
A Data Acquisition and
Monitoring Platform for Diesel
Engines based on the CAN-bus

Protocol

Konstantinos Dimitriadis

School of Naval Architecture and Marine Engineering
Laboratory of Marine Engineering

National Technical University of Athens
Greece

Supervisor: Associate Professor George Papalambrou

Committee Member : Prof. N. Kyrtatos

Committee Member : Prof. C. Papadopoulos

September 2020

Abstract

The goal of this project is the design of a complete communications system with the
capability of simultaneous remote monitoring control of the experimental engine testbed
installed in the Laboratory of Marine Engineering. The system has been tested and im-
plemented on the HIPPO-2 configuration, and gives the user capability of data acquisition
and logging, live monitoring through real-time plotting and remote control. Data acquisi-
tion and engine control are achieved through a hardware setup which includes an Arduino
UNO micro-controller, an MCP 2515 CAN transceiver and a PCF 8523 real-time clock
running on a Raspberry Pi single board computer. This diploma project will describe in
detail the function, communication protocol, connectivity and programming of the system.
The main objectives were the following:

• Understanding the CAN bus architecture as well as the CAN-OPEN and J1939
protocols.

• Selecting all the parameters that would be monitored and/or controlled, including
but not limited to the Engine Speed, Fuel Temperature, Power Output etc.

• Study and integration of the system components. Specifically, these included the
microcontroller, CAN transceiver, real-time clock, single board computer and their
respective programming languages and hardware connectivity.

• Integration of the system components to achieve communication between them and
the HIPPO-2 installation.

• System optimization to run as efficiently as possible on the single board computer
taking into consideration its limited processing power and graphic capabilities.

• Experimentation on the test bed to display live results, store data for further analysis
and control specific parameters of the engine or request additional data that would
otherwise not be transmitted.

1

Contents

List of Figures 4

List of Tables 6

1 Introduction 8
1.1 Experimental Engine Testbed . 8
1.2 Scope of Study . 8
1.3 Remote Monitoring Systems . 10

2 Communication Protocols 13
2.1 Introduction to CAN . 13

2.1.1 Physical Layer . 14
2.1.2 CANopen Protocol . 16
2.1.3 CAN J1939 Protocol . 17

2.2 CAN Message Architecture . 20
2.2.1 Error Checking . 21

2.3 CAN Bus Compared to Other Communication Protocols 23
2.3.1 CAN & RS 232 . 23
2.3.2 CAN & RS 485 . 24

3 Data Acquisition 26
3.1 Hardware . 26

3.1.1 Microcontroller . 26
3.1.2 CAN Transceiver . 29
3.1.3 Real Time Clock . 31
3.1.4 Single Board Computer . 32
3.1.5 Hardware Connections . 34

3.2 Programming . 37
3.2.1 Programming Language and Data Analytics 38
3.2.2 Decoding and Processing Measurements 41

3.3 Data Representation . 49
3.4 Transmitting Messages . 50

4 Experiment 54
4.1 Introduction . 54
4.2 dSpace Monitoring System . 54
4.3 Comparisson of Measurements . 54

5 Conclusion and Future Works 62
5.1 Summary . 62
5.2 Future Developments . 62

2

CONTENTS 3

Bibliography 64

List of Figures

1.1 3-D layout of the hybrid test bed HIPPO-2. 9
1.2 Caterpillar C 9.3 Electronic Diesel Engine 9
1.3 Vessel Remote Monitoring System Data Collection Points 11
1.4 Vessel Remote Monitoring Architecture . 12

2.1 Cheminax CAN Cable . 15
2.2 CAN Physical Layer . 16
2.3 CAN Dominant and Recessive Bus States 17
2.4 CAN Open Protocol . 18
2.5 Difference Between the Standard and Extended Identifier 19
2.6 CAN Message Breakdown . 20
2.7 J1939 CAN 2.0 Identifier . 21
2.8 CAN Message Data-Frame Format . 22
2.9 RS 485 and CAN Bus Output Differential 24

3.1 Arduino UNO Rev. 3 . 27
3.2 Arduino Serial Monitor displaying CAN data 27
3.3 Arduino UNO Schematic Representation . 29
3.4 MCP2515 CAN Transceiver . 30
3.5 MCP2515 Block Diagram . 31
3.6 PCF 8523 Real Time Clock . 32
3.7 Raspberry Pi 3 . 34
3.8 Location of connectors and main ICs on Raspberry Pi 3 34
3.9 Thermal performance of similar circuit to Raspberry Pi 35
3.10 CAN Transceiver connection to CAN Bus 35
3.11 CAN Transceiver wiring with twisted pair cables 36
3.12 Connection Pins of the MCP2515 CAN Transceiver 36
3.13 Arduino UNO and MCP 2515 Connection diagram 37
3.14 System Componects Layout . 38
3.15 Data Flow Diagram . 39
3.16 Increase of Python’s use as a programming language 40
3.17 Monitoring of Unprocessed CAN Data in a terminal window 42
3.18 Message Identifier Breakdown . 44
3.19 Message ID F004 Breakdown . 45
3.20 Difference in Endian Byte Architecture . 47
3.21 Data Representation in Real-Time . 51
3.22 Data Representation in Real-Time . 51
3.23 Data representation of all parameters monitored 52

4.1 HIPPO-2 Control Interface . 55
4.2 Arduino, MCP and RTC connections during the experiment 55

4

LIST OF FIGURES 5

4.3 Comparison of measurements, Experiment No.1 - Engine’s Fuel Consump-
tion Rate . 56

4.4 Comparison of measurements, Experiment No.2 - Engine’s Fuel Consump-
tion Rate . 57

4.5 Comparison of measurements, Experiment No.1 - Engine’s Operating Speed 57
4.6 Comparison of measurements, Experiment No.2 - Engine’s Operating Speed 58
4.7 Comparison of measurements, Experiment No.1 - Engine’s Actual Percent

Torque . 58
4.8 Comparison of measurements, Experiment No.2 - Engine’s Actual Percent

Torque . 59
4.9 Comparison of measurements, Experiment No.1 - Engine’s Intake Manifold

Temperature . 60
4.10 Comparison of measurements, Experiment No.2 - Engine’s Intake Manifold

Temperature . 60
4.11 Comparison of measurements, Experiment No.1 - Engine’s Intake Manifold

Pressure . 61
4.12 Comparison of measurements, Experiment No.2 - Engine’s Intake Manifold

Pressure . 61

List of Tables

2.1 CAN Bus length in relation to transmission rate 16

3.1 CAN J1939 Data Link Parameters Reference List 43
3.2 Engine Fuel Economy Parameters . 48
3.3 Hexadecimal to Binary Conversion Table . 49
3.4 J1939 Parameter Reference Table . 49
3.5 Turbo Boost Pressure Transmission Rate 50
3.6 Engine Information Broadcasted upon user request 53

6

Abbreviations

Abbreviation Description

NTUA National Technical University of Athens
HIPPO Hybrid Integrated Propulsion POwertrain
CAT Caterpillar trade mark
EM Electric Motor
EB Electric Brake
CAN Controller Area Network
RPM Rotations Per Minute
SBC Single Board Computer
ECU Engine Control Unit
PGN Parameter Group Number
PGL Parameter Group Label
DLC Data Length Code
PDU Protocol Data Unit
RTC Real Time Clock
OSI Open System Interconnection
AMS Alarm Monitoring System
ECR Engine Control Room
SPI Serial Peripheral Interface
SRR Substitute Remote Request
RTR Remote Transmission Request
IDE Identifier Extension
SOF Start Of Frame
EOF End Of Frame

7

Chapter 1

Introduction

1.1 Experimental Engine Testbed

The latest installation at the Laboratory of Marine Engineering is the HIPPO-2 testbed.
The acronym HIPPO stands for Hybrid Integrated Propulsion Powertrain. The system
was installed with the goal of giving the laboratory more in-depth insight into hybrid
power plant operation. HIPPO-2 is comprised of the following components:

• Caterpillar 9.3 Internal Combustion Diesel Engine with a power output of 261 kW
and Tier 4 emission capability. The engine is equipped with an Integrated Particulate
filter, Selective Catalytic Reduction Unit Oxidation Catalyst and Amonia Trap.

• ABB Dynamometer (315kW) with an AC induction motor.

• ABB Electric motor/generator (90kW) with an AC induction motor.

The primary propulsion is provided by the 261 kW CATERPILLAR 6-cylinder, 9.3-
liter diesel engine, whose maximum power output is achieved at 1800-2200 rpm as shown
in Figure 1.2. The diesel engine is fitted with advanced emission reduction technology, Ex-
haust Gas Re-circulation (EGR) and a Selective Catalytic Reactor (SCR) NOx abatement
system. The electric motor/generator is a AC asynchronous-induction 3-phase motor, with
a rated power of 90 kW. A frequency inverter unit enables the torque output regulation of
the electric motor under closed loop control. Mechanical load is applied to the system by
ways of an electric dynamometer, which is a 315 kW AC asynchronous-induction 3-phase
motor. In this setup, the thermal and electric engine provide mechanical power simul-
taneously, with identical rotational speeds. All components that comprise the HIPPO-2
system can be operated either in torque- or speed-control mode. A layout of the testbed
is shown in Figure 1.1

For experimentation and testing purposes we are able to apply various loading profiles
with this setup. The mechanical load, applied by the dynamometer has the purpose
of simulating the vessel’s propeller demand, by using variable speed and torque, or a
generator’s loading profile with changing load at constant speed, in the same way that a
governor would adjust the engine’s demand.

1.2 Scope of Study

This project studies the signal transmittance and control of the HIPPO-2 experimental
engine testbed. The connection between our communications system and the testbed is
based on the CAN protocol. The sensor information transmitted from the engine testbed

8

1.2 Scope of Study 9

Figure 1.1: 3-D layout of the hybrid test bed HIPPO-2.

Figure 1.2: Caterpillar C 9.3 Electronic Diesel Engine

includes, among others, Engine Speed, Torque, Fuel Consumption and many other pa-
rameters. To achieve communication, data logging and display of the data we are using a
system comprised of a micro-controller, CAN transceiver, digital date and time clock and

1.3 Remote Monitoring Systems 10

single board computer.
In this project we are describing the procedure of designing, programming, testing

and implementing this communications and control system. The main objective of this
diploma project, i.e. the communication and control of the HIPPO-2 installation, was
achieved through the following steps:

• Understanding the CAN-OPEN and J1939 communications protocols.

• Connecting to the testbed and acquiring of the analog signals transmitted by the
engine

• Segregating and decoding the signal based on the desired parameters that we wanted
to monitor and control

• Storing the decoded data that was acquired for further analysis

• Plotting the desired parameters

1.3 Remote Monitoring Systems

Smart tracking and monitoring devices can now be found in all kinds of industrial assets,
heavy equipment, industrial machines, reefers, trailers, containers, and more. Some es-
timates gather that 8.4 billion devices of all kinds connected are in use today, with the
number expected to climb to 20 billion devices by 2020.

In recent years we have seen the introduction and rapidly increasing adaptation of
ship remote monitoring systems on the market. Many companies offer configurations that
monitor the vessel’s operational data and transmit it to the technical superintendents and
owners who can assess the ships performance and overall condition over time or compare
the performance of sister vessels.

Until now, performance data was monitored through Noon Reports, performance eval-
uation reports or when specifically requested from the vessel. Usually that meant having
information for one point in the day, or a summary of that days figures but not a continuous
string of data to accurately represent the operation throughout the voyage.

Utilizing this new technology, users can access diagnostic and efficiency reports and
configure the system to send alarms when irregularities are detected, thus minimizing
the need for constant monitoring. Alerts include engine performance, fuel consumption,
fuel burn rate, RPM, fuel temperature, exhaust temperature, oil pressure, boost, throttle
and more. In advanced applications, the system automatically collects vessel data in
near-real-time and sends it to a portal where it is remotely accessible. The operation of
such monitoring systems is greatly aided by advances in telecommunications that make
transmitting large amounts of data using satellite communications cost effective. On
average two gigabytes of data may be downloaded from a fully equipped vessel that includes
sensors for all its major components

Remote Monitoring Systems can maximize on-board resources, since processes that
require human intervention, such as walkthroughs, inspections and data collection and
entry, are automatically executed by the software to reduce human error and ensure access
to accurate data for efficient planning, troubleshooting and problem-solving. The system
helps anticipate and resolve issues before they occur. It also minimizes manual processes,
allowing fleet owners to use crews more efficiently, potentially saving several hours per
day of their time and reduce the number of technical personnel on-board. It can provide
historical data to identify patterns and backtrack any malfunctions so that they can be
closely investigated and prevent their re-occurrence.

1.3 Remote Monitoring Systems 11

Figure 1.3: Vessel Remote Monitoring System Data Collection Points

Such systems can also help to improve efficiencies and reduce operational costs by
monitoring engine status and hours of operation, and by notifying operators of upcoming
service. Specific alerts can be set, so that operators are automatically informed when a
parameter exceeds a certain value, reducing the need to constantly monitor the system.
This is especially helpful in cases where a designated performance monitoring department
in not available to constantly operate the monitoring software. A remote vessel monitoring
system can also help reduce downtime caused by failure or unplanned engine maintenance,
which can have a great cost on shipowners. In addition, it can feature powerful fuel
reporting and analytics to help companies optimize fuel consumption. The system can
enable managers assess how a vessel is performing compared to the rest of the fleet or the
manufacturer’s data . This can help to compare the performance of sister vessels as well
as their deviation from sea trials and equipment shop tests. Finally, by having a complete
image of the vessel’s performance and specifically fuel consumption, owners can better
describe the vessel to charterers, avoiding in the process speed and consumption claims
that may lead to profit loss.

Most often Remote Monitoring Systems are installed in the vessel’s bridge, cargo holds
and engine control room as shown in Figure 1.3 & 1.4. From the bridge they may gather
data regarding the vessel’s speed, position, course as well as weather measurements, by
connecting to the center console. Data is also collected from the water ingress system and
sensors in the cargo holds measure humidity and temperature to ensure that the cargo is
being stored in the correct conditions. From the ECR they can collect all data that the
AMS (Alarm Monitoring System) receives, from various sensors installed or they may be
connected directly to the propulsion system and the Diesel Generators.

1.3 Remote Monitoring Systems 12

Figure 1.4: Vessel Remote Monitoring Architecture

Chapter 2

Communication Protocols

2.1 Introduction to CAN

In order to achieve communication between its various components and sensors as well
as external devices, the experimental engine testbed in the LME uses the CAN protocol.
CAN, also known as Controller Area Network is a serial communication bus designed for
industrial and automotive applications, originally developed for the automotive industry
to replace the complex wiring harness with a two-wire bus. It is a message-based protocol
used for communication between multiple devices. When multiple CAN devices are con-
nected together, the connection forms a network acting like our central nervous system
allowing any device to speak with any other component in the node, also known as ECUs
or Electronic Control Units. Unlike a traditional network such as USB or Ethernet, CAN
does not send large blocks of data point-to-point from node A to node B under the super-
vision of a central bus master. In a CAN network, many short messages like temperature
or RPM are broadcast to the entire network, which provides for data consistency in every
node of the system. Modern CAN bus systems, such as cars or other automotive vehicles
may have as many as 70 ECUs, including but not limited to engine control, airbags, lights
and locks.

A brief history of the CAN bus is outlined below:

• Pre CAN: Car ECUs relied on complex point-to-point wiring

• 1986: Bosch developed the CAN protocol as a solution

• 1991: Bosch published CAN 2.0 (CAN 2.0A: 11 bit, 2.0B: 29 bit)

• 1993: CAN is adopted as international standard (ISO 11898)

• 2003: ISO 11898 becomes a standard series (11898-1, 11898-2, etc.)

• 2012: Bosch released the CAN FD 1.0 (flexible data rate)

• 2015: The CAN FD protocol is standardized (ISO 11898-1)

• 2016: The physical CAN layer for data-rates up to 5 Mbit/s standardized in ISO
11898-2

Today, the CAN protocol is standard in practically all vehicles (cars, trucks, buses,
tractors, etc.) as well as ships, planes, EV batteries, industrial machinery and more.
Further, more exotic cases include drones, radar systems, submarines or even prosthetic
limbs.

The CAN Bus communications system provides several advantages over other proto-
cols, the most significant of which are listed below:

13

2.1 Introduction to CAN 14

1. Low Cost

To understand the efficiency of the system we simply need to take a look at one of
its first applications, a BMW 850. Implementation of CAN bus architecture reduced
the length of wiring in the BMW 850 by 1.25 miles, which in turn reduced its weight
by well over 100 pounds. Based on the current cost of copper wiring, the total cost
savings from the saved materials would amount to nearly 600 USD. Not only that,
but the speed of communication was increased, with signal rates ranging from 125
kbps to 1 Mbps. Low cost of implementation is one of the main reasons that we are
seeing widespread adoption of the CAN bus protocol. Less wiring means less labor
and lower material costs for embedded engineers.

2. Built-in Error Detection.

While each node is capable of sending and receiving messages, not all nodes can
be communicating at once. The CAN bus protocol uses a technique called lossless
bitwise arbitration to resolve these situations and determine which node should be
given ”priority” to communicate its message first. Error handling is built into the
CAN protocol, with each node checking for errors in transmission and maintaining
its own error counter. Nodes transmit a special Error Flag message when errors
are detected and will destroy the offending bus traffic to prevent it from spreading
through the system. Even the node that is generating the fault will detect its own
error in transmission, raising its error counter and eventually leading the device to
”bus off” and cease participating in network traffic. In this way, CAN nodes can
both detect errors and prevent faulty devices from creating useless bus traffic.

3. Robustness

Durability and reliability are key areas of concern when choosing a communication
protocol for deployment in any engineering project. CAN high-speed bus lines are
highly resistant to electrical disturbances, and the CAN controllers and transceivers
that communicate with electronic devices are available in industrial or extended
temperature ranges, thus withstanding the demanding conditions that exist around
internal combustion engines.

4. Speed

High Speed CAN offers signal transfer rates of between 40 kbps and 1 Mbps, de-
pending on the length of the cable, far surpassing the speed delivered by systems
that came before it.

5. Flexibility

The CAN bus protocol is known as a message-based communication protocol. In
this type of protocol, nodes on the bus have no identifying information associated
with them. As a result, nodes can easily be added or removed, through a process
called hot-plugging, without performing any software or hardware updates on the
system. This feature makes it easy for engineers to integrate new electronic devices
into the CAN bus network without significant programming overhead and supports
a modular system that is easily modified to suit any specs or requirements.

2.1.1 Physical Layer

The Physical Layer is the basic hardware required for a CAN network, i.e. the ISO
11898 electrical specifications. It converts 1’s and 0’s into electrical pulses leaving a node,
then back again for a CAN message entering a node. Although the other layers may be

2.1 Introduction to CAN 15

implemented in software or in hardware as a chip function, the Physical Layer is always
implemented in hardware.

A CAN Network will consist of only two wires CAN High and CAN Low for bi-
directional data transmission, in a form of a twisted pair, where each node terminates on
each end with 120 Ohm resistors, as shown in Figure 2.1. The twin axial cables used for this
application need to meet rigorous electrical and environmental performance requirements.
Namely, they need to have below features:

• Light weight and small size

Especially for the automotive industry, weight reduction in a key objective and a
very important parameter in the vehicles performance and fuel efficiency.

• Broad temperature range of -65 to 200 degrees Celsius

The area on and around an internal combustion engine can reach very high tem-
peratures and any additional hardware has to be able to withstand this demanding
environment for long periods of operation.

• Low capacitance

Capacitance affects the signal level and is frequency-dependent. The higher the
frequency, the greater the reactance caused by the capacitance and the greater the
signal loss. High-frequency loss from the cable gradually becomes noticeable as it
results in noise generated in the system . Raising the source impedance or increasing
the length of the cable increases the loss. With an increase in length of the Bus,
there is a loss in Bit rate. The effect of capacitance on the Bus length and the
transmission rate can be seen in Table 2.1.

• High data rates

Data transmittance can reach very high values for applications using CAN Bus. As
mentioned above data may be transmitted at a rate of up to 1 Mbps.

• Excellent shop handling

Figure 2.1: Cheminax CAN Cable

The pair of twisted wires are copper cables with common ground connection. They
are differential, meaning that the transmission occurs by the potential difference between
them, which is where CAN derives its robust noise immunity and fault tolerance. Balanced
differential signaling reduces noise coupling and allows for high signaling rates over twisted-
pair cable. Balanced means that the current flowing in each signal line is equal but opposite
in direction, resulting in a field-canceling effect that is a key to low noise emissions. The

2.1 Introduction to CAN 16

Figure 2.2: CAN Physical Layer

Table 2.1: CAN Bus length in relation to transmission rate

use of balanced differential receivers and twisted-pair cabling enhance the common-mode
rejection and high noise immunity of a CAN bus.

The voltage between the wires depends on the signal transmitted and is 3.5 V for the
CAN High wire and 1.5 V for the CAN Low when ”0” is transmitted, meaning when
the bus is on the dominant state, while the voltage when ”1” is transmitted, meaning
when the bus is in the quiescent recessive state is 2.5 V for both wires as shown in Figure
2.3. Typically the communication speed for CAN ranges from 50 Kbps to 1Mbps and the
distance can range from 40 meters at 1Mbps to 1000 meters at 50 kpbs. Thus is it clear
that depending on our application and the length of wiring needed there is a restriction
on our networks speed. Vice versa, if our application requires a minimum speed for data
transmittance, there is a maximum length restriction that applies. The CAN bus length
and data transmission speed correlation is shown in Table 2.1. Whereas there is not a
specified maximum number of nodes that may be connected on a CAN bus, there is a
limitation imposed by the driving capability of a CAN transceiver. Typically we may
see a connection of 64 nodes. It is worth noting that all nodes should support the same
data-rate and bit-timing settings. Figure 2.2 shows how nodes a connected on the CAN
Bus.

2.1.2 CANopen Protocol

CANopen is a CAN-based communication system. It comprises of higher-layer proto-
cols and profile specifications. CANopen has been developed as a standardized embed-
ded network with highly flexible configuration capabilities. It was designed originally for
motion-oriented machine control systems, such as handling systems. Today it is used in
various application fields, such as medical equipment, off-road vehicles, maritime elec-
tronics, railway applications, or building automation. CANopen unburdens the developer

2.1 Introduction to CAN 17

Figure 2.3: CAN Dominant and Recessive Bus States

from dealing with CAN hardware-specific details such as bit timing and acceptance filter-
ing. It provides standardized communication objects (COB) for time-critical processes,
configuration as well as network management data.

In terms of the Open Systems Interconnection or OSI communication systems model,
CAN covers the first two levels: the physical layer and the data link layer. The phys-
ical layer defines the lines used, voltages, high-speed nature, etc. The data link layer
includes the fact that CAN is a frame-based messages protocol. CANopen covers the
top five layers: network (addressing, routing), transport (end-to-end reliability), session
(synchronization), presentation (data encoded in standard way, data representation) and
application. The application layer describes how to configure, transfer and synchronize
CANopen devices.

CANopen provides several communication objects, which enable us to implement de-
sired network behavior into a device. With these communication objects, we can offer
devices that can communicate process data, indicate device-internal error conditions or
influence and control the network behavior, similar to the system we have designed. As
CANopen defines the internal device structure, we have the ability to know exactly how
to access a CANopen device and how to adjust the intended device behavior.

2.1.3 CAN J1939 Protocol

CAN J1939 standard is a protocol maintained by the Society of Automotive Engineers
(SAE) and is very widely used in recent years, having a vast majority of applications
especially in the automotive field. It is now considered the industry standard. J1939
offers a standardized method of communication across ECUs. The protocol has multiple
layers. For the purposes of this project we will mainly deal with the following:

• J1939-11 : Physical layer

• J1939-15 : Reduced Physical Layer, utilizing a bit-rate of 250Kbits/s and an Un-
shielded Twisted pair of wires

• J1939-21 : Data Link Layer

2.1 Introduction to CAN 18

Figure 2.4: CAN Open Protocol

• J1939-31 : Network Layer

• J1939-71 : Vehicle Application Layer

• J1939-75 : Application Layer Generator Sets and Industrial

• J1939-73 : Application Layer Diagnostics

• J1939-81 : Network Management

For our application we shall be focusing on the Data Link and Vehicle Application
Layers, J1939-21 and J1939-71 respectively. More specifically, the Physical Layer is char-
acterized by a transmittance rate of 250 kbps, the use of a twisted pair of wires which are
shielded and end on 120 Ohm resistors. Furthermore the bus is linear and has a maximum
length of 40 meters. In addition the maximum amount of nodes that may be connected
to the network are 30 for the Physical Layer and 10 for the Reduced Physical Layer. The
nodes are connected to the bus via stubs that may have a maximum length of 1 meter or
3 meters depending on whether we are using the protocol for the physical Layer or the
Reduced Physical layer respectively.

Difference Between CAN J1939 and Standard CAN Bus

While the standard CAN message frame uses an 11-bit message identifier (CAN 2.0A),
which is sufficient for the use in regular automobiles and any industrial application, J1939
is a higher layer protocol which implements an enhanced 29-bit message identifier. The
ISO 11898 amendment for an extended frame format (CAN 2.0B) was introduced in 1995.

The 29-bit message identifier found in CAN J1939 consists of the regular 11-bit base
identifier and an 18-bit identifier extension. The distinction between CAN base frame
format and CAN extended frame format is accomplished by using the IDE bit inside the
Control Field as shown in Figure 2.5. A low (dominant) IDE bit indicates an 11-bit
message identifier, while a high (recessive) IDE bit indicates a 29-bit id. In terms of

2.1 Introduction to CAN 19

flexibility and expansion of the CAN network an 11-bit identifier (standard format) allows
a total of 211 (= 2048) different messages. At the same time, a 29-bit identifier (extended
format) allows a total of 229 (= 536+ million) messages.

In is important to note that both formats, Standard (11-bit message ID) and Extended
(29-bit message ID) may co-exist on the same CAN bus. During bus arbitration, the
standard 11-bit message ID frame will always have a higher priority than the extended
29-bit message ID frame with an identical 11-bit base identifier and thus gain bus access.

The Extended Format has some trade-offs for the increased capability that it provides.
Bus latency time is longer (minimum 20 bit-times), messages in extended format require
more bandwidth (about 20 %), and the error detection performance is reduced (because
the chosen polynomial for the 15-bit CRC is optimized for frame length up to 112 bits).

Figure 2.5: Difference Between the Standard and Extended Identifier

The 29-bit message identifier consists of the regular 11-bit base identifier and an 18-bit
identifier extension. Between the SOF (Start of Frame) bit and the end of the 11-bit
(base) message identifier, both frame formats, Standard and Extended, are identical.

Following the 11-bit base identifier, the Extended Format uses an (always recessive)
SRR (Substitute Remote Request) bit, which, as its name implies, replaces the regular
RTR (Remote Transmission Request). The following IDE (Identifier Extension) bit is also
kept at a recessive level. With the use of a recessive SRR plus a recessive IDE bit it is
guaranteed that standard message frames (11-bit identifier) will always have higher priority
than extended message frames (29-bit identifier) with identical 11-bit base identifier.

2.2 CAN Message Architecture 20

2.2 CAN Message Architecture

The engine’s ECU transmits data using the J1939 protocol, which, as mentioned above,
uses CAN version 2.0B, meaning it has an extended 29 bit identifier. All CAN Open
messages are structured as show in the layout in Figure 2.6.

Figure 2.6: CAN Message Breakdown

Breaking down the diagram in Figure 2.6 we will go through each part of a CAN
message:

• Start Of Frame:

The single dominant start of frame (SOF) bit marks the start of a message, and is
used to synchronize the nodes on a bus after being idle.

• Message ID:

Establishes the priority of the message. Lower binary values have a higher priority.
On the protocol used for our application the length is the extended 29 bits. Further
analysis of the CAN identifier can be found in a following chapter where we break
down the filtering of incoming data.

• Remote Transmission Request (RTR):

The single remote transmission request bit is dominant when information is required
from another node. All nodes receive the request, but the identifier determines the
specified node. The responding data is also received by all nodes and used by any
node interested. In this way, all data being used in a system is uniform.

• Control Field:

Specifies the number of bytes that the data following it will have.

• Cyclic Redundancy Check (CRC):

CRC contains a 16 bit redundancy code. CAN data frames and remote frames
contain a safeguard based on a CRC polynomial: The transmitter calculates a check
sum from the transmitted bits and provides the result within the frame in the CRC
field. The receivers use the same polynomial to calculate the check sum from the
bits as seen on the bus-lines. Afterwards, the self-calculated check sum is compared
with the received on. If it matches, the frame is regarded as correctly received and
the receiving node transmits a dominant state in the ACK slot bit, overwriting the
recessive state of the transmitter. In case of a mismatch, the receiving node sends
an Error Frame after the ACK delimiter.

2.2 CAN Message Architecture 21

• Data:

This section comprises of the value contained within this specific ID. Up to 64 bits of
application data may be transmitted. Given the large size, the data frame contains
information for multiple parameters. The measurements which we are monitoring
are 8 bits in length and contained within this frame.

• Acknowledge Field (ACK):

Every node receiving an accurate message overwrites this recessive bit in the original
message with a dominate bit, indicating an error-free message has been sent. Should
a receiving node detect an error and leave this bit recessive, it discards the message
and the transmitting node repeats the message after re-arbitration occurs. In this
way, each node acknowledges (ACK) the integrity of its data. ACK is 2 bits in
length, with one being the acknowledgment bit and the second being a delimiter.

• End Of Frame (EOF):

EOF is a 7-bit field that marks the end of a CAN frame (message) and disables
bit-stuffing, indicating a stuffing error when dominant. When 5 bits of the same
logic level occur in succession during normal operation, a bit of the opposite logic
level is stuffed into the data.

Figure 2.7: J1939 CAN 2.0 Identifier

In the J1939 documentation, messages are identified through their Parameter Group
Number or PGN as we will further analyze below. PGNs comprise 18 of the 29 total bits
of the identifier, as is shown in Figure 2.7. Certain PGNs are reserved for proprietary
use by each respective manufacturer, ranging from value 00FF00 to 00FFF. Byte 0xFF
reflects non available data, while byte 0xFE reflects an error.

2.2.1 Error Checking

In addition to arbitration, the data link layer, layer 2 of the CAN OSI model, shown
in Figure 2.4 also contributes to the robustness of the overall CAN system, in part to its

2.2 CAN Message Architecture 22

Figure 2.8: CAN Message Data-Frame Format

abundant error-checking procedures. In this layer, the frame message is repeatedly checked
for accuracy and errors, incorporating five methods of checking: two at the message level
and three at the bit level.

If a message is received with errors, an error frame is sent out. This forces the trans-
mitting node to resend the message until it is received correctly. However, if a faulty node
hangs up a bus by continuously repeating an error, its transmit capability is removed by
its controller after an error limit is reached.

The error frame consists of two different fields: the error flag and the error delimiter.
From a message- level perspective we have the cyclic redundancy check and the frame
check.

• Cyclic Redundancy Check (CRC) safeguards the information in the frame by adding
redundant check bits at the end of transmission, which are then checked on the
receiving side. If they do not match, then a CRC error has occurred.

• Frame or Form check looks for fields in the message which must always be recessive
bits and verifies the structure by checking the bit fields against the fixed format
and frame size of SOF, EOF, ACK, and CRC delimiter bits. If a dominant bit is
detected, an error is generated.

From a bit-level perspective, there are three checks for errors: acknowledgment, bit
monitoring, and bit stuffing.

• Acknowledgment errors are detected when the transmitter does not read a dominant
ACK bit (0). This indicates a transmission error detected by the recipients, which
means either the ACK was corrupted or there were no receivers.

• Bit monitoring checks the bus level for each node for sent and received bits. If a data
bit (not arbitration bit) is written onto the bus and its opposite is read, an error is
generated. The only exceptions to this are with the message identifier field which is
used for arbitration, and the acknowledge slot which requires a recessive bit to be
overwritten by a dominant bit.

• Bit stuffing is a method that “stuffs” or inserts an extra opposite bit when five of the
same bits occur in succession. The opposite bit helps to differentiate error frames
and EOF bits. On the receiving side, the extra bit is removed. If the sixth bit is
the same as the previous five, then an error is detected by all CAN nodes and error
frames are sent out. The original message will need to be re-transmitted and pass
through arbitration if there is contention on the line. Stuffing ensures that rising
edges are available for on-going synchronization of the network. Stuffing also ensures
that a stream of bits are not mistaken for an error frame, or the seven-bit inter-frame

2.3 CAN Bus Compared to Other Communication Protocols 23

space that signifies the end of a message. Stuffed bits are removed by a receiving
node’s controller before the data is forwarded to the application. With this logic,
an active error frame consists of six dominant bits—violating the bit stuffing rule.
This is interpreted as an error by all of the CAN nodes which then generate their
own error frame. This means that an error frame can be from the original six bits to
twelve bits long with all the replies. This error frame is then followed by a delimiter
field of eight recessive bits and a bus idle period before the corrupted message is
retransmitted. It is important to note that the retransmitted message still has to
contend for arbitration on the bus.

2.3 CAN Bus Compared to Other Communication Proto-
cols

For the purpose of achieving the serial communication between an engine’s ECU and a
microcontroller there are many protocols that could be used. In similar applications,
especially older ones, we can see the use of both RS 232 and RS 485 serial protocols
which are popular standards in fieldbus systems. However, the CAN bus provides several
advantages over the other protocols.

2.3.1 CAN & RS 232

Although both the CAN Bus and RS 232 are serial protocols, they are very different from
each other mainly on the physical and transfer layers.

Physical Layer

The basic RS232 can be accomplished by the use of 2 wires, but can also be extended
to the complex multi wire protocol. On the physical layer, the standard defines a logic 1
with a voltage between –3 and –25 V and a logic 0 as a voltage level between +3 and +
25 V . Signal levels are commonly referred to as a mark for logic 1 and a space for logic 0.
Voltages between ±3V are invalid, providing a huge noise margin for the interface. Noise
voltages in this range are rejected. In common practice, logic 0 and 1 levels are typically
as low as ±5V and as high as ±12 or ±15V . The transmitter and receiver configurations
are single-ended (not differential) with a ground reference. The fact that the configuration
is not differential makes the RS232 susceptible to noise and cannot be used at high baud
rates and large distances. It also is a single master protocol.

On the other hand, the physical layer for CAN consists of 3 wires CAN-H, CAN-L and
ground. The physical value of the signal is resolved by the differential voltage between
CAN-H and CAN-L. When the difference is maximum(dominant) its resolved as a logic
level 0 and when the difference is minimum(recessive) its resolved as a logic level 1. With
this simple technique we can ensure high susceptibility to noise as it will affect both wires
at the same time and hence the difference would be the same. This enables high baud
rate up to 1Mbps with higher redundancy.

Transfer Layer

RS 232 is a master slave protocol. The master initiates a communication and the slave
in turn responds. It can be either full duplex or half depending on how we are using it,
make it a very simple protocol.

CAN, however is really complex. It is a multi master protocol. This means that we
have the ability to connect multiple nodes on a CAN bus and expect each of them to

2.3 CAN Bus Compared to Other Communication Protocols 24

be the master at any point. But at a given instant of time, only one node can be a
master. This is achieved by the ID arbitration, meaning that each node is responsible for
sending a certain number of messages with a particular ID. When multiple masters start
transmitting at the same time, the master who is transmitting a higher priority ID wins
the bus and becomes the master, this is where the priority byte plays a major role. After
the transmission of this message, the arbitration process again kicks in to select the next
master.

Summarizing, CAN is a really powerful multi-drop communications protocol which
helps connect multiple communication nodes at a higher baud rate with more noise effi-
ciency, which is the main difference between RS232 and CAN.

2.3.2 CAN & RS 485

RS 485 and CAN bus have very similar characteristics, with the latter however being
better suited for engine data transfer applications. To begin with, both protocols feature
differential outputs. The RS-485 output is a classical differential signal where one signal
is the inverted, or mirror, version of the other. (Output A is the non-inverting line and
output B is the inverting line.) The differential range from +1.5V to +5V is a ‘1’ or
mark and -1.5V to -5V is a ‘0’ or space. The area between -1.5V and +1.5V is undefined.

For CAN, the output differential is slightly different where the two outputs, CANH and
CANL data lines, are a reflection of each other as depicted and represent opposite logic.
In the dominant state (a zero bit, used to determine message priority), CANH-CANL are
defined to be logic ‘0’ when the voltage across them is between +1.5V and +3V. In the
recessive state (a 1-bit and the state of the idle bus), the driver is defined to be logic ‘1’
when differential voltage is between -120mV and +12mV, or when it is near zero. For the
receiver side, the RS-485 standard defines the input differential to be in between ±200 mV
to +5V. For CAN, the input differential signal is between +900mV and +3V, while the
recessive mode is in between -120mV and +500mV. When the bus is idle or when it’s not
loaded, the transceiver is in a recessive state where CANH and CANL must be between
2V and 3V. Both RS-485 and CAN have room for margin in applications where the signal
can be attenuated by the quality (shielded or unshielded) or length of the cables, which
may affect the capacitance of the overall system.

Figure 2.9: RS 485 and CAN Bus Output Differential

Additionally, both standards have termination resistors of the same 120 Ohm value at
the ends of the network, to match the characteristic impedance of the transmission line
and avoid reflection. Another feature common in both CAN and RS-485 transceivers is
fault protection. Fault-protected devices have an internal overvoltage circuit on the driver
output and receiver inputs to protect the devices from accidental shorts between a local

2.3 CAN Bus Compared to Other Communication Protocols 25

power supply and the data lines of the transceivers.
One of the major reasons for industrial applications to design in CAN versus RS-485

transceivers is how messages are handled on the bus. In a RS-485 system with many nodes
communicating to the microprocessor, there may be instances where there are several
messages sent out from multiple nodes onto a bus simultaneously that may result in a
collision of messages, otherwise known as contention. When this happens, the bus state
could possibly be invalid or indeterminate, causing data errors. Furthermore, contention
could damage or degrade the signal performance when multiple RS-485 transceivers on
the bus are in one state and one single transceiver is in the opposite state. In such a
condition, the lone RS-485 would cause significant current draw that would likely cause
thermal shutdown of the IC or permanent damage to the system This is where CANbus
has a big advantage over the RS-485 protocol.

On the other hand, with CANbus, there is a way to resolve multiple messages on the
line by way of ranking each message. Prior to bringing the system up, different faults
are assigned different priorities by the system engineer. Earlier, it was mentioned that
CAN had a dominant and recessive state. During contention, the message with the most
consecutive dominant state is given priority and will continue to transmit, while other
nodes with lower priority will see the dominant bit and stop transmission. This method is
called arbitration, where the messages are prioritized and received in an order of status.
A node that loses arbitration will resend its message. This continues for all nodes until
there is one node left transmitting.

With CAN features such as arbitration, error-message checking, improved bandwidth,
and a larger data field, it is easy to understand the widespread use of CAN bus in the
industrial market. CAN is suitable for applications that require robust communications
and reliability in harsh environments. CAN systems are able to prioritize the importance
of frame messages and treat critical ones appropriately. Many different systems can be ex-
posed to either electrically noisy sources or a local service personnel that may accidentally
short to local supply rails.

Chapter 3

Data Acquisition

3.1 Hardware

In this chapter we will examine all the components that comprise our system and the
process of integrating them all, including the connectivity between them, in order to collect
and analyze data from the CAN-BUS. These include a Microcontroller, CAN Transceiver,
Real Time Clock and Single Board Computer, along with wiring and peripherals.

3.1.1 Microcontroller

The Arduino UNO is a microcontroller based on the ATmega328P high performance mi-
crochip. The board is equipped with sets of digital and analog input/output (I/O) pins
that may be interfaced to various expansion boards (shields) and other circuits. More
specifically, it includes 14 digital I/O pins, 6 of which may be used as PWN (Pulse Width
Modulation) outputs. It also includes 6 analog inputs, a 16 MHz ceramic resonator, a
USB connection, power jack and ICSP header. For this application the board is powered
via the USB cable from the single board computer, though it may also be powered by a
battery or directly through a power socket.

Arduino can be used to communicate with a computer, another Arduino board or
other microcontrollers. The ATmega328P microcontroller provides UART TTL (5V) serial
communication which can be done using digital pin 0 (Rx) and digital pin 1 (Tx), shown
in the schematic diagram in Figure 3.3. An ATmega16U2 on the board channels this
serial communication over USB and appears as a virtual com port to software on the
computer, allowing us to collect all transmitted data and also send data of our own to the
microcontroller. The ATmega16U2 firmware uses the standard USB COM drivers, and no
external driver is needed. This further contributes to the ease of integration into many
different kinds of set-ups. The Arduino software includes a serial monitor which allows
simple textual data to be sent to and from the Arduino board. The serial monitor may
provide a quick representation of the information received, however it may not be directly
exported to a separate file for further analysis, and thus we have to write a separate
software in order to incorporate such a function.

To set-up the serial monitor we need to define the baudrate with which the Arduino is
configured in our software and the port to which it is connected. In this case, the baudrate
has been set to 115200 in the Arduino IDE code and the serial port is ’cu.usbmodem14301’
but may differ depending on the device.

There are two RX and TX LEDs on the Arduino board which will flash when data
is being transmitted via the USB-to-serial chip and USB connection to the computer
(not for serial communication on pins 0 and 1). A SoftwareSerial library allows for serial

26

3.1 Hardware 27

Figure 3.1: Arduino UNO Rev. 3

Figure 3.2: Arduino Serial Monitor displaying CAN data

communication on any of the Uno’s digital pins. The ATmega328P also supports I2C
(TWI) and SPI communication, which is the communication protocol that will be used
with the MCP2515. The Arduino software includes, along with numerous others, a Wire

3.1 Hardware 28

library to simplify use of the I2C bus.
In addition, the Arduino has 14 digital input/output pins which can be used as input or

output pins by using pinMode(), digitalRead() and digitalWrite() functions in the Arduino
programming software. Each pin operates at 5V and can provide or receive a maximum of
40mA current, and has an internal pull-up resistor of 20-50 KOhms which are disconnected
by default. Out of these 14 pins, some pins have specific functions as listed below:

• Serial Pins 0 (Rx) and 1 (Tx): Rx and Tx pins are used to receive and transmit
TTL serial data. They are connected with the corresponding ATmega328P USB to
TTL serial chip.

• External Interrupt Pins 2 and 3: These pins can be configured to trigger an interrupt
on a low value, a rising or falling edge, or a change in value.

• PWM Pins 3, 5, 6, 9 and 11: These pins provide an 8-bit PWM output by using
analogWrite() function.

• SPI Pins 10 (SS), 11 (MOSI), 12 (MISO) and 13 (SCK): These pins are used for SPI
communication.

• In-built LED Pin 13: This pin is connected with an built-in LED, when pin 13 is
HIGH – LED is on and when pin 13 is LOW, its off.

Along with 14 Digital pins, there are 6 analog input pins, each of which provide 10
bits of resolution, i.e. 1024 different values. They measure from 0 to 5 volts but this limit
can be increased by using AREF pin with analog Reference() function.

Analog pin 4 (SDA) and pin 5 (SCA) also used for TWI communication using Wire
library. Arduino Uno has a couple of other pins as explained below:

• AREF: Used to provide reference voltage for analog inputs with analogReference()
function.

• Reset Pin: Making this pin LOW, resets the microcontroller.

The Arduino provides several benefits that greatly enable us in designing and imple-
menting our system:

• Small size. The dimensions of the board make it ideal for portable applications, that
require very little space and may call for installation in different locations.

• Low power consumption. It only requires power between 7 and 20 volts. The minimal
energy requirements the board has allows us to power it through a USB cable, usually
connected to a portable or single board computer or via a battery, adding to its
portability and convenience.

• Multiple I/O pins provide the capability to connect more than one CAN bus device,
in case we need to receive signals from more than one source.

• Ease of use. The Arduino is paired with its own IDE open-source software with
many pre programmed applications and a large support network.

• Large library database which is available to implement and edit very easily, suitable
for most engineering applications.

3.1 Hardware 29

Figure 3.3: Arduino UNO Schematic Representation

3.1.2 CAN Transceiver

Given that the Arduino does not have built-in CAN communication capabilities, we have
connected to it the an MCP 2515 CAN transceiver. MCP2515 is a stand-alone Controller
Area Network (CAN) controller that implements the CAN specification, Version 2.0B as
is used by the HIPPO-2 testbed. It is capable of transmitting and receiving both standard
as well as extended data and remote frames. The MCP2515 has two acceptance masks and
six acceptance filters (both for extended 29-bit messages), meaning that it is able to filter
out unwanted messages, thereby reducing the host MCU’s overhead, i.e. the processing
load required from the microcontroller. The MCP2515 interfaces with microcontrollers
(MCUs) via an industry standard Serial Peripheral Interface (SPI), which is compatible
with our microcontroller. The main features of the MCP2515 are outlined below:

• Includes a high speed TJA1050 CAN transceiver

• Dimensions are 40 x 28 mm making it ideal for portable applications

• High speed 10 MHz SPI control to communicate between CAN devices

• 8MHz crystal oscillator, acting as microprocessor’s frequency control

• 120 Ohm thermal resistance, as needed at the end of the CAN bus twisted pair of
cables

• Data transmittance up to 1 Mb/s, capable of handling all of the traffic in the system

• Low-power CMOS technology allowing operation from 2.7V to 5.5V . 5 mA active
current (typical) and 1µA standby current on Sleep Mode

3.1 Hardware 30

• -40oC to +85oC temperature operating range makes the transceiver capable of with-
standing the testbed and engine room environments

Figure 3.4: MCP2515 CAN Transceiver

A simple block diagram of the MCP2515 is shown in Figure 3.5. The device consists
of three main blocks:

1. The CAN module, which includes the CAN protocol engine, masks, filters, transmit
and receive buffers.

2. The control logic and registers that are used to configure the device and its operation.

3. The SPI protocol block.

CAN Module

The CAN module handles all functions for receiving and transmitting messages on the
CAN bus. Messages are transmitted by first loading the appropriate message buffer and
control registers. Transmission is initiated by using control register bits via the SPI inter-
face or by using the transmit enable pins. Status and errors can be checked by reading
the appropriate registers. Any message detected on the CAN bus is checked for errors and
then matched against the user-defined filters to see if it should be moved into one of the
two receive buffers.

Control Logic

The control logic block controls the setup and operation of the MCP2515 by interfacing to
the other blocks in order to pass information and control. Interrupt pins are provided to
allow greater system flexibility. There is one multipurpose interrupt pin (as well as specific
interrupt pins) for each of the receive registers that can be used to indicate a valid message
has been received and loaded into one of the receive buffers. Use of the specific interrupt
pins is optional. The general purpose interrupt pin, as well as status registers (accessed via

3.1 Hardware 31

Figure 3.5: MCP2515 Block Diagram

the SPI interface), can also be used to determine when a valid message has been received.
Additionally, there are three pins available to initiate immediate transmission of a message
that has been loaded into one of the three transmit registers. Use of these pins is optional,
as initiating message transmissions can also be accomplished by utilizing control registers
accessed via the SPI interface.

SPI Protocol Block

The MCU interfaces to the device via the SPI interface. Writing to, and reading from,
all registers is accomplished using standard SPI read and write commands, in addition to
specialized SPI commands.

3.1.3 Real Time Clock

In order to give our system the capability of having the actual date and time as well
as assigning them to the data received we have installed a PCF 8523 RTC (Real Time
Clock). The PCF8523 is a CMOS1 Real-Time Clock (RTC) and calendar optimized for
low power consumption. Data is transferred serially via the I2C-bus with a maximum
data rate of 1000 kbit/s. Alarm and timer functions are available with the possibility to
generate a wake-up signal on an interrupt pin. An offset register allows fine-tuning of
the clock. The PCF8523 has a backup battery switch-over circuit, which detects power
failures and automatically switches to the battery supply when a power failure occurs.
The real time and date stamp capabilities this RTC offers, enables us to known exactly
at what point each measurement occurred, since we are storing the data received. This
means that in case an abnormal measurement is collected or a malfunction occurs we may
know the exact point in time that this happened. Although this real time clock is only
able to provide an accuracy of one second, we are able to pair it with the Arduino’s timer

3.1 Hardware 32

function which can accurately measure up to one millisecond. A millisecond accuracy is
essential to our application, as data is received hundreds of times every second, sometimes
with the same identifier. The main features and benefits of the PCF 8523 are outlined
below:

• Provides year, month, day, weekday, hours, minutes, and seconds based on a 32.768
kHz quartz crystal

• Resolution: seconds to years

• Clock operating voltage: 1.0 V to 5.5 V

• Low backup current: typical 150 nA at VDD = 3.0 V and Tamb = 25 C

• 2 line bidirectional 1 MHz Fast-mode Plus (Fm+) I2C interface, read D1h, write
D0h2

• Battery backup input pin and switch-over circuit

• Freely programmable timer and alarm with interrupt capability

• Selectable integrated oscillator load capacitors for CL = 7 pF or CL = 12.5 pF

• Oscillator stop detection function

• Internal Power-On Reset (POR)

• Open-drain interrupt or clock output pins

• Programmable offset register for frequency adjustment

Figure 3.6: PCF 8523 Real Time Clock

3.1.4 Single Board Computer

For the purpose of displaying the data transmitted by the Arduino we need a portable
computer running either a Windows, Mac OS or Linux operating system. In this appli-
cation we have opted for the Raspberry Pi which is an ARM based credit card sized SBC
(Single Board Computer) created by Raspberry Pi Foundation. The board runs Debian
based GNU/Linux operating system Raspbian and ports of many other OSes exist for this

3.1 Hardware 33

device. It is equipped with a 1.2 GHz processor, 1 GB of RAM and a 400 MHz GPU
making capable to run our application on Python 3 and support the Live graphics. The
Raspberry also has multiple I/O ports including, but not limited to, 4 USB 2.0 ports, an
HDMI port and micro USB port for the power supply. The main benefits of the Raspberry
Pi are outlined below:

• Portable Size

Since the size of the device is no bigger than a smartphone it enables us to use it in
remote applications or change locations from which the CAN signal is received.

• Flash Memory

The Raspberry Pi has expandable memory through its SD card slot, meaning we
can always replace it if its full and also remove it if we want to examine the data in
another computer

• Low Cost

The average cost of the Raspberry Pi 3 is around 40 euros, making it one of the
most affordable portable computer systems

• Large processing power for a compact board

• Multiple Interfaces

The SBC includes HDMI, multiple USB, Ethernet, onboard Wi-Fi and Bluetooth,
many GPIOs, USB powered, etc. allowing us to make all the necessary connections
to acquire data from the micro

• Supports Linux & Python

A Unix operating system combined with Python help us take full advantage of
the computers processing capabilities. Python compatibility is especially crucial,
since our application mainly deals with data handling, for which this programming
language is ideal.

• Readily available examples with community support

The community and forum support offered is invaluable in starting to build appli-
cations and providing feedback while resolving any problems that may occur during
development.

• Overclocking capability

The Raspberry Pi can be overclocked if there are performance problems with the
application used, but it is at the user’s risk to do this as we will mention below.

While the Raspberry Pi offers numerous advantages for our applications there are also
challenges that we have to face. Firstly, the operating system runs on an SD, which makes
it easy to expand the memory, however, ruggedized applications will pose a problem as
this SD card connection may have issues with vibrations in the field i.e. the engine room.
There is no provision to ensure connections are intact while in operation and a possible
consequence would be to end up using unreliable workarounds (double-sided tapes, glue,
etc.). Another problem with this SD card situation is that it can become corrupted if it is
written heavily or if the board is not powered down properly while the file-write operation
was still going on. In order to solve this, we may end up providing an external battery or

3.1 Hardware 34

Figure 3.7: Raspberry Pi 3

Figure 3.8: Location of connectors and main ICs on Raspberry Pi 3

supercapacitor-based power supply to provide a main power-off interrupt signal so that
the software can handle proper shutdown before the board shuts off.

Furthermore, the microprocessor on the Raspberry Pi generates heat which must be
managed or else it may impact the board’s reliability. As of now, only a small heatsink
with glue can be used. There are no mounting holes provided near the processor so
that heatsink can be fastened properly. Ultimately, if we were to use the Raspberry Pi’s
computation abilities up to 70-90% we would need a more appropriate heatsink, capable
of handling the board’s rising temperatures which can come up to 75 degrees Celsius as
shown in the testing performed on a similar circuit, photographed by thermal cameras in
Figure 3.9. In this case we would end up using mounting holes on the board and a bigger
heatsink, which may not be readily available. Although there is the possibility to custom
design a cooling device and get it manufactured, this comes at extra cost and effort.

3.1.5 Hardware Connections

Now that we have analyzed each one fo our system’s components separately we need to
summarize how they are physically connected to achieve data transmittance.

The connection between the MCP module and the CAN bus is achieved by plugging
the twisted pair of wires into their corresponding CAN High and CAN Low ports as
demonstrated in Figure 3.10 and Figure 3.11.

All CAN Bus data traffic is captured through the MCP 2515 CAN transceiver which

3.1 Hardware 35

Figure 3.9: Thermal performance of similar circuit to Raspberry Pi

Figure 3.10: CAN Transceiver connection to CAN Bus

is in turn connected to the Arduino UNO microcontroller as shown in Figure 3.13.
Firstly, we will briefly analyze what the function of the pins on the MCP2515 is and

then we will dive into the connectivity between the CAN transceiver and the Micro Con-
troller. The MCP2515 pins, as shown in Figure 3.12, are the following:

• VCC: Ground connection for logic and I/O pins

• GND: Ground connection

• CS: Chip Select input for SPI (Serial Peripheral Interface) interface

• SO: Data output pin for SPI interface

• SI: Data input pin for SPI interface

3.1 Hardware 36

Figure 3.11: CAN Transceiver wiring with twisted pair cables

• SCK: Clock Input for SPI interface

• INT: Interrupt output pin

Figure 3.12: Connection Pins of the MCP2515 CAN Transceiver

The connections between the MCP transceiver and the Arduino are outlined in the
following diagram and are as per Figure 3.13 (from MCP2515 to Arduino):

3.2 Programming 37

• VCC and GND to ground

• CS to Arduino digital pin 10

• SO to Arduino digital pin 12

• SI to Arduino digital pin 11

• SCK to Arduino digital pin 13

• INT to Arduino digital pin 2

Figure 3.13: Arduino UNO and MCP 2515 Connection diagram

The MCP 2515 CAN transceiver is connected to the engine CAN bus module via a
pair of twisted wires and to the Arduino as outlined above. In turn the Arduino is also
connected to the PCF 8523 real-time clock as per the above schematic and to the Raspberry
Pi via a USB cable. The Raspberry Pi is then connected to a mouse and keyboard via
USB cables and to a monitor using its HDMI output. A layout of our system’s components
is presented in Figure 3.14.

Data Flow

Information from the engine’s sensors is transmitted by the ECU to the CAN transceiver
and Microcontroller, which in turn transmit the raw data to the single board computer
for further processing. Through the SBC we are able to decode the data and plot our
measurements. This chain of data transmission is presented in the data flow diagram in
Figure 3.15.

3.2 Programming

Having already connected the microcontroller and transceiver setup to the engine via the
pair of twisted wires, we will now describe the process behind acquiring, decoding and
analyzing the CAN signals transmitted by the engine.

3.2 Programming 38

Figure 3.14: System Componects Layout

3.2.1 Programming Language and Data Analytics

For the purpose of reading the incoming data from the Arduino, decoding, sorting, storing
and plotting it we have used the Python programming language, running on the IDLE
compiler, both on the UNIX machine, where the initial development and testing was
performed, as well as on the Raspberry Pi for our final application.

Python was used due to its simplicity and capability of easily handling large amounts
of data. As a programming language it has seen a rapid rise in the programming and
engineering community in the past few years since it offers numerous advantages, which
as herewith outlined.

• Simple Coding

Python programming involves fewer lines of code as compared to other languages
available for programming. It is able to execute programs in the least lines of
code. Moreover, Python automatically offers assistance to identify and associate
data types. Python programming follows an indentation based nesting structure.
The language can process lengthy tasks within a short span of time. As there is
no limitation to data processing. As a result, we are able to compute data in com-
modity machines, laptop, cloud, and desktop with limited processing power, which
is especially helpful when dealing with applications that involve dynamic graphic
representation such as ours.

3.2 Programming 39

Figure 3.15: Data Flow Diagram

3.2 Programming 40

Figure 3.16: Increase of Python’s use as a programming language

• Open Source

Developed with the help of a community-based model, Python is an open-source
programming language. Being an open-source language, it supports multiple plat-
forms. In addition, it may be run in various environments such as Windows, Mac
and Linux, making it easily adaptable to different hardware configurations.

• Library Support

Python programming offers the use of multiple libraries. This makes it a famous
programming language in fields like scientific computing and data analytics. The
main library that enables us to deal with the large amounts of data involved in our
application is Pandas, on which will we expand further below.

• Scope Python allows users in simplifying data operations. As Python is an object-
oriented language, it supports advanced data structures. Some of the data structures
that Python manages include lists, sets, tuples, dictionaries and many more. Besides
this, Python helps in supporting scientific computing operations such as matrix
operations and data frames, with the latter being the data structures around which
this application has been developed. These features of Python help to enhance the
scope of the language thus enabling it to speed up data operations.

3.2 Programming 41

Data Processing Library

For this application, the data processing library used was Pandas. The name is a com-
bination of the words panel and data which has roots in econometric and Python data
analysis. Pandas deals with the data processing and analysis in five steps: load, prepare,
manipulate, model and analyze. It is a widely used tool, particularly in data wrangling
and munging. Moreover, it is available for everyone as an open source project and free to
use.

The pandas forms a core component of the Python data analysis corpus. The distin-
guishing feature of pandas is the suite of data structures that it provides, which is naturally
suited to data analysis, primarily the DataFrame and to a lesser extent Series (1-D vectors)
and Panel (3D tables). In addition, Pandas has very powerful tools for reading and writing
data between computer memory and inbuilt data structures. Tools for supporting differ-
ent formats include plain text, Comma Separated Values (CSV), Relational Databases
and HDF5 for fast access

Some of the numerous advantages this library offers to data science applications are
mentioned below:

• Data structure: Pandas has a fast and efficient Data Structure i.e. DataFrame
for data manipulation. A DataFrame is a 2-dimensional data structure with rows
and columns. It’s a table like structure in SQL or similar to a spread sheet. Pandas
object replicated like a dictionary from a Python perspective.

• Data representation: It can easily represent data in a form naturally suited
for data analysis via its DataFrame and Series data structures in a concise manner.
Doing the equivalent in Java/C/C++ would require many lines of custom code, as
these languages were not built for data analysis but rather networking and kernel
development.

• Data sub-setting and filtering: It provides for easy subsetting and filtering of
data, procedures that are a staple of doing data analysis. It also performs intelligent
label based slicing, performance quick indexing and fast sub setting of large data
sets in addition to handling missing values from data, and data alignment

• Concise and clear code: Its concise and clear API allows the user to focus more
on the core goal at hand, rather than have to write a lot of scaffolding code in order to
perform routine tasks. For example, reading a CSV file into a DataFrame data struc-
ture in memory takes two lines of code, while doing the same task in Java/C/C++
would require many more lines of code or calls to non-standard libraries

3.2.2 Decoding and Processing Measurements

The raw, unprocessed data is first transmitted to the Raspberry Pi or any other computer
we choose to use via the serial port from the Arduino. Using the ’Serial Read’ script
we have written, we are able to display all the data on our monitor, through a terminal
window and save it to a text document. The information we receive, before decoding it,
includes the DLC, Identifier and value in Hexadecimal form along with the time stamp
for each message. We can either use a timestamp which will be the time elapsed since
the connection or the actual time when the message was received using the PCF real time
clock we have installed, or both if needed. The information must then be sorted, decoded
and plotted in real time, which is achieved through the second python script.

3.2 Programming 42

Figure 3.17: Monitoring of Unprocessed CAN Data in a terminal window

To decode the incoming messages we used the documentation for ”J1939 Parameters
and Parameter Group Information” that provides a detailed analysis of all messages trans-
mitted based on the J1939-11 and J1939-71 protocols. Firstly, we needed to identify the
messages that we want to decode from the vast amount of raw data received. On average
the engine transmits 230 messages every second, so filtering out the unwanted data, greatly
reduces the processing load of our system. Each signal/message is characterized by a PGN
or Parameter Group Number for ease of sorting and searching in this large database. As

3.2 Programming 43

mentioned beforehand, the PGN is the J1939 identifier. In our case, it is transmitted
within the message ID, meaning that we cannot exactly match the ID with the PGN, but
we have to separate the 18 bit PGN from the identifier whose length is 29 bits, as shown
in Figure 3.18. We must then convert the hexadecimal value to a decimal one as the list
of the Parameter group Numbers is given in decimal form in the documentation. The list
of parameters we have chosen to monitor for the purposes of this project are summarized
in Table 3.1.

Table 3.1: CAN J1939 Data Link Parameters Reference List

DEC HEX

Accelerator Pedal Position 1 91 00

Engine Percent Load at
Current Speed 92 00

Accelerator Pedal Position 2 29 00

Actual Engine – Percent
Torque 513 00

Engine Speed 190 00

Driver Demand Eng Percent
Torque 512 00

Engine's Desired Operating
Speed 515 00,91

Nominal Friction - Percent
Torque 514 00

Aftertreatment 1 Gas Mass
Flow 3236 91

Engine Coolant Temperature 110 00

Engine Fuel Temperature 1 174 00

Engine Fuel Delivery Pressure 94 00

Engine Oil Pressure 100 00

Engine Coolant Level 1 111 00

Engine Crankcase Pressure 1 101 00

Engine Fuel Rate 183 00

Engine Throttle Valve 1 Position 1 51 00

Engine Intake Manifold # 1 Pressure102 00

Engine Intake Manifold 1 Temperature105 00

Engine Air Intake Pressure 106 00

Intake
Maniforld
Information 1

98FEA600 500 65190 FEA6 6 Engine Turbocharger 1 Boost Pressure 1127 00

*00 = Engine ECU, 91 = Aftertreatment ECU

Electronic
Engine Control

1 (EEC1)

8CF00300 50 61443 F003

Parameters Supported SPN Coming
from ECU*

Broadcast

Electronic
Engine Control

2 (EEC2)

Parameter
Group Identifier Rate(msec)

PGN Default
Priority

Electronic
Engine Control

3 (EEC3)

Engine
Temperature

(ET1)

FueL
Economy
(Liquid)
(LFE1)

Inlet/Exhaust
Conditions

(IE1)

Engine Fluid
Level/Pressure

(EFLP1)

3

8CF00400 15 61444 F004 3

98FEDF00

98FEEE00

98FEEF00

98FEF200

98FEF600

65247 FEDF 6

1000 65262 FEEE 6

250

65270 FEF6 6

65263 FEEF 6

100 65266 FEF2 6

500

500

J1939 messages are built on top of CAN 2.0b and make specific use of extended frames.
The first three bits are reserved for the priority field. This field sets the message’s priority
on the network and helps ensure messages with higher importance are sent/received before

3.2 Programming 44

lower priority messages. Zero represents the highest priority. The next bit is reserved for
future use. This field is set to zero. The following bit is the Data Page field. This is used
to expand the maximum number of possible messages.

The next eight bits make up the Protocol Data Unit Format (PDU F) field. This is
used to determine if the message is intended for a specific device on the network or if the
message is intended for the entire network. If the value of PDU F is less than 240 (0xF0
in hexadecimal form), the message is meant for a specific device. If the value is 240 or
greater, the message is intended for all devices.

The next eight bits form the Protocol Data Unit Specific (PDU S) field. The definition
of this field is based on value of the PDU F field. Meaning that if PDU F is intended for a
specific device (less than 239), PDU S is interpreted as the address of that specific device.
In this case, the PDU S field is referred to as the Destination Address field. This format
is defined as PDU 1. If PDU F is intended for all devices (greater than or equal to 240),
PDU S is interpreted as a Group Extension field. This group extension is used to increase
the number of possible broadcast messages. This format is referred to as a PDU 2 and
these type of messages are also known as global destination messages. The last eight bits
identify the address of the device that transmitted the current message. This is known as
the Source Address Field. A breakdown of the CAN extended frame can be seen in Figure
2.7.

On standard CAN networks, identifiers are used to uniquely define each message. This
concept exists within J1939 as well. Because the priority and source address fields can
change, they are not used for this purpose. This leaves the reserve, data page, PDU F
and PDU S fields. This new combination of fields is referred to as the Parameter Group
Number (PGN). Each message in J1939 must have its own unique PGN. The J1939-71
standard is responsible for assigning these unique PGNs to standard messages.

As an example we will use the identifier 8CF00400, which corresponds to PGN 61444
and provides the ”Electronic Engine Controller 1” Information. This message contains
the Actual Engine - Percent Torque. In this example the Identifier is given in hexadecimal
form with the first two bytes representing the Priority, the next four are the PGN and
the last two the source address. In this case 8C is the priority, F004 is the PGN, which
when converted from its hexadecimal format to decimal equals 61444 and 00 is the source
address, meaning the signal is coming from the ECU.

A breakdown of the above is shown in Figure 3.18. If the source address where equal
to 91 that would mean that the signal was coming from the Aftertreatment of the ECU.

8C F004 00

Priority Parameter Group Number Source Adress

Identifier Breakdown:

Figure 3.18: Message Identifier Breakdown

For each ID of a CAN message we may have multiple Parameters contained within it,
since it contains a large number of bytes. For instance, for the message with ID F004 we
can acquire data for the following parameters:

3.2 Programming 45

• Measurement 1: Engine Torque Mode (Bits 1-4)

• Measurement 2: Actual Engine - Percent of maximum Torque (high resolution)
(Bits 5-8)

• Measurement 3: Driver’s Demand, percent of maximum Engine Torque (Bits 9-16)

• Measurement 4: Actual Engine - Percent of maximum Torque (Bits 17-24)

• Measurement 5: Engine Speed (Bits 25-40)

• Measurement 6: Source Address (Bits 41-48)

• Measurement 7: Engine Starter Mode (Bits 49-56)

• Measurement 8: Engine Demand - Percent of maximum Torque (Bits 57-64)

To decode each message we need the length of the PGN, as well as the start and end
position of each parameter contain within it, as outlined in Figure 3.19.

Example of data received from Identifier 8CF00400:

Original Value (HEXADECIMAL):

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
FF 7E 7E 00 00 FF FF FF

Converted Value (BINARY):

Bits 1-4 Bits 5-8 Bits 9-16 Bits 17-24 Bits 25-32 Bits 33-40 Bits 41-48 Bits 49-56 Bits 57-64
1111 1111 01111110 01111110 00000000 00000000 11111111 11111111 11111111

Engine
Torque
Mode

Actual Engine
- Percent of
maximum

Torque (high
resolution)

Driver’s
Demand –
Percent of
maximum

Torque

Actual
Engine -

Percent of
maximum

Torque

Engine Speed Source
Address

Engine
Starter
Mode

Engine
Demand –
Percent of
maximum

Torque

Conversion from Hexadecimal
to Binary using predefined
function in Python

Figure 3.19: Message ID F004 Breakdown

The length is the amount of bytes dedicated to give the value of each parameter inside
the entire 64-bit message. It is worth noting that in some cases the IDs contain data with
a length of 56 bits or less. For the purpose of this project however, we were not examining
these values, as they do not include parameters that we wish to monitor or control.

Now we move on to decode and process the data, which was described in theory above.
We must first split the hexadecimal values received into bytes, 8 in total, as the messages

3.2 Programming 46

we have selected are 64 bits in length. Each byte will be entered into a new column of
the dataframe. At the same time, we are running a test on the values that equal zero to
convert them to ’00’ and have a length of 64 bits in all numbers as described previously. By
having each byte into a separate column we can easily segregate each part of the message
and choose the byte we need by selecting its corresponding column as well as being able to
switch the order of bytes in case a parameter is defined by two of more bytes. Specifically,
if the parameter is defined by bytes ’n’ and ’n+1’ then the byte numbered ’n+1’ will be
placed first and the byte ’n’ will be placed after it. This process is further analyzed in the
below subsection.

Big Endian & Little Endian

To gain a better understanding of the order in which the bytes need to be arrange for us
to read the data correctly we must first understand the concept of endianness.

In computing, endianness is the order or sequence of bytes of digital data in computer
storage. Endianness is primarily expressed as big-endian (BE) or little-endian (LE). A big-
endian system stores the most significant byte of a word at the smallest memory address
and the least significant byte at the largest, this way we can see the information as it would
be written, meaning from left to right. A little-endian system, in contrast, stores the least-
significant byte at the smallest address. In some analogy, the order or sequence in which
the bits are transmitted over a communication channel is sometimes termed endianness.

Specifically, in big endian when dealing with decimal numbers the bytes representing
the largest values come first. Regular integers are printed this way. For instance, the
number ”1025” shows the numeral one first which represents ”1000”. This is a representa-
tion most comfortable to humans. This most significant value first is represented in bytes
for computer memory representation. The number 1025 is represented in hex as 0x0401
where 0x0400 represents 1024 and 0x0001 represents the numeral 1. Their sum is 1025.
The most significant (larger value) byte is listed first in this big endian representation.
On the other hand when dealing with little endian the number 1025 would be represented
in hex as 0x0104. Endian byte ordering affects integer and floating point data but does
not affect character strings as they maintain the string order as viewed and intended by
the programmer. In other words, the bytes representing the entire number are swapped.
It is crucial to note that only the bytes are reversed and the bits within the byte are not
reversed. This is why in the above example the number 1025 is written in little endian as
0x0104 and not as 0x1040.

Computer processors store data in either large (big) or small (little) endian format de-
pending on the CPU processor architecture. The Operating System (OS) does not factor
into the endianess of the system. Big endian byte ordering is considered the standard or
neutral ”Network Byte Order”. Big endian byte ordering is in a form for human interpre-
tation and is also the order most often presented by hex calculators. In our application we
are using an ARM type processor which is bi-Endian, meaning it can interpret information
in both ways.

The difference between big endian and little endian byte architecture is demonstrated
in Figure 3.20 using a 32-bit integer in hexadecimal form as an example.

In our application the data is transmitted by the engine’s ecu in both big endian and
little endian format. Firstly, the entirety of the message is transmitted in big endian
format, thus it should be read with the bytes in order from left to write. However, if a
measurement is represented by more than one byte of data, then it is given in little endian
format, meaning that to convert its value correctly we must swap the order of the bytes

To demonstrate the above procedure we will use as an example the Engine Fuel Rate,
which is a parameter received within the data of identifier ’98FEF200’. The value is

3.2 Programming 47

Figure 3.20: Difference in Endian Byte Architecture

defined by bits 1 to 16 meaning the first two bytes of the hexadecimal value. In this case
we will have to rearrange the order of the HEX numbers and place firstly the second byte,
named byte 1, and secondly the first byte, named byte 0.

At this stage, it is important to note that the length and position refer to the BINARY
form of the CAN message. The messages are originally displayed in hexadecimal form
and their conversion to binary and finally to decimal format will be covered later on.
Furthermore, for every PGN there is a specific transmission rate. This defines the time
intervals at which the engine transmits the information contained in each specific ID.
The transmission rate enables us to display data for a certain period of time elapsed,
a capability which will be expanded upon below. Each Parameter transmitted is also
characterized by a certain Data Range. This is the predefined range a value or a status
parameter may have, based on its offset and resolution. The actual range of values that
may be represented by a parameter are defined by the ”Operational Range”. In addition,
if applicable, the value of each Parameter is modified by a Resolution and Offset. The
former represents the bit scaling of the value, meaning its multiplication by a certain
value, and the latter is a negative value which is added to the decimal format of the value.

3.2 Programming 48

Finally, each parameter is defined by an SI unit to determine the physical meaning.

Example of Signal Decoding

We will now apply the above process to one of the parameters we are plotting using data
gathered from a recent experiment. More specifically we shall be examining the Engine
Fuel Rate, the data for which is contained within the 98FEF200 identifier.

Table 3.2: Engine Fuel Economy Parameters

DEC HEX

Engine Fuel Rate 183 00

Engine Throttle Valve 1
Position 1 51 00

6

*00 = Engine ECU, 91 = Aftertreatment ECU

Fuel Economy
(Liquid)
(LFE1)

98FEF200 100 65266 FEF2

Broadcast

Parameter
Group Identifier Rate(msec)

PGN Default
Priority Parameters Supported SPN Coming

from ECU*

As with the 8CF00400 identifier examined above, there are multiple PGLs transmitted
in the data corresponding to this ID. The parameter we will be focusing on, Engine Fuel
Rate, is the information contained from bits 1 to 16. Since the data is 16 bits (or 2 bytes)
in length we will have to reverse the order of the bytes in order to decode it correctly as
mentioned before.

During the test performed on the engine testbed, we received the following data in
hexadecimal form for this identifier:

23 0 FF FF FF FF 0 FF
The first step to decoding this value is to fix our single digit values where applicable.

This means that numbers equaling zero should be converted from ’0’ to ’00’ in order for
the full 64 bits of the message to be displayed. If we skip this step, we will be selecting
the wrong part of the message and our measurement will be inaccurate. Thus, the data
will now be:

23 00 FF FF FF FF 00 FF
Then we are isolating the first and second bytes that contain the wanted data, named

”byte 0” and ”byte 1” respectively. We are in turn reversing the order of the bytes, since
they are being transmitted in the little-endian format, placing the second byte before the
first. Now our data is:

00 23
At this stage we will convert the data, which is displayed in hexadecimal form into

binary, using the corresponding function in our code. The value will be:
(0023)16 = (100011)2
The above conversion is performed by breaking down the hexadecimal number and

converting each part to binary. In this case we disregard the value zero in the beginning
and break down the rest as follows:

(0023)16 = (20 + 3)16 = (100000 + 11)2 = (100011)2
Table 3.3 shows the conversion from hexadecimal to binary and helps us acquire a

basic understanding of how the function converts numbers.
The data is now converted from binary to decimal using, once again, a function defined

in our code:
(100011)2 = (35)10

3.3 Data Representation 49

Table 3.3: Hexadecimal to Binary Conversion Table

The conversion from binary to decimal is performed as per below:
(100011)2 = ((1 ∗ 25) + (0 ∗ 24) + (0 ∗ 23) + (0 ∗ 22) + (1 ∗ 21) + (1 ∗ 20))10 = (35)10
Finally, we are applying the resolution and offset to the above value as outlined in the

J1939 documentation as show in Table ??. In this case the resolution is 0.05 L/h per bit
and there is no offset. Thus, our final value is:

Fuel Consumption = 1.75 L/h

Table 3.4: J1939 Parameter Reference Table

Parameter
Group Label Position Transmittion

Rate(msec)
SPN

Length SPN

Engine Fuel Rate

Name

Amount of fuel
consumed by

engine per unit
of time.

0 to
3,212.75

L/h

0.05 L/h per
bit 0 L/H

Description Data
Range Resolution Offset Unit

Fuel Economy
(Liquid)
(LFE1)

1-2 100 16 183

3.3 Data Representation

Our objective is to plot the measurements received from the engine during it’s operation to
a display in real time, by updating the plots constantly. For this purpose we have chosen
to use Matplotlib, a comprehensive library for creating static, animated, and interactive
visualizations in Python that gives us such a capability. Specifically, we have used a
function which updates the data on our graphs with every iteration of the Python code,
every five seconds. This refresh rate has been chosen in order to not surpass the graphic
capabilities of the Single Board Computer, which are slightly limited.

3.4 Transmitting Messages 50

The amount of data collected during the engine’s operation becomes too great to plot
in one graph after a certain amount of time as we have too many sets of values, a result of
the very high trasmittion rate that many of the measurements have. As a result we have
chosen to plot the data which corresponds to the last 60 seconds of the engine’s operation.
This method results in a graph which is easier to read as it contains much fewer values
and whose variations in the Y axis are more clear to us.

To achieve the above we use the transmission rate of each parameter which we can
find using its corresponding PGN as it is given in the J1939 documentation. Specifically,
by knowing the rate at which the data is received we can calculate the amount of values
we need to save in order to plot its progression for a certain period of time.

For instance, the Turbo Boost Pressure, whose identifier is 98FEA600, gets transmitted
every 0.5 seconds by the ECU, meaning we only need the last 120 rows of the dataframe
to plot its progression for 60 seconds.

Table 3.5: Turbo Boost Pressure Transmission Rate

Parameter
Group Number

65190

Unit

Intake Manifold
Information 1 1-2 500 16 1127

Engine
Turbocharger
Boost Pressure

kPa

Parameter
Group Label Position Transmittion

Rate(msec)
SPN

Length SPN Name

As mentioned beforehand we are plotting 8 parameters in total, using 2 figures which
contain 4 plots each in a two by two layout shown in the below figure. In case we wish to
monitor a different set of parameters we can modify our script accordingly so that they
may be plotted instead. Plotting more than 4 lines per figure will not only decrease the
performance of our code, but will result in plots that are too small and thus difficult to
read.

3.4 Transmitting Messages

In addition to receiving and decoding engine data, our setup can be used to also transmit or
request information to the engine. This capability allows us to control certain parameters
without using the standard ECU but also to acquire information that is only transmitted
upon request from the operator.

To transmit a message to the engine we are utilizing the same setup, only making
modifications in the code running on the Arduino. The process includes setting up the
MCP2515 in the script as with the receiving code. Afterwards, for each message we want
to transmit, we need to define its ID, DLC and the value that will be included in every
byte of the data, the amount of which is dependent on the DLC. Data is transmitted in
the same format as it is being received. This means that the entirety of the message is
in big-endian format, but if a parameter is defined by two of more bytes then they are
organized in little-endian order as described above. More than one CAN message may
be transmitted per iteration of the code, allowing us to control more than one parameter
of the engine operation at a time. Our code has the ability to run either at the smallest
possible interval for the Arduino or at an interval specified by the user. The transmission
capability not only allows us to control the engine via the set-up that we have created
but also to request from the ECU information that it would otherwise not transmit. The

3.4 Transmitting Messages 51

Figure 3.21: Data Representation in Real-Time

Figure 3.22: Data Representation in Real-Time

list of messages that the engine only transmits upon request is outlined in the J-1939
documentation. These include:

• ECU Identification Information (ECU part numbers & serial numbers). To

3.4 Transmitting Messages 52

Figure 3.23: Data representation of all parameters monitored

assist in case we need to replace parts, making sure that we are using the correct
components.

• Service Information (Components identification)

• Auxiliary Analog Information (Temperature and pressure measured by auxiliary
sensors installed). In case we have installed additional monitoring sensors their
output can only be received upon request.

• Engine Hours, Revolutions. This information can help us monitor service and
overhauling intervals to ensure proper operation of the engine.

• Fuel Consumption (Total engine fuel used). Since only specific fuel consumption
information is given by the engine, the total consumption can help us monitor the
amount of fuel remaining and plan accordingly.

3.4 Transmitting Messages 53

Table 3.6: Engine Information Broadcasted upon user request

DEC HEX

Auxiliary Temperature 1 441 00

Auxiliary Pressure # 1 1387 00

Auxiliary Temperature 2 442 00

Engine Total Hours of Operation 247 00

Engine Total Revolutions 249 00

Engine Total Fuel Used 250 00

Engine Trip Fuel 182 00

ECU Part Number 2901 00

ECU Serial Number 2902 00

*00 = Engine ECU, 91 = Aftertreatment ECU

Service Component
Identification 911 006Service

Information 98FEEF00 On Request 65216 FEC0

6

ECU
Identification
Information

98FEEE00 On Request 64965 FDC5 6

Fuel
Consumption

(Liquid)
98FEDF00 On Request 65257 FEE9

7

Engine Hours,
Revolutions 8CF00400 On Request 65253 FEE5 6

Auxiliary
Analog

Information
1CFE8C00 On Request 65164 FE8C

On Request
Parameter

Group Identifier Rate(msec) PGN Default
Priority Parameters Supported SPN Coming

from ECU*

Chapter 4

Experiment

4.1 Introduction

On June of 2020 we conducted a series of two experiments on the HIPPO-2 testbed to
examine the accuracy of our system compared to the already established engine control
setup, which runs on Matlab Simulink and which also captures the CAN Bus data trans-
mitted by the engine.

For this experiment the engine was loaded based on a ship and propeller model which
required power from the propulsion system, as a way of simulating actual operating con-
ditions at sea. In order to achieve the application of variable loads corresponding to the
conditions established by the model to the engine, reverse torque was applied by the Elec-
tric Brake and Electric Motor. The data to establish the dynamic model was taken from
a propeller loading profile on Marine Traffic.

4.2 dSpace Monitoring System

The experimental facility is equipped with a monitoring and control system which is
controlled by dSpace Microautobox II equipment. ControlDesk is the dSPACE experi-
ment software for used to achieve seamless ECU integration. The user is able to operate,
troubleshoot and collect data from any testbed operating under dSMA II by using a
customizable user interface. Some of the possibilities that ControlDesk provides are the
development process stages of rapid control prototyping, hardware-in- the-loop simula-
tion, ECU calibration and diagnostics, analysis of vehicle bus systems and many more.
ControlDesk Next Generation makes it easy to access data and to control simulation plat-
forms, measurement devices, bus interfaces and ECUs. The system is integrated through
Matlab and runs on Matlab Simulink. The typical user control interface is show in Figure
4.1.

4.3 Comparisson of Measurements

The system that was built for the purposes of this project was operated simultaneously
with the dSpace Micro Auto Box 2 monitoring and control system of the ECR (Engine
Control Room) in the LME (Laboratory of Marine Engineering). Both systems monitored
and captured the data received during the two experiments that were conducted, testing
the engine’s performance.

Data from the dSpace system was captured on Matlab Simulink, while data from our
system was captured from Python as we established in previous chapters. Both sets of

54

4.3 Comparisson of Measurements 55

Figure 4.1: HIPPO-2 Control Interface

Figure 4.2: Arduino, MCP and RTC connections during the experiment

measurement were exported to text files which were then processed and plotted using
Python.

To compare measurements received from both systems more easily, we have plotted
them in the same canvas. For this comparison, we have chosen to showcase five parameters,
Engine’s Actual Percent Torque, Engine’s Operating Speed, Fuel Consumption Rate, the
Engine’s Intake Manifold Temperature and the Engine’s Intake Manifold Pressure. The
purpose of this comparison was to test the accuracy of the Arduino and Raspberry setup
compared to an already established and reliable system. This series of experiments was

4.3 Comparisson of Measurements 56

ideal for such a task, as they provided us with rapid changes in the values of most of the
parameters. The fact that we were examining variable loads helped us determine how
accurately our system can record variations in the engines operating parameters.

Firstly we shall examine the measurements taken for the engine’s fuel consumption rate.
For the graph regarding the first experiment, Figure 4.3, we can see that the measurements
taken by the Arduino and Raspberry set-up closely follow these of the dSpace Micro
Autobox system. Since our system receives data at a slightly slower rate than the dSpace
module, the measurements recorded in the graph are fewer for our system. This leads
to the line interpolation deviating at certain points from the one plotted for the dSpace
measurements. However, we can see that the points recorded by both systems coincide,
meaning that our measurements where accurate. Moving on to the graph plotted during
the course of the second experiment and shown in Figure 4.4, we can once again see that
the measurements taken from both systems coincide with each other. This time, due to
less rapid changes in the values of this parameter the lines plotted match more closely.

Figure 4.3: Comparison of measurements, Experiment No.1 - Engine’s Fuel Consumption
Rate

Now we examine the Engine’s Operating Speed as captured during the experiments.
This is a parameter that belongs to identifier F004, which has a very high trasmittion
rate. Thus, our system has captures enough measurements to follow the dSpace data.
This can be seen in Figure 4.5 where we have plotted the data for the first experiment.
Both curves’ data points coincide giving us an almost identical representation. The same
is true for the graphs plotted for the second experiment as shown in Figure 4.6

Continuing, we will look into the data from the Engine’s Actual Percent of Torque. In
Figure 4.7 we have plotted the graphs for the first experiment. Measurements captured
by our system and the dSpace configuration match each other very closely. This time, no
major deviations can be seen in the graph. The data for this parameter is received at a
very high rate, ensuring better interpolation of the curve than measurements which are
transmitted at longer intervals. Regarding the second experiment, the plots for which are

4.3 Comparisson of Measurements 57

Figure 4.4: Comparison of measurements, Experiment No.2 - Engine’s Fuel Consumption
Rate

Figure 4.5: Comparison of measurements, Experiment No.1 - Engine’s Operating Speed

shown in Figure 4.8, once again the measurement plotted by both systems mimic each
very closely and no deviations in the data recorded is observed.

Moving on, we will be examining the third parameter plotted for the purposes of
our comparison, the Engine’s Intake Manifold Temperature. Measurements for the first

4.3 Comparisson of Measurements 58

Figure 4.6: Comparison of measurements, Experiment No.2 - Engine’s Operating Speed

Figure 4.7: Comparison of measurements, Experiment No.1 - Engine’s Actual Percent
Torque

experiment have been plotted in Figure 4.9, where we can see that the data points recorded
by our system match those of the dSpace module. The deviation we can see is due to the
curve interpolation. Since this parameter is received at a slower rate by our system there
are fewer points plotted on the graph, and thus the interpolation is not as accurate. The

4.3 Comparisson of Measurements 59

Figure 4.8: Comparison of measurements, Experiment No.2 - Engine’s Actual Percent
Torque

same occurrence is apparent in Figure 4.10. Here we have plotted the measurements for
the second experiment and we can see that both sets of data points match. Once again,
due to the fact that we have recorded fewer measurements compared to the dSpace module,
a small difference due to interpolation may be observed in the curves.

Finally, we shall compare the data captured for the Engine’s Intake Manifold Pressure.
For the graph showing data for our first experiment we can see that although the data
points of our system and the dSpace module match, the former has capture fewer data
points due to lower rate of data reception. This is especially apparent by the curve inter-
polation. As a result fluctuations in the value of this parameter have not been represented
by our system. This phenomenon is less apparent in the graph for the second experiment
due to the fact that the fluctuations of the value were less acute and therefore, even a
smaller set of data was able to capture the progression of this parameter.

Conclusions

In summary, we can see that when monitoring parameters whose trasmittion rate is high,
the resulting data presentation is very accurate and in-line with what is captured by the
dSpace monitoring system. Even small fluctuations in the value of a parameter can be seen
when plotting the data, giving us a very accurate image of the engine’s actual operating
condition. In the case of parameters that are transmitted at a lower rate, such as the
Engine’s Intake Manifold Temperature and Pressure data, there is a possibility of missing
fluctuations in measurements during the operation, especially when their values change
rapidly during a short period of time. For parameters those values progress more grad-
ually however, this is not an issue, since fewer measurements represent their progression
accurately.

4.3 Comparisson of Measurements 60

Figure 4.9: Comparison of measurements, Experiment No.1 - Engine’s Intake Manifold
Temperature

Figure 4.10: Comparison of measurements, Experiment No.2 - Engine’s Intake Manifold
Temperature

4.3 Comparisson of Measurements 61

Figure 4.11: Comparison of measurements, Experiment No.1 - Engine’s Intake Manifold
Pressure

Figure 4.12: Comparison of measurements, Experiment No.2 - Engine’s Intake Manifold
Pressure

Chapter 5

Conclusion and Future Works

This project has managed to offer the following contributions in communicating with the
engine testbed. Firstly, the establishment of a cheap, open source and portable system
comprising of easy to use and customizable components that provided communication and
control of the diesel engine. Secondly, the ability to filter and visual represent the desired
operating parameters of the engine using live graphs.

5.1 Summary

During the development and implementation of this project we encountered several chal-
lenges. Regarding the choice of hardware set-up, we initially set off to develop the project
around a combined single board computer and microcontroller, the BeagleBone Black. At
first this equipment seemed more suitable for our application as it combined the capa-
bilities of the Raspberry computer and the Arduino microcontroller in one device, thus
requiring fewer connections and familiarization with one piece of hardware instead of two.
However, in order to connect the BeagleBone to the engine, a CAN bus shield or cape was
required. Shields or capes as they are often referred to are boards that can be mounted
on top of the microcontroller board. The shield pins are inserted into the sockets located
on the microcontroller board to expand its connections. Unfortunately, we were unable to
receive a signal with this hardware configuration after connecting it to the ECU and so
we moved on to develop our current setup.

In addition, a big challenge in the development of our application was the optimization
of the software, so that it could handle large amounts of incoming data from the engine’s
ECU with the minimum use of processing power. Since hundreds of parameters are trans-
mitted by the engine every second it was important to build an application that could sort
the data while running on a computer with limited capabilities. Furthermore, the way the
data was read by our system proved challenging in correctly converting it to the final value
of each parameter. Since incoming data often seemingly had less bytes than the actual
message we had to adjust our computer code to identify the points where data bytes had
to be modified in order to get accurate results. This process involved identifying when the
engine used the big and little endian orders as well as the exclusion of the numeral zero
at the beginning of each byte.

5.2 Future Developments

Taking into consideration the unique set-up of the HIPPO-2 installation in conjunction
with the open-source nature of the Can-bus and the hardware used for our application
this project could expand in the following areas:

62

5.2 Future Developments 63

• Establishment of an online database with the purpose of accessing remotely the
measurements recorded. Simultaneous real-time plotting of the data using a web
based application to monitor the engine’s operation at any location.

• Upgrade of the hardware components to include a more powerful single board com-
puter, such as the Raspberry 4, in order to improve the graphics performance. This
upgrade would also leave room for a more complex application to be developed, if
desired.

• Use of more than one micro controllers and Can bus modules to monitor simul-
taneously data from multiple sources, either a second engine, the Aftertreatment
system or any devices that transmits information using the Can bus protocol. In
the case of data being monitored from multiple diesel engines of the same make and
type, such as a ships auxiliary engines we would be able to compare and assess their
performance at the same time.

• Testing of the possibility to communicate with the sensors and controllers of the
diesel engine and the emission control system via Can-bus directly.

Bibliography

[1] Robert Bosch GmbH 1991 CAN Specification Version 2.0 bosch −
semiconductors.de/media/ubksemiconductors/pdf1/canliteratur/can2spec.pdf

[2] Steve Corrigan SLOA101B–August 2002 Introduction to the Controller Area Network
(CAN) ti.com/lit/an/sloa101b/sloa101b.pdf

[3] Sunil Kumar Reddy Gurram 2011 Thesis Implementation of Controller Area Network
(CAN) bus in an autonomous All-Terrain vehicle

[4] https://www.can-cia.org/

[5] Pfeiffer, O.; Ayre, A. & Keydel, C. 2008. Embedded Networking with CAN and
CANopen. Copperhill Technologies Corporation.

[6] Olaf Pfeiffer, Christian Keydel, Andrew Ayre 2005. CANopen on general serial net-
works. CAN in Automation, iCC.

[7] dSPACE. Technical Manual of dSPACE RapidPro and MicroAutoBox, 2013.

[8] CSS Electronics, www.csselectronics.com. css electronics.

[9] http://www.byteme.org.uk/canopenparent/canopen/

[10] User’s Manual CANopen Adapter Module RCAN-01 - 3AFE64504231 REV B EN /
EFFECTIVE: 16.12.2008

[11] Firmware manual - System Control Program of ACS800 ABB - 3AFE64670646 REV
H EN / EFFECTIVE: 2014-06-02

[12] HBM Torque Flange T10F mounting instructions - A0608-13.1 en

[13] https://www.quora.com/What-is-the-difference-between-RS232-and-CAN

[14] https://www.maximintegrated.com/content/dam/files/design/technical-
documents/white-papers/can-wp.pdf

[15] CAN Transceiver http://ww1.microchip.com

[16] CAN vs. RS-485: Why CAN Is on the Move,
https://www.maximintegrated.com/content/dam/files/design/technical-
documents/white-papers/can-wp.pdf

[17] Ship & Bunker: Effective Use of Big Data and Remote Monitoring
https://shipandbunker.com/news/features/industry-insight/702741-effective-use-
of-big-data-remote-monitoring

64

BIBLIOGRAPHY 65

[18] ORBCOMM: The Connected Ship: Remote Vessel Monitoring Improves Performance
While Reducing Costs https://blog.orbcomm.com/the-connected-ship-remote-vessel-
monitoring-improves-performance-while-reducing-costs/

[19] SteveCorrigan. Texas Instruments: Introduction to the Controller Area Network
(CAN)

[20] Hua (Walker) Bai, Dual-Channel, 42 V, 4 A Monolithic Synchronous
Step-Down Silent Switcher 2 with 6.2 micro A Quiescent Current
https://www.analog.com/en/design-notes/dual-channel-42v-4a-monolithic-
synchronous-step-down-silent-switcher-2-with-6-2-a-quiescent-current.html

[21] Chris Clay Clay, Raspberry Pi: 11 reasons why it’s the perfect small server
https://www.zdnet.com/article/raspberry-pi-11-reasons-why-its-the-perfect-small-
server/

[22] 5 Advantages of CAN Bus Protocol, https://www.totalphase.com/blog/2019/08/5-
advantages-of-can-bus-protocol/

	List of Figures
	List of Tables
	Introduction
	Experimental Engine Testbed
	Scope of Study
	Remote Monitoring Systems

	Communication Protocols
	Introduction to CAN
	Physical Layer
	CANopen Protocol
	CAN J1939 Protocol

	CAN Message Architecture
	Error Checking

	CAN Bus Compared to Other Communication Protocols
	CAN & RS 232
	CAN & RS 485

	Data Acquisition
	Hardware
	Microcontroller
	CAN Transceiver
	Real Time Clock
	Single Board Computer
	Hardware Connections

	Programming
	Programming Language and Data Analytics
	Decoding and Processing Measurements

	Data Representation
	Transmitting Messages

	Experiment
	Introduction
	dSpace Monitoring System
	Comparisson of Measurements

	Conclusion and Future Works
	Summary
	Future Developments

	Bibliography

