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Abstract
Event-Driven architectures are a very useful approach to decoupling inter-service communication
while enabling unique communication patterns. The specific resiliency, availability, and performance
requirements of such architectures, warrants the usage of specialized Message-Broker services.
Moreover, new real-time requirements of many event processing tasks, such as metrics and analytics,
requires a new approach compared to legacy batch processing. Apache Kafka is an open-source
event streaming platform that can accommodate both use cases. This thesis performs a succinct
presentation of Apache Kafka’s main architectural model, while focusing on its concrete resiliency
and availability guarantees and providing guidelines for achieving desired operational characteristics.
We also document and further enhance a mathematical model that permits the estimation and
concrete sizing of cluster infrastructure, as well as express the link between topic sizing, maximum
unavailability and end-to-end latency.
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driven architecture, apache kafka, distributed log, topic, partition, replication, leader election,
consumers, producers, consumer groups, high resiliency, high availability, throughput, latency,
message ordering, design guarantees, infrastructure modeling
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Περίληψη

Οι αρχιτεκτονικές οδηγούμενες απο events αποτελούν μία πολύ χρήσιμη προσέγγιση ως προς την
αποσύνδεση της επικοινωνίας μεταξύ υπηρεσιών, επιτρέποντας παράλληλα μοναδικά μοτίβα επικοιν-
ωνίας. Οι συγκεκριμένες απαιτήσεις για ανθεκτικότητα, διαθεσιμότητα και απόδοση αυτών των αρ-
χιτεκτονικών, δικαιολογεί τη χρήση εξειδικευμένων υπηρεσιών μεταβίβασης events. Επιπλέον, νέες,
πραγματικού χρόνου απαιτήσεις διαδικασιών επεξεργασίας events, όπως παραγωγή και επεξεργασία
μετρήσεων και αναλυτικών στοιχείων, απαιτούν μια νέα προσέγγιση σε σύγκριση με την παραδοσι-
ακού τύπου batch επεξεργασίας events. Το Apache Kafka είναι μία ανοιχτού κώδικα πλατφόρμα ροής
events που μπορεί να επιτρέψει και τις δύο περιπτώσεις χρήσης. Αυτή η διατριβή εκτελεί μια συνοπτική
παρουσίαση του κύριου αρχιτεκτονικού μοντέλου του Αpache Kafka, ενώ εστιάζει στις εγγυήσεις που
παρέχει ως προς την ανθεκτικότητά και διαθεσιμότητα του συστήματος, καθώς και παρέχει οδηγίες
για την επίτευξη συγκεκριμένων επιθυμητών λειτουργικών χαρακτηριστικών. Επίσης, περιγράφει και
ενισχύει περαιτέρω ένα μαθηματικό μοντέλο που επιτρέπει την εκτίμηση και τον καθορισμό μέγεθους

της υποδομής ενός Apache Kafka σμήνους, αλλα και εκφράζει την σχέση μεταξύ του μεγέθους των
Topics, το μέγιστο παράθηρο μη διαθεσιμότητας και την απο άκρο σε άκρο καθυστέρηση μεταφοράς.
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1 Εκτενής Περίληψη

Τα σύγχρονα συστήματα λογισμικού ορίζονται από αυξημένη πολυπλοκότητα. Μεγάλοι όγκοι δε-
δομένων καταναλώνονται, μετασχηματίζονται, και μεταφέρονται σε warehouses και data lakes για
περαιτέρω ανάλυση και επεξεργασία. Ανακάλυψη υπηρεσιών, υπηρεσίες διαχείρισης μυστικών, load-
balancers, κρυφές μνήμες, γενική διαχείριση υποδομών, όλα απαιτούν μη τετριμμένες ρυθμίσεις και
συντήρηση. Event brokers και ουρές, προγραμματισμός εργασιών, επεξεργασία ροής, επεξεργασία
batch, όλα τα παραπάνω έχουν τη θέση τους σε μία σύγχρονη στοίβα ανάπτυξης λογισμικού.

Ως αποτέλεσμα, μικρές ομάδες δυσκολεύονται να διαχειριστούν αυτό το σημαντικό αριθμό δι-
αφορετικών τεχνολογιών. Αυτό έχει οδηγήσει στη διάσπαση της λειτουργικότητας σε διαφορετικές
υπηρεσίες, διαχειριζόμενες από διαφορετικές υποομάδες. Προκειμένου αυτές οι ομάδες να λειτουργούν
αποδοτικά, κρίνεται απαραίτητο να μειωθεί η επικοινωνία και συγχρονισμός μεταξύ των διαφορετικών
ομάδων. Αυτό συνεπάγεται στον περιορισμό των εξαρτήσεων μεταξύ των διαφορετικών υπηρεσιών,
επιτρέποντας την ανεξάρτητη ανάπτυξη και διαχείριση τους. Η παραπάνω αρχιτεκτονική αρχή αποκτά
συνέχεια έδαφος, με τη μεγαλύτερη έκφανση της να είναι καλά καθιερωμένη στη βιβλιογραφία ως
αρχιτεκτονική Μικρο-υπηρεσιών.

Οι μικρο-υπηρεσίες συχνά επικοινωνούν εκτενώς με χρήση events. Οι αρχιτεκτονικές βασισμένες
στη χρήση events, έχουν μία χαρακτηριστική προσέγγιση ως προς την ενδοϋπηρεσιακή επικοινωνία,
επιτυγχάνοντας αυξημένη αποσύνδεση μεταξύ των υπηρεσιών και επιτρέποντας μοναδικά σχήματα

επικοινωνίας που δεν είναι εφικτά με εναλλακτικές αρχιτεκτονικές. Τέτοιες αρχιτεκτονικές έχουν
συγκεκριμένες μη-τετριμμένες απαιτήσεις ως προς την επικοινωνία μεταξύ των διαφορετικών δομικών
στοιχείων, και πιο συγκεκριμένα ως προς τη διάταξη των μηνυμάτων, την ασφάλειά τους, τη συνοχή
και τη διαθεσιμότητά τους.

Ως ακραία έκφανση αυτής της αρχιτεκτονικής έχουμε τις αρχιτεκτονικές βασισμένες στην προμή-

θεια events (Event-Sourcing). Αυτές βασίζονται σε ανθεκτικές ροές events που χρησιμοποιούνται
προκειμένου να τροποποιείται και να εξάγεται η κατάσταση του συστήματος.

Προκειμένου να πληρούνται αυτές οι απαιτήσεις, τέτοια συστήματα συχνά χρησιμοποιούν εξει-
δικευμένες υπηρεσίες λογισμικού που ονομάζονται Message Brokers, οι οποίοι και λειτουργούν ως
τον σκελετό αντίστοιχων αρχιτεκτονικών επιτρέποντας την ασφαλή και αποδοτική επικοινωνία με

χρήση μηνυμάτων.

΄Ενα ακόμα σημαντικό θέμα είναι το γεγονός πως οι απαιτήσεις για αναλυτικά στοιχεία διαρκώς

αυξάνονται. Αυτό έχει οδηγήσει στην υιοθεσία πλαισίων μαζικής επεξεργασίας (batch-processing
frameworks), τα οποία επιτρέπουν την ασύγχρονη μεταφορά και επεξεργασία μεγάλων όγκων δε-
δομένων για μετέπεισα επεξεργασία και ανάλυση. Δυστυχώς, σύγχρονα συστήματα πολλές φορές
απαιτούν επεξεργασία δεδομένων σε πραγματικό χρόνο που παραδοσιακά συστήματα μαζικής επεξερ-

γασίας δεν μπορούν να παρέχουν αποδοτικά.

Ως αποτέλεσμα, μία πλατφόρμα που επιτρέπει την αποδοτική μεταφορά και επεξεργασία μεγάλου όγκου
δεδομένων, ενώ επιτρέπει την εξυπηρέτηση των αναγκών τόσο για μαζική όσο και πραγματικού χρόνου
επεξεργασία, είναι πολύ χρήσιμη για τις ανάγκες σύγχρονων αρχιτεκτονικών.

Επιπλέον, προκειμένου να αποτελέσουν τη βάση για αποδοτική ενδοϋπηρεσιακή επικοινωνία, τέτοιες
πλατφόρμες πρέπει να είναι ευέλικτες και παραμετροποιήσιμες, υποστηρίζοντας τόσο υψηλή διαθεσ-
ιμότητα και ανθεκτικότητα όσο και χαμηλή καθυστέρηση μετάδοσης ή και υψηλής διαμεταγωγικής

ικανότητας.
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Μία τέτοια υπηρεσία είναι το Apache Kafka, ένα υψηλά επεκτάσιμο, διαθέσιμο και αποδοτικό κατανεμη-
μένο σύστημα που λειτουργεί ως μία πλήρης πλατφόρμα ροής events. To Apache Kafka δεν επιτρέπει
μόνο την επικοινωνία με χρήση events μεταξύ των διαφορετικών υπηρεσιών αλλά ταυτόχρονα και
την επεξεργασία μεγάλου όγκου δεδομένων σε πραγματικό χρόνο. Αυτή η πληθώρα δυνατοτήτων
καθιστούν απότομη την καμπύλη εκμάθησης του συστήματος, καθώς και απαραίτητη την προσεκτική
μελέτη διαφορετικών πηγών προκειμένου να μπορεί να ληφθούν εμπεριστατωμένες αποφάσεις ως προς

την παραμετροποίηση, τον σχεδιασμό των Topics και την υποδομή καθώς μικρές αλλαγές μπορούν να
αλλάξουν ραγδαία τη συμπεριφορά του συστήματος.

Παρόλο που υπάρχουν διαθέσιμες αναλυτικές μαθησιακές πηγές, ο στόχος της διατριβής είναι να
αποτελέσει έναν πρακτικό μαθησιακό πόρο για την αποδοτική κατανόηση του Apache Kafka και την
εφαρμογή του ως τη βασική υποδομή για κατανεμημένες αρχιτεκτονικές συμπεριλαμβανόμενης και

αυτήν των μικρο-υπηρεσιών.

Βασικές έννοιες του Apache Kafka είναι τα Partitions τα οποία αποτελούν μία ακολουθία μηνυμάτων.
Οι Producers είναι προγράμματα clients που προσθέτουν μηνύματα στο τέλος της ακολουθίας, ενώ
Consumers είναι clients προγράμματα που διαβάζουν μηνύματα από την ακολουθία

Τα Partitions αποτελούνται από πολλά αντίγραφα (Replicas) για λόγους ασφάλειας και διαθεσιμότη-
τας των μηνυμάτων. Τα αντίγραφα αυτά χρησιμοποιούν κατανεμημένους αλγορίθμους ομοφωνίας
προκειμένου να επιτύχουν την ασφαλή αντιγραφή με ανοχή σε συνθήκες σφάλματος.

Μία ομάδα από Partitions που περιέχουν μηνύματα ίδιου τύπου αποτελούν ένα Topic. ΄Ενας Producer
μπορεί να εκμεταλλευτεί τα διαφορετικά Partitions προκειμένου να αυξήσει τον ρυθμό παραγωγής
μηνυμάτων. Επίσης, καθώς ο ρυθμός επεξεργασίας των μηνυμάτων από την πλευρά των Consumers
είναι περιορισμένος, διαφορετικοί Consumers μπορούν να αναλάβουν ξεχωριστά Partitions και έτσι
με την εισαγωγή περισσότερων Consumers μπορούμε να αυξήσουμε και τον ρυθμό επεξεργασίας των
μηνυμάτων. Η αυτόματη ανάθεση Partitions ενός Topic στους διαφορετικούς Consumers γίνεται με
τον μηχανισμό των Consumer Groups.

Μερικά συγκεκριμένα θέματα που αφορούν τη διατριβή είναι τα εξής:

• Η διαδικασία αντιγραφής των Partition και η σημασία της ως προς την ασφάλεια, δια-
θεσιμότητα και καθυστέρηση μεταφοράς των μηνυμάτων. Θέλουμε να παρέχουμε συγ-

κεκριμένες κατευθυντήριες γραμμές σχετικά με τις παραμέτρους replication factor και
min.insync.replicas ενός Topic ανάλογα με τις απαιτούμενες εγγυήσεις ως προς την
ασφάλεια μηνυμάτων σε περίπτωση σφάλματος καθώς και διαθεσιμότητάς. Αυτό μεταξύ άλλων
μεταφράζεται στον ελάχιστο απαραίτητο αριθμό Servers εντός του Cluster.

• Η σημασία της παραμέτρου acks των Producers και οι συνέπειες του ως προς την ασφάλεια και
ρυθμό διαμεταγωγής. Παρέχονται οδηγίες σχετικά με την επιλογή της παραμέτρους ανάλογα
με τις απαιτήσεις ως προς την συνοχή των μηνυμάτων και ρυθμού διαμεταγωγής.

• Η επιλογή κλειδιού και η επίδραση του στη διάταξη μηνυμάτων.
• Η χρησιμότητα των Partitions και Consumers Groups για την κλιμάκωση του ρυθμού παραγ-
ωγής και επεξεργασίας των μηνυμάτων.

• Η έννοια του “effectively-once processing” και τη μορφή που υποστηρίζει το Apache Kafka με
τη χρήση των transactions.

Επιπλέον, είναι απαραίτητη για λόγους κόστους και απόδοσης η λήψη εμπεριστατωμένων αποφάσεων
σχετικά με την υποδομή του Cluster και τις λειτουργικές παραμέτρους των Topic:
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• Η επιλογή του αριθμού των Servers ανάλογα με την απαιτούμενη ασφάλεια και διαμεταγωγική
ικανότητα.

• Η εκτίμηση των απαιτούμενων υπολογιστικών πόρων και πόρων δικτύου για την επίτευξή του
επιθυμητού ρυθμού διαμεταγωγής, αριθμού Servers και ρυθμίσεων αντιγραφής καθώς και συνο-
λικό αριθμό Consumer Groups.

• Η εξαγωγή ελάχιστων και μέγιστων ορίων Partitions των Topic με βάση το επιθυμητό ρυθμό δι-
αμεταγωγής, μέγιστο ανεκτό παράθυρο μη διαθεσιμότητας και από τέλος σε τέλος καθυστέρηση
μεταφοράς.

• H επιλογή συγκεκριμένου αριθμού Partitions σε ένα Topic προκειμένου να εξασφαλιστεί ομοιό-
μορφη κατανομή φορτίου κατά την διαδικασία κλιμάκωσης ενός Cluster.

Προκειμένου να παρουσιαστεί το λειτουργικό μοντέλο του Apache Kafka, αρχικά γίνεται μία εκ-
τενής βιβλιογραφική ανασκόπηση των αρχιτεκτονικών βασισμένων σε events, δικαιολογώντας έτσι τη
χρησιμότητα αντίστοιχων συστημάτων. Στην Ενότητα 3, γίνεται μία γενική ανάλυση σχετικά με τις
αρχιτεκτονικές βασισμένων σε events, συζητώντας τα πλεονεκτήματα και μειονεκτήματα των διαφόρων
μορφών ενδοϋπηρεσιακής επικοινωνίας. Εισάγεται η έννοια των Message Brokers και η χρήση τους
ως θεμελιώδη συστήματα ενδοεπικοινωνίας. Τέλος, παρουσιάζεται η μορφή επικοινωνίας με χρήση
events και τα μοναδικά μοτίβα επικοινωνίας που επιτρέπουν.

Στο υπόλοιπο κομμάτι της διατριβής, εφαρμόζεται μία πρακτική προσέγγιση στην περιγραφή του
Apache Kafka και των διάφορων εννοιών του. Στο πρώτο κομμάτι της Ενότητας 4, χρησιμοποιείται
ένα Kafka Cluster στημένο με χρήση Docker προκειμένου να παρουσιαστούν τα διάφορα παραδείγματα.
Ξεκινάμε συζητώντας τα Partitions, τη θεμελιώδη έννοια του Apache Kafka και κοιτάμε σε βάθος
πως αυτά αποθηκεύονται στα διάφορα Servers. Επιδεικνύεται βασική παραγωγή και κατανάλωσή
μηνυμάτων από και σε απλά Partitions καθώς παράλληλα χτίζεται διαίσθηση ως προς τη διατεταγμένη
φύση των event logs.

Επιπλέον, αναλύεται ο τρόπος που λειτουργεί η αντιγραφή των Partitions και πως μικρές αλλαγές
σε ρυθμιστικές παραμέτρους τόσο στους Servers όσο και στους Producers μπορεί να έχουν μεγάλη
επίπτωση στις συγκεκριμένες εγγυήσεις που δίνει το Apache Kafka ως προς την ασφάλεια και τη
διαθεσιμότητα των μηνυμάτων.

Στην ενότητα των Topics, εδραιώνεται το μοτίβο διαχωρισμού μίας ροής μηνυμάτων σε διαφορετικά
Partition προκειμένου να κλιμακωθεί ο συνολικός ρυθμός διαμεταγωγής. Στο Partitioning And
Message Ordering, αναλύεται η επιλογή κλειδιών και την επιρροή τους στη διάταξη των μηνυμάτων.
Στη συνέχεια εξετάζεται πως η χρήση Consumer Groups μπορεί να χρησιμοποιηθεί για την αυτό-
ματη ανάθεση Partitions σε ένα σύνολο Consumers και πως μπορούν να χρησιμοποιηθούν για να
κλιμακώσουν αποδοτικά τον συνολικό αριθμό επεξεργασίας ενός Topic.

Στο κεφάλαιο Processing Guarantees, εξετάζεται το θέμα διπλών και χαμένων μηνυμάτων. Εισάγεται
η έννοια της ταυτοδυναμίας και πως το Kafka μπορεί να εξασφαλίσει τη μεταφορά μηνυμάτων χωρίς
αυτά να χαθούν και χωρίς να υπάρχουν πολλαπλά μηνύματα σε διατάξεις επεξεργασίας/παραγωγής
μηνυμάτων που έχουν τη μορφή κατευθυνόμενων άκυκλων γράφων.

Στην ενότητα 5, παρουσιάζεται ένα μαθηματικό μοντέλο του Apache Kafka και μέσω αυτού εξά-
γονται προσεγγίσεις σχετικά με τους πόρους της υποδομής καθώς και κατευθυντήριες γραμμές ως

προς τον σχεδιασμό Topics ανάλογα με τις απαιτήσεις ως προς το μέγιστο ανεκτό παράθυρο διαθεσ-
ιμότητας και την άκρη προς άκρη καθυστέρηση μετάδοσης. Επίσης, παρουσιάζονται συμπληρωματικές
κατευθυντήριες γραμμές σχετικά με τη συγκεκριμένη επιλογή Partitions προκειμένου να επιτευχθεί
ομοιογένεια κατά τη διάρκεια κλιμάκωσης του Cluster.
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Στην ενότητα 6 γίνεται μία περιπτωσιακή μελέτη της πλατφόρμας DIEM, η οποία είναι ένα οικοσύστημα
που παρέχει πρόσβαση σε δεδομένα σχετικά με τον ενεργειακό τομέα της Ελλάδας και της γενικότερης

περιοχής, και δίνεται βαρύτητα στον μετασχηματισμό του υποσυστήματος μετάδοσης πραγματικού
χρόνου.

Τέλος, αξίζει να παρουσιαστούν συνοπτικά τα συγκεκριμένα αποτελέσματα και κατευθυντήριες γραμ-
μές της διατριβής.

Ασφάλεια Μηνυμάτων

Προκειμένου να εξασφαλιστεί ασφάλεια μηνυμάτων, συνοχή και διαθεσιμότητα υπό την ταυτόχρονη
βλάβη N Servers, πρέπει να τεθούν οι συγκεκριμένοι παράμετροι: - Οι Producers πρέπει να ρυ-
θμιστούν με acks=all . - Το Topic πρέπει να ρυθμιστεί με min.insync.replicas = N + 1. Αυτό
συνεπάγεται replicationfactor ≥ N + 1 και επομένως θέτει ένα κάτω όριο στον απαιτούμενο αριθμό
Servers. Περισσότεροι Servers θα επιτρέψουν να λειτουργήσει ο μηχανισμός των In-Sync Repli-
cas και να μπορέσουν να μειώσουν την καθυστέρηση μετάδοσης και να αυξήσουν τη διαθεσιμότητα
και ποιότητα υπηρεσίας υπό προσωρινές προβληματικές περιστάσεις. Αν επίσης απαιτείται διαθεσ-
ιμότητα παραγωγής υπό την ταυτόχρονη βλάβη N Servers: - Το Topic πρέπει να ρυθμιστεί με
replicationfactor ≥ 2N + 1. Τα παραπάνω ισχύουν και για εσωτερικής χρήσης Topics όπως τα
__consumer_offsets και __transaction_state

Διάταξη Μηνυμάτων

Ιδιαίτερη προσοχή πρέπει να δοθεί στην επιλογή κλειδιού κατά την παραγωγή μηνυμάτων καθώς αυτό

διαμορφώνει τις εγγυήσεις περί διάταξης των μηνυμάτων. ΄Ολα τα μηνύματα που έχουν ίδιο κλειδί θα
καταλήξουν στο ίδιο Partition και επομένως θα διαβαστούν και με τη σωστή σχετική σειρά από τους
Consumers.

Οι Producers πρέπει να εξασφαλίσουν επίσης, πως τα μηνύματα θα φτάσουν στους Servers με την
σωστή σειρά, επομένως: - Οι Producers πρέπει να ρυθμιστούν είτε με enable.idempotence=true
ή max.in.flight.requests.per.connection=1 . Το πρώτο είναι προτιμότερο. Επιπλέον, - Τα
Topics πρέπει να φτιάχνονται με περισσότερα Partitions από ότι θεωρείται πως είναι απαραίτητα
αρχικά έτσι ώστε να μη χρειαστεί να αυξήσουμε τον αριθμό τους στη συνέχεια. Η αλλαγή του
αριθμό των Partitions ενός Topic χαλάει την αντιστοιχία κλειδιού-Partition καταστρέφοντας έτσι
κάθε εγγύηση ως προς τη διάταξη των μηνυμάτων. Σχετικά με τη σύμπτυξη μηνυμάτων, - Τα κλειδιά,
χρησιμοποιούνται κατά τη σύμπτυξη μηνυμάτων ως αναγνωριστικά ταυτότητας και αυτό πρέπει να

λαμβάνεται υπόψη όταν διαλέγουμε το κλειδί ενός Topic. Μόνο τα τελευταία μηνύματα με το ίδιο
κλειδί αποθηκεύονται κατά τη σύμπτυξη.

Εγγυήσεις ως προς τη διανομή Μηνυμάτων και Effectively-once delivery

• Προκειμένου να εξασφαλιστεί πως τα μηνύματα θα αποσταλούν τουλάχιστον μία φορά, όλες οι
ρυθμίσεις περί ασφάλειας που αναφέρθηκαν παραπάνω πρέπει να ισχύουν. Επιπλέον, οι Con-
sumers πρέπει να κάνουν χειροκίνητα commit τα offset των μηνυμάτων μετά την επεξεργασίας
τους και όχι πριν, χωρίς να βασίζονται στην προκαθορισμένη auto-commit συμπεριφορά.

• Μεγάλες διατάξεις κατανάλωσης/επεξεργασίας/παραγωγής μηνυμάτων μπορούν να φτιαχτούν
εξασφαλίζοντας πως για κάθε μήνυμα-είσοδο θα αντιστοιχεί ένα μήνυμα-εξόδου σε κάθε
καταληκτική θέση. Αυτό αποτελεί το λεγόμενο “effectively-once delivery” που παρέχει
το Kafka. Το κομμάτι της επεξεργασίας πρέπει να μην έχει εξωτερικά παρατηρήσιμες

παρενέργειες καθώς θεμελιωδώς απαιτούνται κατανεμημένα transactions. Για αυτό το λόγο,
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αυτή η δυνατότητα δεν είναι τόσο χρήσιμη στην ενδοεπικοινωνία μεταξύ των υπηρεσιών.
Μία σημαντική λεπτομέρεια εδώ είναι η σωστή επιλογή του transactional.id . Μία καλή
προσέγγιση είναι το σχήμα <group id>.<topic>.<partition> .

Υποδομή και Παραμετροποίηση

• H προσθήκη Servers μειώνει τις απαιτήσεις δικτύου και απόδοσης τω αποθηκευτικών μέσων.
Στα (4, 5) αναλύονται οι συγκεκριμένες απαιτήσεις δικτύου και αποθήκευσης. Στο (3) δίνονται
εκτιμήσεις για τη μέγιστη εφικτή διαμεταγωγική ικανότητα των Topics.

• Αυξάνοντας τα Partitions μέχρι και τον αριθμό των αποθηκευτικών μέσων, αυξάνει τον ρυθμό
παραγωγής.

• Αυξάνοντας τα Partitions επιτρέπει την εισαγωγή περισσότερων Consumers εντός ενός Con-
sumer Group, επιτρέποντας την οριζόντια κλιμάκωση του ρυθμού επεξεργασίας ενός Topic. Στο
(9) δίνονται εκτιμήσεις για τον ελάχιστο αριθμό Partitions που χρειάζονται για να επιτευχθεί
ένας στόχος ρυθμού επεξεργασίας.

• Αυξάνοντας τα Partitions επηρεάζεται το μέγιστο παράθυρο μη-διαθεσιμότητας και η από άκρη
σε άκρη καθυστέρηση αποστολής. Στα (10, 11) δίνονται σχέσεις για άνω όρια του αριθμού των
Partitions με βάση αυτούς τους περιορισμούς.

• Διαλέγοντας ως αριθμό των Partitions ενός Topic πολλαπλάσιο του αριθμού των Server ενός
Cluster, επιτυγχάνεται ομοιόμορφη κατανομή φορτίου. Στο κεφάλαιο keeping load uniform
γίνεται σχετική ανάλυση.
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2 Introduction

2.1 Background
Modern software systems are defined by increased complexity. Large volumes of data must be
ingested, transformed, transported into data warehouses and data lakes and further analyzed.
Service discovery, secret management facilities, load-balancers, caches, and general infrastructure
management, all require non-trivial setups and maintenance. Message brokers and queues, task
scheduling, stream processing, batch processing, all of the above have their place in a modern
software development stack.

As a result, single teams struggle to manage a considerable number of different technologies. This
has led into the segregation of functionality into different services, owned and managed by different
sum-teams. In order to support these teams in operating efficiently, it is paramount to minimize the
amount of inter-team communication overhead. This means minimizing the dependencies between
services owned by different teams, thus enabling independent development and operations. The
above architectural principle keeps gaining ground; one realization of this model is well established
in the literature as Microservice Architecture.

Microservices are often a case of Event-Driven architecture, which takes an identifying approach
to inter-service communications, by allowing for increased decoupling between services while
also facilitating unique communication schemes that are not possible with other architectural
patterns. Such architectures have specific non-trivial requirements regarding communication
between components, namely message ordering, safety, consistency, and availability. At the extreme
end, we have Event Sourcing architectures that rely on a resilient and persistent stream of events
in order to track and derive the application’s state.

To meet the above requirements, such systems often delegate functionality to specialized software
services, called Message Brokers that operate as the backbone of such architectures, permitting
safe and efficient communication, utilizing message passing.

Another important issue is that requirements for analytics have been constantly growing. This has
led into the adoption of batch processing frameworks, able to asynchronously transfer and process
large amounts of data for later processing and analysis. Unfortunately, it is frequently the case that
modern system, also demand real-time processing of data that legacy batch processing frameworks
cannot efficiently provide.

As a result, a platform that can tackle the task of efficiently moving and processing large volumes
of data, while also being able to serve both batching and real-time processing, is very useful for
modern software architectures. Additionally, in order to be able to efficiently provide the base for
inter-service communications, such a platform must be flexible and configurable, supporting both
high availability and resiliency as well as low latency and/or high throughput.

One such software service is Apache Kafka, a highly scalable, available and efficient distributed
system that acts as a full-fledged Message Streaming Platform. Apache Kafka not only facilitates
the asynchronous event-driven communication between services, but it also enables the real-time
processing of large volumes of events such as user activity tracking, and analytics. Such use-cases
have traditionally been implemented with batch processing, but were limited by the non-real-time
nature of this approach.
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2.2 Thesis Goals
In this context, we have been motivated by the possibilities of architecting applications using patterns
such as Microservices, that make use of messaging to implement inter-process communications,
explore the potentials and identify the drawbacks or risk that come with this decision. A mature
and feature-rich messaging service that has been chosen for our approach is Apache Kafka, a large
and complex piece of software with many configuration options in both servers and clients, which
can largely affect its performance, high availability and safety guarantees. As such, its learning
curve is steep, requiring careful studying of several resources before being able to make informed
engineering decisions regarding configuration, topic design and infrastructure.

While detailed technical information and resources are available, our approach is focused on
developing a practical learning resource for efficiently understanding and applying Kafka as an
underlying infrastructure of messaging, for distributed software architectures including but not
limited to Microservices.

Some specific topics worth analyzing are the following:

• Partition replication and it’s consequences on safety, availability and latency. We want
to provide concrete guidelines on how to derive the replication factor as well as
min.insyc.replicas configurations of a Topic, depending on the required message safety
in case of Server failures as well as worst-case read and write availability requirements. This
translates to the minimum number of Kafka Servers required.

• The importance of the Producers’ acks setting and its effect on message safety and through-
put. We provide guidelines on how to pick the acks Producer setting according to the
specific message consistency and throughput requirements.

• The importance of the concrete key-scheme that will be used, and it’s effect on message
ordering.

• How partitioning and consumer groups can be used to effectively increase read and write
topic throughput.

• The exact meaning of Apache Kafka’s transactions and so called “effectively-once processing”
along with its practical consequences.

Moreover, it is paramount for proper cost estimation and cluster performance to be able to take
concrete decisions regarding the cluster’s infrastructure and topic operational parameters:

• Decide on the number of servers according to required safety guarantees and maximum topic
write throughput.

• Estimate required maximum network and persistent storage throughput depending on target
throughput, number of servers replication settings, and number of consumer groups.

• Derive lower and upper bounds on Topic partition count, according to target and Consumer
throughput, maximum tolerable unavailability windows and end-to-end latency.

• Decide exact number of Partitions while ensuring uniform load across Servers when scaling.
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2.3 Methodology and Structure
In order to help build intuition about Apache Kafka, we first provide sufficient background in event-
driven architectures in order to justify them and also more clearly understand why systems such as
Kafka are useful. Section 3 performs a general background analysis on event-driven architectures,
discussing advantages and disadvantages of the various inter-service communication schemes. We
present Message Brokers and their usage as an inter-service communication primitive. Finally, we
focus on Event-based communication and the new communication patterns that it enables.

For the rest of the thesis, we take an applied approach to discussing Kafka and its various concepts.

In the first part of Section 4, we take advantage of a Dockerized Kafka cluster in order to showcase
concrete examples of each concept. We start by discussing Partitions, the fundamental abstraction
of Kafka, and we take a deep look into how they are stored in Kafka Servers. We demonstrate
simple consumption and production to lone Partitions while also building intuition on the ordered
nature of message logs. Furthermore, we analyze how replication of Partitions works and how small
configuration changes in both Servers and Producers can have a big impact on the specific safety
and availability guarantees that Kafka provides.

In Topics, we solidify the pattern of splitting a message stream to multiple Partitions in order to
scale a message stream’s total read and write throughput. In Partitioning And Message Ordering,
we also discuss the consequences on message ordering and the specific message ordering guarantees
that can be achieved by using keys.

Next, we discuss how Consumer Groups may be used for automatic assignment of Partitions.
We then demonstrate an example of scaling a topic’s read throughput by introducing multiple
Consumers to a Consumer Group.

In Processing Guarantees, we address the issues of lost and duplicate messages. We discuss
idempotence and how Kafka can achieve message de-duplication. We briefly present Apache
Kafka’s Transactions and how these can be used to avoid lost messages and duplicate message
production in large message processing pipelines compromised of pure Apache Kafka consumers
without observable side effects.

Section 5, presents a mathematical model of Apache Kafka, specific estimations for required cluster
resources, as well as Topic sizing guidelines depending on maximum tolerable end-to-end latency
and unavailability windows. It also provides a complimentary guideline for maintaining uniform
load across brokers when scaling the cluster.

Section 6 puts the previous sections into practice by performing a concrete case study of the DIEM
platform, an ecosystem that provides timely access to data for the energy Market in Greece and
the wider area, focusing on the restructuring of its real-time subsystem.
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3 Event-Driven Architectures

3.1 Microservices

Figure 1: Example of Microservices architecture [1].

Microservices are independently releasable services that are modeled around a business domain [2,
p. 3].

Such services encapsulate functionality and expose it to other services through the network using a
public abstracted interface. These services are then composed together in order to construct the
larger, more complex system [3] .

Microservices are treated as a black box, promoting the notion of information hiding. They maintain
a public network endpoint (REST/GraphQL/Queue/RPC) along with an explicit or implicit schema.
Other services communicate with them through the exposed endpoint, completely unaware of the
internal implementation details. This information hiding acts as a barrier, defining which part of
each Microservice is easy to change and what should stay backwards compatible [4, p. 36].

Each service is allowed to arbitrarily change any internal implementation functionality, as long as
this change doesn’t leak into the public interface. If it does, it does so in a backwards compatible
manner. At the extreme end, this information hiding allows each team to work with its preferred
and most productive technology stack. A consequence of this information hiding is the fact that
Microservices tend to not share databases, opting to maintaining different databases for each service.
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If shared state is required, it is often refactored to a separate service with an extra abstraction
layer on top.

Microservice Architecture vs Service-Oriented Architecture

The above description of Microservice Architecture is reminiscent of the older Service-Oriented
Architecture (SOA,[5] ). The difference is not so much technical as cultural. Service-Oriented Ar-
chitecture just like Microservice Architecture follows a generic service-based approach to monolithic
decomposition. Due to historical reasons, Service-Oriented Architecture is a term associated to
protocols like SOAP and the WS-* family of standards. Moreover, they are also associated to usage
of heavyweight, vendor-specific, Enterprise Service Buses [3] .

Microservice architecture can be thought of as an opinionated version of Service-Oriented Architec-
ture, favoring complete information hiding, lightweight inter-service communication protocols and
maintaining independent service life cycles.

Independent Deployability

In order to achieve proper team independence, it is paramount to enable teams to have their own
independent deployment schedules [2, p. 6] [4, p. 16] .

The alternative is to do system-wide microservice releases requiring complex synchronization
between the different teams which is error-prone and time-consuming.

Modularity

While beneficial in itself, independent deployability also forces the services to stay decoupled.
Synchronized releases can allow services to become tightly-coupled with all the disadvantages that
this entails. In contrast, requiring each team to independently release their managed services acts
as a modularity test, ensuring that each service can be changed without affecting other services.

Here we would like to stress that Microservice Architecture is not the only way to achieve modularity.
Modularity can also be achieved in monolithic applications by properly defining module boundaries
and forcing independent module releases [6] [7] .
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Figure 2: Modular Monolithic Architecture [2].
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In contrast, we can also have service-oriented architectures where services are not actually decoupled.

Figure 3: Services coupled to common database.

In the end, Microservice Architecture is a way to structure teams and keep their owned services
decoupled in order to minimize change propagation. The overhead of maintaining clear public
interfaces between services, and the networking nature of inter-service communications, introduces
is non-trivial and should be taken into account.
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Organized around Business Domains

Any organization that designs a system (defined broadly) will produce a design whose
structure is a copy of the organization’s communication structure. – Melvin Conway,
1968

It has traditionally been the case that team creation would be based on technology familiarity and
expertise. This naturally leads to a componentization of system functionality that mimics this
technology-based team specialization.

Figure 4: System architecture mirrors team structure [3].

Unfortunately, it is often the case that feature implementation spans across multiple technology
layers. In a traditional team setting, this means that complex inter-team cooperation must take
place, increasing communication and synchronization overhead.

15



Figure 5: Features typically span multiple layers [2].

In a Microservice architecture, team independence is key, as such the focus is shifting towards
cross-functional teams the structure of which mimics the business capabilities and therefore the
communication patterns that are required when implementing business functionality [8] [2, p. 3] .

This ensures that each service can be independently enhanced and maintained without losing time
and focus due to inter-team communication.

Figure 6: Cross-functional teams lead to independent services [3].
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Technology Heterogeneity

Figure 7: Each service can use its preferred technology stack [9].

Due to the information hiding nature of the Microservices Architecture, different services are free
to use their preferred technology stack as an implementation detail. This flexibility allows using
the best tools for a given job, without having to use a generic all-fits-one solution that ends up
being the lowest common denominator.

Resilience

Microservices operate under the assumption that external service dependencies communicate via
networking. As such, services must be able to handle all the different error conditions that occur due
to the networking nature of inter-service communication. Services can tolerate service dependency
unavailability by gracefully degrading service functionality. This, permits increased resiliency and
robustness in the case of a subset of the system’s services becoming unavailable.
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Scalability

Figure 8: Microservices can be scaled independently [3].

Since each service can be independently deployed and communicate over the network, we are free
to introduce multiple instances of specific services. We can then use these as backups in order to
increase resiliency in the face of unavailability, or perhaps put them behind a load-balancer or some
message broker in order to distribute load. More importantly, we have the freedom to scale each
service independently, this is not the case with a monolithic application architecture. This is an
important advantage and for this reason functional decomposition is considered one of the main
axes of scaling (Y-Axis, [10]).

Organizational focus

As previously discussed, decomposing system functionality into components owned by independent
teams, allows system functionality to be implemented without incurring heavy inter-team commu-
nication overhead. Since services are smaller in scope and more focused, the teams that own them
tend to be smaller and more productive as well.
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Disadvantages

Forcing communication through the network is a great way to create and maintain explicit
communication interfaces and properly decouple services from each other.

Unfortunately, this decoupling can frequently have consequences.

Main disadvantages of the Microservices Architecture stem from the extra complexity involved, as
well as issues inherent in distributed systems [11].

Technology overload

In order to enable Microservices, extra technology must be used. Service discovery mechanisms,
instance orchestration, message queues, log aggregators and observability tracing frameworks
must often be put into use in order to make Microservices viable. The technology flexibility that
Microservices permit can also lead to complexity explosion, making transitions between teams hard
and complicating the hiring process.

In-process vs Inter-process computational overhead

Microservices must run on difference processes, potentially on different hardware, and communicate
to each other through non-native communication channels that can span programming languages
and ecosystems.

Compared with communication between modules, inter-service communication is going to be slower
and less robust.

Increased interface complexity

Calling a procedure from another module can’t fail, due to the coupled nature of modules coexisting
in the same process. In contrast, communication though the network can always fail, requiring
countermeasures and introducing cognitive overhead that complicates the underlying application
logic.

Maintaining non-native interfaces is also more complex. The interfaces and protocols involved must
be communicated through an external mechanism and properly versioned. These are nonexistent
problems in architectures relying on homogeneous technology stacks.

Observability and troubleshooting

No matter the testing coverage, some problems are bound to be manifested in production. In
this case, being promptly notified and collecting enough data to be able to analyze and solve
the problem is of paramount importance. Instrumenting code that operates across different
technologies, ecosystems, runtimes, multiple instances and load-balancers is way harder compared
to instrumenting more monolithic systems. Efforts like the Open Telemetry initiative are promising
in this regard.
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3.2 Inter-Service Communication Patterns
In this section, we attempt to provide a high-level overview of inter-service communication patterns.
This overview is not meant to be exhaustive but instead serve as the basis for discussing event-based
communication, queues, and message brokers later on.

Synchronous - Blocking

Figure 9: Service sends a message to another services and synchronously waits for the response [2].

This pattern consists of a service sending a request to another service, and blocking until it gets a
request back before resuming execution. It is the default and most familiar style of inter-module
communication in monolithic applications. Procedure and library calls constitute synchronous
request-response communication. Relevant inter-service technologies include REST Apis and RPC
frameworks [2, p. 95].

interface Dependency {
public Response call(Request request);

};

...

void process(Dependency dependency) {

// request-processing-response
Response res = dependency.call(new Request(...));

continuation(res);
}

Advantages of this communication pattern is the straightforward control flow and familiar mental
model.

The main disadvantage of this pattern is the temporal coupling that it creates. In this case, request,
processing, and response are treated as a single operation. This means that the requesting
context execution time is bounded from below according to the sum of the request,
processing and response times.

In order to further discuss this issue and see how this is a problem mostly relevant to distributed
architectures, we will examine it from two different contexts. One is communication between
modules and the other is communication between services across a network.

A good example of inter-module communication is native procedure calls.

20



We can make the following observations:

• Request time is negligible and bounded.
• Processing time is often measurable and bounded.
• Response time is negligible and bounded.

Furthermore, in monolithic scenarios, there are usually no strict execution upper-bound requirement.
Of course, there are numerous counter-examples to this:

• Functions executed in GUI framework threads must have fast execution time in order to not
affect responsiveness.

• Audio processing applications have hard upper-bound requirements in order to not create
audible processing artifacts.

• Aviation System Control often have hard-real time requirements.

The above explain why synchronous request-response is such a good default communication style
for inter-module communication. There are no real availability issues in this context, in order
for a module to not be available the whole process must be down, making the requesting module
unavailable too.

The situation is more complex when it comes to inter-service communication through the network.
This is the typical Microservice communication style. Here the behavior is complicated by the
network medium and the dependency-service’s lifetime.

We can make the following observations:

• Request time depends on network and dependency lifetime and is therefore unbounded.
• Processing time is again dependent on dependency’s lifetime. It is unbounded, and even if

the service is highly available, it is still unwise to depend on its performance characteristics
since it can end up being owned by a separate team.

• Response time again depends on the network and is therefore unbounded.

We can often improve our infrastructure in order to reduce the network effects and availability
issues, but we don’t really want to do the same with the dependency-service’s lifetime.

Since it can be managed by an independent team, we would prefer to allow the team to manage that
service’s deployment, without having to worry about potential smart lived unavailability windows
transitively affecting dependent services.

Of course, each service should strive to be highly-available but in any case we would prefer to
decouple our service from the dependency-service’s availability guarantees.

Using synchronous-blocking communication, we can’t make easily achieve this goal. If a dependency
becomes unavailable at any point, our blocking call won’t be able to proceed making our service
unavailable until the dependency becomes available again.
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This can be very problematic in long chains of blocking inter-service calls.

Figure 10: Example of long inter-service communication chain [2].

The transitive nature of blocking request-response means that if any service becomes unavailable,
all services that are part of the chain become unavailable too.

The inherent issue of synchronous request-response is that request, processing, and response, are
bundled into a single action and implicitly create a hard dependency on all subsequent lines of
code.
...
void continuation(Response res) {

handleResponse(res);
otherOperations();

}

void process(Dependency dependency) {
Response res = dependency.call(new Request(...));
continuation(res);

}

Ideally, we would like to be able to remove this hard dependency and enable our service to execute
all logic that is not dependent on the response. We will explore this decoupling in the subsequent
section.
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Asynchronous - Nonblocking

Figure 11: Service can resume processing until response asynchronously arrives. The response can
arrive hours or days later without affecting the requesting service [2].

This communication pattern asynchronously handles the response of a request to the external
service [2, p. 98]. This allows the issuing service to resume execution without having to wait for
the response, reducing temporal coupling as a result .

Some types of asynchronous communication are:

• Communication through common data. In this case, services communicate through shared
state either through the filesystem, or some shared data store.

• Asynchronous request-response. This is a variation of the typical blocking request-response
pattern where requests are issued asynchronously. Communication occurs with a single
instance of the service-dependency.

• Event-Driven. This is a variation of the asynchronous request-response pattern where the
response is not required. Requests that don’t require a response are called events. Since
we don’t require a single response per event, we can send our events to multiple interested
instances and even to different services.
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Communication through common data

This pattern consists of services sharing some sort of state. This state can consist of files within a
shared filesystem, a shared database, or perhaps a distributed key-value store. Instead of directly
depending on each other, these services implicitly communicate by observing the changes that
occur to their shared state [12, p. 68].

Figure 12: Two services communicating through a shared database [2].

The advantages of this method lie in that it can enable older technologies to be integrated into a
Microservice architecture without having to introduce new technologies. It can also be especially
useful for inherent large-volume data sharing situations. In this case, simply uploading a multi-
gigabyte file to a shared filesystem, may be the best course of action [2, p. 101].

The main disadvantage, as discussed previously, is that shared state can lead to potential coupling
between the two services. Any change in structure in the data store can lead to breaking the
communication between the services.
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Asynchronous Request-Response

This is an alternative to the blocking request-response pattern. Instead of executing and waiting
for the remote call to finish, we can queue our request and asynchronously handle the response at
some other point.

The way this is achieved is by explicitly changing the invocation interface so that we supply a
response-dependent continuation when issuing the request:

interface Callback {
public void execute(Response response);

}

interface Dependency {
public void call(Request request, Callback callback);

};

...

void processOrder(Dependency dependency) {

// request-processing-response
dependency.call(new Request(...), new Callback {

void execute(Response response)
{

handleResponse(response);
}

});

otherOperations();
}

As a result of the above change, the service can resume doing otherOperations without having
to wait for the response.

We can also queue the actual request and handle its transfer in the background while properly
doing retries. This does not eliminate the coupling to the actual request time, but only mitigates it.
If the dependency is not available for enough time, queuing requests can end up consuming a lot of
memory and even lead to memory exhaustion. Practical implementations should make the queue’s
size bounded, this means that after some point the request would have to block. This means that
the calling site’s execution does not depend on processing and response time but is potentially
coupled to the request time. In any case, the issuing service does not exhibit the same number of
temporal coupling issues that it’s blocking counterpart does.

Duality of Blocking and Asynchronous Interfaces

It is worth mentioning that any blocking interface can be trivially converted to an
asynchronous interface and vice versa. In the case of the asynchronous interface, we
can use shared state between the response continuation and the issuing context and
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wait use it in order to block, waiting for the call to finish. In the case of a blocking
interface, we can use threading in order to schedule the remote call for completion in
the background. This of course does have performance consequences in the form of
increased state bookkeeping, scheduling overhead and resource contention when parallel
remote calls are active. A native asynchronous technology will naturally perform better
in this regard. In any case, taking advantage of asynchronous operations requires careful
software restructuring in order to benefit from removing the implicit dependency that
the blocking interface imposes.

Another interesting problem of this approach is what happens when the issuing microservice and
the dependency-service’s request/response throughput differ. In this case, the issuing microservice
can potentially overload the dependency-service. If the asynchronous interface is implemented by
using threading to wrap blocking calls in the background, this means that the internal queue used
to schedule the blocking calls will keep increasing until it reaches capacity, leading to a degradation
of service quality.

A potential solution to this problem is the introduction of Queue middleware between the two
services:

Figure 13: External queues can be used as buffers [2].

Using queues implies a native asynchronous interface. The issuing service does not communicate
with its dependency directly, instead it pushes the request to an external queue. Later on, when
the dependency service becomes available, it can read requests from the queue and then forward
the response to another queue which will subsequently be read by the issuing service [4, p. 88] [2,
p. 101]. [13]

The external queue can take advantage of disk storage in order to provide a better buffering service
than the issuing service can achieve internally. Monitoring can be used to notify teams when lag
accumulates noticeably. Other advantages of using queues, are increased message persistency in
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case any service goes down, as well as a limited form of service discovery. Regarding the latter, the
various services involved do not have to be aware of the actual services involved, they only have to
be aware of the queue service. Finally, the queue service can concentrate on being highly available
in contrast with the multiple other services. This alleviates the coupling issue of the issuing service
to the request time.

A problem with this request-response approach is the fact that the request-response relationship
is not natively maintained. One has to introduce specific metadata in order to link requests and
responses and use a separate persistent store in order to maintain these links without losing the
persistency advantages that queues provide.

In practice, this can be achieved by including correlation identifiers and ta separate database. Due
to the extra complexity involved when having to maintain the request-response relationship, there
is non-trivial cost in adopting this approach.

27



Event-Driven Communication

Figure 14: Example of event-based communication with multiple event subscribers [2].

This communication pattern involves sending messages to other services without expecting a
response. The fact that the service does not require responses has a very important consequence.
When requiring a response, there is an implicit association, where the receiving instance is also the
responding instance. This means that since we expect a single response, we implicitly impose a
one-to-one relationship between requests and receiving instances. If we don’t require a response,
then our messages can potentially reach multiple instances or even different services. Instead of
reaching out and sending a message to a single service, we can broadcast a message to a broad
topic abstraction where multiple listeners can subscribe to [14] [2, p. 108]. .

The interface as well as the code ends up being very simple without requiring complex control flow
changes.

interface OrderPackagedTopic {
public void publish(OrderPackaged event);

}

void processOrder(OrderPackagedTopic dependency)
{

//...
dependency.publish(new OrderPackaged{...});

}

28



Publish-Subscribe

This very powerful pattern consists of multiple listeners that subscribe to a type of published event
[15] .

It is enabled when using event-driven communication, since the event can be sent to multiple
listeners.

Figure 15: Storage service acts as a message broker.

In the above example, the storage service must maintain broker-like functionality integral to the
service. External services subscribe to the events produced by the service by reaching out to the
service and using its broker-specific protocol. This couples them to the service.

In addition, the storage service has to take care of internal queuing, retransmission of events in
case of failures as well as event persistency in case they didn’t manage to be transmitted in time.

This would also be the case for all similar use cases across different services.

Due to above reasons, it is worth splitting the broker functionality and package it as a separate
service. This service can focus on proper retransmission, high availability and persistency [12, p.
287] [16, p. 3] [4, p. 86] .
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Figure 16: Event-driven architecture using a specialized message broker service.

Another big advantage of using a separate message broker service, is that we can use this service
in order to break dependencies between other services. Instead of services reaching out to other
services in order to subscribe to events, they can instead reach out to the specialized message
broker service and subscribe to it. In the same spirit, any services that want to publish events, can
contact the message broker and send the events to it.
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Figure 17: Broker as central dependency and message hub.

One potential issue of this approach is that while we manage to decouple the services from each
other, we do however couple every service to the message broker.

This is often an acceptable compromise. In contrast with generic Microservices, the message
broker can be specialized with the sole goal of supporting high-availability and convenient message
semantics. This moves the burden of implementing such important functionality to a single service
that can be properly tested in isolation.

Due to the message broker being central to event-driven infrastructures, it can frequently act as a
single point of failure [17, p. 268] .

For this reason, understanding the exact safety and availability guarantees that a message broker
provides is of extreme importance.

In order to be able to ensure that messages kept in message brokers are not lost, message brokers
that attempt to take a central role in an event-driven architecture’s infrastructure, often rely on
redundancy in order to provide safety in the face of hardware and network issues.

Replicating a sequence of messages across different nodes fundamentally requires solving the
distributed Consensus problem. This is non-trivial and relying on unproven custom algorithms can
lead to destructive behavior during rare edge cases.

Using proven distributed Consensus algorithms such as Multi Paxos and Raft can help provide
specific guarantees which can be relied upon when designing event-based architectures [18, p. 386] .

A great advantage of the lack of responses is that we can use queues and have all the advantages
as discussed in the asynchronous request-response section without the large complexity that
request-response bookkeeping introduces.
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By changing the queue topology, we can often achieve various interesting communication schemes,
allowing queues to act as message brokers [19] .

Publish-subscribe can be implemented by providing exchanges that can pull messages from a queue
and send to multiple listeners. Not all queues provide exchanges-like functionality, however.

Figure 18: Queues along with exchanges can implement publish-subscribe.

Due to messages being extracted from the queue, Queue based message brokers can also trivially
achieve task processing functionality by distributing tasks to a set of workers that compete to
extract tasks from a queue [14] [20] .

Figure 19: Worker instances compete for extracting messages from a single queue.

An alternative to queues are log-based message brokers . Fundamentally, such brokers use append-
only logs in order to store published messages [18, p. 532]. Such logs abstractions can be mapped
efficiently to disk-based persistent storage [21] .

Consumers can directly fetch messages from these logs, fetching messages from top to bottom,
sallowing consumers to read messages in a first-in first-out fashion. This is sufficient for the basic
Publish-Subscribe use case.

Since logs are persistent, such message brokers can persist messages and consumers can re-consume
them if needed. This cannot be achieved by queues, which are fundamentally transient in nature.

A big advantage of log-based message brokers is the alignment of their fundamental log-based
model with distributed log replication.
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This is a well-studied problem, and known Consensus algorithms such as Raft can be used to
provably provide replication guarantees [22] .
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3.3 Command Query Responsibility Segregation and Event Sourcing
As we discussed in previous sections, sharing state between Microservices can create data coupling.
For this reason, individual Microservices tend to use their own independent data stores and present
a public API through which other Microservices, can issue commands and query state. This enables
the Microservice to freely change the implementation of the underlying data store.

Within the context of a single Microservice, state management has interesting implications. It is
often useful to present both Update and Query operations on the public API. These are typically
implemented in the underlying Microservice using the same data model.

Figure 20: Updates and Queries are served from the same underlying model [23].

A problem with this approach is that the load of Queries compared to Updates is often different,
with the Query endpoints usually receiving more traffic than the Update endpoints.

Furthermore, a Microservice may have to expose multiple Query interfaces that do not efficiently
map to the underlying model. Often multiple Queries come at odds with each other, being limited
by the single data model not being able to efficiently support all of them.

For the above reasons, it is frequently useful to separate the Update and Query data models .
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Figure 21: Updates and Queries are served from separate models [23].

This way, we can build the Query models in such a way that they efficiently map to their
corresponding operations .

Going on step further, we can host the Query and Update models on separate data stores and
perhaps on separate instances, allowing for independent scaling.

Figure 22: Updates and Queries models are hosted on different instances [23].

This pattern of separating the Update from the Query models is called Command Query Responsi-
bility Segregation [24] [25] .
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Keeping models in sync using event-based communication

At this point, the question arises of how we can keep the various Query models in sync with our
main Update model.

As the Query models are increased, this situation starts taking the form of Publish-Subscribe
communication.

Each verified Update must be transferred to multiple Query models, perhaps on separate instances, in
order for them to keep their data in sync. This is usually achieved with event-driven communication,
where Updates are transported as concrete events, to the various instances.

Event Sourcing

An interesting observation that we can make from the above discussion is that both the Update and
Query data model states are derived from the underlying verified Update events that correspond to
the commands issued through the Microservice’s API.

At the extreme end, we can view databases as efficient projections of a given event-stream at a
given point in time.

This view has led into the creation of a specific architectural pattern, that of Event-Sourcing [26]
[24] [18, p. 543] [14, p. 43] .

Figure 23: Event Sourcing as an architectural pattern [27].

Under Event-Sourcing, the fundamental source of truth is not the underlying database, but the
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actual event stream.

This event stream is persisted into some sort of Event Store. Using the event stream, multiple
projections can be derived from it, giving birth to aggregations, in-memory views, caches, concrete
materialized views and, possibly, derived event streams.

In the case that a service becomes unavailable, it can then subsequently reconstruct all its relevant
projections by replaying the events from the Event Store. In order for this to be done efficiently,
the Event Store has to support efficient snapshot functionality.

Another advantage of this pattern is that since events are persistent, they can also serve auditing
purposes. Furthermore, they can be used to fix incorrect derivations, perhaps in the case of
implementation errors.

Strict safety and ordering guarantees from the side of the Event Store are paramount for the proper
application of this architecture.

On-Demand Query models across Microservices

A big advantage of such event-based approaches is that we can transport the underlying high-level
event streams across different services.

This permits various Microservices to derive projections for their own specialized usage [18, p. 549]
[28] [29] .

Without permitting events to break the Microservice boundary, all dependent services would have
to rely on the service’s API supported Queries, putting the burden of maintaining them to the
owning service.

Event-based communication can help decouple such services from a given service’s API while
permitting them to construct specialized projections of a given event stream themselves.

Eventual Consistency

A problem of applying CQRS and Event Sourcing is that due to different models consuming events
at a different pace, such patterns can often only achieve eventual-persistency [30] [31] .

This in turn, creates complications for use cases requiring strict data consistency, limiting their
usage as global architectural patterns.
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4 Apache Kafka

4.1 History
Created initially by LinkedIn and subsequently open-sourced, Apache Kafka advertises itself as a
modern event streaming platform, meaning a platform that facilitates the general management and
high-throughput production, consumption, transfer, and processing of event-based data.

Kafka can act as a highly available and resilient publish/subscribe system while also providing
persistence for event sourcing use cases and also covering real-time processing.

The term streaming is used to differentiate Kafka from other traditional Batch-processing frame-
works, focusing on its real-time processing capabilities.

LinkedIn initially wrote Kafka [32] [17] in order to address various important data pipeline issues:

• Handle the transmission and processing of the growing amount of real-time events produced
between its various services.

• Unify the different data pipelines within the LinkedIn infrastructure.

As a result, Kafka was built with specific attributes in mind:

Foremost, the biggest goal was throughput in order to support the growing number of data, as well
as scalability in order to be able to scale for the future.

In order to properly decouple producers and consumers without introducing performance penalties,
a mixed Push-Pull communication style was chosen Consumers initially poll, but also allow the
server to subsequently push batched data within configurable limits.

Another important requirement was for Kafka to be flexible enough to cover multiple use case
scenarios. As a result, Kafka is flexible towards its balance between consistency, throughput and
availability, throughput and latency, persistence and infrastructure cost, parallelization and message
ordering [33].

This makes Kafka a very configurable system, where different parameters can drastically affect its
behavior and guarantees.

Kafka went open-source in 2010 and graduated from the Apache Software Foundation incubator
project in 2012. It is currently used in some of the biggest data pipelines in the world [34] .
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4.2 High Level Overview

Figure 24: High-Level operational model of Apache Kafka.

This section gives a high-level overview of Kafka as well as introduce some minimal terminology
that will be of help in the subsequent sections.

Partitions

Kafka at its core can be thought of as a distributed collection of logs. Each log exists on a potentially
different server and consists of a sequence of key-value pairs. Each key-value pair has an associated
position within the log called the message offset.

These logs in Kafka terminology are called Partitions

Consumers and Producers

Client applications speaking Kafka’s binary communication protocol can query the cluster for
metadata as well as fetch messages from each partition or produce messages to them by putting
the messages at the end of the log.

Clients that consume messages are called Consumers and those that produce messages are called
Producers

Producers chose the partition a message should go to and then contact the server responsible for
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the partition, requesting that the message will be put at the end of the log, and getting a response
regarding the request’s status.

Consumers query messages by polling the server responsible for the partition and then specifying
the message offset within the partition. They also specify the minimum and maximum data of the
response and keep the communication channel open so that the server can immediately notify them
when the data is available.

Consumers can query the messages in any order, but the most natural way is to read the partitions
from top to bottom, effectively doing a First-In-First-Out traversal of the partition.

Due to the ordered nature of a partition, consumers reading the partition will receive messages in
the same order as they were appended to the log.

Any number of consumers can read from the same partition, effectively allowing for Pub-
lish/Subscribe communication patterns.

Replicas

For availability and safety reasons, Kafka keeps potentially multiple copies of a simple Partition.
These copies are called Replicas and will be discussed in detail along with Leader election.

Topics

In order to be able to scale throughput, Kafka uses collections of Partitions that contain the same
type of messages. These collections of partitions are called Topics.

Producers send each message to a partition within a given Topic, while Consumers can read from
any number of partitions within a Topic.

Consumer Groups

Finally, in order to be able to scale consumer throughput, Kafka uses the concept of Consumer
Groups. These are groups of consumers that Kafka itself manages and assigns partitions to, such
that each partition is only assigned to a single Consumer.

In the following sections, we will discuss each concept in detail and also look into the various
configuration options of Kafka and how these affect the system’s behavior as well as safety and
availability guarantees.
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4.3 Setup
Kafka is a distributed system in nature.

In order to be able to experiment with different Configurations and see how Kafka behaves in
practice, we are going to need a proper cluster with multiple Kafka servers.

Kafka also currently requires Zookeeper as a dependency, which itself is a distributed service. At the
time of writing an alternative feature that removes Zookeeper as a dependency, the Quorum-Based
Controller, is announced as production ready.

All of this can non-trivial to set up and operate and for this reason we decided that for reproducibility
reasons we utilize the Docker containerization framework and Docker Compose specifically.

Docker Compose allows us to compose multiple containerized services while declaratively changing
their configuration.

The goal is to help anyone that wishes to reproduce our examples by automatically orchestrating
the management, fetching and instantiation of the various required Docker images.

Docker will also be used for the tools that we will use in order to administer the cluster as well as
produce and consume messages. This way, one doesn’t need to download and install any tools in
order to follow the examples.

All code samples used in this thesis, as well as all different Docker configurations, will be available
in the accompanying GitHub repository

For demonstration purposes, one can initialize a Kafka cluster by going to the Docker folder on
our repository and invoking docker compose up. The -d flag allows us to run the docker compose
process in the background.

cd docker
docker compose up -d

This will instantiate a group of containers including a single Zookeeper node, 3 Kafka servers as
well as various other tools for log collection and monitoring.

The Zookeeper server is exposed as a running service in our host server on port 2181, while the
different Kafka servers are exposed in the following way:

Docker Service Host Port Broker ID
kafka-0 9092 0
kafka-1 9093 1
kafka-2 9094 2

All other sections will assume an already initialized cluster.

In the following examples, we will be using some specific tools in order to perform basic administra-
tion and visualization tasks.
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One useful Swiss-army-knife of Kafka tools is kcat. It can be used for basic cluster visualization, as
well as consuming and producing to Topics and specific Partitions.

We will use edenhill/kcat docker image in order to invoke kcat without having to install it directly:

docker run -it --network=host edenhill/kcat:1.7.1

We will also take advantage of various native tools that Kafka itself provides. Kafka bundles these
in the Kafka distribution’s bin directory. We can use the bitnami/kafka that is also present in our
Docker setup in order to access these tools without having to download the Kafka distribution and
install the necessary Java libraries.

These tools can be invoked by running the bitnami/kafka image which includes the Kafka
distribution’s bin folder in its PATH variable, allowing us to run the tools directly:

docker run -it --network=host bitnami/kafka:3.1 KAFKA_TOOL.sh

In order to avoid specifying the docker part of all these tools repeatedly, we advise using command
aliases:

alias docker-kcat="docker run -i --network=host edenhill/kcat:1.7.1"
alias docker-kafka="docker run -it --network=host bitnami/kafka:3.1"
docker-kcat --help
docker-kafka kafka-topics.sh --help

We include a file named aliases.sh in the docker folder containing such aliases, which can be
directly sourced for convenience:

cd docker
source scripts/aliases.sh

In the subsequent sections, we will be using these aliased commands.

Finally, in our docker setup, we also include Kowl, a web application that can be used to visualize
and administer a Kafka cluster. We will not discuss Kowl in depth in this thesis, but it is provided
so that interested readers can use it as an alternative visualization source to the terminal based
commands.

Kowl is exposed on port 8080, so readers can point their browser to localhost:8080 in order to
access it.
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4.4 Partitions
At the heart of Kafka lies the concept Partitions.

Figure 25: Messages being sent to multiple Partitions [35].

Each partition consists of a sequence of messages, where each message has an associated offset in
the sequence [16, p. 33] . Producers append messages to the end of the sequence, while Consumers
read messages by specifying their starting offset in the sequence.

Partitions in reality are concrete binary log files along with their indices and are hosted in servers
[17, p. 207] .

The partitions use their associated Topic as a naming prefix. We will look into Topics in detail
later on, for now topics can be thought of simply as prefixes when it comes to the partitions.

In order to examine Partitions we will start by using the native Kafka tool kafka-topics.sh in
order to create a topic of a single partition.

As with every Kafka tool, we need to specify the Bootstrap Servers that the tool will attempt to
initially contact in order to fetch metadata and retrieve information about the whole Cluster [16, p.
131] .

We remind readers that our docker setup exposes our Kafka servers on ports 9092, 9093, 9094 so
we can use any subset of them as bootstrap servers.
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docker-kafka kafka-topics.sh --bootstrap-server localhost:9092 \
--create --topic test --partitions 1

>>
Created topic test

At this point, we can either use kafka-topics.sh itself to retrieve partition information:

docker-kafka kafka-topics.sh --bootstrap-server localhost:9092 --describe

>>
Topic: test TopicId: 91r3O5DUQV2BWwBqHZUiIQ
PartitionCount: 1 ReplicationFactor: 3
Configs: min.insync.replicas=2,segment.bytes=1073741824

Topic: test Partition: 0 Leader: 1 Replicas: 1, 2, 0 Isr: 2, 0, 1

Or use kcat :

docker-kcat -b localhost:9092 -L -u

>>
Metadata for all topics (from broker 0: localhost:9092/0):
3 brokers:
broker 0 at localhost:9092
broker 2 at localhost:9094 (controller)
broker 1 at localhost:9093

1 topics:
topic "test" with 1 partitions:

partition 0, leader 1, replicas: 1, 2, 0, isrs: 2, 0, 1

The same info can also be found in Kowl by browsing to Cluster > Topics > test > Partitions

At this point, I would like to advise readers to ignore the replicas and isrs portions of the
command output. These will be explained in detail in Replication. In contrast, I would like to
focus on the leader column, which specifies the Leader of the partition, meaning the Kafka server
that is responsible for this partition [17, p. 16] .

We note that the leader for partition test-0 is the server with ID 1

We will now append some messages to the test-0 partition by using kcat .

docker-kcat -b localhost:9092 -P -t test -p 0 -K:
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>>
k1:msg1
k2:msg2
k3:msg3
^D

Flag -P specifies that we want to produce to the partition, flag -t specifies the topic, flag -p
specifies the partition and -K specifies the key delimiter. Keys are part of Kafka messages and are
used by Producers in order to choose the concrete partition that each message will be sent to.

They are also used in Log Compaction which we will discuss in detail later.

Under the covers, kcat uses the binary Kafka protocol to fetch metadata from the bootstrap
servers, discover the leader of the specified partitions and then send Produce requests to them
including the messages.

The leader server may use zero-copy techniques in order to immediately append the messages to
the underlying partition log [21] .

We can now connect to the container of the server with ID 1 in order to see how Kafka actually
stores partitions. All runtime data in Kafka by default is stored in the /tmp/kafka-logs folder.

cd docker
docker compose exec -it kafka-1 bash
cd /tmp/kafka-logs && ls

>>
cleaner-offset-checkpoint meta.properties replication-offset-checkpoint
log-start-offset-checkpoint recovery-point-offset-checkpoint test-0

A few notes about these files :

• cleaner-offset-checkpoint [36] Contains information regarding current cleaning progress.
• meta.properties [37] Contains simple metadata that Kafka reads on startup for restoration

purposes.
• replication-offset-checkpoint [38] Is the file which Kafka uses to track which messages

were successfully replicated to other servers. See Replication for more details.
• log-start-offset-checkpoint [39] Is a file containing the low water mark of assigned

partitions. Basically the smallest offsets that consumers can consume from this server.
• recovery-point-offset-checkpoint [39] Is the file where Kafka tracks which messages

were successfully checkpointed to disk. See Replication for details on what it means to
checkpoint messages.

• test-0 Is what interests us at the moment. It’s a directory containing information about
the partition 0 of topic test . A server may be assigned various partitions of different
topics, in this case the server will contain multiple such directories.

We can now cd to the test-0 directory and inspect it’s contents:
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$ cd test-0 && ls
00000000000000000000.index 00000000000000000000.timeindex partition.metadata
00000000000000000000.log leader-epoch-checkpoin

A few notes about these files:

• partition.metadata Is just a metadata file containing metadata meant to avoid split-brain.
• 00000000000000000000.log Is the actual log file containing the messages of the partition.
• 00000000000000000000.index Is an index file used to efficiently find the position of a

message in the binary log given a message offset.
• 00000000000000000000.timeindex Is an index file used to efficiently find the position of a

message in the binary log given a timestamp.
• leader-epoch-checkpoint Is another file containing the last known leader of the partition.

Used to avoid split-brain.

We can use the native kafka-dump-log.sh Kafka tool from within the server to visualize the
contents of both the log and the index files:

$ kafka-dump-log.sh --files 00000000000000000000.index
>>
...
$ kafka-dump-log.sh --files 00000000000000000000.timeindex
>>
...
$ kafka-dump-log.sh --files 00000000000000000000.log --print-data-log
>>
Dumping 00000000000000000000.log
Starting offset: 0
baseOffset: 0 lastOffset: 2 count: 3 baseSequence: -1
lastSequence: -1 producerId: -1 producerEpoch: -1 partitionLeaderEpoch: 0
isTransactional: false isControl: false position: 0
CreateTime: 1652541195236 size: 100 magic: 2 compresscodec: none crc: 613208378
| offset: 0 CreateTime: 1652541195236 key: k1 payload: msg1
| offset: 1 CreateTime: 1652541195236 key: k2 payload: msg2
| offset: 2 CreateTime: 1652541195236 key: k3 payload: msg3

I would also like to acknowledge that all three binary files can actually be split into segments. This
is discussed in Log Retention

As we can see, the log file contains the messages previously produced using kcat in the same order
we specified them.

We can now exit from the Kafka server and use kcat as a consumer in order to read the messages
in the test-0 partition:

$ docker-kcat -b localhost:9092 -C -u -t test -p 0 -K:
k1:msg1
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k2:msg2
k3:msg3
% Reached end of topic test [0] at offset 3
^C

The consumer under the covers, uses the Kafka protocol to fetch metadata, discover the server
responsible for the partition (except when using rack-aware fetching, [40]) and then use Fetch
requests to directly read messages from the underlying partition log [17, p. 194].

We notice that after the consumer consumes the last message, it keeps an open connection to the
server. It specifies to the server the minimum and maximum amount of bytes required to notify
it after getting new messages. So in essence Kafka consumers use a Push Pull model in order to
communicate with the Server, allowing for decoupling but also reducing latency in case of new
messages [33].

Each consumer is independent, and we can spawn multiple consumers reading from the same
partition in parallel.

Since we have discussed the basics of operation, now it’s a nice opportunity to also look into what
happens when we have multiple partitions and a consumer fetches messages from both of them.

We create another topic named test2 with 2 partitions:

docker-kafka kafka-topics.sh --bootstrap-server localhost:9092 \
--create --topic test2 --partitions 2

We then send a few messages to both of them:

docker-kcat -b localhost:9092 -P -t test2 -p 0 -K:
k1-1:msg1-1
k1-2:msg1-2
k1-3:msg1-3
^D

docker-kcat -b localhost:9092 -P -t test2 -p 1 -K:
k2-1:msg2-1
k2-2:msg2-2
k2-3:msg2-3
^D

Then a consumer may read messages from any of them, getting messages in the same order they
were produced:

docker-kcat -b localhost:9092 -C -u -t test2 -p 0 -K:
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>>
k1-1:msg1-1
k1-2:msg1-2
k1-3:msg1-3

docker-kcat -b localhost:9092 -C -u -t test2 -p 1 -K:

>>
k2-1:msg2-1
k2-2:msg2-2
k2-3:msg2-3

A consumer may also read from multiple partitions simultaneously. We will only specify the topic,
forcing kcat to read from all partitions under the topic prefix:

docker-kcat -b localhost:9092 -C -u -t test2 -K:

>>
k2-1:msg2-1
k2-2:msg2-2
k2-3:msg2-3
k1-1:msg1-1
k1-2:msg1-2
k1-3:msg1-3

We get the messages of test2-1 before the messages of test1-1 even though we produced them
in the reverse order. The consumer fetches messages in parallel from the separate partitions, which
means that messages only maintain a strict ordering with respect to messages only in the same
partition, total order of messages across partitions is not maintained [16, p. 33] .

It’s very possible depending on the batching that Kafka performs to get a result such as:

>>
k2-1:msg2-1
k1-1:msg1-1
k1-2:msg1-2
k2-2:msg2-2
k2-3:msg2-3
k1-3:msg1-3
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4.5 Log Retention
Kafka so far has been presented as an append-only distributed log service. This however, raises
concerns about its storage requirements.

Retaining newer events is certainly very useful, Publish-Subscribe communication becomes trivial
under this model and events can be audited and processed multiple times as needed.

After some point, however, some events will have been fully processed in all relevant services and
their reprocessing will not be as relevant anymore. It would be a waste for Kafka to retain all such
events forever. If Kafka did not have retention policies, logs would be unbounded and disk storage
requirements would quickly become prohibitive.

For this reason, Kafka supports both time-based and storage-based retention policies, as well as
two specific deletion policies that we will explore in detail.

In Partitions we discussed that Kafka keeps messages in binary .log files along with its indices.
An extra detail that we skipped is that these log files can be segmented.

Each segment is named after the offset of the first message that it contains and also has its own
index files. All appends affect only the latest active segment.

After either enough time passes, or after the active segment reaches a certain size, then the current
active segment becomes inactive, and a new active segment is rolled out. Inactive segments can
serve reads, but no writes.

0 1 2
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V0 V1 V2
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Value

00000.log

00000.index
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00003.index

00003.timeindex

6 7

K6 K7
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00006.index

00006.timeindex
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Figure 26: Partitions as multiple segments.

The time limit, after which a new active segment is rolled out, is controlled by the log.roll.hours
and log.roll.ms configuration options.

The maximum segment size after which a new segment is rolled out, is controlled by the
log.segment.bytes configuration option.

After an active segment becomes inactive, it is then subjected to the retention settings that are in
place. Kafka supports both size and time based retention, and both apply independently. Both
settings apply to segment files, not individual messages, marking them as expired.
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With time-based retention, one can put an upper limit after which a segment file and its indices
will be affected by the chosen cleanup policies.

Relevant configuration options are:

• log.retention.ms
• log.retention.minutes
• log.retention.hours

An important detail is that the settings for time-based retention like we mentioned apply only to
inactive segments. Moreover, the settings apply to the last modified time of each segment, which is
usually the time when a segment turns inactive. This means that actual retention time may be
significantly larger than these settings, especially on low-throughput topics.

As an example, imagine having set log.roll.hours = 168 which is also the default. Then we
also set log.retention.hours = 240 with the intention to expire messages after 10 days. If the
per-partition throughput is low enough, a new active segment rollout, may not happen until the
configurable setting of 168 hours 7 days is up. Only then will the retention setting kick in, resulting
in messages expiring after 17 days instead of 10.

Alternatively, one can configure the maximum size of each partition in order to enforce a soft
upper limit on disk storage. This can be hard to properly use since the topic-level behavior differs
depending on the number of partitions and does not take peaking days/hours into account. It is
disabled by default.

Relevant configuration option is: - log.retention.bytes

Cleanup Policies

These policies serve to define how Kafka will handle segments after the retention settings have
marked them as expired. There are currently two policies, Delete and Compact and are controlled
by the log.cleanup.policy configuration option.

Log cleaning is enabled by setting the log.cleaner.enable configuration option. If disabled, no
cleanup takes place and nothing happens to expired segments. By default, cleanup is enabled.

Delete Policy

This policy is pretty straightforward, any expired segments are simply deleted. One can
also add an extra delay after a segment becomes expired and before being deleted using the
log.segment.delete.delay configuration value.

Compaction Policy

The compaction policy allows for a specific record-based retention behavior.

Instead of deleting whole segments, compaction goes through inactive segments and deletes
“outdated” messages, keeping the latest message with a given key instead.
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Figure 27: Compaction removes “outdated” entries [17].

Compaction also works across segments, merging them in the process.

Relevant configuration options are:

• log.cleaner.min.cleanable.ratio — the minimum ratio of the non-compacted partition size
to the total partition size in order for a partition to be eligible for cleaning. It acts as a
throttling mechanism due to compaction being resource-intensive.

• log.cleaner.min.compaction.lag.ms — prevents segments newer than a minimum duration
from being compacted. The default value is 0, implying there is no minimum time that an
inactive segment will persist before it may be compacted.

• log.cleaner.max.compaction.lag.ms — the max duration that a segment may idle before being
compacted. Typically used with low-throughput topics.

• log.cleaner.delete.retention.ms — the extra duration that the tombstone records are persisted
before being deleted. We will discuss tombstone records below.

Tombstone messages are messages with a key and a null value. They can be used to
denote record deletions. When the compaction cleaner comes across a tombstone message and
log.cleaner.delete.retention.ms time elapses, then the tombstone message is deleted,
allowing from proper deletion of specific keys from the resulting compacted event stream.
log.cleaer.delete.retention.ms will ensure that delayed Consumers will have an extra
chance to notice the deletion event before the cleaner removes it completely.

This compaction policy is especially useful for record-based message streams where values correspond
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to entities and keys correspond to primary keys. It is meant to serve Event Sourcing scenarios [27] ,
with compaction taking the place of snapshots. Given enough time, compaction will attempt to
ensure that any given entity identifier used as key will correspond with a single / most recent value.
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4.6 Replication
We briefly mentioned that when clients want to either consume or produce messages to a Partition,
they use the metadata fetched using the Kafka protocol in order to find the server responsible for
the given Partition and then send further requests to it. We remind readers that this server that is
responsible for the Partition is called the Leader for that partition.

It is important to discuss what happens if, for any reason, a Kafka Server becomes unavailable.
This could happen for a multitude of reasons, including hardware server problems, networking
issues or even due to manual intervention, for example due to turning off the server for maintenance
reasons.

In this case, a window of unavailability is created for all clients of any partitions of which the server
is the Leader.

Another very significant issue is the fact that Kafka does not immediately write received
messages to the disk, even if it acknowledges them.

For performance reasons, Kafka uses memory-mapped files under the scenes and periodically flushes
them to disk. This means that if a Server goes down unexpectedly, there is a very real possibility
that messages that were just received successfully from Producers, will not have the chance to be
persisted. As a result, these messages will be completely lost when the Server goes down [16, p.
215] [17, p. 196] .

Figure 28: Acknowledged messages not flushed.
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Figure 29: Server crashes losing non-flushed messages.
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Figure 30: Server recovers with missing messages.

Kafka in order to provide message safety guarantees allows us to specify a number of copies of each
partition. This is done on the Topics level – which we haven’t discussed in detail yet. The copies of
a partition are called Replicas, and the Replica in the Leader server is called the Leader replica.

We can think of the Leader replica as the main source of truth for a partition. Clients only
communicate directly with the Leader replica. The rest of the replicas fetch messages from the
Leader in the background using the same Fetch requests as normal Consumers, and then append
these messages to the end of their own logs. These partition copies are called Follower replicas [17,
p. 189].
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Figure 31: Example of Leader and Follower replicas [41].

Having discussed the basic mechanism of replication, we can now focus on how Kafka behaves
when a server becomes unavailable.

When Kafka detects that the Leader of a partition does not communicate with the Cluster, it
starts a Leader election process, where the Follower replicas synchronize and attempt to elect a
new Leader between them. After a new Leader is elected, clients automatically redirect their traffic
to it.

At this point an important question arises, what if the new Leader has not managed to copy all
messages from the previous Leader? How does this affect the cohesion of the messages?

Initially, we discuss what happens from a Consumer’s point of view:

The Leader replica keeps track of the latest message offset that was successfully replicated to all
(This is not completely true, see In-Sync-Replicas later on) the Follower replicas. This is called the
High Watermark.
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Figure 32: Leader and Followers all in-sync [41].

Figure 33: Not all messages are replicated, log end offset differs from High Water Mark [41].

Figure 34: High water mark points to the latest committed message.
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Only messages up to the High Watermark are available for consumers to fetch, messages that have
not been fully replicated, are not visible to the Consumers.

This way cohesion from the point of Consumers is ensured, any messages not available to all
Replicas, including the new Leader, would not be visible in the first place.

If any messages were fetched before the Leader election, then that means that they were fully
replicated, so they will also be available in any new elected Leader.

Things from a Producer’s point of view are more complicated.

Depending on the use case, a consumer may not be fully interested in the safety and/or cohesion of
its messages.

For instance, we can think of a Producer publishing sensor measurements to Kafka.

Figure 35: Sensor data is collected and transferred to a home automation UI [42].

In this case, losing messages is most likely not a big issue.

In cases where message delivery and safety is not essential, a producer may be more interested
in total throughput and may not want to pay the price of waiting for an acknowledgment before
sending a new message.

On the other hand, we can think of a video sharing application where videos are uploaded on a
storage service.

Figure 36: Service notifies other services that a video has been uploaded [43].
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When a video is uploaded to the storage service, the service would publish an event notifying
downstream services that a new video is available. Those in turn would fetch the new video and
perform further processing, resuming the full upload process.

In this scenario, it would be extremely problematic if the storage service did not have any guarantees
about the safety of it’s transmitted events.

In order to be able to cover such different use cases, Kafka allows Producers to configure the
acknowledgment behavior of the Cluster [16, p. 214] [17, p. 189].

This capability is exposed through the acks configuration parameter.

The acks configuration parameter has 3 possible values:

• acks=0

Figure 37: acks=0 does not wait for acknowledgment [44].

In this case, the Producer is not interested in what happens to a sent message. It does not
expect any acknowledgment at all from the Cluster, it doesn’t even attempt to verify if the
message has reached the Cluster. As such, it can resume sending messages immediately,
achieving very high throughput. Of course, there are no guarantees about the safety of the
messages.

• acks=1

This has traditionally been the default setting, creating issues for inexperience Kafka users
(This is no longer the case since Kafka 3 ). With this setting, the Cluster sends an acknowl-
edgment to the Producer as soon as the message arrives at the Leader replica of the message’s
target partition. We remind readers that messages are not immediately persisted. It is
therefore possible that a message arrives at the Leader, the Leader sends the acknowledgment
to the unsuspecting Producer client, but then the server goes down before the message has
been persisted or replicated to another Replica, losing the acknowledged message in the
process. The Producer will think that the message has been successfully persisted, but the
message would be lost and unavailable to any Consumers. As such, we would like to stress
that this configuration parameter does not provide any real safety guarantees. Its
only advantage compared to the acks=0 setting is that the Producer can get information
about the offset that the message will be persisted, which can occasionally be useful. The
producer achieves lower throughput compared to the acks=0 setting since it has to wait for
the acknowledgment message before resuming.
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• acks=all

With this setting, the Leader server will respond with acknowledgment to the Producer if and
only if the message is successfully transmitted (not persisted) to all (This is not completely
true, see In-Sync-Replicas later on) Replicas. This allows us to have some concrete safety
guarantee about our messages. Specifically, if the Leader sends an acknowledgment back to
the Producer, and we have N + 1 replicas for a given partition, then we can guarantee that
our messages will persist even with up to N replica server losses (again, this is not completely
true, see the following In-Sync-Replicas section more details). The downside of this setting is
that the Producer will have to wait for the message to be successfully replicated to all replicas.
This means that they have to wait for the slowest of all the replicas to catch up before getting
an acknowledgment and resuming production, severely reducing its total throughput.

At this point, we would like to stress that the total end-to-end latency does not change with
any of the different options, since Consumers in any case will not see any messages that are not
fully replicated. What is affected is Producer throughput due to waiting for acknowledgments
between sending different messages. Even this can be mitigated by waiting for acknowledgments
asynchronously and retrying sending messages, this however is not always applicable depending on
the message ordering and delivery requirements.

The fact that acks=1 has traditionally been the default setting is an unfortunate historical artifact,
it is important however to keep note of since it severely reduces the safety guarantees. After Kafka
version 3, acks=all is the default Producer configuration, since message safety is usually more
critical than Producer throughput and the end-to-end latency is not impacted.

At this point I would like to address all the notes acknowledging the inaccuracy of the above claims.

I want to start by making a few observations about the above specified behavior.

We discussed that Consumers will not be able to read messages as long as those have not been
fully replicated. In the same spirit we said that Producers, when operating under the acks=all
configuration setting, will get an acknowledgment from the Leader only after the message has been
fully replicated.

Replica assignment to different Kafka servers, only occurs during topic creation (or manual
re-assignment) and the set of replicas is fixed.

What changes afterwards, is their availability status as well as which of them is designated as the
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Leader.

At this point, we have to discuss, how is it possible that the partition stays available if any server
goes down. After all, as long as full replication implies replication to the whole initial replica set,
then full replication cannot take place as long as one server is not available.

This means that Producers operating under acks=all would not get a reply, while the High
Watermark would not be increased and the messages would not become visible to the consumers.

Another issue regarding the acks=all setting is how slow replicas affect acknowledgment latency.
We can imagine that a single replica falls too far behind when it comes to replication. This may
occur due because it just restarted after a big window of unavailability, due to temporal network
issues, or perhaps due to operational load impacting its replication speed.

The mechanism that Kafka provides in order to address the above issues is that of the In-Sync-
Replicas set. This is a dynamic subset of the initial full replicas set that keeps track of all the
replicas that are sufficiently in-sync with the Leader replica of the partition [45] [46] [41].

What sufficiently means in this case is configurable. The relevant configuration parameter is
replica.lag.time.max.ms which defines the upper bound on the time that a Follower replica has not
reached the Leader partition’s log end offset.

In the Partitions section, we advised readers to ignore the replicas and isrs initials in the
kafka-topics.sh ’s --describe as well as kcat ’s output. These can now be understood
as the initial full replicas set and the dynamic In-Sync-Replicas set, respectively.

It is now an appropriate time to address the inaccuracy notes of the previous section.

Full replication in the context of the High Watermark advancement and acks=all configuration
setting refers to the In-Sync-Replicas set not the initial full replica set.

Let’s examine acks=all in detail.

In the below example, the partition has a replication factor of 4. Only replicas in servers 1,2 and 3
are sufficiently in-sync. Server 4 is not part of the in-sync replica set. As a result, server 1 which is
currently the Leader only waits for servers 2 and 3 to replicate the message 6 before responding
with acknowledgment to the Producer.

Figure 38: Message has been replicated in two out of three in-sync replicas [45].
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Figure 39: Message is replicated in three out of three in-sync replicas but has not been replicated
in out-of-sync fourth replica. Producer receives acknowledgment [45].

In similar spirit, the leader replica waits only for the followers that are part of the current In-Sync-
Replicas set to replicate a message before increasing its High Watermark.

The In-Sync-Replicas set basically allows Kafka to reduce the total acknowledgment latency and
increase the availability of the partition. If a replica becomes unavailable, it will eventually be
removed from the In-Sync-Replicas set and the Leader will resume sending acknowledgments and
increasing the High Watermark, making the messages visible to the Consumers.

This behavior is in direct opposition to the simple safety guarantees that we discussed
in the acks=all configuration option

We previously discussed that having a replication factor of N + 1 allows an acknowledged message
to persist even with up to N replica losses. This is not entirely true in the presence of the
In-Sync-Replicas set.

We revealed that with acks=all a message does not have to be replicated to all replicas, instead it
only requires to be replicated to the replicas that are part of the current In-Sync-Replicas set.

With our current formulation of the In-Sync-Replicas set, we have no constraints on the number of
its members. The set can be shrunk indefinitely, for example after a chaining reboot of the replica
servers, in the worst case it can end up with just a single member – that of the current Leader. In
this case, the acks=all behavior becomes effectively indistinguishable to the acks=1 setting, losing
all its safety guarantees in the process.

Below we show a concrete example, We have 3 servers and a replication factor of 3. Two of the
servers have gone offline, ending up with a single member in the In-Sync-Replicas set – the Leader.
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Figure 40: min.insync.replicas=1 - no replication safety limit. Producer receives unsafe
acknowledgment, due to the message being replicated to all replicas, in this case just the Leader
[46].

In this case, the leader will immediately respond to the Producer with an acknowledgment, since
it has successfully replicated the message to all servers in the current In-Sync-Replicas set – that
is, itself. This however, just like in the case of acks=1, means that in the case of Leader failure,
acknowledged messages will most likely be lost.

Figure 41: Leader crashes. Producer has received acknowledgment but message may be missing
after recovery [46].

What is needed in this case is a mechanism that allows us to balance the availability and safety of
messages. Kafka provides such a mechanism in the form of the min.insync.replicas configuration
option.
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This configuration parameter basically sets the minimum required members that the In-Sync-
Replicas set should have before the Leader responds with an acknowledgment under the acks=all
setting.

In the below example, we again have a replication factor of 3 and a min.insync.replicas value of
2. When only the Leader is available, it does not acknowledge the messages, since the current
In-Sync-Replicas set does not have the required size and is therefore deemed unsafe to do so.

Figure 42: min.insync.replicas=2 - requires at least 2 replications for acknowledgment. Avoids
acknowledging in the unsafe situation of just the Leader being available [46].

The default value of min.insync.replicas is 1. This is done so that single server clusters can work out
of the box. Unfortunately, this can hurt unsuspecting production configurations if not kept in mind,
especially those that explicitly set the Producer acks configuration parameter to all, thinking that
their message safety is guaranteed without this being the case like the above example demonstrates.

At this point it would be useful to properly recap the guarantees that Kafka actually provides taking
into account the In-Sync-Replicas set along with the min.insync.replicas configuration parameter
[17, p. 218] [47] .

• A producer cannot have any real guarantees about the safety and coherence of its sent
messages unless it has been configured with acks=all

• In this case min.insync.replicas = N + 1, guarantees no message loss for up to N replica
failures.

• If min.insync.replicas = N + 1 and N ≤ replication factor ≤ 2N , Kafka can take advantage
of the In-Sync-Replicas mechanism in order to remove the slow partitions from the set and
successfully increase acknowledgment speed as well as read availability. In the case of N
failures, message will survive and reads of existing messages will still be served, unfortunately
there won’t be enough replicas to left to meet the requirements of the min.insync.replicas
parameter and therefore writes won’t be acknowledged until enough partitions restart and
join the In-Sync-Replicas set. We therefore achieve message safety and read availability, but
no write availability in the worst case.
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• If min.insync.replicas = N + 1 and replication factor ≥ 2N + 1, Kafka provides message
safety, as well as read and write availability even in the case of N replica failures. Even if N
of the current replicas set go offline, there will still be enough replicas available to join the
In-Sync-Replicas set.

From the above, it’s obvious that we require at least 2 servers in order to guarantee any sort of
message safety.

The takeaway is that if we want to be able to withstand N server failures we need
min.insync.replicas = N + 1 which also implies at least N + 1 servers.

If we don’t care for full write availability in the worst case, we can have any number of servers
from N + 1 to 2N with more servers potentially permitting improving acknowledgment latency in
erroneous scenarios.

If we want both safety and full write availability in the worst case, we require at least 2N + 1
servers.

Finally, for completeness, it’s worth mentioning another relevant configuration parameter – un-
clean.leader.election.enable

This parameter specifies what happens when all partitions part of the In-Sync-Replicas set become
unavailable. If we are interested in availability then we can enable this parameter, in which case
Kafka will attempt to elect a leader that is not part of the In-Sync-Replicas set, which will most
likely result in data loss. If we care about message safety and consistency, then we disable this
parameter which prevents Kafka from doing another Leader election, unless a member of the last
In-Sync-Replicas set becomes available again. This provides safety but reduces availability of the
partition in extreme cases. By default, this parameter is disabled.
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4.7 Topics
Topics are a very central Kafka abstraction. While Partitions constitute the basic building block,
Topics act as the basic operational primitive for most clients, meaning that most clients act at
the Topic level instead of the Partition level. Topics sacrifice some of the ordering guarantees of
Partitions in order to allow for both Producer and Consumer total throughput scaling.

In order to discuss Topics and the whole machinery around them, we first have to specify a
throughput problem and see how a simple pattern involving multiple Partitions permits us to
overcome it. Topics can be directly derived as a realization of this pattern, outsourcing the hard
implementation part to Kafka itself.

The problematic scenario involves two entities. A single Producer operating at maximum speed
and a single Partition. The write-throughput is limited not by the Producer but by the inherit
network and more importantly, Disk throughput. The Producer waits for acknowledgment before
producing new messages, effectively throttling its production rate. In the specific scenario, we can
see that the Partition write-throughput is saturated at 500 Mb/s even though the Producer can
operate up to 1 GB/s.

Partition 1

500 Mb/s

Producer
1 GB/s

500 Mb/s

Figure 43: Throughput is limited due to storage throughput.

The main issue here is the fact that we have saturated the disk where the Partition is located.
Scaling the server’s disk is not sustainable, and we can’t depend on optimizing the Producer further,
since it is not operating at full capacity in any case. Our only way forward is through horizontal
scaling.

A solution to this problem is to introduce another Partition, residing in a different Disk, and then
have the Producer send half messages to the initial Partition and half to the new Partition. The
new Partition can reside either on a different disk in the same Server if available, or within a
different Kafka server.
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Partition 1

500 Mb/s

Producer
1 GB/s

500 Mb/s

Partition 2

500 Mb/s

500 Mb/s

Figure 44: Throughput is maximized by splitting message stream to multiple storage.

By splitting the load to multiple disks, we can linearly scale our total write throughput. This
approach of splitting/partitioning a single message stream to multiple partitions also gives us a
great way to scale read-throughput, as we will discuss next.

Let’s extend our initial problem by also including a single Consumer, fetching and processing
messages from the single Partition:

Partition 1

500 Mb/s

Producer
1 GB/s

Consumer
250 Mb/s

500 Mb/s 250 Mb/s

Figure 45: Message throughput limited by storage, lag is created due to slow consumer.
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Due to inherent processing load, this Consumer can only achieve a processing and therefore read-
throughput of 250 Mb/s. This means that the Consumer will start lagging behind the Producer,
resulting in increasing lag, at the rate of 500 Mb/s - 250 Mb/s = 250 Mb/s.

After scaling to two partitions, write-throughput increases but read-throughput does not, resulting
in even larger lag at the rate of 500 Mb/s

Partition 1

500 Mb/s

Producer
1 Gb/s

500 Mb/s

Partition 2

500 Mb/s

500 Mb/s

Consumer
250 Mb/s

125 Mb/s

125 Mb/s

Figure 46: Write-throughput is maximized by utilizing multiple partitions. Consumer throughput
is not increased due to inherent consumer processing power, lag is further increased.

In order to also scale read-throughput, we can use multiple instances of the Consumer node and
assign different partitions to them. In the above example, we can increase read-throughput by a
factor of 2 by introducing another Consumer node.

Partition 1

500 Mb/s

Producer
1 Gb/s

500 Mb/s

Partition 2

500 Mb/s

500 Mb/s

Consumer
250 Mb/s

250 Mb/s

250 Mb/s

Consumer
250 Mb/s

Figure 47: By assigning multiple partitions to multiple consumers, total read-throughput can be
increased, lag is decreased.

The above unfortunately does not eliminate lag. In order to completely eliminate lag, we need
another 500 Mb/s of read throughput. We can achieve this by using 2 more partitions as well as 2
more Consumer instances.
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Consumer
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Partition 4

500 Mb/s

250 Mb/s

Consumer
250 Mb/s

250 Mb/s

Consumer
250 Mb/s

250 Mb/s

250 Mb/s

250 Mb/s

Figure 48: With enough partitions and consumers, topic throughput is maximized, read-throughput
matches or exceeds write-throughput and lag is eliminated.

This pattern of using multiple Partitions to split a single message stream and assigning multiple
Consumers to different Partitions, has first-class support from Kafka via the mechanism of Topics.

A Topic is a collection of Partitions that all keep messages of the same type. Producers split their
message streams to these Partitions, increasing write-throughput, non-mutual subsets of these
partitions can be assigned to multiple Consumers in order to increase read-throughput.
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Figure 49: Topics as a collection of Partitions.

We discuss the ordering consequences of splitting a single message stream to multiple partitions
in the Partitioning And Message Ordering section. The automatic assignment of topic-managed
Partitions to Consumer instances is covered in Consumer Groups.
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4.8 Partitioning And Message Ordering
In Topics we discussed how multiple Partitions can be used in order to increase total topic
throughput. One side effect of this pattern is how it affects the total message ordering at the
topic-level.

In Partitions we saw that ordering within a single Partition is naturally maintained. Consumers
will retrieve messages in the same order they were stored in the underlying Partition log. As we
briefly discussed, this total ordering is not maintained when consuming from multiple partitions.
Instead, messages across different partitions will be intermixed with each other, only maintaining
the ordering across a single Partition.

In this section, we take a closer look into the Producer partitioning mechanics and the message
ordering guarantees that Kafka gives us at the topic level.

Figure 50: Operational model of Producer and Partitioner.

When Producers want to send a message to a topic, then they either chose the Partition directly or
they use a Partitioner in order to decide on which topic-partition the message should be sent to.
The default Partitioner uses the key part of a Kafka message in order to decide which partition the
message should be sent to. The default behavior is to either assign messages in a Round-Robin
fashion in case of a null key, or, hash the key and derive the partition number by using the modulo
operation [17, p. 67] [16, p. 166] .

This implies that given a single a key, changing the number of Partitions changes the concrete
Partition that a message will be mapped to. This will be important later on when we talk about
Apache Kafka Modeling, Cluster and Topic Sizing.
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Since, depending on the key, messages end up on different partitions, Consumers that fetch messages
from these partitions in parallel will not receive the messages in the same order as they were
originally produced.

Producer

1 2 3 4 5 6 7 8

Partitioner

Partition 1

Partition 1

1 3 5 7

2 4 6 8

Consumer

5 7
1 3

2 4

6 8

Figure 51: Messages that are sent to different partitions can be consumed out-of-order.

The only guarantee that Consumers have is that messages that ended up on the same partition
will be read in order. As such, we can also conclude that Producers control message ordering by
choosing the key for each message. Messages with the same key will end up on the same partition.
Topics use this weaker ordering guarantee in order to be able to scale throughput.

We will use a concrete example in order to demonstrate this behavior and get intuition about how
keys can be used to ensure message ordering.

Let’s imagine that we want to create a system that provides sport event feeds. The events themselves
for simplicity use the following naive schema:

{"tournament-id" : id, "match-id" : id, "event" : num }

If the producer uses the match-id as a key, then all messages with a given match-id will end
up on the same partition. Therefore, Consumers can guarantee that all events regarding a single
match will always be fetched in order.

Figure 52: Using match-id as a key ensures proper ordering at the match level.
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Let’s now think what would happen if we also wanted to introduce a tournament-wide feed.
Unfortunately, if we used the match-id as a key, then we would only guarantee ordering within
a single match. Events of different matches would end up in different Partitions, and therefore,
would lose their relative ordering.

In the below example, we can observe how the events of Tournament 2 arrive in the wrong order in
the Tournament 2 feed. Specifically, the events of Tournament 2’s match 2 arrived before those of
match 1.

Figure 53: Using match-id as a key does not ensure ordering at the tournament level.

In order to tackle this problem, the Consumer could use some inherent information within the
event in order to deduce the original ordering and manually reorder the messages. This, is not
always applicable in practice due to missing information, but also due to performance reasons.

Another solution here is for the Producer to use the tournament-id field as a key instead.

Figure 54: Using tournament-id as a key ensure proper ordering at both tournament and match
level.

In this case, all messages regarding a tournament will end up in the same Partition, ensuring their
relative ordering.

This property of message ordering according to their key as well as the deep importance of the acks
parameter along with replication factor and min.insync.replicas parameters of the topic, leads us
to the conclusion that the Producer should take ownership of the Topic.
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At this point, we are equipped enough in order to put Topics and message ordering in practice. We
will reproduce the above tournament events example using our setup.

We begin by creating two topics, match-events and tournament-events

docker-kafka kafka-topics.sh --bootstrap-server=localhost:9092 \
--create --topic match-events --partitions 6

docker-kafka kafka-topics.sh --bootstrap-server=localhost:9092 \
--create --topic tournament-events --partitions 6

We begin by creating a producer-messages.txt file which describes the events which we’ll send.

{ "tournament-id": 1, "match-id": 1, "event": 1 }
{ "tournament-id": 1, "match-id": 1, "event": 2 }
{ "tournament-id": 1, "match-id": 2, "event": 1 }
{ "tournament-id": 1, "match-id": 2, "event": 2 }
{ "tournament-id": 1, "match-id": 3, "event": 1 }
{ "tournament-id": 1, "match-id": 3, "event": 2 }
{ "tournament-id": 1, "match-id": 4, "event": 1 }
{ "tournament-id": 1, "match-id": 4, "event": 2 }
{ "tournament-id": 1, "match-id": 5, "event": 1 }
{ "tournament-id": 1, "match-id": 5, "event": 2 }
{ "tournament-id": 1, "match-id": 6, "event": 1 }
{ "tournament-id": 1, "match-id": 6, "event": 2 }

{ "tournament-id": 2, "match-id": 1, "event": 1 }
{ "tournament-id": 2, "match-id": 1, "event": 2 }
{ "tournament-id": 2, "match-id": 2, "event": 1 }
{ "tournament-id": 2, "match-id": 2, "event": 2 }
{ "tournament-id": 2, "match-id": 3, "event": 1 }
{ "tournament-id": 2, "match-id": 3, "event": 2 }
{ "tournament-id": 2, "match-id": 4, "event": 1 }
{ "tournament-id": 2, "match-id": 4, "event": 2 }
{ "tournament-id": 2, "match-id": 5, "event": 1 }
{ "tournament-id": 2, "match-id": 5, "event": 2 }
{ "tournament-id": 2, "match-id": 6, "event": 1 }
{ "tournament-id": 2, "match-id": 6, "event": 2 }

Using the above file as a template, we create two other files, match-keyed-producer-messages.txt
and tournament-keyed-producer-messages.txt

These will include the above messages along with their associated keys, which will use = as a
separator.

For match-keyed-producer-messages.txt we use the match-id field as a key while for tournament-
keyed-producer-messages.txt we use the tournamnet-id field.

We begin with match-keyed-producer-messages.txt:
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1={ "tournament-id": 1, "match-id": 1, "event": 1 }
1={ "tournament-id": 1, "match-id": 1, "event": 2 }
2={ "tournament-id": 1, "match-id": 2, "event": 1 }
2={ "tournament-id": 1, "match-id": 2, "event": 2 }
3={ "tournament-id": 1, "match-id": 3, "event": 1 }
3={ "tournament-id": 1, "match-id": 3, "event": 2 }
4={ "tournament-id": 1, "match-id": 4, "event": 1 }
4={ "tournament-id": 1, "match-id": 4, "event": 2 }
5={ "tournament-id": 1, "match-id": 5, "event": 1 }
5={ "tournament-id": 1, "match-id": 5, "event": 2 }
6={ "tournament-id": 1, "match-id": 6, "event": 1 }
6={ "tournament-id": 1, "match-id": 6, "event": 2 }

1={ "tournament-id": 2, "match-id": 1, "event": 1 }
1={ "tournament-id": 2, "match-id": 1, "event": 2 }
2={ "tournament-id": 2, "match-id": 2, "event": 1 }
2={ "tournament-id": 2, "match-id": 2, "event": 2 }
3={ "tournament-id": 2, "match-id": 3, "event": 1 }
3={ "tournament-id": 2, "match-id": 3, "event": 2 }
4={ "tournament-id": 2, "match-id": 4, "event": 1 }
4={ "tournament-id": 2, "match-id": 4, "event": 2 }
5={ "tournament-id": 2, "match-id": 5, "event": 1 }
5={ "tournament-id": 2, "match-id": 5, "event": 2 }
6={ "tournament-id": 2, "match-id": 6, "event": 1 }
6={ "tournament-id": 2, "match-id": 6, "event": 2 }

And we send it using the Producer mode of kcat :

cat match-keyed-producer-messages.txt \
| docker-kcat -b localhost:9092 -t match-events -K=

We can imagine how match-events consumers may continuously fetch the messages and immedi-
ately update the feeds that correspond to each match.

We use kcat as a consumer in order to see the order of received messages. The output is not
deterministic, since it depends on which servers each partition resides in, as well as network latencies
and batching of produced messages.

We use the -f format string flag in order to print partition and keys along with the consumed
messaged.

docker-kcat -b localhost:9092 -C -u -t match-events \
-f "partition: %p, key: %k - %s\n"
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>>>

partition: 1, key: 2 - { "tournament-id": 1, "match-id": 2, "event": 1 }
partition: 1, key: 2 - { "tournament-id": 1, "match-id": 2, "event": 2 }
partition: 1, key: 3 - { "tournament-id": 1, "match-id": 3, "event": 1 }
partition: 1, key: 3 - { "tournament-id": 1, "match-id": 3, "event": 2 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 2, "event": 1 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 2, "event": 2 }
partition: 1, key: 3 - { "tournament-id": 2, "match-id": 3, "event": 1 }
partition: 1, key: 3 - { "tournament-id": 2, "match-id": 3, "event": 2 }
% Reached end of topic match-events [1] at offset 8
partition: 4, key: 4 - { "tournament-id": 1, "match-id": 4, "event": 1 }
partition: 4, key: 4 - { "tournament-id": 1, "match-id": 4, "event": 2 }
partition: 4, key: 5 - { "tournament-id": 1, "match-id": 5, "event": 1 }
partition: 4, key: 5 - { "tournament-id": 1, "match-id": 5, "event": 2 }
partition: 4, key: 6 - { "tournament-id": 1, "match-id": 6, "event": 1 }
partition: 4, key: 6 - { "tournament-id": 1, "match-id": 6, "event": 2 }
partition: 4, key: 4 - { "tournament-id": 2, "match-id": 4, "event": 1 }
partition: 4, key: 4 - { "tournament-id": 2, "match-id": 4, "event": 2 }
partition: 4, key: 5 - { "tournament-id": 2, "match-id": 5, "event": 1 }
partition: 4, key: 5 - { "tournament-id": 2, "match-id": 5, "event": 2 }
partition: 4, key: 6 - { "tournament-id": 2, "match-id": 6, "event": 1 }
partition: 4, key: 6 - { "tournament-id": 2, "match-id": 6, "event": 2 }
% Reached end of topic match-events [4] at offset 12
% Reached end of topic match-events [2] at offset 0
% Reached end of topic match-events [0] at offset 0
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 1, "event": 1 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 1, "event": 2 }
partition: 5, key: 1 - { "tournament-id": 2, "match-id": 1, "event": 1 }
partition: 5, key: 1 - { "tournament-id": 2, "match-id": 1, "event": 2 }
% Reached end of topic match-events [3] at offset 0
% Reached end of topic match-events [5] at offset 4

We see that after hashing all messages with keys 2 and 3 were sent to partition 1, those with keys
4,5,6 were sent to partition 2 and those with key 1 were sent to partition 5.

Likewise, we also observe that the total order of messages is not preserved, only the messages
within each partition keep their relative ordering.

Since we used match-id as the key, all events of a single match will end up on the same partition,
keeping the relevant ordering. Therefore, the consumers can just immediately update the relevant
feeds without having ordering issues.

If a consumer wanted to provide a tournament-wide event feed, this keying scheme will not be
good enough. In the above example we can observe that for both tournaments 1 and 2, events with
match-id arrive after all other events even though they were produced first.

Another option is to use tournament-id as a key. We create tournament-keyed-producer-
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messages.txt:

1={ "tournament-id": 1, "match-id": 1, "event": 1 }
1={ "tournament-id": 1, "match-id": 1, "event": 2 }
1={ "tournament-id": 1, "match-id": 2, "event": 1 }
1={ "tournament-id": 1, "match-id": 2, "event": 2 }
1={ "tournament-id": 1, "match-id": 3, "event": 1 }
1={ "tournament-id": 1, "match-id": 3, "event": 2 }
1={ "tournament-id": 1, "match-id": 4, "event": 1 }
1={ "tournament-id": 1, "match-id": 4, "event": 2 }
1={ "tournament-id": 1, "match-id": 5, "event": 1 }
1={ "tournament-id": 1, "match-id": 5, "event": 2 }
1={ "tournament-id": 1, "match-id": 6, "event": 1 }
1={ "tournament-id": 1, "match-id": 6, "event": 2 }

2={ "tournament-id": 2, "match-id": 1, "event": 1 }
2={ "tournament-id": 2, "match-id": 1, "event": 2 }
2={ "tournament-id": 2, "match-id": 2, "event": 1 }
2={ "tournament-id": 2, "match-id": 2, "event": 2 }
2={ "tournament-id": 2, "match-id": 3, "event": 1 }
2={ "tournament-id": 2, "match-id": 3, "event": 2 }
2={ "tournament-id": 2, "match-id": 4, "event": 1 }
2={ "tournament-id": 2, "match-id": 4, "event": 2 }
2={ "tournament-id": 2, "match-id": 5, "event": 1 }
2={ "tournament-id": 2, "match-id": 5, "event": 2 }
2={ "tournament-id": 2, "match-id": 6, "event": 1 }
2={ "tournament-id": 2, "match-id": 6, "event": 2 }

And send them to the tournament-events topic.

cat tournament-keyed-producer-messages.txt \
| docker-kcat -b localhost:9092 -t tournament-events -K=

Then we read the messages.

docker-kcat -b localhost:9092 -C -u -t tournament-events \
-f "partition: %p, key: %k - %s\n"

>>>

% Auto-selecting Consumer mode (use -P or -C to override)
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 1, "event": 1 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 1, "event": 2 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 2, "event": 1 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 2, "event": 2 }
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partition: 1, key: 2 - { "tournament-id": 2, "match-id": 3, "event": 1 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 3, "event": 2 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 4, "event": 1 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 4, "event": 2 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 5, "event": 1 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 5, "event": 2 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 6, "event": 1 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 6, "event": 2 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 1, "event": 1 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 1, "event": 2 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 2, "event": 1 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 2, "event": 2 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 3, "event": 1 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 3, "event": 2 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 4, "event": 1 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 4, "event": 2 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 5, "event": 1 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 5, "event": 2 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 6, "event": 1 }
partition: 1, key: 2 - { "tournament-id": 2, "match-id": 6, "event": 2 }
% Reached end of topic tournament-events [2] at offset 0
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 1, "event": 1 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 1, "event": 2 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 2, "event": 1 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 2, "event": 2 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 3, "event": 1 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 3, "event": 2 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 4, "event": 1 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 4, "event": 2 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 5, "event": 1 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 5, "event": 2 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 6, "event": 1 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 6, "event": 2 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 1, "event": 1 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 1, "event": 2 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 2, "event": 1 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 2, "event": 2 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 3, "event": 1 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 3, "event": 2 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 4, "event": 1 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 4, "event": 2 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 5, "event": 1 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 5, "event": 2 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 6, "event": 1 }
partition: 5, key: 1 - { "tournament-id": 1, "match-id": 6, "event": 2 }
% Reached end of topic tournament-events [0] at offset 0
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% Reached end of topic tournament-events [1] at offset 24
% Reached end of topic tournament-events [4] at offset 0
% Reached end of topic tournament-events [5] at offset 24
% Reached end of topic tournament-events [3] at offset 0

Here we can see that due to hashing, all messages with key tournament-id=1 were sent to partition
5 while all messages with key tournament-id=2 were sent to partition 1.

We observe again that total event ordering is not maintained. Events of tournament 2 arrived
before events of tournament 1 even though they were produced in the reverse order.

Because we used tournament-id as a key, all events of a given tournament will end up on the
same partition, keeping their relative ordering. This scheme would support both the single match
and tournament-wide feeds.

Finally, we note the different approaches that we can use to observe the above messages.

First, we can use the native Kafka tool, kafka-console-consumer.sh

docker-kafka kafka-console-consumer.sh --bootstrap-server=localhost:9092 \
--topic tournament-events --from-beginning

docker-kafka kafka-console-consumer.sh --bootstrap-server=localhost:9092 \
--topic match-events --from-beginning

Or by using Kowl to query the messages

Finally, we can also directly use kafka-dump-logs.sh to directly read the binary log of the given
partitions directly.

We will use match-events Partition 1 as an example.

We use kcat ’s query mode to find the leader of Partition 1.

docker-kcat -b localhost:9092 -L -u -t match-events

>>>

Metadata for match-events (from broker 0: localhost:9092/0):
3 brokers:
broker 0 at localhost:9092
broker 2 at localhost:9094 (controller)
broker 1 at localhost:9093

1 topics:
topic "match-events" with 6 partitions:

partition 0, leader 2, replicas: 2, 0, 1, isrs: 2, 0, 1
partition 1, leader 1, replicas: 1, 2, 0, isrs: 1, 2, 0
partition 2, leader 0, replicas: 0, 1, 2, isrs: 0, 1, 2
partition 3, leader 2, replicas: 2, 1, 0, isrs: 2, 1, 0
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partition 4, leader 1, replicas: 1, 0, 2, isrs: 1, 0, 2
partition 5, leader 0, replicas: 0, 2, 1, isrs: 0, 2, 1

We can see that the Leader of Partition 1 is the Kafka Server with id=1 . Looking at our Setup
this corresponds to docker instance kafka-1 .

We connect to it using

docker compose exec -it kafka-1 /bin/bash

We then cd to the /tmp/kafka-logs/match-events-1 directory.

cd /tmp/kafka-logs/match-events-1
ls

>>>
00000000000000000000.index 00000000000000000000.timeindex partition.metadata
00000000000000000000.log leader-epoch-checkpoint

And then use kafka-dump-log.sh in order to inspect the partition.

kafka-dump-log.sh --print-data-log --skip-record-metadata \
--files 00000000000000000000.log

>>>

Dumping 00000000000000000000.log
Starting offset: 0
baseOffset: 0 lastOffset: 7 count: 8 baseSequence: -1 lastSequence: -1
producerId: -1 producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false
isControl: false position: 0 CreateTime: 1651419238773 size: 517 magic: 2
compresscodec: none crc: 3756381328 isvalid: true
| key: 2 payload: { "tournament-id": 1, "match-id": 2, "event": 1 }
| key: 2 payload: { "tournament-id": 1, "match-id": 2, "event": 2 }
| key: 3 payload: { "tournament-id": 1, "match-id": 3, "event": 1 }
| key: 3 payload: { "tournament-id": 1, "match-id": 3, "event": 2 }
| key: 2 payload: { "tournament-id": 2, "match-id": 2, "event": 1 }
| key: 2 payload: { "tournament-id": 2, "match-id": 2, "event": 2 }
| key: 3 payload: { "tournament-id": 2, "match-id": 3, "event": 1 }
| key: 3 payload: { "tournament-id": 2, "match-id": 3, "event": 2 }

Before we conclude this section, we deem important to discuss a small edge case regarding the
ordering of Producer messages sent synchronously to a single Partition.
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When producing messages, Kafka internally queues the messages and sends them in batches for
performance reasons. [33].

In order to increase throughput, Kafka Producers may send multiple batches back-to-back before
waiting for their individual acknowledgment.

The number of batches that Kafka may wait for acknowledgment in parallel, is controlled by the
max.in.flight.requests.per.connection configuration parameter.

If the parameter is larger than 1 (the default is 5), this can lead to the following scenario in the
case of synchronous acknowledgment.

• The producer sends two batches, batch 1 and batch 2.
• Batch 1 for some reason fails to be delivered, batch 2 is delivered successfully.
• Batch 1 is automatically retried, resulting in batch 1 being delivered to the server after batch

2.
• Batch 1 will end up being appended to the Partition after Batch 2, resulting in the wrong

message ordering.

Figure 55: Parallel in-flight requests may result in incorrect message ordering.

There are two solutions for the above issue, either limit max.in.flight.requests.per.connection to 1,
or enable Kafka’s idempotence semantics. The latter is the preferred approach. We will discuss
more about idempotency in a later section.

Concluding this section, Topics allows us to take advantage of multiple partitions in order to
increase throughput horizontally. In order to do so, we have to sacrifice some of our total ordering
guarantees. Keys can be used in order to specify which messages should end up on the same
Partition, ensuring that messages with the same key, will always be consumed in the correct order
among each other. As a result, choosing the correct key-scheme is very important, since it defines
the ordering guarantees of the whole topic. Moreover, changing the key-scheme is not recommended,
since already produced messages will not be converted to the new key-scheme, leading to message
ordering issues. This makes selecting the proper key-scheme essential to get right from the start.
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4.9 Kafka Consumer Groups
In the Topics section, we introduced a throughput problem and we saw how using multiple Partitions
can help increase throughput.

The final solution we ended up with had the following topology:

Partition 1

500 Mb/s

Producer
1 Gb/s

250 Mb/s

Partition 2

500 Mb/s

Consumer
250 Mb/s

250 Mb/s

250 Mb/s

Consumer
250 Mb/s

Partition 3

500 Mb/s

Partition 4

500 Mb/s

250 Mb/s

Consumer
250 Mb/s

250 Mb/s

Consumer
250 Mb/s

250 Mb/s

250 Mb/s

250 Mb/s

Figure 56: Throughput properly scaled using 4 partitions.

In Partitioning And Message Ordering we looked at how Producers can produce messages at the
Topic level and discussed the ordering guarantees when Consuming messages. In this section we will
concentrate on the Consumers part of the above topology and specifically the Partition assignment.

In theory, we could create Consumers and assign them specific Partitions manually. While possible,
this approach is very error prone and requires a lot of machinery in order to work correctly. Let’s
discuss some of the design issues in this domain.

First of all, like we will see at Apache Kafka Modeling, Cluster and Topic Sizing, due to ordering
restrictions it is best to not change the initial amounts of Partitions within a Topic. Because
having a lot of Partitions is not very problematic until we get to larger numbers, it is often a good
idea to over-commit when creating Partitions with topics ending up with tens or even hundreds of
Partitions. In this case we rarely need to introduce as many Consumers as Partitions in order to
provide the necessary read-throughput. Most pipelines use just a few Consumers that are assigned
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multiple Partitions and then more are added as read-throughput requirements are increased, rarely
reaching capacity.

As a result, when more Consumers are added, Partitions have to be re-assigned to all Consumers.
This means that we have to somehow keep track of the progress across all the assigned partitions
for each Consumer, then after a re-assignment occurs all Consumers read the previous progress of
their newly assigned Partitions and resume from that Point. Thus we have to introduce some sort
of global state were all Consumers can keep track and read each others’ progress.

The same should happen when removing Consumers. This includes error cases where some Consumer
is stalled or unavailable. It would be a good idea to detect such cases, and automatically revoke the
assigned Partitions from these Consumers, evenly re-assigning them to the remaining Consumers.

All of the above functionality is provided by Kafka via the concept of Consumer Groups [17, p.
103] [16, p. 31] .

Figure 57: Consumers that are part of a consumer group are exclusively assigned partitions.

A Consumer Group is a Kafka-managed group of Consumers. Kafka keeps track of every Consumer
in the group and administrates the automatic assignment of Partitions to them, properly taking
care of Consumer additions/removals including automatic removals due to Consumers stalling or
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becoming unavailable. Each Partition and therefore each of their messages is only assigned to a
single Consumer in the whole group.

Figure 58: Showcase of consumer group assignments at different group sizes [48].

This means that the maximum amount of Consumers within a Consumer group is equal to the
number of Partitions of the given Topic. In this case any excess Consumers will not be assigned
any partitions while all the others will be assigned a single Partition. This case is usually rare since
Topics should be over-partitioned at creation.

Figure 59: Partitions being assigned to single Consumer Group of two Consumers [49].

Different consumer groups act independently of each other.
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Figure 60: Partitions being assigned to multiple Consumer Groups [49].

When a Consumer is either added or removed from the Consumer Group (due to unavailability,
stalling or more often manually), then Kafka re-assigns the unavailable Consumer’s Partitions to
the other Consumers that are part of the group. This is done in order to not stall these Partitions’
processing and evenly redistribute the load.
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Figure 61: Assignment changes after a Consumer is added to a Consumer Group [49].

This procedure is called Rebalancing and requires complex synchronization between the different
consumers. More specifically, since Partitions can be revoked from a Consumer and assigned to
another, some form of progress tracking is required in order for the new Consumer to know where
to resume the processing, without reprocessing or skipping messages. This implicitly requires some
form of shared state between the Consumers.

Kafka achieves this by using an offset commitment mechanism from the Consumers’ side.
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Figure 62: Committed partition offsets of each consumer group are tracked independently [50].

Each time a consumer processes a message of a partition, it commits the message’s offset to Kafka.
Kafka uses an internal topic in order to provide the shared state.

When a partition is newly assigned to a Consumer, then the Consumer reads the last committed
offset that corresponds to the Partition, and resumes fetching and processing the messages from
that offset onward.

This mechanism can also be useful in the case of a single Consumer. In that case, the Consumer
does not have to use local state in order to keep track of it’s processing and can instead piggyback
on the Consumer Group’s offset commitment functionality. This way, it can connect and disconnect
without losing track of the processing progress.

At this point, we can connect to our cluster in order to build intuiting. We begin by creating a
topic with name test and 10 partitions.

docker-kafka kafka-topics.sh --bootstrap-server localhost:9092 \
--create --topic test --partitions 10

At this point we can also use a separate native Kafka utility, kafka-verifiable-producer.sh ,
that allows us to produce messages to a given topic with a specific message throughput.

docker-kafka kafka-verifiable-producer.sh --bootstrap-server localhost:9092 \
--topic test --throughput 3

This specific producer will send 3 messages each second to the topic test, randomly choosing the
partition that each message will be sent to. Since the topic has 10 Partitions, then the per-Partition
throughput will be 0.3 msg/s.

For this example, we have manually implemented a rate-limited-consumer client using the
librdkafka bindings for Node.js . This consumer explicitly consumes messages at a specified rate.
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The code is provided in the accompanying code repository.

cd simple-consumers/node/rate-limited-consumer
BUILD_LIBRDKAFKA=0 npm install
npx ts-node src/main.ts --help

We can imagine that the emulated consumption rate is actually due to the inherent processing load
of the consumer.

npx ts-node src/main.ts -b localhost:9092 -t test -g test-group -r 1

With the above snippet, we create a rate limited consumer, we add it to the new consumer group
with name test-group and we specify a total read-throughput of 1 msg/s from the topic test.

As a result, it won’t be able to meet the total topic throughput requirements, and it will start to
lag behind the topic.

At this point, the consumer is the sole member of the consumer group and will therefore be assigned
all of its Partitions.

We can observe this by using the native Kafka utility kafka-consumer-groups.sh

We can list the different groups available with

docker-kafka kafka-consumer-groups.sh --bootstrap-server localhost:9092 --list

>>>

test-group

And we can observe details about the different groups by using the --describe flag,

docker-kafka kafka-consumer-groups.sh --bootstrap-server localhost:9092 \
--describe --group test-group

>>>

GROUP TOPIC PARTITION OFFSET END LAG CONSUMER-ID HOST
test-group test 6 71 83 12 4bdd..7cdc /172.22.0.1
test-group test 0 75 93 18 4bdd..7cdc /172.22.0.1
test-group test 7 60 73 13 4bdd..7cdc /172.22.0.1
test-group test 5 68 85 17 4bdd..7cdc /172.22.0.1
test-group test 8 72 87 15 4bdd..7cdc /172.22.0.1
test-group test 1 53 62 9 4bdd..7cdc /172.22.0.1
test-group test 4 64 80 16 4bdd..7cdc /172.22.0.1
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test-group test 9 58 67 9 4bdd..7cdc /172.22.0.1
test-group test 3 72 88 16 4bdd..7cdc /172.22.0.1
test-group test 2 65 80 15 4bdd..7cdc /172.22.0.1

Another alternative is to use Kowl

The above output specifies which consumer instance each partition is assigned to along with
the log-end-offset , basically the latest available offset of the partition, as well as the
current-offset which is the latest Consumer committed offset. It also directly shows us the
Partition Lag, which is derived by subtracting the two values.

Since the single consumer has been assigned all 10 partitions, and since it has a total read-throughput
of 1 msg/s then we can expect a per-Partition read-throughput of 0.1 msg/s. The per-Partition
write-throughput is 0.3 and therefore we expect that the Lag will keep increasing.

By running the above command a few times, we see that Lag keeps increasing like we predicted.

We will now insert another consumer instance to the same consumer group.

npx ts-node src/main.ts -b localhost:9092 -t test -g test-group -r 1

Since the consumer group now has 2 members, these will share the partitions, ending up with 5
partitions per consumer.

docker-kafka kafka-consumer-groups.sh --bootstrap-server localhost:9092 \
--describe --group test-group

>>>

GROUP TOPIC PARTITION OFFSET END LAG CONSUMER-ID HOST
test-group test 0 152 324 172 4bdd..7cdc /172.22.0.1
test-group test 1 123 295 172 4bdd..7cdc /172.22.0.1
test-group test 4 138 302 164 4bdd..7cdc /172.22.0.1
test-group test 3 149 310 161 4bdd..7cdc /172.22.0.1
test-group test 2 155 325 170 4bdd..7cdc /172.22.0.1
test-group test 6 161 328 167 4e35..ffac /172.22.0.1
test-group test 7 136 305 169 4e35..ffac /172.22.0.1
test-group test 5 139 292 153 4e35..ffac /172.22.0.1
test-group test 8 162 335 173 4e35..ffac /172.22.0.1
test-group test 9 119 284 165 4e35..ffac /172.22.0.1

Since the total throughput of each consumer is 1 msg/s and since each consumer is currently
assigned 5 partitions, we can deduce that the per-Partition read-throughput of each consumer will
be 0.2 msg/s.
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This is better but still not enough to sustain the current per-Partition write-throughput of 0.3
msg/s.

We can fix this by adding another 2 consumers to the consumer group. This will bring us to a
per-Partition read-throughput of 0.4 msg/s which can sustain the per-Partition write-throughput.

We can do this by running the following command twice.

npx ts-node src/main.ts -b localhost:9092 -t test -g test-group -r 1

We can observe the decreasing lag either by running kafka-consumer-groups.sh , or by looking
at the Total Lag in Kowl

At this point we have a complete picture of Kafka’s architectural model
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4.10 Processing Guarantees
As we have seen in previous sections, produced messages can be lost depending on multiple factors
such as whether the Producer looks at acknowledgments at all, the acks configuration variable,
the replication factor and the in-sync replicas and whether the Producer keeps track of produced
messages in the case of unexpected failures. This may result in consumers not processing certain
messages. Moreover, even if we ensure that messages are not lost, retries at the producer side may
result in duplicate messages being published. Finally, processing consumers may unexpectedly fail
before committing their offsets, resulting in potential duplicate processing.

In this section, we will discuss the different processing guarantees of Kafka, looking at the issue
holistically, following the complete chain of publication, consumption, and processing of messages.

At-Most Once Processing

Figure 63: Messages may be lost [51].

There are multiple ways for a message to be lost or potentially simply not processed.

From the Producer side, any Kafka configuration not following the conditions for message safety,
may result in lost messages under certain situations.

Another potential source of lost messages, is the Producer not properly keeping track of acknowledged
produced messages. This may occur if the Producer persistently stores its progress before messages
are acknowledged. In this case and under unexpected failure scenarios, after a message is marked
as sent, but before it is actually sent or acknowledged, the Producer will skip the message, resulting
in it not being stored in the Cluster.

Not performing retries after acknowledgment time-outs will also result in lost messages.

From the Consumer side, committing offsets before the processing of messages may result in
skipping the processing of messages. Specifically, unexpected partition rebalancing or rebooting
after unexpected failure, will result in messages being skipped.

Properly configuring the Cluster’s size, replication factor, minimum in-sync replicas and Producer
acknowledgment behavior, while also properly tracking produced messages and committing after
processing in the Consumer side, will result in messages being safely stored in the Cluster and
processed at-least once.
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At-Least-Once Processing

Figure 64: Messages can be duplicated, especially in node recovery situations [51].

A properly configured Kafka Cluster with accordingly configured Producers, following the conditions
for maximum message safety, can guarantee that all messages will be successfully and safely stored.

Unfortunately, this can often result in duplicate messages being published.

As an example, we can imagine a Producer publishing a single message and subsequently waiting
for an acknowledgment. The Cluster stores the message, safely replicates it, and then sends an
acknowledgment back to the Producer. Unfortunately, either due to the Producer crashing or
perhaps due to some transient network error, the acknowledgment never makes it to the Producer.
As a result, the Producer will retry sending the message resulting in the message being stored twice
in the server.

From the Consumer’s side, lack of atomicity between message processing and message commitment
means that a message may be consumed, but the Consumer crashes before the offset is finished being
committed. Any Consumer that picks up processing for that partition, will subsequently re-process
the message. We will revisit this concept of atomicity a bit later when discussing Transactions.

Idempotence

Processing a message multiple times is not always an issue. This largely depends on what are the
side effects of processing a message. If the message models a concrete entity’s state and the side
effect means updating the corresponding row of a database, then performing the same operation
multiple times in succession doesn’t matter. The row will end up with the same state in any case.
If the message instead models an incremental update to a given entity’s state, then processing the
same message multiple times will result in the wrong state for the given row.

Consumers that can process the messages multiple times without problems are called idempotent.
Some consumers are naturally idempotent, while others are not.

It is often possible to make non-idempotent Consumers idempotent by including a unique identifier
with each message, effectively giving them an identity. The Consumer can then keep a persistent
record of consumed messages, and explicitly avoid reprocessing messages that use the same identifier.

Unfortunately, there is a fundamental issue with this approach. It is possible for a consumer to fail
before persisting the message identifier. After resuming operations and receiving a message with
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the same identifier, the Consumer will end up processing the message and therefore applying the
side effect multiple times.

In order for a Consumer with side effects to effectively make use of this pattern, it requires atomicity
between processing a message and persisting its identifier. This fundamentally requires transaction
support across the persistency system and the systems involved in the processing side effects.

A trivial application of this, is when both processing and persistency occur within the bounds of
a single system with transaction support. An example is when the processing side effect means
performing a database operation while the message identifiers are stored in the same database.

Another applicable case of this pattern is when both systems support some common protocol of
distributed transactions.

In general, this restriction severely limits the applicability of this pattern and is fundamental to
messaging across different services.

Idempotent Producer

Kafka has gradually added support for idempotent message production. This means that even if
message publications are retried, they will be stored to the server exactly once. This way, message
batches that are sent multiple times due to retries will not be duplicated. The feature is only
effective during a single Producer session and does not carry over to Producer restarts. We will
discuss how Kafka supports idempotence across different sessions in the Transactions section.

Idempotence is enabled using Producer’s enable.idempotence configuration parameter.

When a Producer initially connects to a server, it will be assigned a unique Producer Identifier
(PID). After a Producer is assigned a PID, it will also initialize a monotonically increasing Sequencer
Number, which will be included in all subsequent message batch publications.

Servers keep an internal mapping of the latest sequence numbers sent for each PID per partition.
They can then use this mapping in order to avoid appending duplicate message batches.

Figure 65: Servers can avoid re-appending messages by keeping track of sequence numbers [52].

Moreover, since the specific sequence numbers are maintained, servers can re-order incoming
batches according to their included Sequence Numbers. This avoids the issue specified in Sin-
gle Partition Ordering and In-flight batches permitting multiple batches to be sent per con-
nection without affecting the message ordering. This behavior is only guaranteed as long as
max.in.flight.requests.per.connection is less than or equal to 5.
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Transactions

Kafka has a very useful feature that permits Producers to transactionally write messages across
different partitions. This feature compliments the previously discussed Idempotent Producer
behavior by ensuring that idempotence behavior is maintained across Producer sessions. In this
section, we have a brief look into how this feature works. In the next section, we will also discuss how
this feature permits effectively-once processing for pure data transformation Kafka-only pipelines.

Figure 66: Transactions high-level overview [53].

Transactional Producers begin a transaction, perform multi-partition writes, and afterwards they
either Commit or Abort the transaction. These Commit and Abort operations will be persisted in
the form of transaction markers within the relevant partitions. A transaction coordinator delegate
is used to facilitate the commits and aborts of a given Producer. This transaction coordinator also
persists the state of the transactions in an internal __transaction_state topic, which can be
used in sudden failure cases to resume or abort a given transaction. The transaction coordinator
uses two-phase commit in order to properly ensure that the markers will be properly persisted. The
servers keep track of running and aborted transactions, and also maintain the last message offset
that is not part of a running transaction (Last Stable Offset - LSO). Consumers that want to take
advantage of the transactional mechanics, can set their isolation level configuration parameter to
read_commited in order to only fetch messages up to the LSO as well as skip messages of aborted
transactions.
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transactional.id enables a Producer to set a persistent identifier that will be used to uniquely
determine its identity across multiple Sessions. Configuring a transactional.id also implies that
Producer idempotence is enabled. The server, instead of issuing a new PID, will instead use the
transactional.id that has been configured for a given producer. The server will also issue a new
Epoch number that can be used to fence against zombie producer instances. When a new session is
detecting using an existing transactional.id , any undergoing transactions are completed.

A producer can persist its progress inside a Kafka topic and then use transactions in order to
atomically record both its progress and also produce to a given Kafka topic. Retries will be handed
using the normal idempotence semantics. Under restarts, the Producer can read its progress from
the corresponding topic and resume from where it stopped. Due to progress and produced messages
being part of the same transaction, Kafka can guarantee that either both were properly recorded
or none were. This way, we can make sure that produced messages will only be stored in the server
once.

Effectively Once Processing

Figure 67: Effectively once processing using idempotence and transactions [51].

All Consumers that are part of a consumer group, do in fact keep their progress inside Kafka
using the internal __consumer_offsets topic. Consumers can piggyback on an ongoing Producer
transaction in order to commit them as part of the transaction. As we discussed in Idempotence, if
the processing part of the Consumer has side effects within the bounds of the same transaction-able
system, then we can use transactions to ensure that processing occurs only once. In the case of
Kafka Consumers, if their processing side effects consist of performing pure transformations and
producing to other Topics, then we can make committed offsets and produced topics part of the
same transaction in order to achieve effectively once semantics. Effectively once in this case means
that the underlying pure data transformations may have to be re-applied, but that won’t result in
externally visible state changes.

This whole Consume-Transform-Produce behavior is transitive in nature, which implies that we
can use transactions in order to guarantee effectively-once processing in pure data transformation
pipelines that form directed acyclic graphs.

Partition rebalancing between different Consumers that are part of a Consumer Group makes
choosing transactional.id complicated. Any assigned partition that is undergoing processing
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may at any point be revoked from the given Consumer and assigned to another one. The new
Consumer will have to take ownership of transactions that will be used to persist that partitions’
offsets as well as produced records. This behavior implies that any given partition that is part
of a Consumer group will require its own assigned Producer with a unique - for that partition -
transactional.id .

Using this information, we can derive a simple Consumer-Transform-Producer architecture for
any given transformation node. Each Consumer, associates a unique Producer instance with
each assigned Partition. The transactional.id that the Producers use should carry over when
partitions are revoked and moved to other Consumers. As a result, the transactional.id of
each Producer should be a derivation of the Consumer Group, Input topic and assigned Partition
number. A good choice is <group id>.<topic>.<partition>

Figure 68: Each partition is assigned it’s own Producer [16].

We finally want to stress that effectively once processing only applies to pure data transformation
pipelines that produce only Kafka-specific side effects. Any produced external side effects such as
sending an email or sending a command to an external service, can potentially be executed multiple
times. The only reason that we can get away with Kafka-specific side effects, such as appending to
a Topic, is due to being able to take advantage of Kafka-specific transactions.
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5 Apache Kafka Modeling, Cluster and Topic Sizing
This section presents a mathematical model first introduced by Amazon [54] and further enhanced
by us in order to derive estimations for infrastructure resource requirements as well as specific topic
sizing guidelines.

We begin with some definitions, the definitions apply for a single topic:

• TT is the Total Topic Throughput
• TS is the Single server Throughput
• TN is the per-server Network Throughput
• n, the total number of servers
• r, the replication factor of a given topic
• g, the number of independent consumer groups of a given topic

Figure 69: Kafka Infrastructure Model [54].

As we can see above, the Producers send a total of TT throughput into the cluster. Due to ideal
even distribution of load, servers share the total amount of traffic from the Producers. Each server
also receives additional traffic due to replication, which is transported through the local network.
Traffic will be persisted to the server-specific storage, limited by its associated storage throughput
limit.

As a result, maximum possible throughput is tightly coupled to the number of servers, their storage,
the network throughput and the replication factor
[54] [55] .
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5.1 Infrastructure Requirements and Estimations
Each server will receive approximately TT

n
throughput from the Producers.

Total extra replication traffic in the cluster is TT · (r − 1).

This means that server receives approximately TT

n
· (r − 1) extra traffic due to replication.

As a result, each server will receive a total throughput of TT

n
· r.

We conclude,
max(TS) ≥ max(TT )

n
· r ⇒

max(TT ) ≤ max(TS) · n

r

(1)

As discussed above, each server receives TT

n
· r traffic due to Producers and replication. They also

have to be able to send the Producer traffic to each independent Consumer Group.

As a result, we get,

max(TN) ≥ max(TT )
n

· r + max(TT )
n

· g ⇒

max(TN) ≥ max(TT )
n

· (r + g) ⇒

max(TT ) ≤ max(TN) · n

r + g

(2)

Taking all of the above relations into account, we end up with the following formula,

max(TT ) ≤ min {
max(TS) · n

r
,

max(TN) · n

r + g

}

(3)

The above can also be expressed in a more practical format that allows us to derive the required
Storage and Network throughput for each Topic. This depends on the required total throughput,
number of servers, consumer groups and replication factor. The latter depends on the safety
guarantees as discussed in Replication. Increasing the number of servers lessens the requirements.

•
max(TS) ≥ TT · r

n
(4)

•
max(TN) ≥ TT · (r + g)

n
(5)
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5.2 Topic Sizing
An important aspect of managing Topics is choosing the number of Partitions. With more Partitions,
we permit more consumers per Consumer group, increasing read-throughput. We also increase
write-throughput up to the number of total servers available. [56] [57] .

We define,

• p, Number of partitions
• TC , Single-consumer throughput

In order for a topic to maximize write throughput and properly balance load through the cluster, it
should be able to utilize all servers. RAID setups can allow for further improvement of throughput
when increasing partitions further.

As such,

p ≥ n (6)

In order for servers to uniformly distribute a topic’s load without overloading specific servers, the
total partition count including the replicas should be a multiple of the number of servers. As such,

p · r = 0 mod n (7)

An easy way to achieve this is by forcing p to be a multiple of n,

p = 0 mod n ⇒
p · r = 0 mod n

(8)

In order for consumers to be able to meet total topic throughput, we have to ensure that in the
extreme case where each Consumer is assigned a separate partition, then each consumer can meet
the partition throughput. As such,

TC ≥ TT

p
⇒

p ≥ TT

TC

(9)

This will usually be the biggest contributing factor to choosing the number of partitions.
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5.3 Upper Partition Bounds - Original Work
This section introduces the well-known approach of over-partioning and uses the previous model
along with details about Kafka’s operational behavior in order to link partitions with maximum
unavailability windows and end-to-end latency. These can then be used to derive upper partition
bounds.

Over-partitioning

While it is possible to increase the number of partitions after topic creation, this has two very
critical consequences.

First, as briefly mentioned in Partitioning And Message Ordering, changing the number of partitions
implicitly changes the resulting mapping of keys to Partitions. As a result, any topics that rely on
maintaining message ordering through keys, will loss all ordering guarantees. In order to handle
this case, one has to create a separate topic with enough partitions and assign a consumer to clone
the existing topic to it. Then one can do a rolling redirection of the clients to the new topic.

Another issue is the extra traffic that assigning new partitions creates. Ideally, for availability and
performance reasons, we would like our servers to have an equal distribution of Partitions. In
this case we need to move whole Partitions across the server which is a very bandwidth expensive
operation.

For the above reasons, it is advised that we avoid Partition resizing by initially over-partitioning
our Topics so that we don’t ever require additional Partitions.

It is worth noting however that there are a few negative consequences of over-partitioning topics.

More open file-handles

Since each partitioning maps to a directory along with the relevant log files, having more partitions
increases the total number of open handles within a server, potentially reaching the maximum size
of open file handles of the operating system. This is not a big issue and can be overcome by proper
configuration.

Increased Memory Requirement for Servers and Clients.

Both servers and clients use buffering in order to increase throughput. Often buffering occurs at
the partition level, so having more partitions requires more Memory due to buffering. This can be
an issue when the number of partitions is very large.
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Potential Unavailability Increase

In the case of manual server termination, partitions are iteratively moved one at a time. As a
result, a client will observe the partition unavailability only for the duration of a single Leader
election cycle.

In the case of unclean server termination, all partitions become unavailable at the same time. As
a result, the same number of Leader elections as partitions will take place. The time will scale
linearly with the number of pending leader elections due to them taking place in the Controller
which must coordinate multiple phases for each election [56] .

As an example, t denoting total topics, if the leader election takes telect for a single partition, then
a server will contain approximately t·p·r

n
partitions of which it will be the leader of t·p

n
partitions.

This will result in a total of telect · t·p
n

seconds of unavailability. As an example, given telect = 5ms,
t = 50, n = 5, p = 50, we have an unavailability window of 2.5s due to leader elections.

Important note!

The below sub-section only applies for the traditional controller implementation that
uses Zookeeper. At the time of writing, the new Quorum Controller implementation
has been announced as production-ready. Due to the new Raft-like implementation,
metadata will always be available on voter nodes, so the below unavailability issue does
not occur [58] .

If the failed server is also the controller responsible for Leader elections, then all partition metadata
will also have to be fetched from Zookeeper to a the new controller, increasing the unavailability
window further. The new controller will have to fetch metadata for all partitions in the cluster. If
tmeta is the time required to fetch a partition’s metadata from Zookeeper, then the new controller
will require t · p · r · tmeta seconds. Given the previous parameters and tmeta = 2ms, this will result
in an extra 15s of unavailability.

End-to-end latency increase

Due to the nature of the inter-server replication model, partition replication use a single thread per
peer server connection. [17, p. 86]

We define as trepl the time required to replicate a single partition to a server. Leading partitions on
a given server are approximately t·p

n
. This means that the server will have to replicate them r − 1

times to the other n − 1 servers. As a result, it will have to replicate (r−1)·t·p
n(n−1) partitions to each

peer, which results in any given partition requiring trepl · (r−1)·t·p
n(n−1) time before being replicated.
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Deriving Partition Count Upper Limits

Here we will illustrate how we may derive an upper partition limit.

This upper limit depends on the cluster size, the topic count, the average replication factor and
partition count as well as the maximum tolerable unavailability window in case of unclean leader
failures and maximum tolerable end-to-end latency.

We define:

• max_unavailability, The maximum tolerable unavailability window in seconds
• max_latency, The maximum tolerable end-to-end latency

Then we derive,

• End-to-end latency restriction

trepl · (r − 1) · t · p

n(n − 1) ≤ max_latency

p ≤ n(n − 1) · max_latency

(r − 1) · t · trepl

(10)

• Unavailability restriction (For the new Quorum Controller we can assume tmeta = 0)

telect · t · p

n
+ t · p · r · tmeta ≤ max_unavailability

p · t ·
(telect

n
+ r · tmeta

)
≤ max_unavailability

p · t ·
(telect + r · n · tmeta

n

)
≤ max_unavailability

p ≤ n · max_unavailability

t · (telect + r · n · tmeta)

(11)

We can now illustrate how we can derive an upper partition bound.

We make the following realistic assumptions:

• telect = 0.005s
• tmeta = 0.002s
• trepl = 0.00002s
• r = 3
• n = 5

Then we can apply the above restrictions with different scenarios.
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Traditional Controller

Total Topics Max unavailability (s) Partition Count Limit
100 10 14
100 100 142
100 1000 1428
1000 10 1
1000 100 14
1000 1000 142

Total Topics Max latency (s) Partition Count Limit
100 0.001 5
100 0.010 50
100 0.100 500
100 1.000 5000
1000 0.001 0
1000 0.010 5
1000 0.100 50
1000 1.000 500

Quorum Controller (tmeta = 0))

Total Topics Max unavailability (s) Partition Count Limit
100 1 10
100 10 100
100 100 1000
100 1000 10000
1000 1 1
1000 10 10
1000 100 100
1000 1000 1000

We observe that end-to-end latency affects the upper bound the most. Max allowed unavailability
window also has a large effect when using the traditional zookeeper-based controller, but has almost
an order of magnitude smaller effect when using the new Quorum controller.

In order to keep end-to-end latency acceptable, especially on clusters that host many topics, it is a
good idea to maintain a smaller partition count, most likely smaller than 50.

As we will see in the next section, this restricts our choices, which in turns influences uniformity
when scaling the cluster.
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Keeping load uniform

As we previously discussed, in order to ensure uniform server load, the total partition count
should be a multiple of the number of servers. When scaling the cluster, ideally we would like to
re-distribute the partitions while maintaining the uniform load distribution. In order to do that,
we have to ensure that our partition count is a multiple of all cluster sizes that we want to support.

In order to pick the optimal partition count, we can count the cluster sizes that divide a given
partition count. Partition counts with the most divisors up to a given cluster size are very good
candidates since they ensure the least forced cluster upgrades, minimizing the up front cost when
gradually scaling up our cluster.

Below, we make provide heatmaps for partition counts up to 120 and cluster sizes up to 12.

Figure 70: Kafka optimal partition counts 1-60.

Figure 71: Kafka optimal partition counts 61-120.
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One can pick a partition count range according to the upper limit restrictions and throughput
requirements, and then search for a partition that is divided by the most cluster sizes up to a target
cluster size.

Some partition counts that stand out from the above heatmaps are:

• 24: Ensures uniform load on cluster sizes 1,2,3,4,6,8 and 12.
• 36: Ensures uniform load on cluster sizes 1,2,3,4,6,9 and 12. 24 is most likely a better option

due to supporting the same number of cluster sizes, earlier (8 vs 9).
• 48: Has the exact same behavior with 24 but is larger. Could possibly be handy for high

throughput scenarios but leans on the upper end when it comes to latency.
• 60: Ensures uniform load on cluster sizes 1,2,3,4,5,6,10,12. Most supported sizes so far but

also the largest count and therefore more vulnerable to restrictions. Forces large jump for
cluster sizes 7-9.

• 72: Ensures uniform load on cluster sizes 1,2,3,4,6,8,9,12. Comparable to 60. It forces a jump
earlier on (5), but forces jumps more uniformly after that.

• 120: Most optimal up to this size. Ensures uniform load on cluster sizes 1,2,3,4,5,6,8,10,12.
Also spreads jumps very uniformly, ensuring least up front costs when scaling up. Would be
the ideal option if not for its larger size, which may be at odds with the restrictions put into
place due to latency and worst case unavailability windows.
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6 Case Study - DIEM Platform
SMART RUE (Smart grids Research Unit of the Electrical and Computer Engineering School) is
one of the Research Groups of the Institute of Communication and Computer Systems (ICCS).

It belongs to the Electric Energy Systems Laboratory (EESL) of the School of Electrical and
Computer Engineering of the National Technical University of Athens.

SmartRUE is leveraging on its expertise in gathering large amounts of market-relevant data and
structuring it in a consistent manner. In collaboration with Enargia A.G., have developed an
ecosystem of tools (DIEM Platform) to actively support energy market participants.

DIEM platform provides timely access to all relevant data for the energy Market in Greece and the
wider area. The core of this ecosystem is a central repository that stores semantically aligned data
from different sources. The participant can access the information via an API or a user-friendly
web page.

This case study focuses on restructuring the web-page architecture in order to better facilitate
real-time updates of relevant data by improving communication overhead and enabling scaling of
the associated services.
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High-Level Architectural Overview

sends endpoint updates

Data Service Fetch endpoint data Web Client

broadcasts endpoint updates
WebSocket Server

Web Client
Web Clients

Figure 72: Simplified Overview.

• The Data Service is responsible for observing curated sources, and then fetching the relevant
data in order to make it available through a public facing REST API. The API is used for
metrics and enforcing pricing plans. The various data sources are exposed by different API
endpoints.

• The clients, consist of the browsers that service the DIEM web-page in order to provide
user-friendly views of the data that is provided by the Data Service. The data is fetched
using the REST API that is provided by the Data Service. It is deemed important that the
various views are updated in soft-real time, permitting users to be notified of data changes
without having to refresh their page manually. Moreover, due to the large number of datasets
and API endpoints, the results of the API requests should be cached in local storage in order
to minimize the traffic load of the Data Service. For these reasons, clients need a way to be
notified of underlying endpoint data changes. The current implementation uses WebSockets in
order to establish a two-way communication channel between each client and the underlying
WebSocket Server. The server can efficiently notify clients of multiple endpoint updates, and
clients can then make the corresponding API requests, updating their local storage in the
process.

• The WebSocket Server keeps a persistent connection with each connected client. It communi-
cates with the Data Service and is notified by the latter when the datasets that are exposed
from the Rest API endpoints are updated. The server then relays this info to all connected
clients, permitting them to more efficiently fetch new data from the Data Service.
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The original architecture has some implementation issues that increase infrastructure requirements.
The goal of our thesis is to restructure the communication flow in order to fix these issues, as well
as provide a way to scale the infrastructure in order to meet future requirements if needed.

• Lack of Endpoint Updates Granularity

The WebSocket server, currently, forwards all endpoint updates to all Clients. This creates
unnecessary load to both the WebSocket server, since it has to a forward all update events to all
clients, and to the Clients themselves, which have to filter all incoming update event and dispatch
them to the corresponding Views.

Fundamentally, the front-end knows which views need to be updated at any given time. This means
that it can communicate to the WebSocket server, the corresponding endpoints that it is interested
in. The server can then perform some extra bookkeeping and dispatch the update events only to
the interested clients. This considerably reduces the total number of update events sent to clients.

• Lossy poll-based front-end handling of update events

The original version of the Front-End uses a singleton WebSocket Service component that com-
municates with the WebSocket Server, and is used by the various Views in order to observe new
endpoint updates received. The component observes an incoming stream of endpoint updates and
only keeps the latest one, clearing it after a few seconds. The various views then poll the Service at
specific intervals, expecting that they will observe all updates. This is obviously not always the case.
Specifically, in the scenario where the update events arrive faster than the polling frequency of the
views, the views can and will lose update events. The solution we used was to use the Observer
pattern, effectively providing a subscription-based interface to the WebSocket Service component,
and allow the various views to subscribe to the endpoints they are interested in. On each endpoint
update, the WebSocket Service can notify all interested views, ensuring that they will not miss the
update.
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6.1 Frontend
DIEM Platform’s frontend, is an Angular application. Our use case deals with the various Views
available throughout the application. The Views fetch data by using a REST API and subsequently
render the data in a view-specific format.

Figure 73: Example DIEM platform views.

The Views use an injected DataService provider in order to fetch the data by specifying dataset-
specific Endpoints. They also use an UpdatesService provider in order to be notified of Endpoint
dataset changes in order to re-fetch the data and subsequently render it.

Below, we provide an approximate UML class diagram. We took the liberty of using an equivalent
version of the actual class hierarchy in order to provide a clearer high-level view and facilitate the
analysis.
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Figure 74: Initial frontend architecture.

From the above diagram, we can notice two problems:

1. Looking at the DIEMSocket class, we can observe that there is no communication from the
Client to the underlying WebSocket Server. Because of this, the frontend cannot send any info
about the Views ’ interested Endpoints . As such, the server has to forward all Endpoint
updates to the frontend, instead of only forwarding the Endpoint updates that the Views
are interested in.

2. The UpdatesService provides a single method that retrieves the latest Endpoint that got
updated. The Views perform periodic polling on this method in order to detect any changes
to the Endpoints that they care about. If the polling frequency is not fast enough, the
Views can fail to observe corresponding Endpoint updates in high-load situations.
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We can solve these problems by performing a series of enhancements to the UpdatesService :

1. We add dedicated Subscribe/Unsubscribe messages to the communication protocol between
the frontend and the WebSocket Server. This allows the frontend to relay information to
the backend, so that it is able to send only the relevant Endpoint updates to the frontend,
subsequently reducing the client-server communication traffic.

2. We add the corresponding subscribe/unsubscribe methods to the UpdatesService
provider. Views can then provide Callbacks at subscription time. The UpdatesService
can maintain a mapping of Endpoints to listening Views and then notify them, when the
appropriate Endpoint updates arrive.

We provide a new class diagram with the revised interactions. The Visitor pattern is used in order
to express ClientToServerMessage as a sum type within the bounds of the UML language.

Figure 75: Enhanced frontend architecture.
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6.2 Backend
DIEM platform’s backend part is responsible for observing sources, downloading any new data,
unifying them under a common format and then make them available through a Rest API that
both the frontend but also external services can use. Finally, it is also responsible for caching data
and transmitting endpoint update events to the frontend for real-time updates of relevant views.

Below, we provide a sequence diagram of the original implementation:

Figure 76: Original sequence diagram.

In order to facilitate analysis, it will be helpful to consider most backend participants as a singular
Data Service unit. We can see that the resulting diagram is greatly simplified, allowing us to focus
on the interaction between the updates, the clients and the WebSocket server:
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Figure 77: Simplified original sequence diagram.
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Relaying endpoint interest using subscription messages

In the Frontend section, we added subscription messages to the client-server communication protocol,
allowing clients to relay information to the WebSocket Server regarding the endpoints that they
are interested in. This allows the WebSocket Server to add clients to a notification group on an
endpoint basis. When an endpoint update arrives, the server can notify only the relevant clients.

Figure 78: Enhanced sequence diagram.
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6.3 Scaling
As the user base of the platform grows, it is very important to devise a scaling strategy in order
to independently scale the various services in and meet the increased load requirements. For this
case study, we decided to focus on the scaling of the WebSocket server. We present both X and
Z-axis scaling [10], one utilizes Publish-Subscribe along with a client-facing load balancer, while the
other takes advantage of data partitioning, in order to reduce the load of each individual instance,
without increasing inter-service network traffic.

X-Axis Scaling – Scaling through cloning

This is the easiest approach to scaling our WebSocket server. Our end goal is to distribute the
Clients to independent WebSocket Servers. In order to do this, we first have to create multiple
WebSocket Server instances. Then we can introduce a reverse proxy between the Clients and the
instances, whose sole purpose is to connect each client to a separate server. In order for each
instance to be independent and able to serve any clients, it needs to receive its own copy of endpoint
updates from the Data Service. This requires some form of Publish-Subscribe communication
between the Data Service and the various instances. Then architecture is illustrated below:

Clients

Reverse Proxy

WebSocket Instances

Data Service

Pub Sub Service

WebSocket Service

Figure 79: High-level X Axis scaling.

The above scaling scheme, does not require any modifications to the frontend. For the Reverse
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Proxy, we used nginx along with it’s WebSocket support. For the Pub/Sub service, we decided to
go with Apache Kafka. At this point, we have to stress that Apache Kafka is definitely overkill for
this use case due to multiple reasons:

• Messages are idempotent in nature, Kafka’s partition model and ordering guarantees are not
very useful.

• Even with increased traffic, the update events are not likely to reach disk-saturation throughput
numbers. As a result, Kafka’s binary log zero-copy architecture will be underutilized.

• Messages are ephemeral in nature, only required for updating user-views. Replaying endpoint
update messages would result in clients performing multiple data fetches for the same
underlying data. The log-based model of Apache Kafka is not very useful in this use case.

• The server instances do not currently perform heavy per-message processing, so scaling
throughput through Consumer groups is not as useful. As a result, consumer group partition-
ing, a very important part of Apache Kafka, is not utilized.

• Kafka in general sacrifices latency in order to achieve higher throughput. While it is possible
to configure the system for low latency, this will go against the default intended behavior.
Other services can provide better latencies when throughput is low and safety is not as
important.

• Kafka is a relatively heavyweight system, requiring multiple servers in order to provide its
guarantees, and also traditionally requiring the additional setup and operation of a separate
Zookeeper cluster for proper operation. We can use a smaller cluster, but this will undermine
Kafka’s high availability and safety guarantees. Thankfully, due to the new Quorum Controller,
Zookeeper will soon no longer be necessary, resulting in easier and more cost-effective cluster
deployments.

• It doesn’t make a lot of sense to introduce a complete event streaming platform for a single
and very simplistic pub-sub scenario between a few nodes.

A more sane option would most likely be to maintain WebSocket connections between the WebSocket
Server instances and a dedicated Broadcast node. The Broadcast Node would act as a fanout
exchange, sending the incoming endpoint update events to all connected WebSocket service instances.
This way, the platform could be scaled without having to introduce a new heavyweight technology.
Any Broadcast Node failure would of course result in an unavailability window until the issue got
resolved. This would not be the case with Kafka, a small advantage in the large scheme of things.

With that in mind, the choice was made with the intention that Apache Kafka will slowly be used
for more tasks within the DIEM platform, taking part in data collection, transformation pipelines,
activity tracking and more while also facilitating an event-based communication architecture.

For implementing the above Pub/Sub part with Kafka, we wrote a Kafka / WebSocket bridge in
the form of a Kafka consumer. The consumer subscribes to a topic and forwards the data to a
WebSocket server. Each bridge uses a unique consumer group identifier in order to receive all topic
messages. Each WebSocket server, is paired with a Kafka bridge. A producer bridges the Data
Service with Kafka. The system is illustrated below,
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Clients

Reverse Proxy

WebSocket Instances

Data Service

WebSocket Service

Producer

ConsumersCluster

Pub Sub Service

Figure 80: X Axis scaling using Kafka.

The relevant code is included in the support repository.

Z-Axis Scaling - Scaling through partitioning

Another approach to scaling is through data partitioning.

Instead of each server being responsible for all endpoint updates, they instead manage only the
updates relevant to a subset of all endpoints. This in turn makes the WebSocket Servers more
efficient by limiting the number of messages that they need to process before dispatching. It
is especially useful when the event processing itself is more expensive, allowing the Server to
significantly reduce its processing load. For our concrete case study, the event processing includes
extracting the messages, deserializing it and forwarding it to all relevant WebSocket connections.
Another advantage is that by partitioning the data, we reduce the size of the bookkeeping data
structures that are used for associating connected clients with endpoint updates.

Under this model, WebSocket servers manage different subsets of updates, therefore, clients will
need to somehow communicate with more than one server. It would be useful to provide a
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partitioning-aware node that knows which WebSocket server manages what endpoints. The clients
can then either explicitly query this node in order to discover the relevant severs, or we can create
a smart reverse proxy that will multiplex the connections using the aforementioned partition-aware
node.

Kafka’s consumer groups are very useful for implementing this scaling approach, permitting for
dynamic addition of new WebSocket servers and facilitating service discovery through the usage of
its admin client.

Another approach puts the burden of maintaining multiple connections to the client. The client first
contacts a Partitioning Metadata service in order to discover the relevant WebSocket servers and
then subsequently connects to all of them or perhaps only to the ones that manage the endpoints
that it is interested in.

WebSocket Service

Clients

WebSocket Instances

Data Service

Producer

Consumer GroupCluster

Partitioning Metadata

Figure 81: Client-based Z Axis scaling using Kafka.

A nice advantage of doing things this way is that we can then also scale by cloning without
introducing a WebSocket-aware reverse proxy. Instead, a simple load balancer to the appropriate
Partitioning Metadata service will suffice, each client will end up connecting to a different set of
WebSocket instances.

The disadvantage is that it requires Client code modifications in order to work.
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We can avoid modifying clients by implementing a multiplexing reverse proxy. The client will
connect to the proxy and the proxy will make sure to query the Metadata service and multiplex
the resulting WebSocket server connections using TCP pass-through.

WebSocket Service

Clients

WebSocket Instances

Data Service

Producer

Consumer GroupCluster

Partitioning Metadata

Reverse Proxy Multiplexer

Multi-WebSocket Server

Figure 82: Backend-based Z-Axis scaling using Kafka.

119



We can then split the bridge consumer group, the WebSocket Server instances, the Partitioning
Metadata and the Reverse Proxy Multiplexer into a single Multi-WebSocket composite service:

ClientsData Service

Producer

Cluster

Multi - WebServer

WebSocket Service

Figure 83: Collapsed Z-Axis scaling using Kafka.
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Finally, we can also scale the resulting Multi-WebSocket Servers by cloning:

ClientsData Service

Producer

Cluster

Multi - WebServer

WebSocket Service

Multi - WebServer
Multi - WebServer

Multi - WebSocket Servers

Reverse Proxy

Figure 84: Backend-based XZ-Axis scaling using Kafka.
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7 Conclusions and Further Work

7.1 Summary
This thesis presents a useful resource for getting acquainted with event-based architectures and
Apache Kafka while presenting a simplified but useful model that can facilitate the taking of
real-world engineering decisions.

We explicitly discuss the guarantees that Kafka provides through different configuration options
and derive guidelines for proper infrastructure and topic sizing by presenting a simple mathematical
model of Apache Kafka’s data flow.

From the mathematical model, we derive relations between total number of partitions and end-to-
end latency and unavailability windows, giving us a guideline on how to optimize Kafka Clusters
for low-latency high-throughput use-cases. We also discuss how careful partition count choices can
help achieve uniform load when scaling Kafka clusters.

7.2 Derived Guidelines Summary
We reiterate the various guidelines discussed throughout the thesis so far.

Message safety

In order to ensure message safety, consistency and availability without message loss even in the
case of N servers going down simultaneously, the following must bet set:

• Producers must be configured using acks=all
• The Topic must be configured with min.insync.replicas = N + 1, this implies

replication factor ≥ N + 1 and therefore sets a lower bound on the number of servers. More
servers will allow the in-sync replica mechanisms to improve end-to-end latency in case of
slow or unresponsive replica servers.

If we also require write-availability in the case of N servers going down simultaneously:

• The Topic must be configured with replication factor ≥ 2N + 1.

These also apply for internal topics such as __consumer_offsets and __transaction_state .

• For total safety, it must be specified what to do when all servers responsible for a given
Partition become unavailable. Setting unclean.leader.election.enable = false is a must for
deployments prioritizing safety over availability.

Message Ordering

Care must be taken to pick a key-scheme that will ensure proper ordering. All messages using the
same key will end up on the same Partition and will therefore be consumed in the same relative
order.

Producers must ensure that the messages arrive at the Servers in the intended order, for that
reason:

• Producers must be configured using enable.idempotence=true or
max.in.flight.requests.per.connection=1 . The former is preferred.
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Additionally:

• Topics should be over-partitioned in order to not have to change the number of Partitions
and therefore break the existing Key-Partition mapping.

Regarding compaction,

• Keys are used in order to perform compaction, they effectively act as entity identifiers and
this should be taken into account when deciding on the key-scheme that will be used.

Delivery Guarantees and Effectively-Once-Semantics

• In order to ensure that messages will be delivered at least once, all safety-related configurations
specified above must be set. Furthermore, consumers must manually commit their offsets
after they process messages, without relying on default auto-commit behavior.

• Large consume-transform-produce pipelines can be built with the guarantee that each input
message will only result in a single consumable output message per pipeline endpoint, and
therefore achieve so called “Effectively-Once Processing” semantics. Transformation steps
should be free of observational side effects since they may run multiple times, the only
guarantee is regarding Kafka-based message consumption and production. Due to this fact,
this capability is not as useful for inter-service communication as much as general event-based-
processing. Care should be taken to properly choose transactional.id . A good approach
is ‘ <group id>.<topic>.<partition> . The mechanism requires enabling transactions in
both Consumers and Producers. Consumers must also piggyback on Producers’ transactions
in order to commit offsets. Kafka Streams is a useful tool for implementing such pipelines
while coordinating all these details.

Infrastructure and Topic Sizing

• Adding Servers reduces per-server network and storage requirements. See (4, 5) for concrete
network and storage requirements. Also see (3) for estimating maximum topic throughput.

• Increasing Partitions up to the number of Servers, increases write-throughput. RAID setups
allow for increasing number of partitions further while still being able to see write-throughput
improvements.

• Increasing Partitions allows for the introduction of Consumers within a Consumer Group,
enabling read-throughput scaling. See (9) for estimating the minimum Partitions required for
a target throughput.

• Increasing Partitions affects worst-case unavailability and end-to-end latency. See (10, 11) for
upper-bound estimations.

• Choosing a multiple of cluster sizes as the initial Partition count allows for uniform distribution
of Partitions while scaling. See keeping load uniform for details. 36 or 60 are good default
Partition counts.
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7.3 Further Work
While the generic mathematical model presented in Apache Kafka Modeling, Cluster and Topic
Sizing is not unique to this thesis, we are not aware of any experimental verification of it in available
literature.

The derived upper partition limits and their relation to end-to-end latency and worst case unavail-
ability, while straightforwardly derived from the aforementioned model and known operational
behavior of Apache Kafka, have also not been experimentally verified.

The partition count guidelines, regarding uniform load while scaling, have also not been verified as
being significant for real world use cases. We can imagine how imbalances can cancel out with a
large amount of Topics. There is also the issue of partitions being inherently unbalanced due to
data skewing. A dynamic partition monitoring and reassignment approach may be more effective
in pursuing.
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