of Integrating Global and Local Kernels

We highlighted the efficacy of integrating global and local kernels for efficient feature extraction. To

validate it, we evaluate the GLocal-K performance without either of the two kernels on all benchmark

datasets, using MAE and NDCG as well as RMSE as evaluation metrics. MAE measures the model’s

performance by calculating the absolute error between predicted and true rating matrices, and NDCG

calculates how more relevant items are recommended earlier to each user.

TABLE 3.9. Performance comparison with the two variants of GLocal-K: (1) without
the local kernel and (2) without the global kernel.

Dataset Model variants RMSE (↓) MAE (↓) NDCG (↑)

ML-100K
GLocal-K 0.890 0.695 0.906

w/o local kernel 0.894 0.700 0.904
w/o global kernel 0.896 0.701 0.903

Dataset Model variants RMSE (↓) MAE (↓) NDCG (↑)

ML-1M
GLocal-K 0.822 0.641 0.929

w/o local kernel 0.827 0.644 0.928
w/o global kernel 0.823 0.643 0.929

Dataset Model variants RMSE (↓) MAE (↓) NDCG (↑)

Douban
GLocal-K 0.721 0.562 0.943

w/o local kernel 0.724 0.563 0.942
w/o global kernel 0.731 0.571 0.940

As shown in Table 3.9, three model variants demonstrate the same ranking patterns across all evaluation

metrics on each dataset. For example, GLocal-K won the first place, followed by GLocal-K without

the local kernel and GLocal-K without the global kernel, across all metrics on ML-100K. This implies

that the model variants can be clearly distinguished by their performance on each dataset. However,

ranking patterns among the model variants are not equivalent across all three datasets. While GLocal-K

achieves the best performance on all three datasets, GLocal-K without the local kernel outperforms the

other variant on only ML-100K and Douban datasets, indicating that the relative effectiveness between

two kernels can be varied depending on which dataset is used. While the NDCG results are very similar

among the model variants, there are relatively outstanding differences among them in RMSE. We prove

the superior effectiveness of cooperation between global and local kernels by showing that GLocal-K

consistently outperforms other model variants in all evaluation metrics on all benchmark datasets.

3.3 RESULT 33

3.3.7 Matrix Compression Analysis for Global Kernel Construction

Our GLocal-K constructs the global kernel by calculating average pooling for each item rating vector in

the reconstructed rating matrix from the pre-trained autoencoder. To validate that the average pooling

technique is the optimal way of compressing the prediction information of the pre-trained model, we

evaluate the performance of GLocal-K with different pooling techniques on three benchmark datasets,

using three evaluation metrics; RMSE, MAE and NDCG.

TABLE 3.10. Performance comparison w.r.t different reconstructed information pool-
ing methods based on three evaluation metrics. Avg.(Average) pooling is the represen-
tative method, which is used by our proposed GLocal-K.

Dataset Method RMSE (↓) MAE (↓) NDCG (↑)

ML-100K
Avg. pooling 0.890 0.695 0.906
Max pooling 0.892 0.698 0.903

1D convolution 0.899 0.706 0.902

Dataset Method RMSE (↓) MAE (↓) NDCG (↑)

ML-1M
Avg. pooling 0.822 0.641 0.929
Max pooling 0.823 0.642 0.928

1D convolution 0.829 0.647 0.927

Dataset Method RMSE (↓) MAE (↓) NDCG (↑)

Douban
Avg. pooling 0.721 0.562 0.943
Max pooling 0.725 0.566 0.942

1D convolution 0.727 0.568 0.941

We introduce max pooling and 1D convolution techniques as other compression methods. Max pooling

compresses an item rating vector into a single value by selecting the maximum value in the vector space.

1D convolution extracts a single value from an item rating vector by calculating convolution with a

learnable weight vector, which is updated to enable more efficient single value extraction. As shown in

Table 3.10, the average pooling technique achieves the best recommendation performance, followed by

max pooling and 1D convolution, across all metric measures for each dataset. The NDCG results are very

similar with each of the pooling techniques on all datasets. The RMSE and MAE results of max pooling

are comparable to those of average pooling on ML-100K and ML-1M datasets but not on Douban. We

can find the difference in density between MovieLens datasets (ML-100K/-1M) and Douban, referring

to the dataset statistics (Table 3.1), and then we can conjecture that the types of pooling are relatively

insignificant if the density of a dataset becomes high.

3.4 SUMMARY 34

3.3.8 Encoding Dimension Analysis

We explore the optimal encoding dimension in the hidden layers of GLocal-K by comparing the perfor-

mance results with respect to different encoding dimensions in order to efficiently represent item latent

features. We evaluate the GLocal-K performance using the dimension of encoding vectors in every size

of 200 starting from 100 to 900. The test results of ML-100K, ML-1M and Douban are provided in

Figure 3.13, Figure 3.14 and Figure 3.15, respectively, where the results of RMSE, MAE and NDCG

are presented. A yellow dotted line in each subfigure indicates the optimal dimension which produces

the best performance among all possible encoding dimensions.

The GLocal-K model was performed best in all metric measures with a dimension of 500 on ML-100K,

ML-1M and Douban, showing the similar performance trends with each other based on the variation of

encoding dimension. When the equivalent measure results are shown in different dimension sizes such

as MAE evaluation in Figure 3.14, MAE and NDCG evaluation in Figure 3.15, we regard the smallest

among them as the optimal dimension size due to the advantages in memory space and computation

complexity. The model always achieves the best metric measure results with the hidden encoding vector

of size 500 across all three datasets. This demonstrates that it can represent the latent features of rating

information into a fixed dimension of hidden vector, even though the shape (e.g., # of users, # of items) or

the density of a dataset has varied. We can summarise the analysis above as GLocal-K is not required to

consider the size of encoding vector dimension in hidden layers over some degree (e.g., 500) to find the

optimal one by taking full advantage of both global and local kernels for fine-grained feature extraction.

3.4 Summary

In this chapter, we introduced Global-Local Kernel-based matrix factorisation framework (GLocal-K)

for recommender systems, which takes full advantage of both a local kernel at the pre-training stage and

a global kernel at the fine-tuning stage for capturing and refining the important characteristic features of

the sparse rating matrix under an extremely low resource setting. We demonstrated the RMSE results

on three benchmark datasets: MovieLens-100k/-1M and Douban, outperforming the state-of-the-art

baseline models. In particular, we highlighted the effectiveness of our global kernel for exerting scarce

data by evaluating the cold-start recommendation. From several further experiments, we demonstrated

the importance of each component within GLocal-K and explored the optimal settings of components to

reveal the highest efficacy of integrating global and local kernels.

3.4 SUMMARY 35

(A) RMSE ↓

(B) MAE ↓

(C) NDCG ↑

FIGURE 3.13. Performance comparison w.r.t. different dimensions of the hidden en-
coding vector in autoencoder starting from 100 to 900 in every size of 200 based on
three evaluation metrics (RMSE / MAE / NDCG) on ML-100K.

3.4 SUMMARY 36

(A) RMSE ↓

(B) MAE ↓

(C) NDCG ↑

FIGURE 3.14. Performance comparison w.r.t. different dimensions of the hidden en-
coding vector in autoencoder starting from 100 to 900 in every size of 200 based on
three evaluation metrics (RMSE / MAE / NDCG) on ML-1M.

3.4 SUMMARY 37

(A) RMSE ↓

(B) MAE ↓

(C) NDCG ↑

FIGURE 3.15. Performance comparison w.r.t. different dimensions of the hidden en-
coding vector in autoencoder starting from 100 to 900 in every size of 200 based on
three evaluation metrics (RMSE / MAE / NDCG) on Douban.

CHAPTER 4

Position-Enhanced Feature Representation based on Surrounding

Neighbor Information

Data for recommendation tasks are generally composed of a set of users and items, and the feedback

that users give to items. It is normally stored as a user-item rating matrix D ∈ RM×N where each

row i ∈ M and each column j ∈ N correspond to the i-th user and the j-th item while their indexed

value represents the corresponding feedback Di,j that the i-th user gives to the j-th item, which can be

either explicit feedback such as movie rating ranging from 1-5, or implicit feedback such as the user click

behavior denoted as 0 or 1. For each user at the row of the user-item matrix D, each item can be uniquely

identified by its fixed position at the column shared among all users, and user’s taste is indicated by the

given feedback for the item. We propose a surrounding position-enhanced feature representation for

recommendation systems, SUPER-Rec, which utilizes only the user-item rating matrix D for capturing

the latent item features by learning to model user’s taste over an item based on how its surrounding

positioned items are liked by the user. Figure 4.1 articulates the three main stages for SUPER-Rec

recommendation: 1) User-item Positioning, 2) SUPER-Rec Training, and 3) Matrix Completion with

SUPER-Rec. We describe each stage in details as follows.

4.1 Surrounding Position-Enhanced Representation for Recommendation

4.1.1 User-item Matrix Positioning

To begin with, we first define the target items with their surrounding neighbours so as to prepare the

training corpus for SUPER-Rec. As is shown in the first stage in Figure 4.1, we reformulate the afore-

mentioned user-item rating matrix D ∈ RM×N as D ∈ RN×M for better illustration, where each row

j ∈ N represents the item and each column i ∈ M indicates the user. We regard each item with feed-

back available in D as one of the target items. Assume that a target item is positioned at the row j in D

38

4.1 SURROUNDING POSITION-ENHANCED REPRESENTATION FOR RECOMMENDATION 39

FIGURE 4.1. The SUrrounding Position-Enhanced Representation for Recommenda-
tion (SUPER-Rec) architecture

and is given a feedback Dj,i from user i, being either explicit or implicit. Then, we define the scope of

surrounding neighbour items based on the bilateral context of the target item as {j+k | k ∈ {K∪−K}},

where K ∈ {1, 2, ..., K} and K is the window size that indicates the single-side length of the context.

Likewise, the corresponding item feedback from user i in this surrounding context can be represented as

{Dj+k,i | k ∈ {K ∪ −K}}. We set k to −j ≤ k < N − j to constrain the surroundings in the scope of

D. Moreover, all users and items are assigned to the row and column of the matrix D, and neighbours

with no feedback can be also represented with a zero value for feedback and their position. So, it has

not been considered whether surrounding neighbours are insufficient.

FIGURE 4.2. The training corpus C preparation by extracting the position and rate
value of surrounding neighbour items (j − 1, j + 1) within window size 1. Each item
index of a matrix corresponds to an item number, but each index of a vector is assigned
by a vector position starting at 0.

The example demonstrated in Figure 4.2 takes the target item at row j = 2 for user i = 1 as with

position index of 1 and feedback of 1, indicating the explicit feedback ranging from level 1-5. With

window size K = 1, the bilateral surrounding context can be defined as item neighbours with position

index of j − 1 = 0 and j + 1 = 2 while their corresponding item feedback would be 1 and 5. By

this way, we can form the training corpus C for SUPER-Rec, consisting of each target item with its

4.1 SURROUNDING POSITION-ENHANCED REPRESENTATION FOR RECOMMENDATION 40

surrounding neighbour items. During the training, we will utilize these position-aware neighbour items

and their feedback of user taste as the condition for inferring the identity(position) and feedback of the

target item.

4.1.2 SUPER-Rec Training

In order to learn the SUPER-Rec representation for items using the prepared corpus C, we first define

an item position embedding matrix P and a feedback embedding matrix V , where P = (p1, ..., pN) ∈

RN×d and V = (v1, ..., vF) ∈ RF×d. Each embedding vector p or v uniquely corresponds to a specific

item or feedback type. N and F refer to the total number of items and feedback types, e.g. F = 5

for 1-5 ranged user rating and F = 2 for the binary user interaction data such as user clicks, whereas d

denotes the embedding dimension. We then define two transformation operators f(·) and g(·) that learn

to transform the combined position and feedback embedding of a surrounding neighbour item into both

item space E ∈ RN and feedback space T ∈ RF so as to predict the position and feedback of the target

item accordingly.

FIGURE 4.3. First stage of SUPER-Rec training process: 1) concatenate the position
and rating embedding vectors 2) project the concatenated vector into two transformation
matrices (W , Q).

Concretely, the transformation process is shown in Eq.(4.1) and (4.2). Given an target item j with a

surrounding neighbour item j + k for user i, we first concatenate (⊕) the position embedding vector

pj+k and the feedback embedding vector vDj+k,i
of the surrounding neighbour item. Then, we project

the concatenated embedding (∈ R2d) into the item space and feedback space via multiplying with the

learnable weight matrices W ∈ R2d×N and Q ∈ R2d×F respectively, resulting in the two projected

vectors for target item position and feedback prediction. An illustrative example of predicting for the

4.1 SURROUNDING POSITION-ENHANCED REPRESENTATION FOR RECOMMENDATION 41

target item j utilizing one of its surrounding neighbour item j − 1 is demonstrated in the second stage

in Figure 4.1.

f(j + k, i) = W⊤[pj+k ⊕ vDj+k,i
] (4.1)

g(j + k, i) = Q⊤[pj+k ⊕ vDj+k,i
] (4.2)

i ∈M, j ∈ N, k ∈ {K ∪ −K}

FIGURE 4.4. Second stage of SUPER-Rec training process: After the input vector is
projected into item space and rating space, calculate 1) the loss between the predicted
target item and the actual target item and 2) the loss between the predicted target rating
and the actual target rating.

During the training, we jointly optimise based on two objectives. The first objective is to minimize the

item position prediction loss Lp for predicting each target item position as j′ against the ground truth

position j, given the user i. As is indicated in Eq.(4.3), it calculates the summed cross-entropy loss

over predictions of all the surrounding neighbour items j + k. Here σj(·) is the negative-log softmax

probability of the predicted target item position being the ground truth j based on the information of

surrounding neighbour item j + k, as is derived in Eq.(4.4). ϵ is used to avoid the Log-0 problem.

Lp(j
′ = j|i) =

∑
k∈{K∪−K}

σj
(
f(j + k, i)

)
(4.3)

σj
(
f(j + k, i)

)
= −log

(
exp
(
fj(j + k, i)

)∑
a∈N exp

(
fa(j + k, i)

) + ϵ

)
(4.4)

4.1 SURROUNDING POSITION-ENHANCED REPRESENTATION FOR RECOMMENDATION 42

The second objective is to minimize the feedback prediction loss Lv, which is calculated in a similar

way but is instead based on the feedback predictions of the target item, as is shown in Eq.(4.5) for

loss calculation and Eq.(4.6) for deriving the negative-log softmax probability of the predicted feedback

being the ground truth target item feedback r.

Lv(D
′
j,i = r) =

∑
k∈{K∪−K}

σr
(
g(j + k, i)

)
(4.5)

σr
(
g(j + k, i)

)
= −log

(
exp
(
gr(j + k, i)

)∑
b∈F exp

(
gb(j + k, i)

) + ϵ

)
(4.6)

Algorithm 1 SUPER-Rec training algorithm

Require: {j, i} ← {target item, given user}
Ensure: L ← Joint cross-entropy loss for the j-th target item

1: Define P ∈ RN×d ← Item position embedding matrix
V ∈ RF×d ← Feedback embedding matrix
W ∈ R2d×N , Q ∈ R2d×F ← Two transformation weight matrices

2: Initialize Lp = 0, Lv = 0, α ∈ (0, 1)
3: r ← Dj,i

4: for k ∈ {−K,−K + 1, ...,−1, 1, 2, ...,K} do
5: if k < −j or k ≥ N − j then
6: A surrounding neighbour item is out of range of item position, so skip the below statements

and continue for-loop.
7: end if
8: Calculate f(j + k, i) for the projected vector in item space using Eq.(4.1).
9: Calculate σj

(
f(j + k, i)

)
for the log softmax probability of the predicted target item position

using Eq.(4.4).
10: Lp ← Lp + σj

(
f(j + k, i)

)
(refer to Eq.(4.3))

11: Calculate g(j + k, i) for the projected vector in feedback space using Eq.(4.2).
12: Calculate σr

(
g(j + k, i)

)
for the log softmax probability of the predicted target item feedback

using Eq.(4.6).
13: Lv ← Lv + σr

(
g(j + k, i)

)
(refer to Eq.(4.5))

14: end for
15: L ← (1− α) · Lp + α · Lv

16: return L

We jointly optimise these two objectives based on their weighted sum. As is denoted in Eq.(4.7) for

our joint loss L, α is a hyperparameter that balances between penalties of the item position prediction

and the feedback prediction. As this prediction proceeds, the item position embedding matrix P , the

transformation weight matrices W and Q are updated accordingly whereas the feedback embedding

matrix V is fixed throughout the training process. After the training is finished, we extract the trained

position embedding matrix P̃ ∈ RN×d as our SUPER-Rec for item feature representation, from which

4.1 SURROUNDING POSITION-ENHANCED REPRESENTATION FOR RECOMMENDATION 43

FIGURE 4.5. Third stage of SUPER-Rec training process: calculate the final joint loss
via the weighted sum of item prediction loss and rating prediction loss.

each row vector p̃j can uniquely represent each item j ∈ N . Note that there are many choices to

calculate the loss for multiple objectives such as joint learning, alternate learning and multi-task learning,

but we empirically find out there is no big difference to our SUPER-Rec optimisation. In addition, we

describe the details for the overall training procedure of our proposed SUPER-Rec representation model

in Algorithm 1.

L = (1− α) · Lp(j
′ = j|i) + α · Lv(D

′
j,i = r) (4.7)

4.1.3 Matrix Completion with SUPER-Rec

The trained SUPER-Rec representation p̃j , j ∈ N for items captures the position-enhanced latent item

features correlated to users’ tastes. Based on it, we can further construct user embedding vectors zi, i ∈

M . The intuition here is that the unique preference of a user for providing the feedback to items can

be inferred via their historical feedback-giving patterns over all their interacted items represented by

SUPER-Rec. Concretely, as is demonstrated in the third stage in Figure 4.1, for a user i, we first weigh

each item j based on the feedback Dj,i given by this user and calculate the weighted average of all

their interacted items represented by SUPER-Rec accordingly. In case of the aforementioned implicit

feedback, we directly calculate the average of SUPER-Rec of all the interacted items, i.e. Dj,i = 1. It

is worth to note that here we do not use original feedback types, e.g. 1-5, but instead their power-raised

values as the weights for the summation so that more preferred items would result in much higher weight

and thus the user’s preference can be better emphasized. In addition, since we are not to recommend

4.1 SURROUNDING POSITION-ENHANCED REPRESENTATION FOR RECOMMENDATION 44

only the most favourable items to users but instead to model how users react to all items that they did not

give feedback yet, we adopt users’ historical feedback from all items no matter the feedback is positive

or not.

FIGURE 4.6. Input representation with three different representations for matrix com-
pletion: 1) user representation via weighted sum between user’s historical item repre-
sentations and their ratings, 2) item representation and 3) user-item relation representa-
tion via element-wise product between the item and user representations.

With the SUPER-Rec based item and user representations, our end goal of recommendation is to predict

all the unobserved item ratings in the user-item rating matrix via matrix factorisation (MF). In order

to demonstrate that our SUPER-Rec item representation and its derived user representation alone can

exert superior feature representation power that leads to excellent recommendation performance in any

neural network model, we apply it to a matrix factorisation model with only simple neural network

structure: Feed-Forward Neural Networks-based MF (NNMF), which adopts a multi-layer perceptron.

As is denoted in Eq.(4.8) for the NNMF model h(·), given user-item pair (i, j), it first conducts an

element-wise product (⊙) between the item representation p̃j and the user representation zi to derive the

user-item relation representation, which is then concatenated (||) with p̃j and zi. Followed by (Dziugaite

and Roy, 2015), we then employ a three-layer neural network with relu activation denoted as nn. We

conduct a log softmax layer σ over the output of h(·) as in Eq.(4.9), where σr represents the negative-log

probability of the predicted feedback being r ∈ F .

h(j, i; θ) = nn[p̃j ||p̃j ⊙ zi||zi] (4.8)

σr
(
h(j, i; θ)

)
= −log

(
exp
(
hr(j, i; θ)

)∑
b∈F exp

(
hb(j, i; θ)

) + ϵ

)
(4.9)

4.1 SURROUNDING POSITION-ENHANCED REPRESENTATION FOR RECOMMENDATION 45

Our final loss function LMF for training is formulated in Eq.(4.10), in which we adopt I[·] to calculate

the loss from feedback prediction being the ground truth Dj,i, the value of which equals to 1 only when r

equals to the ground truth feedback Dj,i and 0 otherwise. The matrix Ω ∈ {0, 1}N×M serves as a mask

for unobserved item feedback so that ones occur when only for items with available feedback in the

original rating matrix while zeros refer to unobserved item feedback. Hence, the training optimisation

will only be conducted over observed feedback in the rating matrix, updating all the trainable parameters

θ, including
⋃

l=1,2,3{ωl, βl} of the neural network nn and the trained item position embedding matrix

P̃ , while considering L2 regularisation for {ωl|l = 1, 2, 3} ∪ {p̃j |j ∈ N}. λ is a scaling factor for the

two regularization terms. We train the model based on the loss LMF with the training set while selecting

the best model based on the validation set.

LMF =
∑

j,i;Ωj,i=1

∑
r∈F

I[Dj,i = r] · σr
(
h(j, i; θ)

)
+

1

2
λ ·
(∑

l=1,2,3

||ωl||2 +
∑
j∈N
||p̃j ||2

)
(4.10)

FIGURE 4.7. Matrix completion with SUPER-Rec by using the weighted sum of prob-
ability distribution from a ML classifier and the rating type (i.e. {1,2,3,4,5}).

The trained SUPER-Rec with NNMF empowers the inductive inference for any user i, either being an

existing one or a new one, provided with all the historical rated feedback over the N items. As is shown

in Eq.(4.11), to infer an unobserved feedback over an item t ∈ N for a user i, we apply the softmax

over the output of the trained SUPER-Rec with NNMF (parameterized with θ̃, denoting the trained

parameters in θ), which derives the probability distribution over each feedback candidate r ∈ F , being

either implicit or explicit. We then use the weighted sum (expected value) D′
t,i as our final predicted

feedback for recommendation.

4.2 EVALUATION SETUP 46

D′
t,i =

∑
r∈F

r ∗
exp
(
hr(t, i; θ̃)

)∑
b∈F exp

(
hb(t, i; θ̃)

) (4.11)

TABLE 4.1. Statistics of six explicit datasets and two implicit datasets used in the ex-
periments. Note that explicit feedbacks are represented with the specific ratings in dif-
ferent ranges (e.g. 1-5, 1-100) and implicit feedbacks are based on the user’s action
(Clicked or Not-Clicked).

Feedback Dataset #Users #Items #Ratings Density Rating types

Explicit

ML-100K 943 1,682 100,000 6.30% 1, 2, 3, 4, 5

ML-1M 6,040 3,706 1,000,209 4.47% 1, 2, 3, 4, 5

ML-10M 71,567 10,681 10,000,054 1.30% 0.5, 1, 1.5, ..., 5

Douban 3,000 3,000 136,891 1.52% 1, 2, 3, 4, 5

Flixster 3,000 3,000 26,173 0.29% 0.5, 1, 1.5, ..., 5

YahooMusic 3,000 3,000 5,335 0.06% 1, 2, 3, ..., 100

Implicit
Amazon-Books 52,643 91,599 2,931,466 0.06% Clicked/Not-Clicked

Amazon-Beauty 2,944 57,289 82,904 0.04% Clicked/Not-Clicked

4.2 Evaluation Setup

4.2.1 Datasets

We conducted experiments on eight(8) widely-used recommendation benchmark datasets with both ex-

plicit and implicit feedback, MovieLens-100K (ML-100K) (Miller et al., 2003), MovieLens-1M (ML-

1M) (Miller et al., 2003), MovieLens-10M (ML-10M) (Harper and Konstan, 2015), Douban (Ma et al.,

2011), Flixster (Jamali and Ester, 2010), YahooMusic (Dror et al., 2012), and two(2) implicit feedback,

Amazon-Books and Amazon-Beauty (He and McAuley, 2016; McAuley et al., 2015). Note that the first

six datasets contain users’ explicit ratings on items, and the latter two datasets provide users’ implicit

feedback on items, indicating users’ actions (clicked or not-clicked).

We directly adopt the canonical u1 train/test splits as in (Monti et al., 2017; Rao et al., 2015) for

ML-100K and randomly split the dataset into 0.9/0.1 train/test set for ML-1M and ML-10M, followed

by (Muller et al., 2018). For Douban, Flixster and YahooMusic, we use the preprocessed train/test splits

provided by (Monti et al., 2017). For the two Amazon datasets, we use the last ten interactions of each

user as the test set and keep the rest as the train set, followed by the IDCF (Wu et al., 2021). The raw

Amazon datasets are very large and sparse, so IDCF (Wu et al., 2021) filtered out infrequent items and

4.2 EVALUATION SETUP 47

users with less than five interactions. We leave out 10% of the training data as the validation set for early

stopping in training1. The statistics of datasets are summarised in Table 4.1.

4.2.2 Baselines

We compare our novel position-enhanced embedding learning model, SUPER-Rec, with the following

six(6) baseline models for explicit datasets. We first include models with graph-based user/item embed-

dings, GC-MC and IGMC.

• GC-MC (Berg et al., 2018) is a graph-based matrix completion framework that extracts user,

item embeddings using a GNN and reconstructs the rating links via a bilinear decoder.

• IGMC (Zhang and Chen, 2020) is also a graph-based model but extracts 1-hop enclosing

subgraphs of user-item pairs and uses a GNN to encode the subgraph-based item embeddings.

In addition, feature-based user/item embedding models, SparseFC and GLocal-K, are selected to com-

pare.

• SparseFC (Muller et al., 2018) is a user/item-based autoencoder (AE) model, which feeds

a high-dimensional user-item matrix, projects it into a low-dimensional latent feature space,

and then reconstructs its entries to predict unknown ratings. This model regularises the weight

matrices of hidden layers by projecting them into a low-dimensional space using support kernel

matrices.

• GLocal-K (Han et al., 2021) is an item-based AE architecture model, which takes a user-

item rating matrix as input and extracts item embeddings from each row vector of item ratings

in the user-item matrix. Moreover, it proposes to apply two types of kernels in two training

stages to improve the feature extraction performance: 1) pre-training the AE model using local

kernelised weight matrices, and 2) fine-tuning the pre-trained model with the rating matrix,

produced via convolution with global kernels.

Finally, the inductive user/item embedding learning model, IDCF, is also considered as baseline. Note

that IDCF has two variants; one (IDCF-NN) adopts multi-layer perceptron as a prediction model, and

another (IDCF-GC) applies graph convolution networks.

1We tested 5, 10, 20% of the training data as the validation set, but there is no significant difference.

4.2 EVALUATION SETUP 48

• IDCF (Wu et al., 2021) proposes an inductive collaborative filtering framework, which is

comprised of the two-stage training process: 1) pre-training a matrix factorisation model to

obtain pre-trained user embeddings, which are further leveraged as metadata to inductively

compute new users’ embeddings, and 2) learning the user graph with message-passing layers

based on the pre-trained meta embeddings to generalise to compute inductive representations

for new users.

For the implicit feedback dataset, we applied four(4) baseline models, two variants of IDCF as above,

and two item-based CF models with item embeddings.

• FISM (Kabbur et al., 2013) proposes an item-item similarity matrix-based top-N recommen-

dation framework, which learns the matrix as a product of low-rank latent factor matrices and

estimates the ratings based on the dot product between the aggregated latent vector of the items

that have been rated by a user (user embedding) and unrated item latent vector from different

factor matrices.

• MultVAE (Liang et al., 2018) proposes a variational autoencoder-based collaborative filter-

ing framework, which adopts multinomial conditional likelihood on the generative model (de-

coder) for modelling user-item implicit feedback data, and makes predictions by sorting all the

items based on the predicted multinomial probability.

4.2.3 Implementation Details

For all benchmark datasets, we used the window size of 1, which included the very next item on the

left and right sides as neighbours in the context. Adam optimiser and early stopping technique with a

patience parameter of 5 were used for training optimisation. We empirically applied the learning rate

of 1e-4 for ML-1M, 1e-2 for Amazon-Books and 1e-3 for all the other datasets. The batch size was set

in proportion to the data size: 500 for YahooMusic, 5,000 for Amazon-Books, 10,000 for ML-10M and

1,000 for all the other datasets. We searched for the optimal embedding dimension in every size of 100,

starting from 100 for the explicit rating-based datasets. For Amazon-Books and Amazon-Beauty, we

tried dimensions within [200, 500, 1000] and [200, 500, 1000, 2000, 4000]. We found that the data with

a higher density (or lower sparsity) requires a deeper search to find the optimal embedding dimension.

We restricted the number of interactions of users to 100 for ML-10M and Amazon-Books due to the

limitation of computational and memory resources. We trained the MF model using the Adam optimiser

4.2 EVALUATION SETUP 49

and the L2 regularisation technique. We searched for the optimal regularisation parameter within [0.1,

0.3, 0.5, 1.0, 3.0, 5.0] for all datasets. The learning rate was empirically selected as 1e-5 for ML-100K,

ML-1M and Amazon-Beauty, and 1e-4 for all the other datasets. The batch size was set to 500 for

YahooMusic, 5,000 for Amazon-Books and 1,000 for all the other datasets.

4.2.4 Evaluation Metrics

For datasets with explicit feedback, the goal is to predict user’s ratings on items, i.e. estimate the missing

values in a user-item rating matrix. We use the prediction accuracy metrics, including RMSE (Root

Mean Square Error) and MAE (Mean Absolute Error), which mainly focus on comparing the actual and

predicted ratings. MAE presents a holistic view of the recommendation prediction without any bias of

extrema in error terms, while RMSE disproportionately penalises large errors and is affected by outliers

or bad predictions. Both metrics measure whether the predicted value is close to the actual value but

do not account for the order of predictions. We apply the Normalised Discounted Cumulative Gain

(NDCG), an average score that measures the consistency between the ranking of predicted ratings and

the ground truth for each user. Datasets with implicit feedback aim to predict whether a user interacts

with an item. Since the dataset is very sparse and has positive instances only, we uniformly sample

five items as negative samples for each clicked item followed by (Wu et al., 2021) and adopt AUC and

NDCG to measure the global and personalised ranking accuracy, respectively. AUC measures the global

consistency between the ranking of all the predicted user-item interactions and the ground truth, which

ranks all the 1’s before 0’s.

TABLE 4.2. Overall performance comparison with baseline models on the ML-100K
and ML-1M datasets. The baseline models are ordered in chronological order from top
to bottom. IDCF and GLocal-K were published in 2021.

Model
ML-100K ML-1M

RMSE ↓ MAE ↓ NDCG ↑ RMSE ↓ MAE ↓ NDCG ↑
SparseFC (Muller et al., 2018) 0.895 0.700 0.905 0.824 0.642 0.928

GC-MC (Berg et al., 2018) 0.905 0.714 0.900 0.832 0.658 0.923

IGMC (Zhang and Chen, 2020) 0.905 0.741 0.899 0.857 0.784 0.903

IDCF-NN (Wu et al., 2021) 0.931 0.732 0.896 0.844 0.663 0.922

IDCF-GC (Wu et al., 2021) 0.905 0.714 0.901 0.839 0.652 0.924

GLocal-K (Han et al., 2021) 0.888 0.695 0.906 0.822 0.641 0.929

SUPER-Rec 0.720 0.551 0.990 0.591 0.409 0.996

4.3 RESULT 50

4.3 Result

4.3.1 Performance Comparison on Explicit Datasets

We first evaluated our proposed SUPER-Rec by comparing its test performance against the baseline

models on five rating-based benchmark recommendation datasets. We provide the results separately

of MovieLens datasets (ML-100K/-1M) in Table 4.2 and the other datasets (Douban, Flixster and Ya-

hooMusic) in Table 4.3 based on data density. Overall, as is illustrated in Table 4.2 and Table 4.3, it can

be observed that SUPER-Rec outperforms all these baseline models on each of the rating-based datasets

by a large margin even with a simple neural network-based predictor by applying the position-enhanced

user/item representation training model. This illustrates the general effectiveness of the the proposed

representations learned by SUPER-Rec for capturing the user latent interest/taste patterns and implies

the great potential of representation learning from the high-dimensional sparse user-item rating matrix.

More specifically, for the first two datasets in Table 4.2, which involve rating values within 1 to 5

and density from 4.47% (ML-1M) to 6.30% (ML-100K), the performance gain over the best baseline

model ranges from 0.168 (ML-100K, compared to GLocal-K) to 0.231 (ML-1M, against GLocal-K)

for RMSE, from 0.144 (ML-100K, compared to GLocal-K) to 0.232 (ML-1M, against GLocal-K) for

MAE and from 0.067 (ML-1M, against GLocal-K) to 0.084 (ML-100K, compared to GLocal-K) for

NDCG. Considering the gap between the first and second best performance scores among the baseline

models for each metric measure, the performance gap against our SUPER-Rec model is substantially

large. This implies that SUPER-Rec brings a tremendous performance gain in recommender systems.

This performance gain still persists as data density drops.

TABLE 4.3. Overall performance comparison with baseline models on the Douban,
Flixstser and YahooMusic datasets. The baseline models are ordered in chronological
order from top to bottom. IDCF and GLocal-K were published in 2021.

Model
Douban Flixster YahooMusic

RMSE ↓ MAE ↓ NDCG ↑ RMSE ↓ MAE ↓ NDCG ↑ RMSE ↓ MAE ↓ NDCG ↑

SparseFC (Muller et al., 2018) 0.730 0.569 0.941 0.981 0.699 0.924 34.0 22.7 0.848

GC-MC (Berg et al., 2018) 0.734 0.573 0.938 0.917 0.684 0.886 20.5 16.0 0.844

IGMC (Zhang and Chen, 2020) 0.721 0.591 0.939 0.872 0.697 0.927 19.1 16.3 0.865

IDCF-NN (Wu et al., 2021) 0.738 0.576 0.939 0.910 0.693 0.925 21.5 16.9 0.929

IDCF-GC (Wu et al., 2021) 0.733 0.574 0.940 0.896 0.683 0.928 19.3 15.3 0.932

GLocal-K (Han et al., 2021) 0.720 0.562 0.943 0.980 0.699 0.925 33.8 22.6 0.864

SUPER-Rec 0.619 0.461 0.998 0.827 0.632 0.986 17.1 13.7 0.972

4.3 RESULT 51

Even for more extremely sparse datasets in Table 4.3, there is still large performance improvement

over the best baseline models, while the density of a data matrix ranges from 0.06% (YahooMusic) to

1.52% (Douban) and there are a wide range of rating types such as {0.5, 1.0, 1.5, ..., 5.0} in Flixster

and {1, 2, 3, ..., 100} in YahooMusic. For Douban, RMSE and MAE identically drop by 0.101 and

NDCG increases by 0.055 against GLocal-K, which is the best performed model among the baselines

on Douban. Note that dropping the RMSE and MAE results indicates increasing the rating prediction

accuracy. For datasets under 1.0% for density, RMSE drops by 0.045 and 2.0 compared to IGMC on

Flixster and YahooMusic, respectively. MAE drops by 0.051 and 1.6 and NDCG increases by 0.058 and

0.040 compared to IDCF-GC on the respective same datasets. Compared to the performance gain from

the aforementioned MovieLens datasets, more extremely sparse datasets accomplish relatively minor

performance improvement, but produce significant results with regard to comparison with the state-of-

the-art baselines, which validate the robustness of the feature representation learning approach and its

efficacy for recommendation even on the severely sparse user-item rating data.

4.3.2 Comparison of Rating Prediction Model Variant

In this evaluation, we would like to validate the robustness of our SUPER-Rec as a standalone position-

enhanced item representation for recommendation systems. In Section 4.1, we applied a simple neural

network as a matrix factorisation model but consider that it is also worth testing with other simple

and traditional machine learning classifiers. We compare three machine learning techniques with our

SUPER-Rec: k-NN (k-Nearest Neighbour), SVM (Support Vector Machine), and NN (Neural networks)

on two explicit datasets, Flixster and YahooMusic, with lower rating density and relatively bad rating

prediction performance, as shown in Table 4.4.

TABLE 4.4. Performance comparison with three simple machine learning classification
models (k-NN vs. SVM vs. NN) with the SUPER-Rec on Flixster and YahooMusic.

Classifier
Flixster YahooMusic

RMSE ↓ MAE ↓ NDCG ↑ RMSE ↓ MAE ↓ NDCG ↑
k-NN 0.995 0.826 0.959 18.1 14.4 0.861

SVM 0.851 0.638 0.987 17.8 13.7 0.973
NN 0.827 0.632 0.986 17.1 13.7 0.972

As described in Section 4.1.3, we concatenated 1) item, 2) user, and 3) user-item relation representation

and applied this concatenated representation as the input for each classifier. First, we use k-NN based

on the k(=5) nearest samples, and it results in relatively worse performance in both evaluation metrics

4.3 RESULT 52

for both datasets, even though it is still competitive and higher than most of the baseline models in

Table 4.2 and Table 4.3. Secondly, SVM classifies from a view of the global training samples, and

it achieves better performance than KNN in both datasets. It sometimes slightly outperforms NN in

NDCG, achieving 0.987 in Flixster and 0.973 in YahooMusic.

Based on this evaluation result, our proposed user/item representation SUPER-Rec has an exceptional

capability for predicting the rating on a specific position, even with simple traditional machine learning

classifiers. It implies a great potential of our SUPER-Rec as an input representation of the deeper and

more complicated deep learning-based matrix factorisation models.

4.3.3 Large-scale Rating Dataset Analysis

In order to demonstrate the effectiveness of SUPER-Rec in a real-world scenario, we test it on the large-

scale but sparse ML-10M dataset of density 1.30%, involving a large amount of users and items. The

detailed statistics of ML-10M is provided in Table 4.1.

The comparison of RMSE performance with the baseline models is provided in Table 4.5. Among them,

there are two newly introduced models, which are not presented in Section 4.4.1. First, I-AutoRec (Sed-

hain et al., 2015) is a collaborative filtering-based autoencoder model, which represents item feature

vectors by projecting each item rating history of interacted users into a low-dimensional feature space

and then reconstructs the projected ones to predict the missing values in the item rating history, and

MRMA (Li et al., 2017) represents user-item ratings by a mixture of low-rank matrix approximation

(LRMA) models with different ranks (MRMA), which goes beyond the conventional matrix approxima-

tion with fixed ranks.

TABLE 4.5. Performance comparison of RMSE with baseline models on ML-10M.

Model RMSE ↓
I-AutoRec (Sedhain et al., 2015) 0.782

GC-MC (Berg et al., 2018) 0.777

SparseFC (Muller et al., 2018) 0.769

MRMA (Li et al., 2017) 0.763

SUPER-Rec 0.651

Overall performance improvement of around 0.019 can be observed among the baseline models while

starting from 0.782 of I-AutoRec to 0.763 of MRMA. While all of them still remain the high RMSE

4.3 RESULT 53

results over 0.760, SUPER-Rec outperforms them with a significant drop and reaches the lowest RMSE

of 0.651. Therefore, the robustness and the efficacy for recommendation of our proposed feature repre-

sentation is applicable to even the huge and sparse user-item interaction data, so it can directly be used

for the real-world recommendation task with millions of users and items.

4.3.4 Performance Comparison on Implicit Datasets

The previous evaluations are based on explicit datasets, which mainly focus on predicting the user’s rat-

ing. This evaluation aims to evaluate the item representation capability of our SUPER-Rec in the user’s

action prediction with implicit feedback datasets. We evaluate the SUPER-Rec on two implicit feedback

datasets, Amazon-Beauty and Amazon-Books, indicating user’s actions (clicked or not-clicked) using

AUC and NDCG metrics. Note that both implicit datasets are large and sparse, Amazon-Books (density

of 0.06%) and Amazon-Beauty (density of 0.04%).

TABLE 4.6. Performance comparison of AUC and NDCG with baseline models on the
two implicit feedback datasets (Amazon-Beauty and Amazon-Books).

Model
Amazon-Beauty Amazon-Books

AUC ↑ NDCG ↑ AUC ↑ NDCG ↑
FISM (Kabbur et al., 2013) 0.613 0.678 0.792 0.752

MultVAE (Liang et al., 2018) 0.644 0.679 0.701 0.738

IDCF-NN (Wu et al., 2021) 0.774 0.750 0.920 0.939

IDCF-GC (Wu et al., 2021) 0.791 0.791 0.930 0.946

SUPER-Rec 0.959 0.980 0.997 0.998

Surprisingly, as shown in Table 4.6, our SUPER-Rec hugely outperforms the baselines in both AUC and

NDCG, including IDCF-GC with graph convolution, which achieves the best performance among all the

baseline models. It produces the best result on both datasets of different sparsity in all metrics, i.e. AUC

of 0.959 and 0.997, and NDCG of 0.980 and 0.998 on Amazon-Beauty and Amazon-Books. SUPER-

Rec outperforms the second-best model by a large margin (0.168/0.189), especially on Amazon-Beauty,

with larger size (50K users and 90K items) and richer user’s action data (3M actions). The results

demonstrate the robustness of the proposed representation, not only in the explicit rating nature but also

a simple binary implicit action trends.

4.3 RESULT 54

4.3.5 Impact of Sparsity Ratios

While previous evaluations have demonstrated the effectiveness of SUPER-Rec on different sparse

datasets, we further investigated its efficacy in terms of the sensitivity to sparsity of the same data

source. We gradually decrease the training data ratio from 1.0 (full training data) to 0.2 and compared

the RMSE, MAE and NDCG test results with three baseline models on ML-100K/-1M and Douban in

Figure 4.8, Figure 4.9 and Figure 4.10.

It can be seen that SUPER-Rec and the three baseline models perform almost similarly overall in Figure

4.8 and Figure 4.10. In Figure 4.8, both SUPER-Rec and the three baselines show a similar increasing

curve with a similar margin in RMSE and MAE, and they also show a similar decreasing curve in NDCG,

but the NDCG of SUPER-Rec decreases only by a small value from 1.0 to 0.2 training ratios, compared

to the other baselines. So, it can be interpreted that as NDCG is a measurement for correct ranking

prediction, the proposed feature representation is more robust against sparse training data in ranking

prediction tasks. In Figure 4.10, the three baseline models also represent increasing curve patterns in

RMSE and MAE and decreasing curve patterns in NDCG similar to Figure 4.8. However, there is almost

no degradation in the SUPER-Rec evaluations across all metrics in Figure 4.10, illustrating that more

powerful robustness of SUPER-Rec can be observed in Douban of lower density compared to ML-100K

of higher density.

In Figure 4.9, while the three baseline models depict almost similar performance trends overall, SUPER-

Rec presents totally different performance trends, outperforming all of these by a large margin for all

metrics at all training ratios. There are the largest margins of 0.38 in RMSE, 0.37 in MAE and 0.1 in

NDCG between SUPER-Rec and the best performed baselines at the same ratio 0.2. All of them are

larger than the gap between SUPER-Rec and the best scores from baselines with full training data in

all metrics, that means as training data changes to more extremely low resource, most recommender

systems gradually lose their representation power. However, SUPER-Rec can withstand the degradation

of its representation power and even improve it with less training data available.

In Figure 4.9, the baseline models show obvious performance degradation in RMSE, MAE and NDCG

as the training data gets more sparse (i.e., with smaller training ratio). The RMSE / MAE results rise by

about 0.095 / 0.080 on average of the three baselines between 1.0 and 0.2 training ratios, and the NDCG

results drop by about 0.022 on average of these three between 1.0 and 0.2. In contrary, SUPER-Rec

illustrates the performance improvement in RMSE when training ratio decrease from 1.0 and reaches

4.3 RESULT 55

the best RMSE and MAE at 0.4. Even though performance degradation is observed when the training

ratio continues decreasing to 0.2, it is still better compared to the ratio of 1.0 or 0.8. On the other hand,

SUPER-Rec achieves stable performance in NDCG throughout as the data sparsity changes. We can

infer that SUPER-Rec is more robust in recommendation performance and less sensitive to data sparsity,

compared to the baseline models. Moreover, SUPER-Rec shows more advantages with sparse datasets,

validating its effectiveness of feature representation even with less data available.

4.3.6 Bilinear Neural Network for Matrix Factorisation

We proved that embedding vectors pre-trained by SUPER-Rec can reach good recommendation per-

formance via simple machine learning-based classification models as well as NNMF. We propose and

evaluate a new neural network-based matrix factorisation (MF) model to validate that embedding vectors

from SUPER-Rec are of high applicability to a variety of neural network-based MF models.

We introduce a bilinear neural network-based MF model (BNMF), which includes a different weight

matrix for each rating score, and calculate the probability from each weight matrix bilinearly using user

and item vectors. We evaluate how similar BNMF and NNMF produce recommendation performance

and whether BNMF outperforms all other baseline models.

We conduct experiments based on the same parameter settings as NNMF to compare the results only

depending on different model architectures. In addition, NNMF uses an interaction vector as well as user

and item vectors as input by combining the two vectors, and to make the configuration of BNMF very

close to that of NNMF, we propose an interaction-enhanced BNMF model (BNMF+). BNMF+ uses an

interaction vector to generate an interaction-enhanced user vector by concatenating it with a user vector

and feeding the concatenated one into dense layers. We found in comparative experiments that there is

no significant performance difference between concatenating with a user vector and with an item vector.

We provide the results separately of MovieLens datasets (ML-100K/-1M) in Table 4.7 and the other

datasets (Douban, Flixster and YahooMusic) in Table 4.8 based on data density. The significant per-

formance difference can be observed between the NNMF model and the BNMF and BNMF+ models

in Table 4.7 for MovieLens datasets with comparatively high density. Moreover, while BNMF+ out-

performs all the other baseline models, the RMSE result of BNMF is worse than that of GLocal-K, the

best among the baseline models, found in Table 4.2. The results of the BNMF+ model demonstrate

the superior representation power of SUPER-Rec and emphasise the importance of using an interaction

4.3 RESULT 56

1.0 0.8 0.6 0.4 0.2
The ratio of training data

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

RM
SE

SUPER-Rec
GLocal-K
GC-MC
SparseFC

(A) RMSE ↓

1.0 0.8 0.6 0.4 0.2
The ratio of training data

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
AE

SUPER-Rec
GLocal-K
GC-MC
SparseFC

(B) MAE ↓

1.0 0.8 0.6 0.4 0.2
The ratio of training data

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

ND
CG

SUPER-Rec
GLocal-K
GC-MC
SparseFC

(C) NDCG ↑

FIGURE 4.8. Performance comparison w.r.t. different sparsity levels ranging from 1.0
to 0.2 at every 0.2 interval between SUPER-Rec and the three baseline models via the
three prediction accuracy-based evaluation measurements on ML-100K.

4.3 RESULT 57

1.0 0.8 0.6 0.4 0.2
The ratio of training data

0.5

0.6

0.7

0.8

0.9

1.0

RM
SE SUPER-Rec

GLocal-K
GC-MC
SparseFC

(A) RMSE ↓

1.0 0.8 0.6 0.4 0.2
The ratio of training data

0.3

0.4

0.5

0.6

0.7

0.8

M
AE

SUPER-Rec
GLocal-K
GC-MC
SparseFC

(B) MAE ↓

1.0 0.8 0.6 0.4 0.2
The ratio of training data

0.88

0.90

0.92

0.94

0.96

0.98

1.00

ND
CG

SUPER-Rec
GLocal-K
GC-MC
SparseFC

(C) NDCG ↑

FIGURE 4.9. Performance comparison w.r.t. different sparsity levels ranging from 1.0
to 0.2 at every 0.2 interval between SUPER-Rec and the three baseline models via the
three prediction accuracy-based evaluation measurements on ML-1M.

4.3 RESULT 58

1.0 0.8 0.6 0.4 0.2
The ratio of training data

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

RM
SE

SUPER-Rec
GLocal-K
GC-MC
SparseFC

(A) RMSE ↓

1.0 0.8 0.6 0.4 0.2
The ratio of training data

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
AE

SUPER-Rec
GLocal-K
GC-MC
SparseFC

(B) MAE ↓

1.0 0.8 0.6 0.4 0.2
The ratio of training data

0.92

0.94

0.96

0.98

1.00

ND
CG

SUPER-Rec
GLocal-K
GC-MC
SparseFC

(C) NDCG ↑

FIGURE 4.10. Performance comparison w.r.t. different sparsity levels ranging from 1.0
to 0.2 at every 0.2 interval between SUPER-Rec and the three baseline models via the
three prediction accuracy-based evaluation measurements on Douban.

4.3 RESULT 59

TABLE 4.7. RMSE and NDCG test under different neural network-based MF models
on ML-100K and ML-1M. BNMF is a newly-introduced bilinear neural network-based
MF model, and BNMF+ indicates that an interaction vector is additionally used within
BNMF such as NNMF.

Model
ML-100K ML-1M

RMSE ↓ NDCG ↑ RMSE ↓ NDCG ↑

BNMF 0.927 0.950 0.826 0.978

BNMF+ 0.819 0.954 0.804 0.984

NNMF 0.720 0.990 0.591 0.996

TABLE 4.8. RMSE and NDCG test under different neural network-based MF models
on Douban, Flixster and YahooMusic, which are of relatively low density. BNMF is a
newly-introduced bilinear neural network-based MF model, and BNMF+ indicates that
an interaction vector is additionally used within BNMF such as NNMF.

Model
Douban Flixster YahooMusic

RMSE ↓ NDCG ↑ RMSE ↓ NDCG ↑ RMSE ↓ NDCG ↑

BNMF 0.631 0.976 0.815 0.977 20.6 0.904

BNMF+ 0.742 0.978 0.907 0.941 20.6 0.913

NNMF 0.619 0.998 0.827 0.986 17.1 0.972

vector in the case of high-density data for better prediction of missing entries in the matrix. On the other

hand, NNMF does not always outperform BNMF and BNMF+ on relatively low-density data such that

the RMSE of NNMF is worse than that of BNMF on Flixster. For Douban and Flixster, BNMF pro-

vides better performance than BNMF+, while it outperforms all other baselines, but for YahooMusic,

BNMF produces the same performance as BNMF+ and the comparable results to the baseline models.

This implies that using an interaction vector rather makes the performance worse or has no impact on

it when data density is relatively low. In conclusion, to determine whether an interaction vector should

be used as input depends on how sparse data is, and as the BNMF and BNMF+ models achieve overall

higher performance than other baselines, we can lend weight to the argument that embedding vectors

from SUPER-Rec should be able to be applied to a wide variety of neural network-based MF models.

4.3.7 Window Size Analysis

We take item representation via direct surrounding items as the representative representation of SUPER-

Rec, which can also be treated as the neighbour items selected by window of size 1. In Word2Vec

(Mikolov et al., 2013a,b), the effect of word representation learning depends on the context window

4.3 RESULT 60

size. Larger window sizes tend to capture a wide range of information, which leads embedding simi-

larity to an indicative of the relatedness of the words. Smaller window sizes are more likely to capture

about word itself, so the high similarity score between two embeddings indicates that the words can be

interchangeable in the same syntactic structure (Lin et al., 2015).

We also explore how the effect of co-occurred neighbour-based item representation learning has varied

via changing the window size. We evaluate the performance while increasing the window size from 1 to

5 to find the optimal neighbour number for each dataset. Then, we compare the optimal value with each

dataset and analyse the performance trends with respect to the variation of window size.

TABLE 4.9. Performance comparison w.r.t. different context window sizes of 1, 3 and
5 on ML-100K, ML-1M and Douban.

Window Size
ML-100K ML-1M Douban

RMSE ↓ MAE ↓ NDCG ↑ RMSE ↓ MAE ↓ NDCG ↑ RMSE ↓ MAE ↓ NDCG ↑
1 0.720 0.551 0.990 0.591 0.409 0.996 0.619 0.461 0.998

3 0.811 0.630 0.980 0.637 0.456 0.995 0.704 0.521 0.998

5 0.862 0.657 0.972 0.655 0.479 0.994 0.782 0.578 0.998

TABLE 4.10. Performance comparison w.r.t. different context window sizes of 1, 3 and
5 on Flixster and YahooMusic.

Window Size
Flixster YahooMusic

RMSE ↓ MAE ↓ NDCG ↑ RMSE ↓ MAE ↓ NDCG ↑
1 0.827 0.632 0.986 17.1 13.7 0.972

3 0.856 0.661 0.985 17.4 14.0 0.964

5 0.862 0.668 0.984 17.5 14.5 0.961

We illustrate the performance comparison of SUPER-Rec using a context window of size 1, 3 and 5

in Table 4.9 for ML-100K/-1M and Douban and Table 4.10 for Flixster and YahooMusic separately

based on data density. As can be seen from those two tables, window of size 1 always achieves the best

recommendation results and the performance degrades as the size increases. We find that focusing on

a fewer number of neighbours is more effective to represent the item latent features by capturing the

most relevant neighbour rating patterns. Moreover, the performance has changed greatly as window size

increased under relatively high-density data in Table 4.9. As the density becomes higher, a possibility of

being rated in neighbour items increases, so it brings too much information about rating patterns with the

co-occurred neighbour items to encode into a low-dimensional feature space. In conclusion, focusing on

4.3 RESULT 61

modelling the co-occurrence of the direct surrounding items may help render more robust representation

and larger context might inevitably introduce some negative noise.

4.3.8 Impact of Embedding Dimension

As the key of the proposed SUPER-Rec lies in a fixed dimension of feature representations, which are

pre-extracted from the user-item matrix, we take a more in-depth look into the dimension applied to

derive the position-enhanced feature representation on the six rating-based datasets. It can be seen from

the overview of performance trends across all datasets that recommendation performance varies differ-

ently on these datasets as the dimension of feature representation changes, which implies that different

data nature may entail a different amount of latent features needed for conducting the recommendation

and thus lead to different optimal dimension sizes for feature representation.

200 400 600 800 1000 1200 1400 1600 1800 2000
Embedding Dimension

0.68

0.72

0.76

0.80

0.84

0.88

0.92

RM
SE

ML-100K

0.88

0.90

0.92

0.94

0.96

0.98

1.00

ND
CG

RMSE
NDCG

FIGURE 4.11. Performance trend under different sizes of embedding dimension on
ML-100K of density 6.30%. The red dotted round lines indicate the best performance
results from the optimal dimension size, which is determined by the RMSE result.

200 400 600 800 1000 1200 1400 1600 1800 2000
Embedding Dimension

0.55

0.60

0.65

0.70

0.75

0.80

0.85

RM
SE

ML-1M

0.88

0.90

0.92

0.94

0.96

0.98

1.00

ND
CG

RMSE
NDCG

FIGURE 4.12. Performance trend under different sizes of embedding dimension on
ML-1M of density 4.47%. The red dotted round lines indicate the best performance
results from the optimal dimension size, which is determined by the RMSE result.

4.3 RESULT 62

The recommendation results of ML-100K/-1M/-10M using different dimension sizes for embedding

are shown in Figure 4.11, Figure 4.12 and Figure 4.13. Regarding the RMSE results, ML-100K of

density 6.30% and ML-1M of density 4.47% both illustrate an overall pattern that the recommendation

performance becomes better as the embedding dimension increases from the range of 200 to 2,000,

within which the best performance is produced at the dimension 2,000 and 1,600 respectively. ML-

10M of density 1.30% also shows a similar performance trend that the recommendation performance

increases in proportion to the embedding dimension, but reaches the optimum more quickly than the

aforementioned two datasets at the dimension 1,000. After the optimum is reached, all three datasets

consistently keep the optimal value, even though the embedding dimension increases. Note that the

red dotted round lines on each figure present the best performance results, which are determined by the

RMSE result, and the corresponding dimension is the optimal embedding dimension for each dataset.

200 400 600 800 1000 1200 1400 1600 1800 2000
Embedding Dimension

0.55

0.60

0.65

0.70

0.75

0.80

0.85

RM
SE

ML-10M

0.88

0.90

0.92

0.94

0.96

0.98

1.00

ND
CG

RMSE
NDCG

FIGURE 4.13. Performance trend under different sizes of embedding dimension on
ML-10M of density 1.30%. The red dotted round lines indicate the best performance
results from the optimal dimension size, which is determined by the RMSE result.

In comparison, an opposite overall pattern is illustrated for the other three sparser datasets in Figure 4.14

for Douban of density 1.52%, Figure 4.15 for Flixster of density 0.29% and Figure 4.16 for YahooMusic

of density 0.06%, which reach their performance peak at a very small embedding dimension of 100 or

200 within a narrow dimension range of 100 to 1,000, compared to the range of 200 to 2,000 from the

aforementioned three datasets. This might be because the sparse data conveys relatively less relation

information and patterns available for capturing. However, SUPER-Rec still shows that even without

rich patterns available in the given data, the position-enhanced feature representation can possibly lead

to good recommendation results. On the other hand, the performance of NDCG remains stable while the

dimension changes. This may be attributed to its ranking-based measurement nature, which is compar-

atively simpler compared to the RMSE for measuring accurate feedback. In fact, the density of Douban

is over 1.0% and is even higher than that of ML-10M, so we should identify the factors determining the

4.3 RESULT 63

optimal dimension size and the overall performance trend under different dimension sizes by analysing

the relationship between the data characteristics and the embedding dimension in Section 4.4.10.

100 200 300 400 500 600 700 800 900 1000
Embedding Dimension

0.55

0.60

0.65

0.70

0.75

0.80

0.85

RM
SE

Douban

0.88

0.90

0.92

0.94

0.96

0.98

1.00

ND
CG

RMSE
NDCG

FIGURE 4.14. Performance trend under different sizes of embedding dimension on
Douban of density 1.52%. The red dotted round lines indicate the best performance
results from the optimal dimension size, which is determined by the RMSE result.

100 200 300 400 500 600 700 800 900 1000
Embedding Dimension

0.80

0.82

0.84

0.86

0.88

0.90

0.92

RM
SE

Flixster

0.88

0.90

0.92

0.94

0.96

0.98

1.00

ND
CG

RMSE
NDCG

FIGURE 4.15. Performance trend under different sizes of embedding dimension on
Flixster of density 0.29%. The red dotted round lines indicate the best performance
results from the optimal dimension size, which is determined by the RMSE result.

4.3.9 Comparison of Embedding Training Variants

As mentioned in Section 4.1, we train SUPER-Rec position-enhanced item representation by using a

single surrounding neighbour item as an input and a centre item as a target. In this evaluation, we aim

to test input variants of the position-enhanced item representation training, which produces better joint

learning of position and rating of items. As shown in Table 4.11, Single refers to the training model with

a single neighbour item as an input and a centre item as a target, while in Table 4.12 the Double refers to

that with the sum of both left and right neighbour items as an input and a centre item as a target. Those

two variant testing would give insight into which input format covers the surrounding neighbour item

information for the position-enhanced item embedding training.

4.3 RESULT 64

100 200 300 400 500 600 700 800 900 1000
Embedding Dimension

17.00

17.25

17.50

17.75

18.00

18.25

18.50

RM
SE

YahooMusic

0.88

0.90

0.92

0.94

0.96

0.98

1.00

ND
CG

RMSE
NDCG

FIGURE 4.16. Performance trend under different sizes of embedding dimension on
YahooMusic of density 0.06%. The red dotted round lines indicate the best performance
results from the optimal dimension size, which is determined by the RMSE result.

We tested those two variants on the five explicit datasets, shown in Table 4.11 and Table 4.12. The per-

formance gap between the two variants is extremely small, but the type Single using a single surrounding

neighbour item as input is better than another. This result implies that 1-to-1 neighbour-based training

is better than N-to-1 (N=both side, left-right neighbour items).

TABLE 4.11. Performance comparison w.r.t. different embedding methods on the three
benchmark datasets: ML-100K, ML-1M and Douban.

Input
ML-100K ML-1M Douban

RMSE ↓ MAE ↓ NDCG ↑ RMSE ↓ MAE ↓ NDCG ↑ RMSE ↓ MAE ↓ NDCG ↑
Single 0.720 0.551 0.990 0.591 0.409 0.996 0.619 0.461 0.998
Double 0.732 0.568 0.990 0.611 0.412 0.995 0.668 0.493 0.998

TABLE 4.12. Performance comparison w.r.t. different embedding methods on the two
benchmark datasets: Flixster and YahooMusic.

Input
Flixster YahooMusic

RMSE ↓ MAE ↓ NDCG ↑ RMSE ↓ MAE ↓ NDCG ↑
Single 0.827 0.632 0.986 17.1 13.7 0.972

Double 0.872 0.670 0.986 18.8 14.9 0.968

4.3.10 Dimension Pattern Analysis via Dataset Classification

We have explored the optimal dimension for each dataset in Section 4.4.8, which is derived from the

assumption that datasets with different compositions will entail a different amount of latent feature

information and will be required different dimensions to efficiently represent their information in a

4.3 RESULT 65

low-dimensional feature space. Moreover, the best recommendation performance for each dataset can

be obtained via the optimal dimension found. We further tried to find the relation between data and

representation (embedding) dimension, since if we found some relations about those two, when new data

is introduced, we can predict its optimal embedding dimension in advance. In reality, it requires a large

volume of time and labour to search for the optimal dimension for a given data. However, we cannot

find out any relation using the given data statistics only (e.g., the number of users, items and ratings, and

density). So, we intend to extract the vital features of data via handcrafted feature engineering, and by

classifying datasets in three-dimensional space based on the extracted features, we aim to find out some

relations between data and embedding dimension.

The optimal embedding dimension for each dataset is provided in Section 4.4.8, and here we will list

the optimal dimensions of six rating-based datasets by a descending order: ML-100K (2,000); ML-1M

(1,600); ML-10M (1,000); Douban (200); YahooMusic (200); Flixster (100).

Then, we will list the most vital data features that are capable of presenting clear relations between

data and its optimal embedding dimension below. Note that the selected vital features are obtained by a

myriad of trial and error:

(1) # RATINGS PER USER indicates the average number of ratings for each user.

(2) # RATINGS PER TRAIN USER indicates the average number of ratings for each user in the

training data.

(3) # RATINGS PER ITEM indicates the average number of ratings for each item.

(4) DENSITY (%) indicates the density of the whole data.

(5) TRAIN DENSITY (%) indicates the density of the training data.

(6) # USERS / # ITEMS indicates the ratio of # users and # items. If the value is close to 1, the

numbers between the two are very similar.

All six rating-based datasets are assigned in three-dimensional space with x-, y- and z-axis as # RAT-

INGS PER USER, TRAIN DENSITY (%) and # USERS / # ITEMS in Figure 4.17, as # RATINGS PER

TRAIN USER, TRAIN DENSITY (%) and # USERS / # ITEMS in Figure 4.18 and as # RATINGS PER

USER, DENSITY (%) and # USERS / # ITEMS in Figure 4.19. To represent relations between the data

features and the optimal embedding dimensions, we first classify all six datasets into two large and small

embedding dimension groups based on the x- and z-axis. It can be observed that as the x value increases

and the z value decreases, the dimension of the corresponding dataset becomes higher compared to the

4.3 RESULT 66

#RATINGS PER USER

1.5

2.5

3.5

4.5
TRAIN DENSITY (%)

1
2

3
4

5

US

ER
S

/ #
 IT

EM
S

0.0

0.2

0.4

0.6

0.8

1.0

Yahoo

Flixster

Douban

ML-10M

ML-1M

ML-100K

FIGURE 4.17. Dataset classification based on handcrafted feature engineering among
the six rating-based benchmark datasets in three-dimensional space (x-axis: # ratings
for each user, y-axis: training matrix density(%), z-axis: ratio of # users and # items
(when close to 1, the shape of a matrix becomes nearly square).

#RATINGS PER TRAIN USER

1.5

2.5

3.5

4.5
TRAIN DENSITY (%)

1
2

3
4

5

US

ER
S

/ #
 IT

EM
S

0.0

0.2

0.4

0.6

0.8

1.0

Yahoo

Flixster

Douban

ML-10M

ML-1M

ML-100K

FIGURE 4.18. Dataset classification based on handcrafted feature engineering among
the six rating-based benchmark datasets in three-dimensional space (x-axis: # ratings
for each training user, y-axis: training matrix density(%), z-axis: ratio of # users and #
items (when close to 1, the shape of a matrix becomes nearly square).

other datasets under the opposite conditions. Moreover each group shows that when both y and z values

are smaller, the dimension tends to be lower compared to other dimensions in the same group.

All six rating-based datasets are assigned in three-dimensional space with x-, y- and z-axis as # RATINGS

PER TRAIN USER, # RATINGS PER USER and # USERS / # ITEMS in Figure 4.20 and as # RATINGS

PER TRAIN USER, # RATINGS PER ITEM and # USERS / # ITEMS in Figure 4.21. To demonstrate

that the optimal value of embedding dimension might be affected by the latent features of data, we first

classify all six datasets based on the x- and z-axis into two groups, where one shows a large embedding

4.3 RESULT 67

#RATINGS PER USER

1.5

2.5

3.5

4.5
DENSITY (%)

1
2

3
4 5 6

US

ER
S

/ #
 IT

EM
S

0.0

0.2

0.4

0.6

0.8

1.0

Yahoo

Flixster

Douban

ML-10M

ML-1M
ML-100K

FIGURE 4.19. Dataset classification based on handcrafted feature engineering among
the six rating-based benchmark datasets in three-dimensional space (x-axis: # ratings
for each user, y-axis: whole matrix density(%), z-axis: ratio of # users and # items
(when close to 1, the shape of a matrix becomes nearly square).

#RATINGS PER TRAIN USER

1.5

2.5

3.5

4.5
#RATINGS PER USER

1.5
2.5

3.5
4.5

US

ER
S

/ #
 IT

EM
S

0.0

0.2

0.4

0.6

0.8

1.0

Yahoo

Flixster

Douban

ML-10M

ML-1MML-100K

FIGURE 4.20. Dataset classification based on handcrafted feature engineering among
the six rating-based benchmark datasets in three-dimensional space (x-axis: # ratings
for each training user, y-axis: # ratings for each user, z-axis: ratio of # users and # items
(when close to 1, the shape of a matrix becomes nearly square).

dimension with the high x and the low z values, and conversely the other shows a small embedding

dimension with the low x and the high z values. Meanwhile, y-axis can also involve in discriminating

the datasets by the size of embedding dimension, showing that datasets of a large dimension tend to lean

towards a high place in y-axis. However, different from the aforementioned three cases, these suggested

feature combinations are not capable of further fine-grained classification in the two separate groups.

In Figure 4.22, all six rating-based datasets are projected in three-dimensional space with x-, y- and

z-axis as # RATINGS PER USER, DENSITY (%) and # RATINGS PER ITEM. To show that the optimal

4.3 RESULT 68

#RATINGS PER TRAIN USER

1.5
2.5

3.5
4.5 #RATIN

GS PE
R ITE

M

2
3

4
5

6
7

US

ER
S

/ #
 IT

EM
S

0.0

0.2

0.4

0.6

0.8

1.0

Yahoo

Flixster

Douban

ML-10M

ML-1M
ML-100K

FIGURE 4.21. Dataset classification based on handcrafted feature engineering among
the six rating-based benchmark datasets in three-dimensional space (x-axis: # ratings
for each training user, y-axis: # ratings for each item, z-axis: ratio of # users and # items
(when close to 1, the shape of a matrix becomes nearly square).

#RATINGS PER USER

1.5
2.5

3.5
4.5

DENSITY
 (%

)

1
2

3
4

5
6

#R
AT

IN
GS

 P
ER

 IT
EM

2

3

4

5

6

7

Yahoo Flixster

Douban

ML-10M ML-1M

ML-100K

FIGURE 4.22. Dataset classification based on handcrafted feature engineering among
the six rating-based benchmark datasets in three-dimensional space (x-axis: # ratings
for each user, y-axis: whole matrix density(%), z-axis: # ratings for each item.

embedding dimension for each dataset can be defined by the specific combination of the data features,

we classify the datasets into two groups divided by the size of embedding dimension based on either the

values on both x- and z-axis or the values on both y- and z-axis. We can find that as the x and z values

or the y and z values increase together, the datasets whose optimal embedding dimensions are relatively

large are gathered around the corresponding area. It is almost impossible to classify one step further

the datasets based on their optimal dimension sizes in each large and small dimension area, though.

However, since the dimension difference between the previously classified groups is very clear, we can

predict the scope of the optimal dimension of newly incoming data according to its assigned area, which

will render us to do efficient optimal search.

4.4 SUMMARY 69

To sum up, the optimal embedding dimension for a rating-based dataset demonstrates the correlation

with the combination of three types of data features, each of which corresponds to x- or y -or z-axis

in three-dimensional space, and is able to be predicted for a new dataset via comparing its feature

combination with the dimension-feature correlation.

4.4 Summary

In this chapter, we have introduced a position-enhanced user/item representation SUPER-Rec for the

recommendation that leverages the positions and ratings of surrounding neighbour items. The SUPER-

Rec significantly outperformed in all RMSE/MAE/NDCG/AUC metrics against state-of-the-art Matrix

Completion models on most recommendation benchmark datasets, with high or low density, small or

large user/item/rating size, and explicit or implicit user’s action. The pre-trained SUPER-Rec embedding

for each dataset will be released to the public and let researchers/developers use it as an input embedding

for their deeper and complex recommendation model.

CHAPTER 5

Conclusion

In this dissertation, we have focused on how to extract the key features of users and items in the rating

matrix to capture their features in a low-dimensional vector and also how to create embeddings that well

represent the characteristics of users and items by exploring what kind of user/item information to use in

the matrix. First, we have tried to solve the data sparsity problem, which is the most common problem in

collaborative filtering and the other problem that there is no recent research on how to efficiently extract

the latent features of users and items in a general situation given only sparse data. More importantly, we

have pointed out that most matrix completion techniques have mainly focused on semantic similarity

between users and items, but have not addressed the fundamental problem in matrix completion, ne-

glecting the position of user/item/rating. We have thought that position/location is the most important

nature of a matrix as a specific point can be presented based on the positions of its row and column in

the matrix, so we have focused on how to deal with the position/location.

We have discussed a Global and Local Kernel-based matrix completion framework, called GLocal-

K in detail, which aims to generalise and represent a high-dimensional sparse user-item matrix entry

into a low-dimensional space with a small number of important features by using only given sparse

data without relying on side information. We introduced GLocal-K for recommender systems, which

takes full advantage of both a local kernel at the pre-training stage and a global kernel at the fine-

tuning stage for capturing and refining the important characteristic features of the sparse rating matrix

under an extremely low resource setting. GLocal-K achieved the outperformed results even with no side

information over all the baseline models. We can infer that combining the local-global kernels improves

the feature extraction performance against a high-dimensional sparse rating matrix. Further, we tried to

vary the training ratio of ML-100K and Douban to validate the superior effectiveness of cooperation by

local and global kernels of GLocal-K under more scarce data sources. Then, we explored the optimal

number of epochs for pre-training, where we find that pre-training benefits GLocal-K to achieve better

performance on all three datasets, and having more item numbers with lower density may lead to less

70

5 CONCLUSION 71

pre-training for optimal performance. Overall, it can be seen that applying the local and global kernels

in the two-stage training process is effective for feature extraction in a sparse user-item matrix with no

side information.

However, we think that the fundamental problem of matrix completion has not been solved, as previous

studies have not dealt with the position of a matrix, even though it is the essential nature of a matrix.

We tried to explore the best way to capture and apply the position information in the matrix, and finally

propose a position-enhanced user/item representation training model for recommendation, SUPER-Rec.

The model learns an item representation based on item’s interactions with its surrounding neighbour

items leveraging their position and rating information. The SUPER-Rec recommendation consists of

3 main stages: User-Item Matrix Positioning to form the item-context training corpus, SUPER-Rec

Training to learn an item representation using the fixed surrounding item positions correlated with user

feedback taste and Matrix Completion with SUPER-Rec to conduct the recommendation. The model

with the SUPER-Rec representation significantly outperforms all baselines on all five rating datasets

with a variety of rating ranges by an enormously large margin. Note that we applied a simple neural

network as a rating prediction model. The result validates the robustness of the position-enhanced repre-

sentation and its efficacy for recommendation in various rating ranges of user-item data. Moreover, we

validate the robustness of the SUPER-Rec as a stand-alone representation for recommendation systems

by comparing three simple machine learning techniques (kNN, SVM and NN) using the SUPER-Rec.

We evaluate the SUPER-Rec on the large-scale and sparse rating dataset, and even on two implicit

feedback datasets to confirm the item representation capability in the rating prediction with a million of

users and the user’s action (e.g., click/view) prediction. Lastly, we examined the efficacy of SUPER-Rec

in terms of the sensitivity to training data sparsity. The model achieves stable performance overall as

the training data gradually decreased, which implies that SUPER-Rec is more robust in recommendation

performance and less sensitive to data sparsity than the baseline models. Overall, we can summarise that

SUPER-Rec significantly outperformed by an extremely large margin in all RMSE/MAE/NDCG/AUC

metrics (i.e., in any rating/ranking prediction accuracy measure) against state-of-the-art matrix com-

pletion models on most recommendation benchmark datasets with high or low density, small or large

user/item/rating size, and explicit or implicit user’s action.

5.1 FUTURE WORK 72

5.1 Future Work

In this research, we have focused on learning a user/item feature representation for a sparse user-item

matrix via the kernelised feature extraction technique and the position-enhanced feature learning using

surrounding neighbour information. However, we considered the only recommendations for rating pre-

diction in a fixed user-item matrix. Due to the stand-alone and generally applicable characteristics of our

position-enhanced representation (SUPER-Rec), we consider as a future work to apply the SUPER-Rec

to various fields such as news recommendation and time series predictive analysis, which are widely

used in current recommendation systems and require better systems, even though the nature of data is

different. News contains a variety of textual information such as titles, articles, bodies and categories,

and the text information of news is usually encoded by feeding pre-trained word embeddings to the

multi-head self-attention layer, which is a particular case of attention mechanism. Meanwhile, in order

to apply our representation learning model to the news recommendation model, we can give a relative

position to the user’s browsed news and give another representation of the news based on the interac-

tion between the surrounding news. By combining the existing text-based news representation and the

position-enhanced news representation in which the interaction between the surrounding neighours is

captured, we can give a new insight into news recommender systems surpassing the existing models.

Moreover, we can highlight that our position-enhanced representation has a great potential to be applied

to any recommendation problem.

Bibliography

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. 2006. Greedy layer-wise training
of deep networks. Advances in neural information processing systems, 19.

Rianne van den Berg, Thomas N Kipf, and Max Welling. 2018. Graph convolutional matrix completion.
KDD Deep Learning Day.

Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez. 2013. Recommender
systems survey. Knowledge-based systems, 46:109–132.

John S. Breese, David Heckerman, and Carl Kadie. 1998. Empirical analysis of predictive algorithms
for collaborative filtering. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, UAI’98, page 43–52. Morgan Kaufmann Publishers Inc.

Emmanuel J Candès and Benjamin Recht. 2009. Exact matrix completion via convex optimization.
Foundations of Computational mathematics, 9(6):717–772.

Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua. 2017. At-
tentive collaborative filtering: Multimedia recommendation with item-and component-level attention.
In Proceedings of the 40th International ACM SIGIR conference on Research and Development in
Information Retrieval, pages 335–344.

Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting graph based collabo-
rative filtering: A linear residual graph convolutional network approach. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 27–34.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing systems,
29.

Joaquin Delgado and Naohiro Ishii. 1999. Memory-based weighted majority prediction. In SIGIR
Workshop Recomm. Syst. Citeseer, page 85. Citeseer.

Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. 2012. The yahoo! music dataset
and kdd-cup’11. In Proceedings of KDD Cup 2011, pages 3–18. PMLR.

Gintare Karolina Dziugaite and Daniel M Roy. 2015. Neural network matrix factorization. arXiv
preprint arXiv:1511.06443.

Simon Funk. 2006. Netflix update: Try this at home.
Theodoros Giannakopoulos, Aggelos Pikrakis, and Sergios Theodoridis. 2008. A novel efficient ap-

proach for audio segmentation. In 2008 19th International Conference on Pattern Recognition, pages

73

BIBLIOGRAPHY 74

1–4. IEEE.
Elie Guàrdia-Sebaoun, Vincent Guigue, and Patrick Gallinari. 2015. Latent trajectory modeling: A

light and efficient way to introduce time in recommender systems. In Proceedings of the 9th ACM
Conference on Recommender Systems, pages 281–284.

Soyeon Caren Han, Taejun Lim, Siqu Long, Bernd Burgstaller, and Josiah Poon. 2021. Glocal-k: Global
and local kernels for recommender systems. In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, pages 3063–3067.

Attribution F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History and
context. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4).

Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual evolution of fashion trends
with one-class collaborative filtering. In proceedings of the 25th international conference on world
wide web, pages 507–517.

Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse predictive analytics.
In Proceedings of the 40th International ACM SIGIR conference on Research and Development in
Information Retrieval, pages 355–364.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. 2020. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pages 639–648.

Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and Tat-Seng Chua. 2018.
Nais: Neural attentive item similarity model for recommendation. IEEE Transactions on Knowledge
and Data Engineering, 30(12):2354–2366.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554.

Thomas Hofmann. 2004. Latent semantic models for collaborative filtering. ACM Transactions on
Information Systems (TOIS), 22(1):89–115.

Tianlin Huang, Rujie Zhao, Lvqing Bi, Defu Zhang, and Chao Lu. 2021. Neural embedding singular
value decomposition for collaborative filtering. IEEE Transactions on Neural Networks and Learning
Systems.

Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with trust propagation for
recommendation in social networks. In Proceedings of the fourth ACM conference on Recommender
systems, pages 135–142.

Santosh Kabbur, Xia Ning, and George Karypis. 2013. Fism: factored item similarity models for top-
n recommender systems. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 659–667.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37.

BIBLIOGRAPHY 75

Neil D Lawrence and Raquel Urtasun. 2009. Non-linear matrix factorization with gaussian processes.
In Proceedings of the 26th annual international conference on machine learning, pages 601–608.

Joonseok Lee, Seungyeon Kim, Guy Lebanon, Yoram Singer, and Samy Bengio. 2016. Llorma: Local
low-rank matrix approximation. Journal of Machine Learning Research, 17(15):1–24.

Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix factorization. Ad-
vances in neural information processing systems, 27.

Dongsheng Li, Chao Chen, Wei Liu, Tun Lu, Ning Gu, and Stephen Chu. 2017. Mixture-rank matrix
approximation for collaborative filtering. Advances in Neural Information Processing Systems, 30.

Sheng Li, Jaya Kawale, and Yun Fu. 2015. Deep collaborative filtering via marginalized denoising auto-
encoder. In Proceedings of the 24th ACM international on conference on information and knowledge
management, pages 811–820.

Dawen Liang, Jaan Altosaar, Laurent Charlin, and David M Blei. 2016. Factorization meets the item
embedding: Regularizing matrix factorization with item co-occurrence. In Proceedings of the 10th
ACM conference on recommender systems, pages 59–66.

Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018. Variational autoencoders
for collaborative filtering. In Proceedings of the 2018 world wide web conference, pages 689–698.

Chu-Cheng Lin, Waleed Ammar, Chris Dyer, and Lori Levin. 2015. Unsupervised POS induction with
word embeddings. In Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. Association for Compu-
tational Linguistics.

Xinyue Liu, Chara Aggarwal, Yu-Feng Li, Xiaugnan Kong, Xinyuan Sun, and Saket Sathe. 2016. Ker-
nelized matrix factorization for collaborative filtering. In Proceedings of the 2016 SIAM International
Conference on Data Mining, pages 378–386. SIAM.

Hao Ma, Dengyong Zhou, Chao Liu, Michael R Lyu, and Irwin King. 2011. Recommender systems
with social regularization. In Proceedings of the fourth ACM international conference on Web search
and data mining, pages 287–296.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. 2015. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pages 43–52.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word repre-
sentations in vector space. ICLR Workshop.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013b. Distributed represen-
tations of words and phrases and their compositionality. Advances in neural information processing
systems, 26.

Bradley N Miller, Istvan Albert, Shyong K Lam, Joseph A Konstan, and John Riedl. 2003. Movielens
unplugged: experiences with an occasionally connected recommender system. In Proceedings of the
8th international conference on Intelligent user interfaces, pages 263–266.

Federico Monti, Michael M Bronstein, and Xavier Bresson. 2017. Geometric matrix completion with
recurrent multi-graph neural networks. In Proceedings of the 31st International Conference on Neural

BIBLIOGRAPHY 76

Information Processing Systems, pages 3700–3710.
Lorenz Muller, Julien Martel, and Giacomo Indiveri. 2018. Kernelized synaptic weight matrices. In

International Conference on Machine Learning, pages 3654–3663. PMLR.
Atsuyoshi Nakamura and Naoki Abe. 1998. Collaborative filtering using weighted majority prediction

algorithms. In Proceedings of the Fifteenth International Conference on Machine Learning, page
395–403. Morgan Kaufmann Publishers Inc.

Xia Ning and George Karypis. 2011. Slim: Sparse linear methods for top-n recommender systems. In
2011 IEEE 11th international conference on data mining, pages 497–506. IEEE.

Arkadiusz Paterek. 2007. Improving regularized singular value decomposition for collaborative filtering.
In Proceedings of KDD cup and workshop, volume 2007, pages 5–8.

Nikhil Rao, Hsiang-Fu Yu, Pradeep K Ravikumar, and Inderjit S Dhillon. 2015. Collaborative filtering
with graph information: Consistency and scalable methods. Advances in neural information process-
ing systems, 28.

Ahmed Rashed, Josif Grabocka, and Lars Schmidt-Thieme. 2019. Attribute-aware non-linear co-
embeddings of graph features. In Proceedings of the 13th ACM Conference on Recommender Systems,
pages 314–321.

Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. 2007. Restricted boltzmann machines for
collaborative filtering. In Proceedings of the 24th international conference on Machine learning,
pages 791–798.

Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. 2002. Learning with kernels: support
vector machines, regularization, optimization, and beyond. MIT press.

Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015. Autorec: Autoencoders
meet collaborative filtering. In Proceedings of the 24th international conference on World Wide Web,
pages 111–112.

Jonathan Strahl, Jaakko Peltonen, Hirsohi Mamitsuka, and Samuel Kaski. 2020. Scalable probabilistic
matrix factorization with graph-based priors. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 5851–5858.

Florian Strub, Romaric Gaudel, and Jérémie Mary. 2016. Hybrid recommender system based on autoen-
coders. In Proceedings of the 1st workshop on deep learning for recommender systems.

Thanh Tran, Kyumin Lee, Yiming Liao, and Dongwon Lee. 2018. Regularizing matrix factorization
with user and item embeddings for recommendation. In Proceedings of the 27th ACM international
conference on information and knowledge management, pages 687–696.

A Ugla, Dhuha J Kamil, Hassan J Khaudair, et al. 2020. Interpretable recommender system with hetero-
geneous information: A geometric deep learning perspective. International Journal of Mechanical
and Production Engineering Research and Development (IJMPERD), 10(3):2411–2430.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. 2008. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pages 1096–1103.

BIBLIOGRAPHY 77

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol, and Léon
Bottou. 2010. Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of machine learning research, 11(12).

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning for recommender
systems. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery
and data mining, pages 1235–1244.

Jianling Wang and James Caverlee. 2019. Recurrent recommendation with local coherence. In Proceed-
ings of the Twelfth ACM International Conference on Web Search and Data Mining, pages 564–572.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019a. Neural graph collab-
orative filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and
development in Information Retrieval, pages 165–174.

Yaqing Wang, Chunyan Feng, Caili Guo, Yunfei Chu, and Jenq-Neng Hwang. 2019b. Solving the
sparsity problem in recommendations via cross-domain item embedding based on co-clustering. In
Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pages
717–725.

Hao Wu, Qimin Zhou, Rencan Nie, and Jinde Cao. 2020. Effective metric learning with co-occurrence
embedding for collaborative recommendations. Neural Networks, 124:308–318.

Qitian Wu, Yirui Gao, Xiaofeng Gao, Paul Weng, and Guihai Chen. 2019. Dual sequential prediction
models linking sequential recommendation and information dissemination. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 447–457.

Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Junchi Yan, and Hongyuan Zha. 2021. Towards open-
world recommendation: An inductive model-based collaborative filtering approach. In International
Conference on Machine Learning, pages 11329–11339. PMLR.

Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collaborative denoising auto-
encoders for top-n recommender systems. In Proceedings of the ninth ACM international conference
on web search and data mining, pages 153–162.

Feng Xue, Xiangnan He, Xiang Wang, Jiandong Xu, Kai Liu, and Richang Hong. 2019. Deep item-
based collaborative filtering for top-n recommendation. ACM Transactions on Information Systems
(TOIS), 37(3):1–25.

Zhe Yang, Bing Wu, Kan Zheng, Xianbin Wang, and Lei Lei. 2016. A survey of collaborative filtering-
based recommender systems for mobile internet applications. IEEE Access, 4:3273–3287.

Guijuan Zhang, Yang Liu, and Xiaoning Jin. 2020. A survey of autoencoder-based recommender sys-
tems. Frontiers of Computer Science, 14(2):430–450.

Muhan Zhang and Yixin Chen. 2020. Inductive matrix completion based on graph neural networks. In
International Conference on Learning Representations.

Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S Yu. 2018. Spectral collaborative filtering.
In Proceedings of the 12th ACM conference on recommender systems, pages 311–319.

Yin Zheng, Bangsheng Tang, Wenkui Ding, and Hanning Zhou. 2016. A neural autoregressive approach
to collaborative filtering. In International Conference on Machine Learning, pages 764–773. PMLR.

https://openreview.net/forum?id=ByxxgCEYDS

BIBLIOGRAPHY 78

Tinghui Zhou, Hanhuai Shan, Arindam Banerjee, and Guillermo Sapiro. 2012. Kernelized probabilistic
matrix factorization: Exploiting graphs and side information. In Proceedings of the 2012 SIAM
international Conference on Data mining, pages 403–414. SIAM.

Fuzhen Zhuang, Dan Luo, Nicholas Jing Yuan, Xing Xie, and Qing He. 2017. Representation learning
with pair-wise constraints for collaborative ranking. In Proceedings of the tenth ACM international
conference on web search and data mining, pages 567–575.

	Student Plagiarism: Compliance Statement
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1. Contribution
	1.2. Thesis Structure

	Chapter 2. Literature Review
	2.1. Collaborative filtering based recommender systems
	2.1.1. Traditional collaborative filtering models
	2.1.2. Neural collaborative filtering models
	2.1.3. Autoencoder-based collaborative filtering models
	2.1.4. Graph-based collaborative filtering models

	2.2. Feature Extraction in Collaborative Filtering
	2.2.1. Kernelised feature extraction techniques

	2.3. Feature Representation Learning in Collaborative Filtering
	2.3.1. Neighbourhood-based item feature representation approaches
	2.3.2. Item interaction-based user feature representation approaches

	2.4. Summary

	Chapter 3. Global and Local Kernel-based Feature Extraction
	3.1. GLocal-K: Global-Local Kernel-based matrix completion framework
	3.1.1. Pre-training with Local Kernel
	3.1.2. Fine-tuning with Global Kernel

	3.2. Evaluation setup
	3.2.1. Datasets
	3.2.2. Baselines
	3.2.3. Implementation Details

	3.3. Result
	3.3.1. Overall Performance
	3.3.2. Cold-start Recommendation
	3.3.3. Effect of Pre-training
	3.3.4. Effect of Global Convolution Kernel
	3.3.5. Extremely Sparse Dataset Analysis
	3.3.6. Effect of Integrating Global and Local Kernels
	3.3.7. Matrix Compression Analysis for Global Kernel Construction
	3.3.8. Encoding Dimension Analysis

	3.4. Summary

	Chapter 4. Position-Enhanced Feature Representation based on Surrounding Neighbor Information
	4.1. Surrounding Position-Enhanced Representation for Recommendation
	4.1.1. User-item Matrix Positioning
	4.1.2. SUPER-Rec Training
	4.1.3. Matrix Completion with SUPER-Rec

	4.2. Evaluation Setup
	4.2.1. Datasets
	4.2.2. Baselines
	4.2.3. Implementation Details
	4.2.4. Evaluation Metrics

	4.3. Result
	4.3.1. Performance Comparison on Explicit Datasets
	4.3.2. Comparison of Rating Prediction Model Variant
	4.3.3. Large-scale Rating Dataset Analysis
	4.3.4. Performance Comparison on Implicit Datasets
	4.3.5. Impact of Sparsity Ratios
	4.3.6. Bilinear Neural Network for Matrix Factorisation
	4.3.7. Window Size Analysis
	4.3.8. Impact of Embedding Dimension
	4.3.9. Comparison of Embedding Training Variants
	4.3.10. Dimension Pattern Analysis via Dataset Classification

	4.4. Summary

	Chapter 5. Conclusion
	5.1. Future Work

	Bibliography

