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ABSTRACT 
 

The linear and the non – linear dynamics of a parametrically excited turbo-pump rotor 
are investigated in this thesis. Realistic models of rotors, linear and non – linear bearings 
under the effect of vertical periodic loads are implemented to compose a set of differential 
equations for autonomous and non – autonomous cases. The solution branches of the 
dynamic system are evaluated by the pseudo arc – length continuation method and the 
respective limit cycles are evaluated by orthogonal collocation method, programmed by the 
author. The former are investigated in their stability properties and their quality of motion for 
the respective key design parameters of the whole rotor – bearing system. The main 
conclusion of this thesis is that parametric antiresonance (considered as the stabilization of 
unstable trivial solutions under the principles of parametric excitation at certain parameter 
regions) is feasible in rotor – gas foil bearing systems. Around a fundamental excitation 
frequency which can be approximately calculated by a closed form expression the stability 
margins of the (perfectly balanced) system are enhanced and the extent of the corresponding 
limit cycles is decreased. It is strongly believed that parametric excitation could have similar 
beneficial effects on unbalanced systems too. 
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NOMENCLATURE 

HELLENIC LETTERS 

eA  Cross – section area of e-th FBE mN  Number of master nodes of the reduced rotor model 

iA  I-th const. term deriving from the discr. RE (zero order) rN  Number of nodes of the full rotor model 

a  Coeff. for the Rayleigh damping xN  Number of intervals in the circumferential bearing’s 
direction 

ia  I-th const. term for the construction of FBE stiffness matrix zN  Number of intervals in the axial bearing’s direction 

iB  I-th const. term deriving from the discr. RE (first order) ν  Whirl frequency 

β  Coefficient for the Rayleigh damping rv  Poison’s ratio of the deformable ring 

γ  Dimensionless whirl frequency, νγ =
Ω

 0ξ  Initial state vector belonging to a curve of periodic 
solutions 

δ  Amplitude ratio of the PE stiffness and bearing coefficients ρ  Density of the gas 

eΕ  Young’s modulus of e-th FBE eρ  Density of the e-th finite beam element 

ε  Eccentricity ratio eT  Kinetic energy of the e-th FBE 

ζ  Dimensionless axial coordinate of a FBE τ  Dimensionless time 

η  Loss factor Φ  Left eigenvector, according to the LHA 

θ  Circumferential bearing coordinate eφ  Lateral bending slope in both planes of the e-th FBE 

0θ  Altitude angle χ  Angle of foil’s fixation point 

eI  2nd moment of cross – section’s area of e-th FBE Ψ  Right eigenvector, according to the LHA 

rI  2nd moment of cross – section’s area of the deformable ring eψ  Elastic line in both planes of the e-th FBE 

iκ  Const. depending on the geom. and phys. properties of the ring ,Ω Ω  Rotating speed, Ω
Ω =

Λ
 

Λ  
Bearing number according to the nonlinear model, 

2
0

26
rp c

Rµ
Λ =  2DΩ  2D-Domain on which RE is solved 

′Λ  
Bearing number according to the linear model, 

2

2
0

6
r

R
p c
µ Ω′Λ =  exΩ  Excitation frequency 

λ  
Eigenvalue, according to the LHA   

µ  Viscosity   
dµ  Diametrical mass moment of inertia per unit length   

eµ  Mass per unit length of e-th FBE   

pµ  Polar mass moment of inertia per unit length   

 

 

 

 

 

 

 



9 
 

Emmanuel D. Dimou, M.Sc. Thesis 
 

LATIN LETTERS 

,A A′  Matrices of the customary state space form GK  Cond. stiffness matrix of the full rotor model for SA 

fa  Struct. compl. (of the BF) per area eK  Stiffness matrix of the e-th FBM 

,B B′  Matrices of the customary state space form abK  Stiff. sub-matrices regard. the master and slave nodes 

C  Damping matrix of the full rotor model rK  Stiffness matrices of the reduced rotor model 

eC  Damping matrix of the e-th FBM bL  Bearing’s length 

rC  Damping matrix of the reduced rotor model  el  Length of the e-th FBM 

iC  I-th const. term from the discr. RE (first order) am  Const. term regard. the BF used in RERM 
fc  Struct. damp. coeff. (of the BF) per area, bO  Geometrical bearing’s centre 

ic  I-th const. term for the constr. of FBM matrices jO  Geometrical journal’s centre 

rc  Radial clearance ,p p  Pressure distribution 
a

pp
p

=   

dh  Horizontal displacement of the deformable ring ap  Ambient pressure 

dv  Vertical displacement of the deformable ring ˆ,a ap p  Functions regard. pressure distribution used in 
RERM 

e  Const. term for the constr. of FBM matrices ,m mp p  Mean pressure over bearing’s half length 

maxe  Max eccentricity ratio 0 0,p p  Press. distribution at the journal’s equilibrium 
position 

ue  Const. term regarding unbal. force’s magnitude , , ,x y x yp p p p
 

 Disturbances of the pressure distribution 

F  Vertical periodic load applied to the PEGFB ,q q  Foil deformation 
r

qq
c

=   

, ,B G UF F F  Bear., Gas and Unbal. nodal forces of full rotor 
model 0 0,q q  Foil deformation at journal’s equilibrium position 

eF  External nodal forces applied to the e-th FBM , , ,x y x yq q q q
 

 Disturbances of the foil deformation 

mF  External nodal forces of reduced rotor model ,r rq q  Outer ring’s deform. under the effect of the per. load 

, ,B G U
m m mF F F  Bear., Gas and Unbal. forces of reduced rotor model R  Bearing’s radius 

eG  Shear modulus of the e-th FBM 
,m eiR  Inner mass radius of the e-th FBM 

ig  I-th const. term for the constr. of the gyroscopic FBM 
ri

R  Inner radius of the outer deformable ring 

G  Gyroscopic matrix of the full rotor model 
,s eiR  Inner stiffness radius of the e-th FBM 

eG  Gyroscopic matrix of the e-th FBM jR  Journal’s radius 

rG  Gyroscopic matrices of the reduced rotor model 
,m eoR  Outer mass radius of the e-th FBM 

iH  I-th Hermitian polynomial 
roR  Outer radius of the outer deformable ring 

iH ′  I-th derive. of the Her. pol. with resp. to the ax. 
coord. ,s eoR  Outer stiffness radius of the e-th FBM 

,h h  Gas film thickness 
r

hh
c

=   
ar  Resid. Deriv. by the approx. of the pressure distr. 

0 0,h h  Gas film thickness at journal’s equilibrium position  fs  Shear factor for all FBMs 

, , ,x y x yh h h h
 

 Disturbances of the Gas film thickness is  I-th constant term calculated via Simpson’s rule 

ai  Const. term regard. the BF used in RERM T  Period of the periodic solution 

ijK  Linearized stiffness coefficients t  Time 

,f fk k  Strut. stiffness coeff. (of the BF) per area eU  Potential energy of the e-th FBM 

K  Stiffness matrix of the full rotor model v  Stability factor 
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stW  Static load of each gas foil bearing rx  Displ. and angular slopes of the full rotor model 

aw  Const. term regard. the BF used in RERM 
0r

x  IC for displ. and angular slopes of the full rotor 
model  

X  Journal’s vertical displacement, linear model 
r

XX
c

=   
rsx  State vector of the whole nonlinear system 

rmΧ  State vector of the reduced rotor model 
,0rsx  IC for the state vector of the whole nonlinear system 

,0rmΧ  IC of the state vect. of the reduced rotor model Y  Journal’s horizontal displ., linear model 
r

YY
c

=   

,x x  Circumferential bearing coordinate 
r

xx
c

=   
by  Bearing’s centre vertical position 

bx  Bearing’s centre horizontal position jy  Journal’s vertical displacement, nonlinear model 

jx  Journal’s horizontal displacement nonlinear model 
rmY  State vector of the PE linearized system 

ex  Horizontal coordinate of the e-th FBM 
,0rmY  IC for the state vector of the PE linearized system 

,
r rm mx x  Dis. and slopes of the reduced rotor model r

r

m
m

rc
=

x
x   ,z z  Axial bearing coordinate 

b

zz
L

=   

,0 ,0
,

r rm mx x  IC for displ. and slopes of the reduced rotor model ez  Axial coordinate of the e-th FBM 
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1. INTRODUCTION 

1.1  Gas foil bearings and parametric excitation 
Gas foil bearings (GFBs) as modern oil-free technology have a vital role in high-speed 

rotating machinery1. Under normal working conditions, when a thin hydrodynamic gas film is 
developed, such bearings are proved to be beneficial for the operation of the whole foil 
bearing – rotor system. More specifically, GFBs are self-acting and therefore do not require 
any external pressurization. Furthermore, given the fact of solid lubrication, due to the 
absence of solid to solid contact between the rotor’s journal and the foil’s inner surface (top 
foil) low wear and power loss can be achieved2. This absence of solid to solid contact also 
contributes to remarkable reliability. The mean time between failures for aircraft turbo 
compressors has been dramatically enhanced during the last decades and today reaches 60000 
h3 4. Last but not least, if the bearing’s surface is compliant, not rigid, rotors are capable to 
work under higher loads and at higher rotating speeds stably5. The motivation of the present 
work lies exactly on this special characteristic. 

Numerous variations of GFBs are gaining more and more interest in the industry world 
widely, but the structure and the physical principles under which they operate are pretty much 
the same. Foil air bearings are similar to conventional, oil-lubricated bearings in size and 
shape (volume limitations are not arising) but use air as working fluid whose compressibility 
can’t be neglected 6 . In contradiction, the time varying density of the fluid affects the 
development of hydrodynamic film and therefore the foil’s deformations and the trajectory of 
the rotor’s journal. In addition, the assumption of compressible flow has a significant role in 
the implementation of parametric excitation. The most commonly used compliant inner 
surface (top foil), is supported by a spring pack or a bump foil layer and this is the key 
characteristic of the whole bearing-rotor system. The aforementioned compliance allows on 
the one hand the bearing to accommodate shaft misalignment and thermal distortion and on 
the other hand the designer to enhance load capacity and stability 7 . The dumping 
characteristics depend on the GFB’s design. For example, in multiple overleaf and tape GFBs 
the dry friction at the contact lines is quite significant8. In bump GFBs bump-strip layers 
under the top foil construct a complex foundation with nonlinear elastic properties and at the 
same time interesting dumping characteristics. Of course dry friction effects between the 
bumps and the top foil continue arising9 10.Figure 1.1.1 schematically shows some GFB 

                                                           
1 T.Leister, C.Baum, W.Seemann. On the Importance of Frictional Energy Dissipation in the Prevention of Undesirable Self-
Excited Vibrations in Gas Foil Bearing Rotor Systems. TECHNISCHE MECHANIK. 2017. 
2 H. Heshmat, J. A. Walowit, O. Pinkus. Analysis of gas-lubricated foil journal bearings. Journal of Lubrication Technology. 
1983. 
3 S. A. Howard, R. J. Bruckner, C. DellaCorte, K. C. Radil. Gas foil bearing technology advancements for closed Brayton cycle 
turbines. United States of America : National Aeronautics and Space Administration, 2007. 
4 Howard, S. A. Rotordynamics and design methods of an oil-free turbocharger. United States of America : National 
Aeronautics and Space Administration, 1999. 
5 S. A. Howard, R. J. Bruckner, K. C. Radil. Advancements toward oil-free rotorcraft propulsion. United States of America : 
National Aeronautics and Space Administration, 2010. 
6 C. DellaCorte, A. Zaldana, K. C. Radil. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free 
Turbomachinery. STLE/ASME . Joint International Tribology Conference, 2004. 
7 Gross, W. A. Gas Film Lubrication. s.l. : John Wiley and Sons, Inc, 1962. 
8 C. A. Heshmat, H. Heshmat. An Analysis of Gas Lubricated Multileaf Foil Journal Bearings with Backing Springs. J. Tribol. 
1995, 117. pp. 437-443. 
9 M. J. Baum, F. K. Choy, M. Dzodzo, J. Hsu. Two-Dimensional Dynamic Simulation of a Continuous Foil Bearing. Tribology 
International. 1996, pp. 61-68. 
10 H. Heshmat, W. Sharpino, S. Gray. Development of Foil Journal Bearings for High Load Capacity and High Speed Whirl 
Stability. J. Lubr. Technol. 1982, pp. 149-156. 
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designs. The solid lubrication is of a great importance too, especially when low rotating 
speeds are encountered (run-up, run-down) and the hydrodynamic gas film has not been 
developed. A common strategy which provides it is the application of a thin polymer film or 
coating whose mass properties are negligible11. 

 
Figure 1.1.1 Schematic example of typical Generation I foil bearings with axially and circumferentially 

uniform support elements 

In general, the plethora of gas foil bearing designs can be categorized in three different 
Generations presented in Figure 1.1.2 , Figure 1.1.3. First Generation bearings normally 
replace rigid gas bearings of the same size in air cycle machines, since they share common 
load capacities. Second Generation bearings exhibit a more complex elastic foundation as its 
stiffness properties are capable to be tailored in one direction. For example, if the designer’s 
main goal is to adopt in shaft’s misalignment or to avoid leakage of hydrodynamic fluid, then 
stiffness properties are tailored in the axial direction. This type of bearings has significantly 
higher load capacities and this is why they are preferred in turbo-compressors and micro-
turbines. Finally, third Generation bearings carry the most complex elastic foundations with 
properties able to be tailored in both axial and radial direction. The designer can adopt to load 
capacities three or four times greater than the load capacity of Generation one bearings and 
optimize the bearing stiffness for varying loads. The superiority of this type is profound but 
still the stability of the whole bearing-rotor system in really high rotating speeds is not 
ensured12. In this Master Thesis, the potential to enhance the stability margins under the 
principles of the parametric excitation is investigated. 

 
Figure 1.1.2 Generation II foil air 

bearings 

 
Figure 1.1.3 Generation III foil air bearings 

 
 

                                                           
11 C. DellaCorte, J. C. Wood. High Temperature Solid Lubricant Materials for Heavy Duty and Advanced Heat Engines. NASA 
TM-106570. 1994. 
12 C. DellaCorte, K. C. Radil, R. J. Bruckner, S. A. Howard. Design, Fabrication and Performance of Open Source Generation 
Ι and II Compliant Hydrodynamic Gas Foil Bearings. NASA TM-214691. 2007. 
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Parametrically excited systems have been studied extensively in mathematics and 
engineering applications131415. Maybe the most reputable examples of parametrically excited 
systems are the simple pendulum with a periodically moving support and the simple beam 
with pulsating axial load. Mathieu equations can easily describe the linearized equations of 
motion of both aforementioned systems and the trivial solution of these equations can easily 
be destabilized by parametric excitation. Unstable parameter regions caused by parametric 
excitation are called parametric resonances.  

In systems with two or more degrees of freedom a well-chosen parametric excitation can 
have stabilizing effects too, first discovered and described by Tondl16 17. These effects can be 
simplistically interpreted as couplings of certain modal degrees of freedom which allow a 
better usage of the existing system dumping. Thus, parametric excitation does not enhance the 
dumping properties of a system, it just highlights them. If the trivial solutions of an unstable, 
system can be stabilized in certain parameter regions by introducing parametric excitation 
then these regions are called parametric anti-resonances. For applications which can’t operate 
unstably in high rotating speeds, parametric anti – resonances are significant engineering 
benefits. 

1.2  Models of gas foil bearings and parametric excitation 
implementation 
An important amount of research has been conducted on the bump type foil bearing 

dynamics. First, H. Heshmat2 proposed the so called simple elastic foundation model for foil 
journal bearings and compliant thrust bearings whose simplicity made it widely accepted even 
if the prediction of the equivalent stiffness is not sufficient. More specifically, Heshmat 
substituted the bump-strip layers with separated linear springs. Thus, the structural stiffness 
was assumed linear, equally distributed and independent of the carrying loads. The static 
Reynolds equation (zero order) was coupled with the linear structural equations in order to 
obtain the pressure distribution. Low stiffness predictions were expected since the interactions 
between the bumps where neglected and the zero order Reynolds equation provides 
information of poor accuracy about the pressure distribution. Later, Peng and Carpino18 19 
presented a novel method to predict the linear dynamic stiffness and damping coefficients of 
bump foil bearings. Even if their structural model consisted only of an elastic foundation, the 
structural equations of motion can easily be modified in order to incorporate structural 
damping too. They used perfect gas whose behavior can be described by the Reynolds 
equation and they coupled structural and fluid equations. A perturbation method was applied 
to both zero and first order Reynolds equations and a finite difference (FD) formulation was 
developed to solve for the four stiffness and the four damping coefficients. Last but not least, 

                                                           
13 Bolotin, V. The Dynamic Stability of Elastic Systems. Holden-Day. 1964. 
14 A. P. Seyramian, A. A. Mailybaev. Multiparameter Stability Theory with Mechanical Applications. World Scientific Pub. Co. 
13, 2003. 
15 Schmidt, G. Parametererregte Schwingungen (In German, Translated Title 'Parametrically Excited Oscillations'). Deutcher 
Verlag der Wissenschaften. 1975. 

16 Tondl, A. On the interaction between self excited and parametric vibrations. Monographs and Memoranda, National 
Research Institute for Machine Design. 25, 1978. 
17 Tondl, A. To the problem of quenching self-excited vibrations. ACTA Technology. 1998, pp. 109-116. 
18 J. P. Peng, M. Carpino. Calculation of stiffness and damping coefficients for elastically supported gas foil bearings. Journal 
of Tribology. 115, pp. 20-27. 
19J. P. Peng, M. Carpino.  Finite element approach to the prediction of foil bearing rotor dynamic coefficients. Journal of 
Tribology. 119, pp. 85-90. 
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L. San Andres and Kim20 21 22 developed a numerical model in which 1D and 2D finite 
element (FE) approaches were introduced in order to calculate the top foil deflection. They 
managed to obtain frequency dependent linear dynamic coefficients for heavily loaded foil 
bearings and therefore a linear response of a rotor supported by them. Moreover, they 
compared the results with the non-linear response of the same rotor and the non-linear nature 
of stiffness characteristics were modeled using experimental data. They concluded in that the 
linear force coefficients are not reliable to represent the dynamic behavior of a rotor 
supported by GFBs. 

In general, when simulating the rotor’s behavior in gas foil bearings different approaches 
are conceivable. The common approach of deriving the linearized stiffness and damping 
coefficients, around a static equilibrium position of the journal is proved to be quite 
inaccurate. In other words, if the equilibrium position is stable, the method might be 
sufficient, but if the equilibrium position is unstable some non-linear effects like sub-
synchronous vibrations might not be predicted by the linear approach. Another possible 
approach, mainly implemented on oil-lubricated bearings, is look-up tables. The main idea is, 
predicting the bearing force in advance for various journal states without coupling to the rotor 
model, save it to a look-up table and finally run the rotor simulation linked to that table. Since 
the fluid equation does not include the time dependent part, this approach might be practical, 
but in GFBs, at least the pressure distribution is function of time. Therefore, at least one extra 
dimension of the data field is required making the approach rather impractical. So, when 
fluid-structure models of bearings are coupled to dynamic rotor models the time integration of 
both models has to be synchronized. C. Baum, H. Hetzler, S. Schroders, T. Leister and W. 
Seemann23 suggested a model order reduction for the fluid equations in order to obtain an 
overall bearing model suitable for fully coupled non-linear rotor-dynamic investigations. 

Obviously, the computational efficiency of an approach which combines a fully coupled 
non-linear rotor-bearing model with a well-chosen parametric excitation implementation is of 
great importance. As far as the author knows, one of the first attempts to implement 
parametric excitation has been done by F. Dohnal, H. Ecker, and H. Springer24. A uniform 
cantilever beam under the effect of a periodic axial load was investigated. The beam structure 
was discretized by a finite element approach, so the linearized equations of motion which 
described the one planar bending vibrations of the beam led to a system with periodic 
stiffness matrices. Numerical methods based on Floquet’s theorem and other analytical 
methods proved that given the fact that a certain level of the forcing amplitude is exceeded 
the damping properties of the beam are high lightened. In other words, parametric excitation 
mainly resulted in suppressed vibrations. T. Breunung, F. Dohnal, B. Pfau 25 investigated two 
quite realistic rotor systems from the literature in order to prove that an initially unstable 
equilibrium position can be stabilized by introducing a parametric excitation. The first was a 

                                                           
20 L. San Andres, T. H. Kim. Improvements to the analysis of gas foil bearings: Integration of top foil 1D and 2D structural 
models. ASME turbo expo 2007, Power for land, sea and air pp.779-789. 
21 T. H. Kim, L. San Andres. Heavily loaded gas foil bearings: a model anchored to test data. Journal Engineering for Gas 
Turbines and Power 012504-012508. 130, 2007. 
22 T. H. Kim, L. San Andres. Forced non-linear response of gas foil bearing supported rotors. Tribology International. 41, pp. 
704-715. 
23 C. Baum, H. Hetzler, S. Schroders, T. Leister, W. Seemann. A Computationally Efficient Nonlinear Foil Air Bearing Model 
for Fully Coupled Transient Rotor Dynamic Investigations. Tribology International. 2020. 
24 F. Dohnal, H. Ecker, H. Springer. Enhanced damping of a cantilever beam by axial parametric excitation. Archive of 
Applied Mathematics. December 2008. 
25 T. Breunung, F. Dohnal, B. Pfau. An approach to account for interfering parametric resonances and anti-resonances 
applied to examples from rotor dynamics. Springer Nature B.V. 2019. 
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self-excited rotor system proposed by Tondl and Ecker26, which consisted of two bearing 
housings with known masses and one rigid rotor. Each one of the three masses had two 
translational degrees of freedom and the rotor mass had two extra rotational degrees of 
freedom. Bearing forces were modeled phenomenologically and the parametric excitation was 
introduced by the time variant stiffness of the bearing support. The second was a Jeffcott rotor 
consisted of a flexible shaft, a centered disc, and two journal masses at both ends of the shaft. 
The bearing forces were calculated by numerical integration of the Reynolds equation of the 
incompressible flow and the parametric excitation was introduced by a harmonic adjustment 
of the upper segment of the lemon bore bearing. F. Dohnal, A. Chasalevris27  proposed an 
even more realistic concept of adjustable fluid film journal bearings. The main goal was the 
enhancement of the stability margins of a turbine rotor discretized by a finite element (FE) 
method. The parametric excitation was introduced by a predefined sinusoidal displacement 
(of certain amplitude and frequency) of the movable pads of two and three lobe bearings. 

In this Master Thesis, a rather simplistic model for bump foils properties of linearized 
stiffness and damping coefficients is utilized and the interesting parameters are introduced as 
foil compliance and foil loss factor. Due to its complex geometry, the slender rotor is 
discretized with continuous beam elements, each element having two nodes and eight total 
degrees of freedom. The rotor’s behavior in gas foil bearings is approached by deriving the 
linearized stiffness and damping coefficients of the bearings (linear approach) and by 
following the model order reduction for the fluid equations (nonlinear approach) 23. The linear 
approach is inspired by the idea of Peng and Carpino18, 19. A modified method for obtaining 
the equilibrium position of the journal is presented, according to which, the zero order 
Reynolds equation and the corresponding time invariant structural equation are coupled to 
two extra equations relative to the static bearing forces. The parametric excitation is 
implemented by a predefined displacement (of heavily investigated amplitude and frequency) 
of the initially circular ring. The aforementioned configuration of the rotor-bearing model is 
depicted in Figure 1.2.1. 

 
Figure 1.2.1 The configuration of the G.F.B.s (linear approach) - Rotor system 

 

1.3  Methods of limit cycle calculation and continuation 
As clearly mentioned before, the non-linear phenomena in high speed rotor systems are 

strong and can’t be neglected. Thus, numerical integration of the equations of motion is most 
commonly implied, even if it imposes several limitations. At first, particularly for large order 
systems numerical integration is of large computational cost which makes the system’s design 

                                                           
26 H. Ecker, A. Tondl. Stabilization of a rigid rotor by a time-varying stiffness of the bearing mounts. Vibration of Rotating 
Machinery. 2004. 
27 F. Dohnal, A. Chasalevris. Improving stability and operation of turbine rotors using adjustable journal bearings. Tribology 
International. 2016. 
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rather impractical. Furthermore, numerical integration is unable to compute unstable steady 
state solutions (unstable limit cycles) and difficultly computes the corresponding stable steady 
state solutions (attracting limit cycles). Since the current work primarily aims to investigate 
the threshold speed of instability of large order rotating systems under the principles of 
parametric excitation, another more effective and computationally efficient method for 
calculating limit cycles should be utilized. 

Maybe the most popular method for the calculation of periodic solutions of non-linear 
systems with multiple degrees of freedom (MDoF) is the collocation method28. N. J. Mallon 
in that report showed that a good approximation of the solutions of ordinary differential 
equations (ODEs) can be discretized properly and satisfy the set of ODEs at certain 
preselected points, the collocation points. They also showed that the computation of periodic 
solutions could be defined as a two point boundary value problem (BVP) with an extra 
unknown parameter, the period. A quasi-linearization technique was utilized to transform the 
non-linear BVP in a sequence of linear BVPs. Finally, in order to eliminate the unknowns of 
the linear problem he proposed a parameter condensation technique which incorporates a 
quadrature scheme. The main drawback of the method is the ‘necessity’ of analytically 
computed Jacobian matrices. 

Nevertheless, it is far from enough just to compute a periodic solution. The main goal is 
to find solution branches as one or more design or operating parameters change (as 
bifurcation parameters) and therefore numerical continuation tools are of great 
importance29 30 31 32. The numerical continuation method in one of its most popular version 
(pseudo arc-length continuation) has the primary advance to study MDοF systems33. Among 
the various contributions, in34 35 36 simplified models of high speed rotors on floating ring 
bearings were studied while in37 38 39 40 the bifurcation sets of Jeffcott rotor models mounted 
on oil film bearings were investigated. More recently, pseudo arc length continuation method 
was implemented on simple rotor models on adjustable bearings41 or on gas foil bearings.  

                                                           
28 Mallon, N. J. Collocation: A method for computing periodic solutions of ordinary differential equations. Eindhoven : s.n., 
2002. 
29 K. Georg, E. L. Allgower. Introduction to Numerical Continuation Methods. Society for Industrial and Applied Mathematics. 
2003. 
30 H. Meijer, F. Dercole, B. Olderman. Numerical bifurcation analysis. Encyclopedia of Complexity and Systems Science. 2003, 
pp. 6329-6352. 
31 Kuznetsov, Y. A. Elements of applied bifurcation theory. New York : Applied Mathematical Sciences, Springer, 1998. 2. 
32 A. H. Nayfeh, B. Balachandran. Applied Nonlinear Dynamics. s.l. : Wiley Series in nonlinear science, J.Wiley & Sons, 1995. 
1. 
33 Doedel, E. J. Lecture Notes on Numerical Analysis of Nonlinear Equations. Montreal, Canada : Department of Computer 
Science. 
34 Boyaci, A. Analytical bifurcation Analysis of a rotor supported by floating bearings. Nonlinear Dunamics. 57, 497-507. 
35 A. Boyaci, D. Lu, B. Schweizer. Stability and bifurcation phenomena of Laval/Jeffcott rotors in semi-floating ring bearings. 
Nonlinear Dynamics. 2015, pp. 1535-1561. 
36 Breemen, F. C. Van. Stability analysis of a laval rotor on hydrodynamic bearings by numerical continuation: Investigating 
the influence of rotor flexibility, rotor damping and external rotor oil pressure on the rotordynamic behavior. M.Sc Thesis, Delft 
University of Technology. 2016. 
37 Rubel, J. Vibrations in nonlinear rotordynamics, Ph.D. Thesis. Heidelberg : Ruprecht-Karls-Universitat, 2009. 
38 A. Amanou, M. Couchane. Bifurcation of limit cycles in fluid film bearings. International Journal of Non-Linear Mechanics. 
2011, pp. 1258-1264. 
39 R. Sghir, M. Couchane. Prediction of the nonlinear hysterisis loop for fluid-film bearings by numerical continuation. Proc. 
IMechE Part C: Mechanical Engineering Science . 2015, pp. 651-662. 
40R. Sghir, M. Couchane. Non-linear stability analysis of a flexible rotor-bearing system by numerical continuation. Journal of 
Vibration and Control. 2016, pp. 3079-3089.  
41 Becker, K. Dynamisches Verhalten hydrodynamisch gelagerter Rotoren unter berucksichtigung veranderlicher 
Lagergeometrien, Ph.D Thesis. Karlsruhe  : Karlsruhe Institute of Technology, 2019. 
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2. MODELING AND FORMULATION OF THE ROTOR 
DYNAMIC SYSTEM 
In this chapter, the methods used to formulate the rotor model are presented. The main 

objective of this chapter is to give the reader a brief overview of the linear and non-linear 
approach to the elastoaerodynamic lubrication problem, the parametric excitation 
implementation, the finite element method and the element order reduction method for 
modeling rotors. Where deemed necessary, references to the existing literature and 
appendices are incorporated. 

2.1  Elastoaerodynamic lubrication problem, non-linear approach 
Figure 2.1.1 shows the simplistic configuration of a bump type GFB mainly utilized in 

current work. Journals’ and bearings’ rotational axes are considered parallel and their 

geometrical centers are denoted by ( ),j j jO x y and ( ),b b bO x y  respectively. Coordinate θ  is 

measured from the horizontal positive semi-axis of the bearing and therefore the 
circumferential spatial coordinate is denoted by x R θ= ⋅ and the axial spatial coordinate is 
denoted by z . The pressure distribution ( ), ,p p x z t=  is a function of time since the flow in 

the gap between the journal and the top foil is considered compressible and the analysis being 
held is transient. In addition, due to the very small film height in the radial direction 
compared to the circumferential and axial dimensions of the film, a dependency of the 
pressure on a height coordinate is typically not taken into account. The top foil deformation 

( ),q q tθ= is not a function of the axial spatial coordinate since the coupling of the structural 

and the fluid equation considers a mean gas pressure among the aforementioned coordinate. 
The last deformation is considered positive when it is developed towards the outer side of the 
bearing. In this project, the foil’s starting and ending angle is denoted by χ , thus by definition

( ), 0q tθ χ= = .  

 
Figure 2.1.1 Representation of a G.F.B. cross section, key geometry and operating parameters 

Eventually, since the maximum eccentricity is typically small compared to geometrical 
parameters of the bearing ( max , je R R ) the film thickness can be written as: 

 ( ), cos sinr j jh h t c x y qθ θ θ= = − − +   (2.1.1) 
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The necessary assumptions of the lubrication problem are quite common: Isothermal      gas 

film described by ideal gas law ( p ct
ρ
= ), laminar, continuum flow under no-slip boundary 

conditions, negligible fluid inertia, entrance/exit effects and curvature ( rR R c+ ). Under 
these assumptions, the Navier-Stokes equations and the continuity equation can be simplified 
to the Reynolds equation for compressible fluids and unsteady motions of the journal: 

 ( ) ( )
3 3

6 12 0ph p ph p R ph ph
x x z z x tµ µ
   ∂ ∂ ∂ ∂ ∂ ∂

+ − Ω − =   ∂ ∂ ∂ ∂ ∂ ∂   
  (2.1.2) 

on the domain ( )2 , | 2 ,0
2

b
D

Lx z R x R R zχ χ π Ω = ≤ ≤ + ≤ ≤ 
 

 , whereas the viscosity µ  is 

considered to be constant in space as well as in time.  The boundary conditions for the 
pressure distribution are: 

 
( )

0

, 0,
, , , 0

2
b p x z tLp x z t p

z
∂ = = = =  ∂ 

  (2.1.3) 

 ( ) ( )0 0, , , 2 , ,p x R z t p p x R R z t pχ χ π= = = + =   (2.1.4) 

, and are accompanied by the corresponding initial condition: 

 ( ) 0, , 0p x z t p= =   (2.1.5) 

It is quite common in G.F.B.s for sub-ambient pressures to arise. These sub-ambient 
pressures can cause the top foil to separate from the bump into positions where the pressure 
on both sides of the pads is equalized. Heshmat et al 42 , introduced a set of boundary 
conditions meaning that sub-ambient pressures are discarded when integrating pressure in 
order to obtain the bearing forces. This assumption, in terms of numerical calculations can be 
simply expressed as follows: In case fluid pressure p is lower than the ambient pressure 0p , 

then the former should be considered equal to 0p and the foil’s deformation at these areas 
should be considered zero. The last two boundary conditions recognize that the flow is 
continuous in the circumferential direction and gas does not enter or leave the lubricant film, 
even if sub-ambient pressures are occurred. Finally, the reduced domain 2DΩ  and the first 
boundary condition is due to the assumption of the symmetry of the problem. 

The simplified model for the bump structure is depicted in Figure 2.1.2. Since a thin and 
extendable material is used for the foil’s surface, the membrane and bending effects are 
negligible compared with the elastic foundation effects. Therefore, the structure consists of 
linear, massless elements with one finite dimension in the radial direction and no coupling of 
the elements in the circumferential direction. These elements are of stiffness fk  and damping

fc and mount the corresponding top foil stripes of area bx L∆ ⋅ . For computational reasons, it 

should be noted that the top foil is not covering a full cylinder. Instead, a single gap can be 
found at x Rχ= where foil is clamped to the bearing housing. These top foil stripes are 
assumed to remain parallel to the bearing surface during their motion, so no axial coordinate 
is required for their description.  

                                                           
42 H. Heshmat, J. A. Walowit, O. Pinkus. Analysis of gas-lubricated foil journal bearings. Journal of Lubrication Technology. 
1983. 
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Figure 2.1.2 Model of gas pressures and forces acting on the rotating journal and the compliant foil 

structure 
 
The proposed relationship between the applied pressure and the deflection of each top foil 
stripe is given by: 

 m f fp c q k q= +   (2.1.6) 

Whereas: 

 ( ) ( )
/2

0
0

2,
bL

m m
b

p t p p p dz
L

θ = = −∫   (2.1.7) 

The necessary initial condition for the foil deflection is: 
 ( ) 0, 0q t qθ = =   (2.1.8) 

It is of great importance to note that in terms of (2.1.8) if sub-ambient pressure is 
occurred then this pressure is discarded, as explained in the previous paragraph. Additionally, 
the multiplication is due to the assumption of the symmetry of the pressure distribution in the 
axial direction. 

In general, solving the dimensional form of the problem is computationally inefficient. 
Obviously, the pressure distribution and the top foil deflection will be both parts of the state 
vector of the non-linear equations of motion. As clearly stated in 1.3, there is a necessity of 
analytically computed Jacobian matrix, but if numerically computed Jacobian matrix is 
provided, then it should be very accurate. It is beyond any doubt, that carrying dimensional 
pressures and foil deformations in the same state vector makes this computation quite 
difficult. Thus, the non-dimensional form of the problem is preferred. The following 
transformations (of the independent and dependent variables respectively) take place in order 
to define the dimensionless form: 

 
2

0
2, ,

6
r

b

p cx zx z t t
R L R

τ
µ

= = = = Λ   (2.1.9) 

 
0

, , , , ,j j
j j

r r r r

x yp h qp h q x y
p c c c c

Ω
= Ω = = = = =

Λ
  (2.1.10) 

 
Substituting (2.1.9) and (2.1.10)  in (2.1.1) - (2.1.8) results in the non-dimensional Reynolds 
equation: 
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 ( ) ( )3 3 2 0
b

p R pph ph ph ph
x x L z z x τ
∂ ∂ ∂ ∂ ∂ ∂   + −Ω − =   ∂ ∂ ∂ ∂ ∂ ∂   

  (2.1.11)

on the domain 2 '
1( , ) | 2 ,0
2D x z x zχ χ π Ω = ≤ ≤ + ≤ ≤ 

 
  

, and the non-dimensional structural equations: 
 m f fp c q k q= +   (2.1.12) 

, whereas: 

 ( )
1/2

0

2 1mp p dz= −∫   (2.1.13) 

, while the non-dimensional film thickness is defined by: 
 1 cos sinj jh x y qθ θ= − − +   (2.1.14) 

Boundary and initial conditions in non-dimensional form can be expressed as: 

 
( ), 0,1, , 1, 0

2
p x z

p x z
z

τ
τ

∂ = = = =  ∂ 
  (2.1.15) 

 ( ) ( ), , 1, 2 , , 1p x z p x zχ τ χ π τ= = = + =   (2.1.16) 

 ( ) ( ) 0,, , 0 1, , , 0p x z q x z qτ τ= = = =   (2.1.17) 

In order to couple the fluid-structural model of the G.F.B. to the rotor model, the bearing 
forces are essential. Once the fluid pressure is evaluated, the non-dimensional bearing forces 
can be expressed as: 

 ( )
2 1/2

0

2 1 cos
XbF p xdxdz

χ π

χ

+

= − −∫ ∫   (2.1.18) 

 ( )
2 1/2

0

2 1 sin
YbF p xdxdz

χ π

χ

+

= − −∫ ∫   (2.1.19) 

Analytical solutions of (2.1.11) can’t be found, so a Finite Difference Method (F.D.M.) is 
applied in order to evaluate an approximation of the pressure distribution. According to this 
method, second order derivatives with respect to the dimensionless spatial coordinates are 
approximated by central differences: 

 
2 2

1, , 1, , 1 , , 1
2 2 2 2

2 2
,i j i j i j i j i j i jp p p p p pp p

x x z z
+ − + −− + − +∂ ∂

≈ ≈
∂ ∆ ∂ ∆

  (2.1.20) 

, and first order derivatives with respect to the same spatial derivatives are approximated by 
backward differences: 

 , 1, , , 1,i j i j i j i jp p p pp p
x x z z

− −− −∂ ∂
≈ ≈

∂ ∆ ∂ ∆
  (2.1.21) 

In general, F.D.M. includes truncation error. Thus, approximating first order derivatives by 
backward differences might be less accurate than approximating them by central differences. 
Our decision though, enhances numerical stability of the method. Given the fact that the 
G.F.B.s will be parametrically excited, our primal goal is to ensure the stability of the 
numerical method, even if accuracy might be sacrificed. The domain 2 'DΩ  is divided into a 
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grid of 1,..., 1, 1,..., 1x zi N j N= + = +  mesh points ,i jp .  By applying the discretization 

formulas  (2.1.20) and (2.1.21) the Partial Differential Equation (P.D.E.) (2.1.11) is converted 
into ( 1) ( 1)x zN N+ ⋅ +  coupled first order O.D.E.s with respect toτ . This set of equations 

can be solved explicitly for time derivatives ,i jp . Additionally, after solving (2.1.12) for the 

time derivatives of the top foil deflection iq  and introducing a state space vector: 

 1,1 1, 1 1 1 ,

( 1) ( 1) ( 1)

,..., , ,..., ,

,

T
s Nx Nz Nx m r

Nx Nz Nx Nm
s

p p q q− − +

− ⋅ − + + +

 =  
∈

x x

x 
  (2.1.22) 

, whereas ,
Nm

m r ∈x   is the dimensionless state vector of the reduced discretized rotor model, 

which includes journal’s displacements ,j jx y  the discretized overall bearing rotor model can 

be written as non-linear system of first order O.D.E.s: 

 
( ) ( 1)*( 1) ( 1) ( 1)*( 1) ( 1)

,0

, :
, ( , , 0)

Nx Nz Nx Nm Nx Nz Nx Nm
s s

s s

f x
x z t

− − + + + − − + + += →

= =

x f
x x

  
  (2.1.23) 

Solving the aforementioned non-linear system might be very expensive in terms of 
computational costs. This motivates the usage of a model order reduction method. In this 
Master Thesis, the Galerkin’s method, firstly proposed by C. Baum et al 43 is used. This 
method can be categorized within the theory of weighted residuals and assumes that the 
pressure distribution can be approximated by the product: 

 ( ) ( ) ( ) ( )ˆ, , , , 1 , 1a a ap x z p x z p x p zτ τ τ≈ + = ⋅ +   (2.1.24) 

A non-linear differential operator is introduced: 

 { } ( ) ( )3 3 2
b

p R p
D p ph ph ph ph

x x L z z x τ
∂ ∂ ∂ ∂ ∂ ∂

= + −Ω −
∂ ∂ ∂ ∂ ∂ ∂

   
   
   

  (2.1.25) 

, so potentially the Reynolds equation (2.1.11)  leads to: 

 { } { }0, a aD p D p r= =   (2.1.26) 

Since ( )ap z  is treated as a base function and the Galerkin’s method is implied, the so-called 

error orthogonality equation is introduced too: 

 { }
1/2 1/2

0 0

0a a a ap r dz p D p dz⋅ ⋅ = ⋅ ⋅ =∫ ∫    (2.1.27) 

Evaluating (2.1.27) will eliminate the dependency of non-dimensional axial direction. Hence, 
the domain 2 'DΩ reduces to { }2 ' | 2

rD x xχ χ πΩ = ≤ ≤ +  and the state vector sx  reduces to: 

                                                           
43 C. Baum, H. Hetzler, S. Schroders, T. Leister, W. Seemann. A Computationally Efficient Nonlinear Foil Air Bearing Model 
for Fully Coupled Transient Rotor Dynamic Investigations. Tribology International. 2020. 
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 1 1 1 1 ,

2

,..., , ,..., ,

,
r

r

T
s Nx Nx m r

Nx Nm
s

p p q q− +

⋅ +

 =  
∈

x x

x 
  (2.1.28) 

Accordingly, the non-linear system of first order O.D.E.s (2.1.23)  is reduced as well to: 

 
( ) 2 2

,0

, :

, ( , , 0)
r r

r r

Nx Nm Nx Nm
s s

s s

f x

x z t

⋅ + ⋅ += →

= =

x f

x x

  
  (2.1.29) 

However, as far as the base function ( )ap z is not determined, the reduction method can’t be 

finalized. C. Baum et al44 had been motivated by the short bearing theory for journal bearings 
in order to choose the proper base function. In the current work, the same generalized shape 
function has been introduced.  

 

( ) ( ) ( ) ( )
( )

2 2 21 1 2 1 2

,
1,

a ai i
a a a

a a a a a

a a

p z w z w z

i floor m w m i
m m

+= − ⋅ − + ⋅ −

= = −

≥ ∈




  (2.1.30) 

It is more than obvious that an optimal parameter am  should be identified. This can be 
achieved by introducing an error function which includes the difference between the pressure 
field of the full domain model and the pressure field of the reduced one. The optimal 
parameter minimizes the aforementioned error function. But it is proven that am presents 
significant discrepancies depending on the journal states, the rotating speed and the foil 
properties. Thus the introduction of the error function is rather inefficient, especially if the 
reduction method is integrated in a limit cycle continuation method. In this Master Thesis a 
fixed value for the parameter am is chosen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
44 C. Baum, H. Hetzler, S. Schroders, T. Leister, W. Seemann. A Computationally Efficient Nonlinear Foil Air Bearing Model 
for Fully Coupled Transient Rotor Dynamic Investigations. Tribology International. 2020. 
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2.2  Elastoaerodynamic lubrication problem, linear approach 
The main purpose of the linear approach is to evaluate the stiffness and damping 

coefficients of a bump type G.F.B utilizing a perturbation method. Figure 2.2.1 depicts the 
new coordinate system and the sign convention of the journal’s forces. The assumptions about 
the lubrication problem are the same as mentioned in 2.1 but the variables (dependent and 
independent) in the governing equations are normalized slightly differently.  

 
 

Figure 2.2.1 The coordinate system and the sign convention according to the linear approach 

More specifically: 

 ,
b

zz t
L

τ ν= =   (2.2.1) 

 
0

, ,
r r

p h qp h q
p c c

= = =   (2.2.2) 

It can easily be observed that the dimensionless time variable depends on the whirl frequency
ν  , the rate at which the journal will orbit about the equilibrium position in the perturbation 
analysis. For simplification purposes, synchronous whirling is assumed thus whirl frequency 
is by definition equal to the rotating speed of the journal. In addition, the symmetry of the 
lubrication problem is not taken into account. In terms of the structural model proposed in 
2.1only one assumption is differentiated. The top foil stripes are not assumed to remain 
parallel to the bearing surface during their motion. Therefore the axial coordinate is essential 
for their description. Under these principles, the non-dimensional Reynolds equation is 
rewritten: 

 ( ) ( )3 3 2 0
b

p R pph ph ph ph
L z z

γ
θ θ θ τ
∂ ∂ ∂ ∂ ∂ ∂    ′ ′− − + Λ + Λ =   ∂ ∂ ∂ ∂ ∂ ∂      (2.2.3), 

whereas: 

 
2

2
0

6 ,
r

R
p c
µ νγΩ′Λ = =

Ω
  (2.2.4) 
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,on the domain 2 ''
1 1( , ) | 2 ,
2 2D z zθ χ ϑ χ π Ω = ≤ ≤ + − ≤ ≤ 

 
 and with the respective 

boundary conditions:  

 
1 1, , 1, , , 1
2 2

p z p zθ τ θ τ   = = = − =   
   

  (2.2.5) 

 ( ) ( ), , 1, 2 , , 1p z p zθ χ τ θ χ π τ= = = + =   (2.2.6) 

 
Similarly, the non-dimensional structural equation is rewritten: 

 f f
dqp k q c
d

γ
τ

′= +   (2.2.7) 

, whereas: 

 
0 0

,f r f r
f f

k c c c
k c

p p
′= = Ω   (2.2.8) 

It is of great importance to note that initial conditions are not necessary to be given, since a 
perturbation method will be implied. In addition, the boundary condition for the foil 
deformation which is introduced in 45 is neglected due to our desire to compare the linear 
approach to the non-linear one.  

The modified perturbation method can now be explained. Suppose that the perturbed 
motion of the journal about an equilibrium position (subscript ‘0’ indicates a quantity in this 
equilibrium position) is a circular orbit, the normalized perturbations (small displacements 
and small velocities among the axes illustrated in Figure 2.2.1) are given by: 

 

( )( )

( )( )

i

r

i

r

e
c

YY Y e
c

τ

τ

ττ

ττ

∆Χ
∆Χ = = ∆Χ

∆
∆ = = ∆

  (2.2.9) 

 

( )( )

( )( )

d i
d

d YY i Y
d

ττ
τ
ττ

τ

∆Χ
∆Χ = = ∆Χ

∆
∆ = = ∆





  (2.2.10) 

  

 

( )( )

( )( )

d
d

d YY Y
d

ττ
τ
ττ

τ

∆Χ
∆Χ = = −∆Χ

∆
∆ = = −∆









  (2.2.11) 

 
Then, the pressure distribution, the foil deformation and the film thickness can be expressed 
in Taylor series in terms of the normalized perturbations around an equilibrium position of the 
journal: 

                                                           
45 J. P. Peng, M. Carpino. Calculation of stiffness and damping coefficients for elastically supported gas foil bearings. Journal 
of Tribology. 115, pp. 20-27. 
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0

0

0

X X

X X

X X

p p p p p p

h h h h h h

q q q q q q

Υ Υ

Υ Υ

Υ Υ

= + ∆Χ + ∆Υ + ∆Χ + ∆Υ

= + ∆Χ + ∆Υ + ∆Χ + ∆Υ

= + ∆Χ + ∆Υ + ∆Χ + ∆Υ

 

 

 

 

 

 

  (2.2.12) 

 
The relationships between the partial derivatives of the film thickness and the foil 
deformations are given by: 

 
sin ,

cos ,
X X X X

Y Y Y Y

h q h q

h q h q

θ

θ

= + =

= − =

 

 

  (2.2.13) 

 
Once the partial derivatives of the pressure distribution are found, the stiffness and damping 
coefficients are calculated by properly integrating over the bearing’s surface. These partial 
derivatives are now found as follows. Equations (2.2.9) - (2.2.13) are substituted in (2.2.3) - 

(2.2.8). Terms with the same coefficients ( , , , )∆Χ ∆Υ ∆Χ ∆Υ  are collected yielding to the 
following equations about the equilibrium position of the journal: 
  

 ( )3 30 0
0 0 0 0 0 0 0

b

p pR p h p h p h
L z z θ θ θ

∂ ∂∂ ∂ ∂    ′− − + Λ =   ∂ ∂ ∂ ∂ ∂   
  (2.2.14) 

 ( )0 0 0( 1) 1 sin 0fp k h ε θ θ − − − − − =    (2.2.15) 

, on the domain 2 ''DΩ  in respect to the boundary conditions: 

 ( ) ( )0 0, 1/ 2 1, , 1/ 2 1p z p zθ θ= = = − =   (2.2.16) 

 ( ) ( )0 0, 1, 2 , 1/ 2 1p z p zθ χ θ χ π= = = + = − =   (2.2.17) 

In equations  (2.2.14) , (2.2.15) the unknowns are the dimensionless pressure distribution 0p  , 

the corresponding dimensionless film thickness 0h  the eccentricity ε  and finally the altitude 

angle 0θ  . Therefore two more equations are incorporated: 

 
21/2

0
1/2

sin stp Rd dz W
χ π

χ

θ θ
+

−

− =∫ ∫   (2.2.18) 

 
21/2

0
1/2

cos 0p Rd dz
χ π

χ

θ θ
+

−

=∫ ∫   (2.2.19) 

The dimensionless static load stW  can easily be evaluated from the static analysis of the 
rotor-bearing model which will be discussed in section 2.4 . It should be clarified that the 
term ( )0 1p −  in equation (2.2.15) is artificially introduced and the reason lies between the 

assumptions of Heshmat et al 46 and R. Dhakad et al47. Analytical solution of (2.2.14) can’t be 

                                                           
46 H. Heshmat, J. A. Walowit, O. Pinkus. Analysis of gas-lubricated foil journal bearings. Journal of Lubrication Technology. 
1983. 
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found so a Finite Difference Method (F.D.M.) is again applied to evaluate an approximation 
of the pressure field 0p . By applying the discretization formulas thoroughly described in 2.1 
the Partial Differential Equation (P.D.E.) (2.2.14) is converted into a system of non-linear 
algebraic equations ( )2,..., , 2,...,x zi N j N= = : 

 
( )
( )
( )

, ,

1, 1, 1, 1,

1, 1, 1, 1,

1, 1, 1, 1,

2
1 0 2 0 3

1 1 0 0 0 0

2 2 0 0 0 0

3 3 0 0 0 0

0

, , ,

, , ,

, , ,

i j i j

i j i j i j i j

i j i j i j i j

i j i j i j i j

A p A p A

A f p p h h

A f p p h h

A f p p h h

+ − + −

+ − + −

+ − + −

+ + =

=

=

=

  (2.2.20) 

, coupled to ( )1,..., 1, 1,..., 1x zi N j N= + = +  : 

 ( ) ( )
, ,0 0 01 1 sin 0

i j i jf ip k h ε θ θ − − − − − =    (2.2.21) 

  
 

, ,1 0i j i j st
i j

s p W=∑∑   (2.2.22) 

  
 

, ,2 0 0
i j i j

i j
s p =∑∑   (2.2.23) 

, with the respective boundary conditions: 

 
, 1 , 10 01, 1

i j i j Nz
p p

= = +
= =   (2.2.24) 

  
 

1, 1,0 01, 1
i j i N jx

p p
= = +

= =   (2.2.25) 

, whereas 
, ,1 2,

i j i j
s s are both constants arising from the Simpson’s 1/3 law, which is applied to 

numerically evaluate the integrals in (2.2.18) - (2.2.19). The non-linear system of algebraic 
equations (2.2.20) - (2.2.23) may now be solved by means of standard iterative solvers under 
the constraint

,0 1
i j

p ≥  . 

It is now more than obvious that the artificial term ( )0 1p − is introduced in order to 

ensure that 
,0 0

i j
q ≥  (the equality is applied when sub-ambient pressure is occurred). In 

addition, it ensures that correct boundary conditions for the top foil deformations are taken 
into consideration. 

After determining pressure distribution and gas film thickness at the equilibrium position 
of the journal, their partial derivatives can be evaluated solving the following equations 
(always on the domain 2 ''DΩ ): 

                                                                                                                                                                      
47 R. Dhakad, B. K. Pradhan, J. Kumar, S. Behera. Prediction of Stiffness and Damping of Gas Foil Journal Bearing for High 
Speed Rotor. TRIBOINDIA. December 2018. 
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( ) ( )

3 3 2 3 3 20 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0

3 3

2 0

x x
x x x x

b

x x x x

p p p p p pR
p h p h p h h p h p h p h h

L z z z z

p h p h p h p h

ϑ θ θ θ

γ

−
∂ ∂ ∂ ∂ ∂ ∂∂ ∂

+ + − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

′ ′+Λ + − Λ + =

     
         

 

 

 (2.2.26) 
  

 sin 0x f x f fxp k h c h kγ θ′− + + =


  (2.2.27) 

( ) ( )

3 3 2 3 3 20 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0

3 3

2 0

x x
x x x x

b

x xx x

p pp p p pR
p h p h p h h p h p h p h h

L z z z z

p h p h p h p h

ϑ θ θ θ

γ

−
∂ ∂∂ ∂ ∂ ∂∂ ∂

+ + − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

′ ′+Λ + Λ + =

     
         

+

 

   

 

 

 (2.2.28) 
  

 sin 0f f x fx xp k h c h cγ γ θ′ ′− − + =
 

  (2.2.29) 

  

( ) ( )

3 3 2 3 3 20 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0

3 3

2 0

y y
y y y y

b

y y y y

p pp p p pR
p h p h p h h p h p h p h h

L z z z z

p h p h p h p h

ϑ θ θ θ

γ

−
∂ ∂∂ ∂ ∂ ∂∂ ∂

+ + − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

′ ′+Λ + − Λ + =

     
    
    

 

 

 (2.2.30) 
  

 cos 0y f y f fyp k h c h kγ ϑ′− + − =


  (2.2.31) 

  

( ) ( )

3 3 2 3 3 20 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0

3 3

2 0

y y
y y y y

b

y yy y

p pp p p pR
p h p h p h h p h p h p h h

L z z z z

p h p h p h p h

ϑ θ θ θ

γ

−
∂ ∂∂ ∂ ∂ ∂∂ ∂

+ + − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

′ ′+Λ + Λ + =

     
    
    

+

 

   

 

 

 (2.2.32) 
  

 cos 0f f y fy yp k h c h cγ γ θ′ ′− − − =
 

  (2.2.33) 

, with the respective boundary conditions: 

( ) ( ) ( ) ( ), 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2 0x yx yp z p z p z p zθ θ θ θ= ± = = ± = = ± = = ± =
 

  (2.2.34) 

 

( ) ( ) ( ) ( ), 2 , , 2 , , 2 , , 2 , 0x yx yp z p z p z p zθ χ χ π θ χ χ π θ χ χ π θ χ χ π= + = = + = = + = = + =
 

  (2.2.35) 

Although equations (2.2.26) - (2.2.33) appear to require sophisticated solutions, it can be 
observed that they form two sets of coupled equations: Equations (2.2.26) - (2.2.29) for 

, , ,x xx xp p h h
 

 and equations (2.2.30) - (2.2.33) for , , ,y yy yp p h h
 

. Furthermore, the highest 

order of the Partial Differential Equations (P.D.E) is two, enabling relatively simplistic 
solution by the Finite Difference Method (F.D.M.) thoroughly described before. Thus the 
following non-linear algebraic system is derived for 

, ,
,

i j i jx xp p


 ( )2,..., , 2,...,x zi N j N= =  : 
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,

1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1,

1 2

1 1

2 2

0

( , , , , , , )

( , , , , , , )

i j

i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

x

x x x x x x x x

x x x x x x x x

B p B

B g p p h h p p h h

B g p p h h p p h h
+ − + − + − + −

+ − + − + − + −

+ =

=

=

   

   

  (2.2.36) 

And 

 
,

1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1,

1 2

1 1

2 2

0

( , , , , , , )

( , , , , , , )

i j

i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

x

x x x x x x x x

x x x x x x x x

C p C

C h p p h h p p h h

C h p p h h p p h h
+ − + − + − + −

+ − + − + − + −

+ =

=

=



   

   

  (2.2.37) 

, coupled to ( )1,..., 1, 1,..., 1x zi N j N= + = +  : 

 
, , ,

sin 0
i j i j i jx f x f f ixp k h c h kγ θ′− + + =



  (2.2.38) 

 
,, ,

sin 0
i ji j i jf f x f ix xp k h c h cγ γ θ′ ′− − + =

 

  (2.2.39) 

, with the respective boundary conditions: 

 
, 1, 1 , 1, 1

0
i j N i j Nz z

x xp p
= + = +

= =


  (2.2.40) 

 
1, 1, 1, 1,

0
i N j i N jx x

x xp p
= + = +

= =


  (2.2.41) 

, under the constraint 
, ,

0, 0
i j i jx xp p≥ ≥



  

An analogous non-linear algebraic system can easily be derived for 
, ,
,

i j i jy yp p  under the 

same boundary conditions and constraints. Finally the four stiffness and the four damping 
coefficients are calculated with respect to the sign convention and the coordinate system of 
Figure 2.2.1 as:  

21/2

2
0 1/2

sin sin
cos cos

xx xy x yxx xy br

yx yy x yyx yy

K K p pK K Lc d dz
K K p pK K p R R

χ π

χ

θ θ
θ

θ θ

+

−

     
= = −     − −    

∫ ∫  

 (2.2.42) 
 

21/2

2
0 1/2

sin sin

cos cos
x yxx xyxx xy br

yx yyyx yy x y

p pC CC C Lc d dz
C CC C p pp R R

χ π

χ

θ θ
θ

θ θ

+

−

    Ω
= = −      − −     

∫ ∫
 

 

 

 (2.2.43) 

These coefficients will be incorporated in the dimensional discretized rotor model, either as 
extra stiffness and damping matrices added properly to the stiffness and damping matrices of 
the full system, or as external excitation sources. In any case, due to the different coordinate 
systems utilized, the transformation described below is necessary: 

 
0 1 0 1
1 0 1 0

xx xy xx xy

yx yy yx yyrot

K K K K
K K K K

−      
=      −      

  (2.2.44) 
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0 1 0 1
1 0 1 0

xx xy xx xy

yx yy yx yyrot

C C C C
C C C C

  −      
=        −         

  (2.2.45) 

2.3  Parametric excitation implementation 
As clearly stated in 1.2, parametric excitation is implemented for both the linear and the 

non-linear approach of the elastoaerodynamic lubrication problem. According to the linear 
approach, the stiffness and damping coefficients are incorporated to the discretized rotor 
model either as extra stiffness and damping matrices properly added to the global ones, or as 
external excitation sources. In any case, these coefficients, under the principles of parametric 
excitation, are time dependent and change periodically according to: 

 ( )( )
. .

1 sin
p e

xx xy xx xy
ex

yx yy yx yyrot rot

K K K K
t

K K K K
δ

   
= + Ω   

   
  (2.3.1), 

  

 ( )( )
. .

1 sin
p e

xx xy xx xy
ex

yx yy yx yyrot rot

C C C C
t

C C C C
δ

   
= + Ω   

   
  (2.3.2), 

with the parametric excitation frequency exΩ  and amplitude ratioδ . Note that the stiffness 
and damping properties of all bearings are varied with the same frequency and without phase-
lag, which is referred as synchronous stiffness and damping parametric excitation. In addition, 
note that all properties are varied with the same amplitude ratio, which is rather unrealistic. 
Equations (2.3.1) - (2.3.2) should be considered just as a mean to determine excitation 
frequencies and amplitude ratios which lead to parametric anti-resonances. These desirable 
parameters is then attempted to be achieved by the time dependent deformation of the initially 
circular bearing ring (Figure 2.3.1) 

 
 

Figure 2.3.1 The elastic line of the deformable ring under the effect of a vertical periodic load 
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The following analysis considers the physical and geometrical properties (inner /outer radius, 
young modulus of elasticity, Poisson’s ratio) of the bearing ring as known and denotes: 

 

( )
( )

( )
( )

( )
( )

4 4
, , ,

1 2 2 2 2 2
, , , , ,

4 4
, ,

2 2 2 2
, , ,

1.33 1 2
1

2

1
2

o r i r r o r

i r o r i r o r i r

o r i r

i r o r i r

R R v R
R R R R R

R R

R R R

κ
π

κ

− +
= − +

− −

−
= −

−

  (2.3.3) 

Inspired by the analytically computed deformation of a ring under the effect of a periodic 
vertical load, the author defines the horizontal and vertical deformation of the bearing ring as: 

 
( ) [ ]

( ) [ ]

3

2,0 1
2 211

3 2
,0 2

111

2
0, , 1 sin( )

2 4.2 10 2

2
/ 2, 3 / 2, 1 sin( )

2 4.2 10 4

o r

r ex

r

o r

r ex

r

RF
q t dh t

I

RF
q t dv t

I

κ
θ π κ κ

π

κπ
θ π π κ

π

= = = − + + Ω
⋅

−
= = = − + Ω

⋅

 
 
 

 
 
 

  (2.3.4) 

, and their time derivatives: 

 
[ ]

[ ]

3

2,0 1
2 211

3 2
,0 2

111

2
cos( )

2 4.2 10 2

2
cos( )

2 4.2 10 4

o r

ex

r

o r

ex

r

ex

ex

RF
dh t

I

RF
dv t

I

κ
κ κ

π

κπ
κ

π

= − + Ω Ω
⋅

−
= − Ω Ω

⋅

 
 
 

 
 
 





  (2.3.5) 

Therefore: 

 

( ) ( )[ ] ( )[ ]

( ) ( )[ ][ ] ( )[ ][ ]

2 2

, , ,

, ,

,

, cos sin

cos cos sin sin
,

r r i r i r i r

i r i r

r r

r i r

q t q R dh R dv R

R dh dh R dv dv
q t q

q R

θ θ θ

θ θ θ θ
θ

= = + + + −

+ + +
= =

+





 

  (2.3.6) 

According to the normalization introduced in 2.2, the normalized deformation of the bearing 
ring is: 

 ,r r
r r

r r

q qq q
c cν

= =


   (2.3.7) 

The aforementioned deformation is considered positive when it is developed towards the 
outer side of the bearing. Furthermore, it is assumed that the perturbed motion of the journal 
about an equilibrium position does not affect the ring’s deformation. Therefore, equation 
(2.2.15) is now converted into: 

 ( ) ( )0 0 01 1 sin 0f f r f rp k h c q k qε θ θ γ′ − − − − − + + = 
   (2.3.8) 
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Since nothing but the structural equation describing the equilibrium position of the journal has 
been changed, the familiar Finite Difference Method is applied, converting equation (2.2.21) 
into ( )1,..., 1, 1,..., 1x zi N j N= + = +  : 

 ( ) ( )
, ,0 0 01 1 sin 0

i j i j i if i f r f rp k h c q k qε θ θ γ′ − − − − − + + = 
   (2.3.9) 

The new non-linear algebraic system of equations can be solved by means of the standard 
iterative solvers under the constraint

,0 1
i j

p ≥  . 

2.4  Rotor modeling 
In practice, rotating machines have complex geometry with variable cross sections 

carrying flexible disks or blades. Such machines can’t be modeled by Jeffcott or Laval rotors 
as it is of great importance to accurately compute the Eigen-frequencies, the vibration modes 
and the corresponding unbalance responses. To this end, the rotor is discretized with 
continuous finite beam elements, each element having two nodes and eight degrees of 
freedom. The equations of motion of the whole rotor system, the multiple degree of freedom 
system (M.D.O.F.), can be represented in matrix form since the inertia, damping, gyroscopic 
and stiffness matrices of each finite beam element are derived. In the current work, the 
rotating finite beam element depicted in Figure 2.4.1 is introduced. The necessary 
geometrical and physical properties of such element are presented in Table 2.4.1. 

 
Figure 2.4.1 Rotating beam element bending in two dimensions 
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Table 2.4.1 Definition of the geometric and physical properties of the rotor finite beam element 

Symbol Description Definition 

el   Length of element  

, eo mR   Outer mass radius of 
element  

, ei mR   Inner mass radius of 
element  

, eo sR   Outer stiffness radius of 
element  

, ei sR   Inner stiffness radius of 
element  

eI   2ndmoment of area of the 
cross section of element ( )4 4

, , / 4
e eo s i sR Rπ −   

eA   Cross section area of 
element ( )2 2

, ,e eo m i mR Rπ −   

eρ   Density of element  

eΕ   Young’s modulus of 
element  

eG   Shear modulus of element  

ef
s   Shear factor of element  

 

The elastic line of the element in both vertical and horizontal plane can be approximated by 
Hermitian polynomials in terms of the nodal translational and rotational degrees of freedom in 
the form:  

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1,

2,

3,

4,1 2 3 4

5,1 2 3 4

6,

7 ,

8,

( )

( )

( )

( ), 0 0 0 0

( ), 0 0 0 0

( )

( )

( )

e

e

e

ee

e e

ee

e

e

e

e e

e e

x t

x t

t

tx t H l H H l H
t

x ty t H l H H l H

x t

t

t

ϕ

ϕζ ζ ζ ζ ζ
ζ

ζ ζ ζ ζ ζ

ϕ

ϕ

= =

 
 
 
 
 

     
         

 
 
 
  

ψ x

  (2.4.1) 

, where e

e

z
l

ζ =  denotes the dimensionless axial coordinate and the shape functions: 

2 3 2 3 2 3 2 3
1 2 3 4( ) 1 3 2 , ( ) 2 , ( ) 3 2 , ( )H H H Hζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ= − + = − + = − = − +

  (2.4.2) 
 
, represent the Hermitian polynomials of third order. Therefore, the lateral bending slope of 
the element can be approximated in the form: 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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( )
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, ( )0 0 0 0

, ( )0 0 0 0

( )

( )

( )

e

e

e

x e e

e e

y e e

e

e

e

e e

e e

x t

x t

t

t tH l H H l H
t

t x tH l H H l H

x t

t

t

ϕ

ζ ϕζ ζ ζ ζ
ζ

ζ ζ ζ ζ ζ

ϕ

ϕ

′ ′ ′ ′
= =

′ ′ ′ ′

 
 
 
 
 

     
        

 
 
 
  

φ x
φ
φ

  (2.4.3) 

, where: 
2 2 2 2

1 2 3 4( ) 6 6 , ( ) 1 4 3 , ( ) 6 6 , ( ) 2 3H H H Hζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ′ ′ ′ ′= − + = − + = − = − +
  (2.4.4) 

The potential energy of the finite beam element is then given by: 

 
1 2 2

2 2
0

1 ( )
2

T Te e
e e e e eU E I dζ

ζ ζ
 ∂ ∂

=  ∂ ∂ 
∫

ψ ψx x   (2.4.5) 

, or in matrix form: 

 
1
2

T
e e e eU = x K x   (2.4.6). 

Comparison of the equations (2.4.5) - (2.4.6) yields the stiffness matrix of the finite beam 
element: 

 

21 2 1

1 21 2

3 2 4

43 2

21

1 2

3

3

0 00 0

00 0

00 0

0 0

0 0

0

0

e

aa a a

a aa a

a a a

aa a

aa

sym a a

a

a

−− −

−

−

=

−

 
 
 
 
 
 
 
 
 
 
 
 

K   (2.4.7) 

, where: 

1 2 3 43 2 2

,

12 6 (4 ) (2 ) 12
, , , ,

(1 ) (1 ) (1 ) (1 )
e e e e e e e e e e

e e e e e f e e e

E I E I e E I e E I E I
a a a a e

e l e l e l e l G s A l

+ −
= = = = =

+ + + +
 

 (2.4.8) 

Similarly, the kinetic energy of the finite beam element is given by the summation of four 
terms. The first term corresponds to the translational kinetic energy; the second corresponds 
to the rotational kinetic energy, the third corresponds to the kinetic energy due to tilting 
phenomena and the last corresponds to the kinetic energy due to gyroscopic phenomena.  
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4

,
1

e e i
i

T T
=

=∑   (2.4.9) 

, where: 

 

( )

1

,1
0

1
2

,2
0

1

,3
0

1

,4 , , , ,
0

1
2

1
2

1
2

1
2

T T
e e e e e

e p

T T
e d e e e e

T T T T
e p e x e y e e e y e x e e

T d

T d

T d

T d

µ ζ

µ ζ

µ ζ

µ ζ

=

= Ω

=

= Ω −

 
 
 

 
 
 

 
 
 

 
  

∫

∫

∫

∫

xψ ψ x

xφ φ x

xφ φ x x φ φ x

 

 

   

  (2.4.10) 

, or in matrix form: 

 21 1 1
2 2 2

T T
e e e e p e e e eT lµ= + Ω + Ωx M x x G x    (2.4.11) 

, where: 

 , 2 ,e e p e e d e eA I Iµ ρ µ ρ µ ρ= = =   (2.4.12) 

Comparison of the equations (2.4.10) - (2.4.11) yields the mass and gyroscopic matrices of 
the finite beam element: 

 

3 41 2

2 41 3

5 4 6

65 4

31

1 3

5

5

0 00 0

00 0

00 0

0 0

0 0

0

0

e

cc c c

c cc c

c c c

cc c

cc

sym c c

c

c

− −

−

−

−−
=

−

 
 
 
 
 
 
 
 
 
 
 
  

M   (2.4.13) 

, where: 
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( )
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l e
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µ µ µ
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µ µ µ

µ µ
µ µ µ

µ µ
µ µ µ
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e e e

l e e
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+




 
 
 

 
 
 

  (2.4.14) 

, and: 

1 21 2

2 1 2

4 2 3

2 3

1 2

2

4

0 0 00
0 00 0
0 00

0 0 0
0 0

0 0
0

0

e

g gg g
g g g
g g g

g g
g g

skew sym g
g

− 
 
 
 
 
 =  −
 

− − 
 
 
  

G   (2.4.15) 

, where: 

 1 2 3 4

26 1, , ,
5 10 30 15

p e p e p
p

e

l l
g g g g

l
µ µ µ

µ
Ω Ω Ω

= = Ω = =   (2.4.16) 

In addition, it is assumed that only nodal forces and moments are affecting the finite beam 
element, so: 

 [ ]1 2 3 4 5 6 7 8e F F M M F F M M=F   (2.4.17) 

Finally it should be noted that the damping matrix is given by the classical Rayleigh damping 
according to the formula: 

 
,
e e eα β

α β +

= +

∈

C M K


  (2.4.18) 

After all, it has been observed that small values of ,α β  make the whole rotor system less 
numerically stiff without affecting its dynamic behavior. Combination the equations (2.4.7) - 
(2.4.18) yields the equations of motion of a single finite beam element: 

 ( )e e e e e e e e+ + + =M x C G x K x F    (2.4.19) 
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Finally, the global inertia, damping, gyroscopic and stiffness matrices are assembled by the 
proper summation of the individual finite beam element matrices and the equations of motion 
for the whole rotor system are derived: 

 

( )
( ) ( ),0 ,00 , 0

r r r

r r r r

Nr
r

t t

+ + + =

= = = =

∈

Mx C G x Kx F

x x x x

x

 

 



  (2.4.20) 

Before introducing the criteria which certify the accurate discretization of the rotor, a 
brief description of the geometrical and physical properties of the segments will be given. At 
first, inner (if cavities are included) and outer mass diameters , ,,

e ei m o mD D  define the 

geometrical outline of the shaft. The cross section area of each beam element is evaluated 
based on these diameters, thus stiffness matrices (due to e ) and inertia matrices (due to e and
µ ) are greatly affected by them. In addition, inner and outer stiffness diameters , ,,

e ei s o sD D
define the volume of the segment which mainly receives the bending load. The second 
moment of area and therefore the diametrical and the polar mass moments of inertia of each 
element are evaluated based on these diameters. It is more than obvious that the effective 
stiffness of the shaft is influenced by them. 

In general, for an accurate representation of the rotor using finite beam elements some 
very specific rules should be followed. At first, new elements are inserted when the 
geometrical outline of the shaft changes. Extra elements are utilized if the evaluation of the 
response is of crucial importance. It is strongly recommended a single element not to have a 

length to stiffness diameter ratio 
, e

e

o s

l
D  less than 0.05 or greater than 0.8. Furthermore, the 

ratio 
1

1 ,

,

e

e

e o s

e o s

l D
l D

+

+  should not be greater than 4.  

Additional masses may exist in a rotor segment, such as rotating blades or wiring. It is 
assumed that these additional masses (which are modeled as hollow disks) affect both the 
mass and gyroscopic properties of the aforementioned segment. To this end, mass and 
gyroscopic matrices can be constructed for each disk, since its diameter of gyration 

.dgyrD  and 

its total mass dm are known. The aforementioned matrices should finally be added properly to 
the global mass and gyroscopic matrices of the shaft.  

 After the accuracy of the discretization is ensured, static bearing loads stW  (necessary 
for the linear approach of the elastoaerodynamic lubrication problem) can easily be evaluated. 
Equation (2.4.20) leads to: 

 r =Kx F   (2.4.21) 

The force vector Nr∈F  consists of the unknown vertical bearing forces 2B ∈F   and the 
known gravity (or zero) forces 2G Nr−∈F  . Similarly, the state vector Nr

r ∈x  consists of the 

known vertical degrees of freedom at each bearing 2B
r = ∈x 0   and the unknown 

displacements 2G Nr
r

−∈x  . If rows and columns of the stiffness matrix corresponding to the 
known displacements are eliminated, equation (2.4.21) leads to: 
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 G G G
r =K x F   (2.4.22) 

It is assumed that GK  is invertible (usually close to singular) so: 

 ( ) 1G G G
r

−
=x K F   (2.4.23) 

Using the equations previously eliminated, it is now possible to evaluate the vertical bearing 
forces 2B ∈F  . Finally, according to the normalization introduced in (2.2.1) – (2.2.2) the 
non-dimensional bearing load is: 

 2
0

B

st p R
=

FW   (2.4.24) 

It is of great importance to note that the present finite beam element model is considered as 
large or in other words, computationally expensive. Therefore, model reduction, whereby the 
number of degrees of freedom in a model is reduced, is applied in order to compute faster the 
natural frequencies, mode shapes and responses of the rotor. Possibly the most popular and 
certainly the simplest reduction method is static (or Guyan) reduction.   

According to this method, damping and gyroscopic effects are negligible thus equation 
(2.4.20) is converted into: 

 r r+ =Mx Kx F   (2.4.25) 
All vectors and matrices are now split intosub-vectors and sub-matrices respectively, relating 
to the master degrees of freedom, which are retained and the slave degrees of freedom which 
will be afterwards eliminated. It is also assumed that no force is applied to the slave degrees 
of freedom, so equation (2.4.25) becomes: 

 , ,

, ,

m r m rmm ms mm ms m

s r s rsm ss sm ss

        
+ =        

       

x xM M K K F
x xM M K K 0




  (2.4.26) 

The sub-scripts m, s relate to the master and slave degrees of freedom respectively. 
Neglecting the inertia terms of the second set of equations gives: 

 , ,sm m r ss s r+ =K x K x 0   (2.4.27) 

, which now may be used to eliminate the slave degrees of freedom according to the formula: 

 ,
, ,1

,

m r
m r s m r

s r ss sm
−

   
= =   −  

x I
x T x

x K K
  (2.4.28) 

, where sT  denotes the static transformation between the full state vector and the master 
degrees of freedom. The reduced matrices are then given by: 

 , , ,T T T T
r s s r s s r s s r s s= = = =M T MT K T KT C T CT G T GT   (2.4.29) 

It is more than obvious that the reduced matrices construct the following equations of motion 
for the master nodes of the rotor model: 

 

( )
( ) ( )

0 0

, , ,

, , , ,

,

0 , 0
r m r r r m r r m r m

m r m r m r m r

Nm
m r

t t

+ + + =

= = = =

∈

M x C G x K x F

x x x x

x

 

 



  (2.4.30) 
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3. SOLUTION OF THE ROTOR DYNAMIC SYSTEM 

3.1  Linear Harmonic Analysis 
The well established Linear Harmonic Analysis (L.H.A.) consists of calculating the 

eigenvalues/eigenvectors of the system and the calculation of synchronous steady state 
response. First of all, in order to couple the elastoaerodynamic lubrication model with the 
rotor model the stiffness and damping matrices given by (2.2.44) - (2.2.45) are properly added 
to the reduced stiffness and damping matrices given by (2.4.29) thus equations (2.4.30) are 
converted into: 

 

( )
( ) ( )

0 0

, , ,

, , , ,

,

0 , 0
r m r r r m r r m r m

m r m r m r m r

Nm
m r

t t

′ ′+ + + =

= = = =

∈

M x C G x K x F

x x x x

x

 

 



  (2.4.31) 

A new state vector is defined , 2
, ,

,

,m r Nm
m r m r

m r

 
= ∈ 
 

x
X X

x
  and equations (3.1.1) are written 

in the customary state form: 

 ( )
0

, ,

, ,

2
,

0
m r m r m

m r m r

Nm
m r

t

= +

= =

∈

X AX BF

X X

X





  (2.4.32) 

, where: 

 1 1 1,
( )

r

r r r r r r
− − −

   
= =   ′ ′− − +   

0 I 0
A B

M K M C G M
  (2.4.33) 

The solution can be carried out by means of the modal analysis in the state space. To this end, 
the free vibration problem is considered ( )m =F 0  so the solution has the exponential form: 

 ( ),
t

m r t eλ=XΦ   (2.4.34) 

, whereλ is a constant scalar and Φ  a constant vector. Inserting equation (3.1.4) into (3.1.2) 
yields to the algebraic eigenvalue problem which is said to be in standard form: 

 λ=AΦ Φ   (2.4.35) 

It should be noted here, that matrix A  is non-symmetric thus the adjoint eigenvalue problem 
should be considered too: 

 T λ=AΨ Ψ   (2.4.36) 

Eigenvalues, right and left eigenvectors can be obtained by solving (3.1.5) - (3.1.6) using 
Matlab. For the calculation of the synchronous steady state response, it is firstly assumed that 
the force vector mF  consists of unbalance forces U

mF only. Unbalance forces are considered 

for selected nodes and for constant rotating speedΩ . Given the total mass of the rotor part 
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defined between sequential bearing nodes kΜ and the unbalance eccentricity ue (which in this 
Master Thesis follows the ISO G-grade), the unbalance forces can be formulated as (in 
horizontal and vertical direction respectively):  

 ( ) ( )2 2
, ,cos , sinU U

m h k u m v k uF M e t F M e t= Ω Ω = Ω Ω   (2.4.37) 

The steady state synchronous response for synchronous harmonic excitation of the form 

( ) ( ) ( )cos sin
c s

U U
m m mt t t= Ω + ΩF F F  can be written as

( ) ( ) ( ), , ,cos sin
c sm r m r m rt t t= Ω + ΩX X X . Substituting to the equations of motion, the 

steady state response can be calculated from the following set of linear algebraic equations: 

 
( )

( )

2
,

2
,

c c

s s

m r mr r r r

m r mr r r r

   ′ ′ −Ω Ω +    =    ′ ′−Ω + −Ω         

X FK M C G
X FC G K M

  (2.4.38) 

3.2  Time integration 
Time integration is mainly implemented in order to evaluate the unbalance response of 

the non-linear bearing-rotor model. In addition, it contributes to the evaluation of the response 
of a parametrically excited linear or non-linear bearing- rotor model. Following sections are 
dedicated to the response of a parametrically excited bearing-rotor model thus the current one 
emphasizes to the unbalance response of the non-linear bearing-rotor model. To this end, it is 
of great importance to note that equations (2.4.30) should be transformed in their non-
dimensional form, according to (2.1.9) - (2.1.10): 

 

( )
( ) ( )

0 0

, , ,

, , , ,

,

0 , 0
r m r r r m r r m r m

m r m r m r m r

Nm
m r

τ τ

+ + + =

= = = =

∈

M x C G x K x F

x x x x

x

 

 



  (2.4.39) 

, where: 

5 3 3

0

2 5 3 3

0

, , ,
36 6 6

r r r r
r r r r r r r

b b b b

r

p c c c c

R L R L R L p RLµ µ µ
= = == M C C G G K KM  

 (2.4.40) 

Furthermore, it should be noted that the dimensionless force vector mF  consists of the 

dimensionless bearing forces B
mF  given by  (2.1.18) - (2.1.19), the dimensionless unbalance 

forces U
mF  and the dimensionless gravity forces G

mF . Equations (3.2.1) are included in 
equations (2.1.29) and the non-linear system of first order O.D.E.s is clearly defined.  

In an initial value problem such as(2.1.29), the solution is obtained iteratively using the 
initial condition ,0rsx  as well as a period of time over which the solution is to be obtained. At 

each time step the solver applies a specific algorithm to the results of previous time steps. At 
the first time step the initial condition provides the necessary information that allows the 
integration to proceed.  

The time step adopted by the solver is sometimes forced down to an unreasonably small 
level in comparison to the interval of integration. These time steps can be so small that 
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traversing a small time interval may require thousands of iterations. Usually these integrations 
are considered as inaccurate or failed and the corresponding system of O.D.E.s is considered 
as numerically stiff. More specifically, the numerical stiffness of (2.1.29) depends on the shaft 
properties and the bump foil properties. Thus a stiff solver is more than necessary. 

Ode15s is a variable step variable order (V.S.V.O.) solver based on the numerical 
differentiation formulas of orders 1 to 5. Optionally it can use backward differentiation 
formulas, which are usually less efficient. In this Master Thesis, this solver is chosen due to 
its high accuracy. 

3.3  Pseudo arc-length continuation with orthogonal collocation 
Orthogonal collocation refers to a class of methods for computing periodic solutions of a 

set of autonomous O.D.E.s by solving the adjoint two-point boundary value problem. To 
access the stability of this periodic solution, if it actually exists, a special type of fundamental 
solution matrix must be computed the widely known monodromy matrix. Its eigenvalues are 
known as Floquet multipliers and for autonomous O.D.E. systems, one of them is by default 
equal to one. The periodic solution found, is asymptotically stable if all Floquet multipliers 
except the aforementioned trivial Floquet multiplier have a modulus smaller than one. Given 
the real and the imaginary part of a Floquet multiplier with modulus greater than one, then the 
type of instability can be also determined. 

Suppose that the autonomous system of O.D.E.s appears explicitly one or more scalar 
parameters (for example the rotating speedΩ ) and the periodic solutions depend on this 
scalar parameter. A numerical continuation algorithm takes as input the parameterized 
autonomous system of O.D.E.s and an initial periodic solution evaluated for a specific value 
of the scalar parameter. The output is a set of periodic solutions for various values of the 
scalar parameter, continuously connected to the initial periodic solution, which in other words 
is called solution branch. In present work, the sole scalar parameter (also called bifurcation 
parameter) is the rotating speed Ω . Therefore only co-dimension 1 bifurcation sets are 
considered. 

Every numerical continuation algorithm incorporates one sub-algorithm which computes 
a periodic solution for a specific value of the bifurcation parameter and another one which 
determines the initial guess for the periodic solution given the next value of the bifurcation 
parameter. Maybe the simplest form of numerical continuation is the so called natural 
parameter continuation. According to this method, the periodic solution computed for a 
known value of the bifurcation parameter is the initial guess for the periodic solution which is 
to be computed for the next value of the bifurcation parameter. One advantage of this method 
is that it does not require an explicit formula for the stationary problem. On the other hand, 
the main disadvantage is that it usually fails at turning points, where the sign of the difference 
between two sequential bifurcation parameters changes. 

Another widely applied continuation method (the one used in present work) is pseudo 
arc-length continuation. This method introduces an independent parameter, the arc-length 
parameter, and produces an initial guess for the next step in the tangential direction of the 
current periodic solution step. This enables the method to continue the solution branch at 
turning points and make larger steps at regions of high curvature. The main drawback of the 
method is that the bifurcation parameter becomes part of the solution vector and one 
additional equation is required to proceed. 

In the present work, pseudo arc-length continuation is applied to both the linear and the 
non-linear parametrically excited rotor-bearing model. At first, in order to couple the linear 
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model of the parametrically excited G.F.B.s to the rotor model, stiffness and damping 
matrices given by (2.3.1) - (2.3.2) are rewritten as: 

 

( )

( )

. .

,

. .

,

1

1

p e
xx xy xx xy

m s
yx yy yx yyrot rot

p e
xx xy xx xy

m s
yx yy yx yyrot rot

K K K K
x

K K K K

C C C C
x

C C C C

δ

δ

   
= +   

   

   
= +   

   

  (2.5.1) 

, where: 

 
( )
( )

2 2
, , , , , ,

2 2
, , , , , ,

m s m s ex m c m s m s m c

m c m c ex m s m c m s m c

x x x x x x

x x x x x x

= +Ω − +

= −Ω − +





  (2.5.2) 

 The aforementioned matrices are properly added to the reduced stiffness and damping 
matrices given by (2.4.29) and the equations (2.4.30) are converted to: 
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  (2.5.3) 

Now, the force vector mF consists of gravity forces G
mF only. A new state vector is again 

defined , 2
, ,

,

,m r Nm
m r m r

m r

 
= ∈ 
 

x
Y Y

x
  and equations (3.3.3) are written in the customary state 

form:  
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= =
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  (2.5.4) 

, where: 

 1 . . 1 . . 1,
( )

r
p e p e

r r r r r r
− − −

   ′ ′= =   − − +   

0 I 0
A B

M K M C G M
  (2.5.5) 

It is now observed that equations (3.3.1) - (3.3.2) , (3.3.4) clearly define a non-linear 
autonomous system of first order O.D.E.s. This type of problems can be handled by the 
orthogonal collocation method. 

Furthermore, in order to couple the non-linear model of the parametrically excited 
G.F.B.s to the rotor model, the top foil deformations given by (2.3.6) are now normalized 
according to the equations (2.1.9) - (2.1.10): 

 ,nl nlr r
r r

r r

q qq q
c c

= =
Λ


   (2.5.6) 

The aforementioned deformation is considered positive when it is developed towards the 
outer side of the bearing. Therefore, equation (2.1.12) is converted to: 

 ( ) ( )nl nl
m f r f rp c q q k q q= − + −    (2.5.7) 
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Then, the procedure already described in 3.2  is followed, without considering the unbalance 
forces U

mF . Therefore, it is considered that both the linear and the non-linear parametrically 
excited rotor-bearing model can be written as: 

 
( )

( ) ( )0 0

,

,0, , ,T

= Ω

Ω = Ω

y f y

yξ y ξ



  (2.5.8) 

, where Ω  stands for the rotating speed of the rotor, the bifurcation parameter, 0ξ is the initial 

state vector which belongs to the solution curve y  and T is the unknown period of the 

solution. According to the orthogonal collocation rules, time t is rescaled to [ ]0,1  and 

equation (3.3.8) is rewritten as: 

 
( )

( ) ( )0 0

,

,0, ,1,

T= Ω

Ω = Ω

y f y

yξ y ξ



  (2.5.9) 

Since the period T  is unknown, an additional equation, the so called phase condition is 
required: 

 
1

0
0

, 0dtφ = =∫ y y   (2.5.10) 

 , where 0,y y  denotes the scalar product of the unknown solution and the time derivative 

of the previous solution. If the arc-length s is used as a continuation parameter, then as 
previously stated the rotating speed Ω is unknown too. Thus, an additional equation is 
required, the so called pseudo arc-length condition: 

 ( ) ( )
1

0 0 0 0 0 0
0

, 0dt T T T sψ ′ ′ ′= − + − + Ω−Ω Ω −∆ =∫ y y y   (2.5.11) 

, where ( )′  denotes the derivative with respect to the arc-length. 

The vector containing the unknowns is defined as ( ), , TT= Ωu y  and equations (3.3.9) - 

(3.3.11) can be written as: 

 ( ) ( )
( )

( )
φ
ψ

 
 = = 
 
 

F u
H u y 0

u
  (2.5.12) 

The system of non-linear equations (3.3.12) can be solved by means of a standard iterative 
method, such as Newton – Raphson method: 

 ( )11 ( )i i i i−+  = −  u u A u H u   (2.5.13) 

, where: 
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  (2.5.14) 

The procedure is iterated until a convergence criterion, inserted by the user, is satisfied. The 
arc-length derivatives for subsequent continuation steps can be calculated by backward 
differences. The main goal is to discretize properly in time and thereby calculate A . To this 
end, the orthogonal collocation at Gauss-Legendre points with piece-wise polynomials is 
used. A brief overview of the method is given below. The time interval [ ]0,1  is discretized 

intoΝ time sub-intervals. For the thi sub-interval the collocation equations must be assembled 
at the following time nodes: 

 ,i j i i jt t h ρ= +   (2.5.15) 

, where ih denotes the length of the time sub-interval and jρ is chosen as a zero of the thm  

order Legendre polynomial. At the above time nodes must be provided an initial solution ,i jy , 

the time derivatives ( ),i jTf y , the Jacobian matrix 
( ), ,i j∂ Ω

∂

f y
y

 and finally the derivatives 

with respect to the bifurcation parameter
( ), ,i j∂ Ω

∂Ω

f y
.  

The initial solution can be extracted at the global time nodes as: 
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  (2.5.16) 

, where , ,j l ia β are the quadratic weights. Therefore, the quasi-linearized two-point B.V.P. can 

be written as shown below: 

( ) ( ) ( ), , , , , ,

1 1

, , ,

0

i j i j i j i j i j i j
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∂ ∂
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f fy y y f y y r
y
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

 

 (2.5.17) 

, where: 

 ( ), , ,,i j i j i jT= Ω −r f y y   (2.5.18) 

In order to eliminate the local unknowns at every time interval, parameter condensation is 
applied. In other words, equations (3.3.16) are substituted in (3.3.17) - (3.3.18): 



45 
 

Emmanuel D. Dimou, M.Sc. Thesis 
 

 
( ) ( )

( ) ( ) ( )

, , , , ,
1

, , , , , ,
1

,

, , ,

m

i i j i i j l i l i j i j
l

m

i j i j l i l i j i j i j
l

h a T

T h a T

=

=

∂ ∆ = ∆ + = Ω ∆ +  ∂ 
∂ ∂

+ Ω + Ω ∆ Ω ∆Ω+
∂ ∂Ω

∑

∑

ff y f y f y y
y

f fy f f y y r
y

  (2.5.19) 

Equation (3.3.19) can be written in a matrix form:  

 1 1 1 1
i i i ii i i i i iT− − − −= ∆ + ∆ + ∆Ω+f W V y W U W S W q   (2.5.20) 

, where: 
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Substituting equations (3.3.20) - (3.3.25) to (3.3.16) and adding the pseudo arc-length 
continuation equations, yields the linear algebraic system for the combined collocation – 
pseudo arc-length continuation method:     



46 
 

Emmanuel D. Dimou, M.Sc. Thesis 
 

    

 

1 1 1 1

2 2 2 2

1 1 1 1

1

1 1 2 2
0 0 0 0 0

1 1 2 2

N N N N

N N N N

N

N N

N N

h h h T
h h h T

− − − −

+

− − − ∆   
   − − − ∆   
   
   − − − ∆   =  − − − ∆    − ∆     ∆    ′ ′ ′ ′ ′Ω ∆Ω    

Γ I 0 0 Λ Σ y
0Γ I 0 0 Λ Σ y

0 0Γ I 0 Λ Σ y
0 0 0Γ I Λ Σ y
I 0 0 I 0 0 y
y y y 0 0 0
y y y 0

 



        





 

 

 

( ) ( )

1

2

1

1

0

1

0 0 0 0
0 0

1

,

,

N

N

N N
N

i i i
i

N

i i i i
i

h

h T T T s

−

+

=

=

 
 
 
 
 
 
  =  

− 
 
 
 
 

′ ′ ′ − + − + Ω−Ω Ω −∆
  

∑

∑

r
r

r
r

y y

y y

y y y





(2.5.26) 

, where: 

 [ ] 1
1i i m i ih β β −= +Γ I I I W V   (2.5.27) 

  
 [ ] 1

1i i m i ih β β −=Λ I I W U   (2.5.28) 

 
 [ ] 1

1i i m i ih β β −=Σ I I W S   (2.5.29) 

  
 [ ] 1

1i i m i ih β β −=r I I W q   (2.5.30) 

The solution can be achieved by various methods. Iterative methods are applied in this work. 
Floquet multipliers are evaluated as the eigenvalues of the matrix 1 2 NΓ ⋅Γ Γ when the 
solution of the linear algebraic system is determined. Calculating the Floquet multipliers in 
this way severely reduces the evaluation time compared to other methods, such as shooting 
method. 
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4. RESULTS AND DISCUSSION 
In this chapter, several results concerning the validity of the novel method for the 

prediction of the stiffness and damping coefficients for a G.F.B. are presented. Ever since the 
validity of the method is ensured, the stiffness and damping coefficients for a parametrically 
excited G.F.B. can extensively be studied. More specifically, results concerning the influence 
of the amplitude and the frequency of the predefined displacements of the deformable ring on 
the equivalent stiffness and damping coefficients of the G.F.B. are presented and properly 
commented. Given the fact that the stiffness and damping coefficients of a periodically 
excited G.F.B. are similar to those given be the equations (2.3.1) - (2.3.2) the stability maps 
for the linear and the non – linear approach of parametrically excited rotor – bearing models 
can be compared. Special emphasis has been given on the bearing and rotor properties which 
enhance parametric anti – resonances. 

4.1  Validation of the stiffness and damping coefficients for G.F.B.s 
In this section the validity of the method for the calculation of the stiffness and damping 

coefficients for a G.F.B. is proved. In other words, the procedure thoroughly described in 
section 2.2 was followed and the results are compared to the respective results carried out by 
J. P. Peng and M. Carpino48 and H. Heshmat et.al.49. The bearing properties as well as the 
number of mesh points in both the circumferential and axial direction are presented in Table 
4.1.1. It should be noted that the aforementioned discretization was selected according to a 
sensitivity analysis based on the integration of the pressure distribution over the bearing 
surface. 

Table 4.1.1  Constant parameters for the validation process 

Parameters Values 

Ambient pressure, 2
0 /p N m     510   

Viscosity, 2/mNs mµ      0.018   

Radius of the bearing, [ ]R m   0.015   

Length of the bearing, [ ]bL m   0.03   

Clearance, [ ]rc m   53.106 10−⋅   

Starting/ending angle, [ ]radχ   / 2π   

Mesh intervals in circ. Direction, xN   43  

Mesh intervals in axial Direction, zN  23  
 

In Figure 4.1.1, the predictions of the four stiffness coefficients are depicted for three 
different cases of the dimensionless compliance fa and for three different values of the 

bearing number Λ . It should be noted that according to J. P. Peng and M. Carpino zero 
compliance is not identical to rigid foil as in the case of former the top foil is not loosing 
contact to the foundation when sub – ambient pressure occurs. It can easily be observed that 
                                                           
48 J. P. Peng, M. Carpino. calculation of stiffness and damping coefficients for elastically supported gas foil bearings. Journal 
of Tribology. 115, pp. 20-27. 
49 H. Heshmat, J. A. Walowit, O. Pinkus. Analysis of gas-lubricated foil journal bearings. Journal of Lubrication Technology. 
1983. 
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the predictions show very good agreement if the foil is not assumed rigid. Actually in case of 
zero compliance (or according to J. P. Peng and M. Carpino in case of rigid foil) slight 
discrepancies are observed and a possible explanation can be found in the numerous 
differences between the current method and that proposed by them (F.E. method and two less 
equations for the prediction of the equilibrium position). 

In general, the four stiffness coefficients of the G.F.B are decreased as the compliance is 
increased, due to the increased deflection of the top foil. Furthermore, in case of 

1, 5f fa a= =  and at low rotating speeds which means small bearing numbers something 

quite interesting occurs.  The compliance of the overall bearing depends on the lubricant film 
which is rather softer than the so-assumed elastic foundation. This is demonstrated by the four 
stiffness coefficients which tend to approach the same value, independent to the foil’s 
compliance. In contrast, at high rotating speeds or large bearing numbers the compliance of 
the overall bearing depends on the elastic foundation. This is demonstrated by the four 
stiffness coefficients which tend to be constant at high speeds independent to the foil’s 
compliance. Finally as it was expected in case of 0fa = the four stiffness coefficients are 

solely a function of the lubricant film. These observations will be proved of significant 
importance, when the stability margins of the whole rotor – bearing model will be examined. 

  
(a) (b) 

  
(c) (d) 

Figure 4.1.1 Comparison of normalized bearing stiffness coefficient (a) xxK  (b) xyK  (c) yxK  (d) yyK  

In Figure 4.1.2 the predictions of the four damping coefficients are depicted for the same 
three cases of the dimensionless compliance fa and the same three values of the bearing 
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number Λ . It is again easily observed that the damping coefficients decrease as the 
compliance is increased due to the increased deflection of the foil. Furthermore, as stiffness 
coefficients clearly depict, at low rotating speeds the complinace of the overall bearing 
depends on the lubricant film. This is the reason why all four damping coefficients approach 
the same value for small bearing numbers independent of the compliance of the foundation. 
Finally, as one may observe damping coefficients decrease at higher rotating speeds due to 
the increased stiffness of the gas film which prevents energy dissipation. 

  
(a) (b) 

  
(c) (d) 

Figure 4.1.2 Comparison of normalized bearing damping coefficient (a) xxC  (b) xyC  (c) yxC   (d) yyC  

H. Heshmat et. al. have computed the stiffness coefficients for three different values of 
Sommerfeld number S  and for two different cases of the dimensionless compliance fa
(Figure 4.1.3). In each operating condition finite numerical perturbations are applied in a 
static model. It should be mentioned that the Cartesian coordinate system used by H. Heshmat 
is different from the one used in current work. Therefore, in order to make clear comparisons 
those values reported by H. Heshmat are converted to the coordinate system used now. As 
one may observe there are significant discrepancies in the predictions of stiffness coefficients 
even though the steady state properties of all three approaches show sufficiently good 
agreement. These discrepancies increase in the calculation of cross couple terms and in the 
cases of low eccentricity ratios. An explanation can be found in the difference between the 
three approaches. First of all, H. Heshmat et. al. neglect any damping effect in the bearing 
since a static model has been utilized. In addition, if sub – ambient pressure occurs for a 
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specificate value of the circumferential coordinate pϑ  the film thickness is equalized to the 

thickness evaluated at 1pϑ − .  

J. P. Peng and M. Carpino on the other hand, if sub – ambient pressure occurs, permit 
negative top – foil’s displacements. Additionally in the case of formers, the equilibrium 
position of the journal has been evaluated neglecting (2.2.18) - (2.2.19) and using a F.E. 
method. In any case, the results of current work lie between the results by J. P. Peng, M. 
Carpino and H. Heshmat et. al.  

  
(a) (b) 

  
(c)  (d) 

Figure 4.1.3 Comparison of normalized bearing stiffness coefficient (a) xxK  (b) xyK  (c) yxK (d) yyK  

The last and most important validation test is the comparison of the dynamic 
characteristics of three different analytical models. The first analytical model is the reduced 
non – linear one, thoroughly described in 2.1, which includes the Guyan reduction method 
and the Reynolds equation reduction method. The second model is the reduced linear one, 
thoroughly described in 2.2, according to which the bearing forces are evaluated via the four 
stiffness and four damping coefficients and the behavior of the rotor can be approximated by 
the static reduction method. Finally, the third analytical model is the full linear one, which 
just includes the linearized stiffness and damping coefficients of the bearings. In other words, 
the last validation test ensures the validity of the Guyan reduction method, the Reynolds 
equation reduction method and the linearized stiffness and damping coefficients. 

The reference key properties of the rotor’s analytical model are presented in Table 4.1.2. 



51 
 

Emmanuel D. Dimou, M.Sc. Thesis 
 

Table 4.1.2 Reference key properties of the rotor 

Property Value 

Slenderness ratio, [ ]SR −   20   

Bearing span, [ ]sL m   0.37   

Young’s modulus, [ ]E GPa   70   

Rotor’s mass, [ ]rm Kg   2.51  

Shaft’s mass, [ ]sm Kg   1.11  
Natural frequency of the equivalent,  

rigidly supported Jeffcott rotor, 
[ / ]n rad sω  

1000   

 
In the beginning of the section, some constant parameters regarding the physical 

properties of the bearings and the number of mesh points in both the axial and the 
circumferential direction are given. To an extension, some extra properties regarding the 
static load and the bump foil’s compliance and loss factor are presented in Table 4.1.3. 

Table 4.1.3 Bearings' extra properties for the validation process 

Property Value 
Non – dimensional static load at 

bearings, [ ]stW −   0.5   

Non – dimensional structural 
compliance, [ ]fa −   1  

Loss factor, [ ]η −   0.1   
 

In Figure  4.1.4 (a), (b) the unbalance response of both the horizontal and vertical 
degree of freedom at first gas – foil bearing’s node is depicted respectively. For all the three 
cases single unbalance of grade G1 is considered. It is more than obvious that the unbalance 
grade is low in order not to trigger strongly non – linear bearing forces, or in other words in 
order to keep the journal’s orbit sufficiently close to its equilibrium position. In the case of 
linear analytical models, the responses are evaluated via the Linear Harmonic Analysis 
(described in Linear Harmonic Analysis3.1) and in the case of the non – linear model the 
response is calculated via Time Integration (described in 3.2) considering low rotating 
acceleration. Sufficiently good agreement between the three models is observed until the 
threshold rotating speed of instability. Resonance frequencies are identical among the three 
models while resonance amplitudes appear very similar. The negligible discrepancies arise 
from the imperfect estimation of the damping ratio of the non – linear analytical model. 

Linear Harmonic Analysis (described in Linear Harmonic Analysis3.1) provides an 
estimation of the eigenvalues and the corresponding eigenvectors of the linear system. Each 
eigenvalue has its own damped natural frequency and its own stability factor which is directly 
related to its logarithmic decrementδ . In turn, logarithmic decrement is directly related to the 
damping ratio of the corresponding eigenvalue. In the case of the non – linear analytical 
model, all the aforementioned information is accessed via a linearization around an 
equilibrium position. The comparison of the results is depicted in Figure 4.1.4 (c). As one 
may easily observe the damped natural frequencies of all the three cases and of all modes are 
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almost identical but the corresponding damping ratios are not. As explained before, these 
slight discrepancies arise from the imperfect calculation of the linearized stiffness and 
damping coefficients.  

It is of significant importance to note that in case of such structural compliance as in 
Table 4.1.3 low damping ratios is expected to be predicted. Therefore, either the structural 
compliance should be lower or the perturbation method thoroughly described in 2.2 should 
consider the top – foil deformation too. 

  
(a) (b) 

 
(c) 

Figure  4.1.4 (a), (b) GFB #1 journal unbalance response with single unbalance G1 (c) Stability factor v of the 
modes of the system when operating at 500 rad/s 

4.2  Stiffness and damping coefficients for parametrically excited 
G.F.B.s 
It is supposed that the validity of the derivation of the method for the linearized stiffness 

and damping coefficients is ensured. In this section results regarding the implementation of 
parametric excitation (described in 2.3) are presented. More specifically, the capability of 
achieving the desirable amplitude ratios and excitation frequencies (for the stiffness and 
damping coefficients) under the effect of the predefined periodic deformation of the ring is 
investigated. Therefore, the main purpose of the section is to determine the appropriate 

,dh dv  given by (2.3.4) which will be then tested again by the non – linear approach of the 
elastoaerodynamic approach. If parametric antiresonance occurs for both linear and the non – 
linear approach then the main goal of this Master thesis is achieved. 



53 
 

Emmanuel D. Dimou, M.Sc. Thesis 
 

In Figure 4.2.1 the variation of the stiffness coefficients for three different values of the 
bearing number and for three different cases of the excitation frequency is depicted. The 
bearing’s properties are already presented in Table 4.1.1, Table 4.1.3 while the horizontal 
maximum displacement of the outer ring is 0.005 rdh c= ⋅ . The normalization of the 
excitation frequency has been done using the rated rotating speed of the rotor

1000[ / ]r rad sΩ = . 
 It is expected that the mean value of these coefficients (calculated for low excitation 

frequency) for a fixed bearing number to be equal to the corresponding coefficient of the 
previous section, due to the low amplitude of the deformation of the ring. As one may easily 
observe this is not verified, due to the formulation of the vertical periodic load which is 
depicted in Figure 2.3.1. It is of significant importance to note once more that the 
aforementioned load is given by: 

 ( )0 1 sin exF F tε= + Ω     (3.2.1) 

Thus, the mean value of the ring’s deformation is not equal to zero and the mean equilibrium 
position as well as the mean value of the stiffness and damping coefficients is affected. In 
addition, it is observed that all four stiffness coefficients reach their maximum value at

,[ ]ext radπΩ =  , when the ring’s deformation reaches its mean value with maximum 
negative radial velocity. This effect can be interpreted. First of all, in equation (2.3.8) the 
most important term which disturbs the predefined equilibrium position is the term containing 
the radial velocity of the ring, due to the high value of the excitation frequency? Thus, when 
this term becomes negative, the equilibrium position is removed from the bearing’s centre and 
the corresponding stiffness coefficients are higher. Due to the same reason, the amplitude of 
all the stiffness coefficients gets higher as the excitation frequency gets higher. Finally it can 
be concluded that the direct couple terms are much more affected by the ring’s deformation 
than the cross couple ones. 
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(a) (b) 

  
(c) (d) 

Figure 4.2.1Variation of stiffness coefficient under the effect of ring’s periodic deformation with horizontal 

amplitude 0.005 rdh c= ⋅  (a) xxK  (b) xyK   (c) yxK  (d) yyK  

In Figure 4.2.2 the corresponding damping coefficients for the same three values of the 
bearing number and for the same three cases of the excitation frequency are presented. The 
bearing’s configuration as well as the ring’s deformation remains the same. As thoroughly 
explained in the previous paragraph, the mean value of these coefficients (calculated for low 
excitation frequency) for a fixed bearing number is not equal to the corresponding coefficient 
of the previous section. In addition, at low bearing numbers the complinace of the bearing 
depends on the lubricant film thus the main source of energy dissipation is the hydrodynamic 
gas film itself. In contradiction, at higher bearing numbers the compliance of the bearing 
depends on the structural compliance thus the most significant source of energy dissipation is 
the bump foil. The two different sources of energy dissipation is the reason why the damping 
coefficients do not systematically reach their minimum value at ,[ ]ext radπΩ = .Of course, as 
the higher the excitation frequency is, the higher the variance of all damping coefficients is.  

 

 

 



55 
 

Emmanuel D. Dimou, M.Sc. Thesis 
 

  
(a) (b) 

  
(c) (d) 

Figure 4.2.2Variation of damping coefficients under the effect of ring’s periodic deformation with horizontal 

amplitude 0.005 rdh c= ⋅  (a) xxC  (b) xyC  (c) yxC   (d) yyC  

 
In Figure 4.2.3 and in Figure 4.2.4 all stiffness and damping coefficients are presented 

respectively for the same bearing’s configuration but with one major discrepancy. The 
maximum horizontal displacement of the outer ring is 0.01 rdh c= ⋅  which practically means 
that the mean value of the vertical periodic load is doubled. As one may suppose, the higher 
the former mean value is, the greater the affect of the equilibrium position is, the higher the 
variance of both stiffness and damping coefficients is. It is also observed that the mean values 
of both stiffness and damping coefficients are not notably affected by the increased maximum 
horizontal displacement of the ring (the term of deformable ring’s radial velocity is still 
dominant). It is of significant importance to note that if the mean value of the vertical periodic 
load exceeds a predefined maximum value all the aforementioned observations are not valid, 
since the most important term in equation (2.3.8) is the term containing the ring’s 
deformation. 
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(a) (b) 

  
(c) (d) 

Figure 4.2.3Variation of stiffness coefficients under the effect of ring’s periodic deformation with horizontal 

amplitude 0.01 rdh c= ⋅  (a) xxK  (b) xyK   (c) yxK  (d) yyK  
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(a) (b) 

  
(c) (d) 

Figure 4.2.4 Variation of damping coefficients under the effect of ring’s periodic deformation with horizontal 

amplitude 0.01 rdh c= ⋅  (a) xxC  (b xyC  (c) yxC   (d) yyC  
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4.3  Stability maps for the linear and the non - linear approach of the 
parametrically excited rotor – bearing model 
According to the previous section stiffness and damping coefficients can change 

periodically under the effect of a vertical periodic load. It is concluded that the frequency of 
such variation is the same as the frequency of the periodic load and the amplitude ratio 
strongly depends on the mean value of the vertical load and the excitation frequency itself. 
Furthermore, it is concluded that it is rather unrealistic to suppose that both stiffness and 
damping coefficients have the same amplitude ratio. Although it is observed that for the 
excitation frequencies of interest, a variation of [ ]0.3 0.4δ ∈  is quite feasible. Finally it is 

concluded that synchronous stiffness and damping parametric excitation is not feasible as by 
default in present case, there are two different types of energy dissipation source. 

In current section, the stability maps for the linear and the non – linear approach of the 
parametrically excited rotor – bearing model are presented. In the case of the linear approach, 
the bearing forces are calculated via the periodically changed stiffness and damping 
coefficients assuming no phase lug between them and assuming the same amplitude ratio for 
all of them (see (2.3.1) - (2.3.2)). Even if these assumptions are rather an oversimplification, 
they provide us a first impression about the excitation frequency and the amplitude ratios 
which finally lead to parametric antiresonance. Finally according to the aforementioned 
desirable excitation frequencies and amplitude ratios the non – linear stability threshold is 
calculated, proving that parametric antiresonance is feasible in G.F.B.s. 

In Figure 4.3.1 the maximum and minimum value of the periodic limit cycles of the 
response of the horizontal degree of freedom at the first G.F.B. is depicted for three ascending 
values of the amplitude ratio. The physical properties of the rotor and of the two identical 
bearings are already presented in Table 4.1.1 - Table 4.1.3. The range of both the excitation 
frequency and the rotating speed is selected in order to physically interpret the phenomenon 
of parametric antiresonance. Black dots obviously denote stable periodic limit cycles and 
white dots denote unstable periodic limit cycles. All the periodic solutions have been 
evaluated via pseudo arc – length continuation method thoroughly described in 3.3 assuming 
a perfectly balanced rotor model (i.e. the only source of excitation is the periodically 
changing bearing’s properties). This continuation scheme is implemented accounting the 
rotating speed as bifurcation parameter. The continuation among the excitation frequencies 
has been simplistically achieved via parameter continuation scheme. As aforementioned in 
3.3 pseudo arc – length continuation method incorporates orthogonal collocation. The former, 
based on Floquet’s theorem determines the stability of the periodic solution as well as the 
type of the bifurcation possibly occurs. 

First of all, one may observe that stable periodic limit cycles are found in both low and 
high rotating speeds independent on the excitation frequency. The corresponding stability 
analysis clearly states that the transition from stable to unstable limit cycles in all excitation 
frequencies and rotating speeds is accompanied by Neimark – Sacker bifurcation. In other 
words, the eigenvalues of the monodromy matrix which have magnitude greater than one 
present both real and imaginary non – zero part. It is of great interest to see that as the 
amplitude ratio is increased, these Neimark – Sacker bifurcations come closer to each other 
and the stable periodic limit cycles become more. Finally, double Neimark – Sacker 
bifurcation occurs and the stability of the periodic solutions is restored. Figure 4.3.1 also 
proves that parametric excitation has beneficial effects to the quality of motion of the bearing 
– rotor system. Around a fundamental excitation frequency (e.g. the excitation frequency 
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around which parametric antiresonance occurs), as the amplitude ratio is increased, the extent 
of the corresponding periodic limit cycles is decreased. Finally it is of significant importance 
to note that the fundamental excitation frequency can be approximately evaluated by the 
formula: 

 2 1f cr crΩ Ω −Ω   (3.3.1) 

, where crΩ denotes the critical speed of the system, approximately depicted in Figure 4.1.4 
(due to the damping ratio of the modes). This notation shows full agreement with50.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                                           
50 F. Dohnal, H. Ecker, H. Springer. Enhanced damping of a cantilever beam by axial parametric excitation. Archive of Applied 
Mathematics. December 2008. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.3.1 Stability maps according to the linear approach of the elastoaerodynamic lubrication problem for the reference 

rotor – bearing model (a), (b) 0.2δ =   (c), (d) 0.3δ =   (e), (f) 0.4δ =  
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In Figure 4.3.2 the maximum and minimum of the periodic limit cycles of the response 
of the horizontal degree of freedom at the first G.F.B. is depicted again, for two ascending 
values of the amplitude ratio. The one and only discrepancy is the value of the non – 
dimensional structural compliance, which now is 0.01fa = . As mentioned in the previous 

section, the reason of the phase lag between the periodically changing damping coefficients is 
the two different types of energy dissipation. If the bump foil becomes stiffer, the amplitude 
of the top – foil deformation is lower thus the amount of dissipated energy (due to the 
structural damping) is lower. It is then expected that all four damping coefficients mainly 
depend on the gas film, thus no phase lug between them exists (still the excitation is not 
synchronous since stiffness and damping coefficients do not reach their maximum value 
simultaneously). All the aforementioned observations regarding the quality of the periodic 
limit cycles are validated. The stability of the overall rotor – bearing system is restored by 
double Neimark – Sacker bifurcation around an excitation frequency approximately given by 
(4.3.1). Of course one may consider the new critical speeds of the dynamic system. Once 
again the extent of the periodic limit cycles evaluated around this fundamental excitation 
frequency is decreased. The current configuration of the G.F.B. is now utilized to evaluate the 
same periodic solutions (if possible) with the non – linear approach of the elastoaerodynamic 
lubrication problem. 

  
(a) (b) 

  
(c) (d) 

Figure 4.3.2Stability maps according to the linear approach of the elastoaerodynamic lubrication problem for the modified rotor 
– bearing model (a), (b) 0.2δ =   (c), (d) 0.4δ =  
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In Figure 4.3.3 the linear stability threshold is compared to the non – linear one. It is 
encouraging that parametric antiresonance still occurs according to the non – linear approach. 
The strength (i.e. the zone of excitation frequencies) of parametric antiresonance strongly 
depends on the amplitude of the variation of the stiffness and damping coefficients. Therefore 
the significant discrepancies between the linear and the non – linear stability threshold can be 
interpreted. Additionally, it should be noted that the method of evaluating the stiffness and 
damping coefficients, thoroughly described in 2.2 for G.F.B.s is not as accurate as possible, 
even for such high values of the non – dimensional structural compliance.  

  
(a) (b) 

Figure 4.3.3 Comparison between the linear and the non - linear stability threshold of the modified rotor – 
bearing system (a) 0.2δ =    (b) 0.4δ =  
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5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 
WORK 
The current work mainly proves that parametric antiresonance is feasible in realistic 

turbo-pump rotor – active gas foil bearing systems. Parametric excitation has been 
implemented by a vertical periodic load, acting on the deformable ring of the gas foil 
bearings, whose elastoaerodynamic behavior is described by a novel linear and a non – linear 
method. The stability and the extent of periodic limit cycles are evaluated via pseudo arc – 
length continuation method combined with an orthogonal collocation method. Based on the 
following conclusions this thesis aims to raise further concerns on parametrically excited 
rotating systems. 

It is desirable to periodically change stiffness and damping properties of the gas foil 
bearing with the same amplitude ratio and without phase lag between them. According to a 
rather simplistic implementation of parametric excitation it is difficult to keep the same 
amplitude ratio for all the stiffness and damping coefficients. In contradiction, phase lug 
(between damping coefficients only) can be eliminated mainly by decreasing the compliance 
of the bump foil structure. In general, the strength (i.e. the zone of the excitation frequencies) 
of parametric antiresonance strongly depends on the amplitude ratios of the periodically 
changing stiffness and damping coefficients. 

The accuracy of the applied continuation scheme is significant. As aforementioned, 
orthogonal collocation method applies a quasi linearization method in order to solve the two 
point boundary value problem, thus analytically computed Jacobian matrices is recommended 
to be used. In current work, due to the mathematical formulation of the dynamic model only 
numerically computed Jacobian matrices are used. Therefore either a different mathematical 
formulation is necessary or another method for evaluating periodic limit cycles and their 
stability could be implemented. 

Additionally, the investigation of the full bifurcation set at lower rotating speeds and 
higher excitation frequencies is recommended. Up to now it is observed that a few period - 
doubling bifurcations occur at low rotating speeds independent on the excitation frequency. 
Due to difficulties regarding the accuracy of pseudo arc – length continuation method this 
investigation is not curried out in current work. 

Finally, parametric antiresonance can simplistically be interpreted as modal interaction. 
Consequently, it is quite interesting to evaluate the energy flow between the interacting 
modes (e.g. the 1st and 2nd bending mode) when actually parametric antiresonance occurs. 
This can be achieved by evaluating the unbalance response of a parametrically excited 
unbalanced rotor. It should be noted though, that in this case classical methods such as Linear 
Harmonic Analysis or classical continuation methods such as pseudo arc – length 
continuation method can no longer be implemented.  
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“If you want to find the secrets of the universe, think in terms of energy, 
frequency and vibration.” 

Nikola Tesla (July 9/10, 1856 – January 7, 1943) 
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