
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών

Εργαστήριο Μικροϋπολογιστών & Ψηφιακών Συστημάτων

Training & Acceleration of
Deep Reinforcement Learning Agents

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Αναγνωστόπουλος Χ.

Κωνσταντίνος

Επιβλέπων: Δημήτριος Ι. Σούντρης

Καθηγητής

Αθήνα, Ιούλιος 2022

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών

Εργαστήριο Μικροϋπολογιστών & Ψηφιακών Συστημάτων

Training & Acceleration of
Deep Reinforcement Learning Agents

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Αναγνωστόπουλος Χ.

Κωνσταντίνος

Επιβλέπων: Δημήτριος Ι. Σούντρης

Καθηγητής

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 13η
Ιουλίου 2022.

..

Σούντρης Δημήτριος

Καθηγητής

..

Θεοδωρίδης Γεώργιος

Αναπληρωτής Καθηγητής

..

Ξύδης Σωτήριος

Επίκουρος Καθηγητής

Αθήνα, Ιούλιος 2022.

...................................

Αναγνωστόπουλος Χ. Κωνσταντίνος

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Αναγνωστόπουλος Χ. Κωνσταντίνος, 2022

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για

εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή

ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ε-

ρωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να

ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

Περίληψη

Τα τελευταία χρόνια, οι εφαρμογές της μηχανικής μάθησης γίνονται ολοένα και πιο δημοφιλείς. Εκμεταλλευεόμενοι

την υπολογιστική ισχύ που τα σύγχρονα chip μας παρέχουν καθώς και τον μεγάλο όγκο δεδομένων που παράγεται

καθημερινά από ανθρώπους και μηχανές, διάφορα μοντέλα μηχανικής μάθησης μπορούν να εκπαιδευτούν για να επι-

λύσουν ένα ευρύ φάσμα προβλημάτων, όπου κλασικές προγραμματιστικές προσεγγίσεις αδυνατούν. Η εκπαίδευση αυτών

των μοντέλων βασίζεται σε τρία βασικά μοντέλα μάθησης: την επιβλεπόμενη μάθηση (supervised learning), την μη

επιβλεπόμενη μάθηση (unsupervised learning) και την ενισχυτική μάθηση (reinforcement learning). Συνοπτικά, η επι-

βλεπόμενη μάθηση βασίζεται σε «χρυσά» ή επισημασμένα δεδομένα, για την επίβλεψη της διαδικασίας της εκπαίδευσης

ενός μοντέλου. Η μη επιβλεπόμενη μάθηση βασίζεται σε τεχνικές όπου ανακαλύπτουν κρυμμένα μοτίβα σε ένα σύνολο

μη επισημασμένων δεδομένων. Από την άλλη μεριά, η ενισχυτική μάθηση αποτελεί μία τελείως διαφορετική προσέγγιση

και βασίζεται στη μεγιστοποίηση κάποιου είδους αμοιβής, όπου κάποιος πράκτορας λαμβάνει όταν αλληλεπιδρά με ένα

συγκεκριμένο περιβάλλον. ΄Ενα κλασσικό παράδειγμα ενισχυτικής μάθησης στον πραγματικό κόσμο αποτελεί αυτό του

εκπαιδευτή σκύλων, ο οποίος προσπαθεί να εκπαιδεύσει ένα σκύλο να κάνει κάποιο συγκεκριμένο κόλπο. ΄Οταν ο σκύλος

συμπεριφέρεται προς τη σωστή κατεύθυνση, ο εκπαιδευτής τον επιβραβεύει με ένα μπισκότο. Ο σκύλος (πράκτορας),

προσπαθεί να μεγιστοποιήσει τη συνολική του αμοιβή (δηλαδή τον αριθμό των μπισκότων που θα φάει), προσαρμόζοντας

τη συμπεριφορά του κατάλληλα προς τη σωστή κατεύθυνση.

Επιπλέον, τα τελευταία χρόνια, τα νευρωνικά δίκτυα, ένα μοντέλο μηχανικής μάθησης που μιμείται τον τρόπο με τον οποίο

λειτουργούν οι βιολογικοί νευρώνες, εμφανίζονται στο προσκήνιο της μηχανικής μάθησης εξαιτίας των υψηλών επιδόσεων

τους σε διάφορα προβλήματα, όπως η επεξεργασία φυσικής γλώσσας, η αναγνώριση εικόνας, η δημιουργία τεχνιτών

εικόνων και κειμένων κ.α. Η κλιμάκωση των νευρωνικών δικτύων (δηλαδή η προσθήκη περισσότερων νευρώνων και άρα

περισσότερων παραμέτρων), συνήθως οδηγεί σε καλύτερα αποτελέσματα. Για παράδειγμα, σε εφαρμογές επεξεργασίας

φυσικής γλώσσας, μοντέρνα νευρωνικά δίκτυα διαθέτουν δισεκατομμύρια παραμέτρους. Ξανά, η πρόοδος μας στον

τομέα της μικροηλεκτρονικής μας επιτρέπει να χρησιμοποιούμε μοντέλα τέτοιας τάξης μεγέθους εξαιτίας της αυξημένης

υπολογιστικής ισχύος που διαθέτουμε.

Στο πρώτο μέρος της παρούσας εργασίας, θα μελετήσουμε πώς η ενισχυτική μάθηση και τα νευρωνικά δίκτυα μπορούν

να συνδυαστούν για την εκπαίδευση ευφυών πρακτόρων ικανών να αλληλεπιδρούν με πολύπλοκα περιβάλλοντα. Θα

υλοποιήσουμε τέσσερις διαφορετικούς αλγορίθμους βαθιάς ενισχυτικής μάθησης, τους Deep Q Network, REINFORCE,
Asyncrhonous Actor Critic & Proximal Policy Optimization, και θα χρησιμοποιήσουμε αυτές τις υλοποιήσεις για

την εκπαίδευση ευφυών πρακτόρων στα περιβάλλοντα CartPole και DuckieTown. Ενώ το CartPole θεωρείται ως το

εισαγωγικό περιβάλλον για την ενισχυτική μάθηση, το περιβάλλον DuckieTown είναι πιο πολύπλοκο και απαιτείται από

τον πράκτορα να μάθει να πλοηγείται στους δρόμους μίας προσομοιωμένης πόλης.

Στο δεύτερο μέρος, θα επικεντρωθούμε στην ανάπτυξη του εκπαιδευμένου πράκτορα, στο περιβάλλον DuckieTown, στον
πραγματικό κόσμο. Συγκεκριμένα, θα επικεντρωθούμε στα εξής δύο σενάρια: Το πρώτο σενάριο αφορά την επιτάχυνση

της εμπρόσθιας διάδοσης (forward propagation) του νευρωνικού δικτύου για να επιτύχουμε μικρότερους χρόνους α-

πόκρισης και ως εκ τούτου να κατασκευάσουμε έναν πιο «αποκριτικό» πράκτορα, χαρακτηριστικό που είναι επιθυμητό για

όλα τα αυτόνομα οχήματα. Το δεύτερο σενάριο αφορά τον έλεγχο ενός ¨σμήνους’ πρακτόρων από μία κεντρική συσκευή.

Αυτή τη φορά, η κεντρική συσκευή πραγματοποιεί υπολογισμούς κατά παρτίδες (batch computations), με το μέγεθος

της κάθε παρτίδας (batch size) να είναι ίσο με το πλήθος των πρακτόρων στο σμήνος. Γι΄ αυτό το σενάριο, θέτουμε

ένα κατώτατο όριο των 100 FPS που πρέπει να επιτευχθεί για κάθε πράκτορα. Οι συσκευές που θα χρησιμοποιηθούν

για την επιτάχυνση είναι η NVIDIA Xavier NX, όπου διαθέτει GPU ως επιταχυντή και η Xilinx Zynq UltraScale+
MPSoC ZCU10, που διαθέτει FPGA.

΄Ολη η σχετική δουλειά για την παρούσα εργασία μπορεί να βρεθεί στο Github repository εδώ.

Λέξεις κλειδιά : μηχανική μάθηση, νευρωνικά δίκτυα, βαθιά μάθηση, ενισχυτική μάθηση, βαθιά ενισχυτική μάθηση,

επιτάχυνση υλικού

i

https://github.com/kostasang/MsC_Diploma

Abstract

In recent years, machine learning applications are becoming increasingly more popular. By leveraging the computing
power that modern chips provide us with and large amounts of data that are produced daily by people or machines,
machine learning models can be trained to solve a vast spectrum of problems that classical programming approaches
cannot. Training machine learning models can be based on three different learning paradigms: supervised learning,
unsupervised learning and reinforcement learning. In summary, supervised learning paradigm needs ”golden” or
”labeled” data in order to supervise the process of training a model and unsupervised learning lies on techniques
that discover hidden patterns on a set of unlabeled data. Reinforcement learning on the other hand is a totally
different approach and relies on the maximization of the reward an agent receives when he interacts with a specific
environment. A common real-world reinforcement learning example is that of a dog trainer trying train a dog to
perform certain tricks. When the dog acts towards the proper direction, the trainer rewards the dog with a biscuit.
The dog (agent) tries to maximize its cumulative reward i.e. eat as many biscuits as possible, by adapting its behavior
and act towards the correct direction.
Furthermore, in recent years, neural networks, a machine learning model that mimics the way biological neural
networks work, have come to the fore due to state of the art results they achieve in various problems like natural
language processing tasks, image classification, image or text generation etc. Scaling neural networks (adding more
neurons and thus more parameters), usually leads to better results. For natural language processing tasks for example,
current state of the art models contain billions of trainable parameters. Again, our advance in microelectronics enables
us to use such models due to the increased computing power that we can utilize.
In the first part of the present thesis, we will study how reinforcement learning paradigm and neural networks can
be combined in order to train intelligent agents, able to interact with complex environments. We will implement
four different deep reinforcement learning algorithms, Deep Q Network, REINFORCE, Asynchronous Actor Critic &
Proximal Policy Optimization and we will leverage those implementations to train intelligent agents able to interact
with two environments, Cart Pole and DuckieTown. While CartPole environment is considered as the ”hello world”
environment for reinforcement learning, DuckieTown is a more complex one with an agent trying to learn how to
properly drive through the roads of a simulated, animated city.
In the second part of the present thesis, we will focus one how we can deploy the trained DuckieTown agent in the
real world. More specifically, we will focus on two scenarios. The first scenario regards the acceleration of the forward
pass of the neural network model in order to achieve faster inference time and therefore create a more responsive
agent, a trait that is desired for all autonomous vehicles. The second scenario regards the control of a swarm of agents
by a central device. The central device this time performs batch computations, with the batch size being equal to
the total number of agents in the swarm. For this scenario we set a minimum of 100 FPS that must be achieved for
each agent. The devices that will be used for the acceleration are NVIDIA Xavier NX utilizing a GPU as a hardware
accelerator and Xilinx Zynq UltraScale+ MPSoC ZCU104 utilizing an FPGA.
All related work regarding the entire thesis can be found in the Github repository here.

Keywords : machine learning, neural networks, deep learning, reinforcement learning, deep reinforcement learning,
hardware acceleration

ii

https://github.com/kostasang/MsC_Diploma

Ευχαριστίες

Ξεκινώντας, θα ήθελα να ευχαριστήσω θερμά τον διδακτορικό ερευνητή Δημήτριο Δανόπουλο για τη συνέχη του βοήθεια

και υποστήριξη καθώς και για τον ενδιαφέρον που έδειξε καθ΄ όλη τη διαδικασία της υλοποίησης της παρούσας εργασίας.

Επιπλέον, θα ήθελα να ευχαριστήσω τον καθηγητή μου Δημήτριο Σούντρη, για την αποδοχή της πρότασης μου για

το παρόν θέμα της διπλωματικής εργασίας, επιτρέποντας μου με αυτό τον τρόπο να ερευνήσω πτυχές της μηχανικής

μάθησης που κέντρισαν το ενδιαφέρον μου.

Τέλος, καθώς η παρούσα διπλωματική εργασία ολοκληρώθηκε παράλληλα με την εργασιακή μου απασχόληση, δεν θα

μπορούσα να παραλείψω από τις ευχαριστίες τους συναδέλφους μου, Στέφανο και Σταύρο, για τις τεχνικές γνώσεις που

μου μετέφεραν και τις γενικότερες συμβουλές τους, οι οποίες αναμφίβολα οδήγησαν σε μία πιο ολοκληρωμένη, τεχνικά,

εργασία.

iii

Contents

Περίληψη i

Abstract ii

Ευχαριστίες iii

1 Theoretical Background 3
1.1 Machine Leaning . 3

1.1.1 Definition . 3
1.1.2 Machine Learning Paradigms . 3
1.1.3 Instance-Based vs Model-Based Machine Learning . 4

1.2 Reinforcement Learning . 4
1.2.1 Learning Scenario . 4
1.2.2 Markov Decision Process Model . 5
1.2.3 Policy, State-Value & Action-Value Functions . 6
1.2.4 Optimal Policies & Policy Evaluation . 7
1.2.5 Classification of Reinforcement Learning Algorithms 8
1.2.6 Q-Learning Algorithm . 8
1.2.7 SARSA Algorithm . 10

1.3 Neural Networks . 10
1.3.1 Inspiration . 10
1.3.2 Structure & Functionality of a Neuron . 11
1.3.3 Learning Procedure of a Neuron . 14
1.3.4 Multilayer Neural Networks . 15
1.3.5 Types of Layers . 17
1.3.6 Neural Networks as Matrix Operations . 19

1.4 Deep Reinforcement Learning Algorithms . 20
1.4.1 Deep Q Learning . 20
1.4.2 Policy Gradient Methods & REINFORCE . 21
1.4.3 Actor-Critic Methods & Asynchronous Actor-Critic 23
1.4.4 Proximal Policy Optimization . 25

2 Training Deep Reinforcement Learning Agents 27
2.1 Main Development Tools . 27

2.1.1 OpenAI Gym . 27
2.1.2 Pytorch . 28

2.2 Deep Reinforcement Learning Framework . 29
2.2.1 Neural Network Definition . 29
2.2.2 Training the Agent . 30

2.3 Cart Pole Problem . 31
2.3.1 The CartPole Environment . 31
2.3.2 DQN Agent . 32
2.3.3 REINFORCE Agent . 34

National Technical University of Athens Training & Acceleration of Deep RL Agents

2.3.4 A3C Agent . 35
2.3.5 PPO Agent . 37
2.3.6 Overall Comparison . 38

2.4 Exploring More Complex Environments - DuckieTown . 39
2.4.1 The DuckieTown Environment . 39
2.4.2 PPO Agent Training . 40

3 Accelerating Deep Learning Models 47
3.1 Presentation of the Problem . 47
3.2 The ONNX Format . 47

3.2.1 Converting models to ONNX format . 48
3.3 The Embedded Devices . 49

3.3.1 Jetson Xavier NX . 49
3.3.2 Xilinx Zynq UltraScale+ MPSoC ZCU104 . 50

3.4 Accelerating Inference: The Case of a Single Agent . 51
3.4.1 Jetson Xavier NX . 51
3.4.2 Xilinx Zynq UltraScale+ MPSoC ZCU104 . 53

3.5 Accelerating Inference: The Case of Multiple Agents . 59
3.5.1 New Scenario . 59
3.5.2 Jetson Xavier NX . 60

Epilogue 62

Appendix 63

A Implementations of Deep Reinforcement Learning Algorithms 63
A.1 Basic Deep Reinforcement Learning Algorithm Class . 63
A.2 Deep Q-Learning Algorithm . 64
A.3 REINFORCE Algorithm . 67
A.4 Asynchronous Actor-Critic Algorithm . 69
A.5 Proximal Policy Optimization Algorithm . 73
A.6 Stacked Frame Proximal Policy Optimization Algorithm . 76

B Neural Network Acceleration 81
B.1 Conversion to ONNX . 81
B.2 ONNX Actor Model . 82
B.3 Vitis AI Compilation Process . 82

B.3.1 Quantization utilities . 82
B.3.2 Quantization script . 83
B.3.3 Compilation script . 85
B.3.4 Complete pipeline script . 86

B.4 DPU Actor Model . 87
B.5 ZCU104 Application Code . 88

Bibliography

List of Figures

1.1 Reinforcement learning scenario [1]. 4
1.2 Reinforcement learning scenario example [2]. 5
1.3 MDP illustration [1]. 6
1.4 Gridworld game environment [2]. 9
1.5 Comparison between biological and artificial neuron. 11
1.6 ReLU activation function. 12
1.7 Sigmoid activation function. 12
1.8 Tanh activation function. 13
1.9 Linear & non-linear separable data. 13
1.10 Multilayer neural network example [3]. 15
1.11 Operation of a convolutional layer [4]. 17
1.12 Operation of a recurrent neuron unfolded over time dimension [4]. 18
1.13 Operation of LSTMs (right) and GRUs (left)[4]. 18
1.14 Attention mechanism[4]. 18
1.15 Deepminds ”modified” Q-function [2]. 20
1.16 Main objective’s behavior for positive and negative advantages [5]. 26

2.1 Cart pole problem (left), Atari 2600 Assault game (center), Ant (right). 28
2.2 Cart pole environment. 31
2.3 Average cumulative rewards during DQN agent training. 33
2.4 Average cumulative rewards during REINFORCE agent training. 35
2.5 Average cumulative rewards during A3C agent training. 37
2.6 Average cumulative rewards during PPO agent training. 37
2.7 Performance comparison of different algorithms. 38
2.8 Training duration for 150,000 frames. 38
2.9 DuckieTown environment. 39
2.10 Model architecture. 44
2.11 Average played frames (left) and average cumulative rewards (right) during PPO agent training. 45
2.12 Average played frames (left) and average cumulative rewards (right) during PPO agent train-

ing (increased reward threshold). 45

3.1 The Jetson Xavier NX developer kit [6]. 49
3.2 The Jetson Xavier NX module [6]. 50
3.3 The ZCU104 evaluation kit. 50
3.4 Boxplot for NVIDIA Xavier NX inference. 53
3.5 Average inference time and speedup for NVIDIA Xavier NX. 53
3.6 Vitis AI optimizer [7]. 54
3.7 Vitis AI quantizer [7]. 54
3.8 Vitis AI compiler [7]. 55
3.9 Vitis AI library [7]. 55
3.10 Boxplot for ZCU104 inference. 56
3.11 Average inference time and speedup for ZCU104. 57

National Technical University of Athens Training & Acceleration of Deep RL Agents

3.12 Graph representing the produced .xmodel file. 58
3.13 Multiple agents scenario, controlled by one neural network in the central device. 59
3.14 Average inference time per batch for batch computations. 60
3.15 Average inference time per state for batch computations. 60
3.16 Average FPS for batch computations. 61

List of Algorithms

1 Q-Learning algorithm . 9
2 SARSA algorithm . 10
3 Neuron mini-batch gradient descent . 14
4 Back propagation . 17
5 Deep Q-Learning algorithm . 21
6 REINFORCE : Monte-Carlo Policy Gradient Control . 23
7 One-step Advantage Actor-Critic . 24
8 Episodic Advantage Actor-Critic (REINFORCE with baseline) 24
9 N-step Advantage Actor-Critic . 25
10 Proximal Policy Optimization . 26

Chapter 1

Theoretical Background

1.1 Machine Leaning

1.1.1 Definition

Machine learning is the study of computer algorithms that appear to improve through experience by using
data provided to them. As Arthur Samuel stated, an American pioneer in the field of artificial intelligence,
”machine learning is the field of study that gives computers the ability to learn without being explicitly
programmed”.

A more formal definition regarding the learning ability of computers comes from computer scientist Tom
Mitchel quoting, ”A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P if its performance at tasks in T, as measured by P, improves with experience
E.”

Machine learning techniques and their ability to ”learn from experience” shines in tasks where no pro-
grammer can write down an explicit solution to the problem due to their high complexity or their continuous
change over time.

1.1.2 Machine Learning Paradigms

Learning paradigms state the pattern on which the learner manages to learn. There are three main
paradigms on which different machine learning algorithms manage to learn. These paradigms are supervised,
unsupervised and reinforcement learning and are further analyzed bellow:

• Supervised Learning : In supervised learning, the goal of the learner is to learn the function that
maps input data to their corresponding labels. In order to do that, the learner needs a supervisor
that will label training data with peoper labels. After the learning process, the learner can generalize
its knowledge into new, unlabeled data and manage to classify them into their true labels.

• Unsupervised Learning : In unsupervised learning, there are no labeled data nor a supervisor.
Instead, the learner manages to discover hidden structures and patterns in the data through
observation. A common example is clustering algorithms that manage to group training examples
into clusters that share similar features.

• Reinforcement Learning : Reinforcement learning, which is the main subject of the present thesis,
involves machines and software agents that try to determine the best behavior within an environment
in order to maximize their cumulative rewards. A real life example of reinforcement learning is that of
a dog trainer and its dog. The dog (agent) tries to discover the optimal behavior so that the trainer
will provide it with more biscuits (rewards). In the next chapters there will be a detailed explanation
of the mathematical background and the algorithms involved with this learning paradigm.

3

National Technical University of Athens Training & Acceleration of Deep RL Agents

1.1.3 Instance-Based vs Model-Based Machine Learning

A very helpful way to categorize machine learning algorithms is by the way the manage to generalize when
supplied with new data. There are two main categories of algorithms that are described bellow:

• Instance-based machine learning : Algorithms that belong to this category manage to generalize
when fed with new data by making comparisons between the new data and the training data that
they were provided with during the training procedure. In order to achieve this, training data must
not be discarded so that comparison can be performed. An example of such algorithms is kNN
algorithm that decides about the label of an input by finding the label of the majority of the top k
closest neighbors of the input data point.

• Model-based machine learning : Algorithms that belong to this category contain parameters whose
values are learned during the training process using the training data that were provided. After the
parameter’s values have been determined, the training data can be discarded. An example of such
algorithm is logistic regression where the parameters describing a hyperplane must be determined.
After training, new data are labeled by observing their positions relative to the hyperplane. Data
points belonging to one side are associated with one of the learned labels and data points belonging
to the other side are associated with the other learned label.

The present thesis is heavily focused on neural networks which are models with, usually, enormous number
of parameters that are determined in the training process. Hence, model-based machine learning techniques
is what we will focus on.

1.2 Reinforcement Learning

Reinforcement Learning is an area of machine learning which studies how intelligent agents should take
actions in an environment in order to maximize their a cumulative reward. As already mentioned, reinforce-
ment learning is one of the three basic machine learning paradigms, with the other two being supervised
learning and unsupervised learning. Its main characteristic is that it does need labeled input and output
pairs and sub-optimal actions to be explicitly corrected. In this section, the necessary mathematical concepts
behind reinforcement will be presented and the foundation for the better understanding deep reinforcement
learning algorithms will be laid.

1.2.1 Learning Scenario

As mentioned, unlike supervised learning, the learner does not receive labeled data but instead, it receives
information by interacting with an environment. After the learner or agent performs an action, it receives a
real-valued reward and its current state in the environment. The reward it receives is related with its task
and its corresponding goal. The described scenario is illustrated in figure 1.16.

Figure 1.1: Reinforcement learning scenario [1].

The goal of the agent is to discover the best course of actions that maximize the rewards received from the
environment. Of course, the agent receives only the immediate reward related to the action just taken and

4

National Technical University of Athens Training & Acceleration of Deep RL Agents

there is no future reward feedback from the environment. Therefore, during the training, the agent faces the
dilemma between exploring new states and actions that will provide new information about the environment
and the rewards, and exploiting the already gathered knowledge to optimize the reward. This dilemma is
known as the exploration vs exploitation trade-off.

Examples of such a learning scenario can be a computer bot trying to navigate inside a virtual world while
aiming to achieve a certain goal or a self-driving car trying to avoid obstacles in a road while aiming to reach
a certain destination. In both cases, the agent interacts with the environment via the decided actions and
simultaneously it receives feedback through rewards. Actions that lead to unwanted states (e.g. crashing
with an obstacle) yield less or negative rewards. The goal of the agent is to learn to make the correct
decisions in order to maximize the cumulative reward and therefore reach its goal. In figure 1.2, an example
of such a learning scenario is illustrated.

Figure 1.2: Reinforcement learning scenario example [2].

1.2.2 Markov Decision Process Model

In order to describe the learning problem, the environment and the interactions with it, the model of
Markov Decision Process is adopted in reinforcement learning. A Markov decision problem is defined by: [1]

• A set of states S, possibly infinite.

• A start state s0 ∈ S.

• A transition probability P[s′|s, a].

• A reward probability P[r′|s, a].

The model is called Markovian because it assumes that the Markovian property is valid. This Markovian
assumption states that the probabilities of the actions and the rewards depend only on the current state
s and not on the entire history of states and actions taken. Of course, there are many examples of real
world problems that this hypothesis is clearly not valid. For example considering the frame of a camera
input of a self-driving car as state, the action the car should make clearly does not depend from the frame
itself as crucial information regarding the movement of other objects are lost. To avoid such problems, a
common tactic is to turn the problem into an MDP. For the above-mentioned example, by considering two
consecutive frames as the state, the lost information is finally included and the Markovian hypothesis seems
more reasonable to be assumed [2].

Regarding the characteristics of the MDP, it can be discrete, meaning that the decisions are taken at a set
of decision epochs 0, 1, .., T or continuous, meaning that the decisions are taken in arbitrary points in time.
When T is finite, the MDP is said to have a finite horizon. Independently of T, the MDP is said to be finite
when both S and A are finite sets. Generally, the reward r(s, a) at state s when taking action a is a random
variable, but in many cases, the reward is a deterministic function of the state-action pair.

Figure 1.3 illustrates the Markov Decision Process Model, where at time t ∈ 0, 1, ..., T the agent performs
an action at ∈ A after observing the state st. The state reached is st+1, with a probability of P [st+1|st, at]
and the received reward is rt+1 ∈ R, with a probability of P [rt+1|st, at].

5

National Technical University of Athens Training & Acceleration of Deep RL Agents

Figure 1.3: MDP illustration [1].

1.2.3 Policy, State-Value & Action-Value Functions

The goal of the agent in an environment is to determine the appropriate action to take at each state. The
strategy that the agent adopts is called policy. For example, in the game of hide and seek, the simplest
strategy for the seeker is to move until a hider is spotted. A more formal definition of the policy function is
the following:

Policy definition

A policy, is a mapping π : S → ∆(A) where ∆(A) is the set of probability distributions over A. A policy
π is deterministic if for any s there exists a unique a ∈ A such that π(s, a) = 1.

This definition is that of a stationary policy, since the distribution of actions does not depend on time.
A more general definition for the policy function is that of the non-stationary policy which is a sequence of
mappings πt : S → ∆(A).

The agent’s objective is to find a policy that maximizes the expected return. The return it receives
following a deterministic policy is the following:

• For finite horizon (finite T):
∑T
t=0 r(st, π(st)).

• For infinite horizon:
∑∞
t=0 γ

tr(st, π(st)), where γ ∈ [0, 1) is the discount factor used to discount
future rewards.

In other words, the return is a scalar used to summarize a possibly infinite sequence of immediate rewards.
In the discounted case, early rewards are considered more valuable than later ones. This leads to the following
definition:

Policy value definition

The value Vπ(s) of a policy π at a state s ∈ S is defined as the expected reward returned when starting
at s and following policy π:

• Finite horizon : Vπ(s) = Eat∼π(st)

[∑T
t=0 r(st, at)|s0 = s

]
.

• Infinite discounted horizon : Vπ(s) = Eat∼π(st) [
∑∞
t=0 γ

tr(st, at)|s0 = s].

where the expectations are over random actions at according to the distribution π(st) that provide reward
values r(st, at). The function Vπ is called state-value function for policy π.

Action-value function

Another definition which will be proved very useful in the following chapters is that of the action-value
function.

The action-value function Q associated to a policy π is defined for all (s, a) ∈ S×A as the expected return
for taking action a ∈ A at state s ∈ S and then following policy π :

Qπ(s, a) = E [r(s, a)] + Eat∼π(st)

[∞∑
t=1

γtr(st, at)|s0 = s, ao = a

]
= E [r(s, a) + γVπ(s1)|s0 = s, a0 = a]

6

National Technical University of Athens Training & Acceleration of Deep RL Agents

It must be noted that Vπ(s) = Eat∼π(st) [Qπ(s, a)]

All these definitions for the policy, state-value and action-value functions are critical for further under-
standing reinforcement learning and its algorithms.

1.2.4 Optimal Policies & Policy Evaluation

Optimal policy

As mentioned above, an agent seeks to maximize its reward while interacting in an environment. In other
words, an agent starting from state s ∈ S seeks a policy π with the largest value Vπ(s). It is proven that
such a policy does exist for any starting state s ∈ S [1]. That policy is called optimal policy and has the
following definition:

A policy π∗ is optimal if its value is maximal for every state s ∈ S, that is, for any policy π and any state
s ∈ S, Vπ∗(s) ≥ Vπ(s).

Policy improvement theorem

The value function allows us to know how good a certain policy is, but it is essential to know whether we
should change to a new policy or not. A way to answer this question is by considering selecting action a
in state s and thereafter following the existing policy π. In case such choice provides greater rewards, one
could argue that the new policy of selecting a every time s is encountered and then following policy π is a
better policy overall. Indeed, this special case comes under a more general result called policy improvement
theorem [8]. The theorem states that for any two policies π and π∗, the following holds :

(∀s ∈ S,Ea∼π∗ [Qπ(s, a)] ≥ Ea∼π [Qπ(s, a)])⇒ (∀s ∈ S, Vπ∗(s) ≥ Vπ(s))

A strict inequality for at least one state s in the left-hand side implies a strict inequality for at least one
s in the right-hand side.

Bellman’s optimality condition

Finally, Richard Bellman, whose work has been a major contribution to Reinforcement Learning paradigm,
proved that a policy π is optimal if and only if for any pair of (s, a) ∈ S ×A with π(s)(a) > 0 the following
holds :

a ∈ argmax
a′∈A

Qπ(s, a′)

This condition is known as Bellman’s optimality condition.

Bellman’s equations

Bellman moved even further and noticed that the value of a policy in a state s can be expressed in terms
of its values at other states forming a system of linear equations. These equations are known as Bellman’s
equations and state the following:

The values Vπ(s) of a policy π at states s ∈ S for an infinite horizon MDP obey the following system of
linear equations:

∀s ∈ S, Vπ(s) = Ea1∼π(s)[r(s, a1)] + γ
∑
s′

P[s′|s, π(s)]Vπ(s′)

With all these definitions & theorems, the presentation and explanation of the algorithms that are used in
the next chapters and paragraphs of this thesis will be better understood. For now, the basic theory behind
Reinforcement Learning has been covered.

7

National Technical University of Athens Training & Acceleration of Deep RL Agents

1.2.5 Classification of Reinforcement Learning Algorithms

Intelligent agents can be created using different algorithms. These reinforcement learning algorithms
can be separated into different categories based on different criteria. In this paragraph the taxonomy of
reinforcement learning algorithms will be presented [2, 8].

Model-free vs model-based algorithms

A common distinction between reinforcement learning algorithms is made by whether the algorithm is
given a model of the environment. With the term ”model” we mean anything that the agent can use in order
to predict the environment’s response to its actions. Such information can be reward or state transition
probability distributions. If such information is known and consequently a model for the environment does
exist, the algorithm that is given those information is a model-based algorithm. On the other hand, if such
information is unknown and a model for the environment does not exist, the algorithm that operates on the
environment is called model-free. Model-based approaches rely on planning using the model information
provided to them where as model-free approaches rely on learning the unknown information.

Examples of planning algorithms are the Value Iteration algorithm and the Policy Iteration algorithm [3].
On the other hand, examples of learning algorithms are the Q-learning algorithm and the SARSA algorithm
which will be further presented later.

On-policy vs off-policy algorithms

Another way to classify reinforcement learning algorithms is by how they change their behavior during
training. Generally, reinforcement learning algorithms include two components, a learning policy, which
determines the action to take during training, and an update rule which defines a new estimate of the
optimal value function. For an off-policy algorithm, the update rule does not depend on the learning policy.
More generally, an off-policy algorithm evaluates or improves one policy by acting based on another policy.
On the other hand, an on-policy algorithm evaluates and improves the current policy used for control [1].

An example of off-policy algorithm is Q-learning where as an example of on-policy algorithm is SARSA
algorithm.

In the present thesis, model-free, both on-policy and off-policy algorithms will concern us. In the following
two paragraphs, SARSA & Q-Learning algorithms will be presented us they constitute the basis for their
deep reinforcement learning counterpart.

1.2.6 Q-Learning Algorithm

Q-Learning is a temporal-difference, off-policy algorithm introduced by Watkins in 1989 [8]. The algorithm
aims at learning the Q function associated with the optimal policy π∗, independent of the learning policy
which is followed during the algorithm. The algorithm’s core is the Bellman’s equation which ultimately
translates into the following update rule :

Qnew(st, at)← Q(st, at)︸ ︷︷ ︸
old value

+ a︸︷︷︸
learning rate

·

temporal difference︷ ︸︸ ︷
rt+1︸︷︷︸

reward

+ γ︸︷︷︸
discount factor

· max
a
Q(st+1, a)︸ ︷︷ ︸

estimate of optimal future value︸ ︷︷ ︸
new value (temporal difference target)

−Q(st, at)︸ ︷︷ ︸
old value

As seen in the above equation, the algorithm tries to approximate the optimal action-value function by

updating towards the target value. The complete algorithm is described in algorithm section 1.

8

National Technical University of Athens Training & Acceleration of Deep RL Agents

Algorithm 1 Q-Learning algorithm

Algorithm parameters : learning rate a ∈ [0, 1], ε ∈ [0, 1], discount factor γ ∈ [0, 1).

• For every (s, a) ∈ S ×A initialize Q(s, a).

• Loop for each episode:

– Initialize s.

– Loop for each step of the episode until s is terminal:

∗ Choose action a for state s using learning policy (e.g. ε− greedy).

∗ Take action a, observe reward r and new state s′.

∗ Q(s, a)← Q(s, a) + a
[
r + γmax

a
Q(s′, a)−Q(s, a)

]
.

∗ s← s′.

It is proven, that by following the algorithm above, Q converges to Q∗ with a probability of 1 [8]. Fur-
thermore, Q-Learning is classified as an off-policy algorithm because the policy of choosing the action s
(ε − greedy) is different than the one used to evaluate the Q value of the next action in state s′ (which is
selected as the one which yields the maximum Q value on state s′, max

a
Q(s′, a)). The ε−greedy strategy is a

common policy to bring a balance to the exploration-vs-exploitation trade-off. In order to explore the action
space and not rely only one those actions currently known to maximize the rewards, with a probability of
ε a random action is chosen while with a probability of 1 − ε, the best action learned so far is selected. Of
course, this does not apply for the calculation of the target Q value where the action selected for state s′ is
the one the maximizes the Q function at this state.

A toy example that the Q-Learning algorithm is applicable is illustrated in figure 1.4. Gridworld is a
classic environment where an agent is trying to reach its goal following the shortest path and avoiding the
obstacles. In order to enforce the algorithm to find the shortest path, a reward of -1 is given to the agent for
each action that does not lead him to an obstacle, a reward of -20 if an obstacle is hit and a reward of +30
if the goal is reached. By following Q-Learning algorithm, the optimal action-value function Q∗ is learned
and the agent is able to navigate through the gridworld by choosing max

a
Q(s, a). for whatever state he is in.

Figure 1.4: Gridworld game environment [2].

Q-Learning appears to be working fine for such an environment, but there are some disadvantages lying
hidden. First, in case the initialization of the environment was random (i.e. the positions of the obstacles
and the goal varied for different episodes), the algorithm would not be able to converge, as the action-values
for different episodes would be different because a different optimal path would have to be followed. Another
major disadvantage is the fact that for the algorithm to work, a discrete finite state space is assumed. A
discrete finite state space allows us to initialize the Q-function in a table and then operate on it, trying
to approximate Q∗. In case of a continuous infinite state space, that would clearly be not possible. The
”deep-learning counterpart” of Q-Learning comes to solve these problems, and this solution will be presented
later [2].

9

National Technical University of Athens Training & Acceleration of Deep RL Agents

1.2.7 SARSA Algorithm

SARSA algorithm is the on-policy equivalent of Q-Learning algorithm. Again, the algorithm is trying
to learn the Q function associated with the optimal policy π∗. Its name reflects the way the algorithm
operates and which follows the pattern S1 for the current state, A1 for the action taken, R for the reward
the agent receives, S2 for the state the agents lands on and A2 for the next action it takes. There are minor
differences in the update rule that are responsible for the on-policy nature of the algorithm. The update
rule is presented in the following equation:

Qnew(st, at)← Q(st, at)︸ ︷︷ ︸
old value

+ a︸︷︷︸
learning rate

·

temporal difference︷ ︸︸ ︷ rt+1︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

· Q(st+1, at+1)︸ ︷︷ ︸
estimate of optimal future value︸ ︷︷ ︸

new value (temporal difference target)

−Q(st, at)︸ ︷︷ ︸
old value

The difference between SARSA and Q-Learning, lies in the update rule and the selection of the next action.

When in state s, both algorithms select the action a based on ε− greedy strategy. Afterwards, Q-Learning
updates by using the action which yields the greatest Q value when in next state s′. On the other hand,
SARSA updates by selecting action a′ in next state s′ using ε− greedy strategy again. This action is then
stored and used as the real action to take in the next state s′. In algorithm section 2, all the details of the
SARSA algorithm are presented.

Algorithm 2 SARSA algorithm

Algorithm parameters : learning rate a ∈ [0, 1], ε ∈ [0, 1], discount factor γ ∈ [0, 1).

• For every (s, a) ∈ S ×A initialize Q(s, a).

• Loop for each episode:

– Initialize s.

– Choose action a for state s using learning policy (e.g. ε− greedy).

– Loop for each step of the episode until s is terminal:

∗ Take action a, observe reward r and new state s′.

∗ Take action a′ from state s′ using the same learning policy (e.g. ε− greedy).

∗ Q(s, a)← Q(s, a) + a [r + γQ(s′, a′)−Q(s, a)].

∗ s← s′, a← a′.

Like Q-Learning, it is proven that SARSA converges to Q∗ with a probability of 1 [8]. Unfortunately,
SARSA suffers from the exact same disadvantages like Q-Learning presented in the previous paragraph.

1.3 Neural Networks

1.3.1 Inspiration

Artificial neural networks are computer systems inspired from biological neural networks which constitute
the brains of animals. The realization that the brain performs computations in a totally different way com-
pared to electronic computers pushed the study of artificial neural networks. With the main difference being
the massive parallelism of information processing, brains have the capability of organizing their structure,
meaning the neurons that they are composed of, in a way that it completes certain computations. These
computations are related to processes like vision, hearing etc.

10

National Technical University of Athens Training & Acceleration of Deep RL Agents

Like biological neural networks, artificial neural networks contain a number of interconnected neurons
that are the building block of the network and the fundamental information processing unit. Furthermore,
like biological neural networks have the ability to ”alter” their structure, artificial neural networks can go
through a learning process that carries out certain modifications on them with the ultimate goal of achieving
a certain task.

Seeing neural networks as machines capable of adapting and altering their architecture, the following
definition can be realized : ”A neural network constitutes a large scale parallel and distributed processor
that contains fundamental processing units called neurons capable of storing emperical knowledge render it
available for future use. They resemble the functionality of the brain in the following two ways:

1. Knowledge is obtain from the environment through a learning process.

2. The strength of the connections between neurons, called synaptic weights, are used for storing the
obtained knowledge [3]”.

1.3.2 Structure & Functionality of a Neuron

As already mentioned above, the fundamental processing unit of a neural network is the neuron. The
functionality of an artificial neuron can be compared to that of a biological neuron. In the biological model,
each neuron receives input signals from dendrites and produces its output along its axon. That axon branches
and is connected with other neurons. Regarding the artificial model, signals travel through axons of other
neurons (x0, x1, ...) and interact with the rest of the neurons (w0×x0) through the synaptic weight (w0) that
characterizes each synapse. The values of the weights characterize the magnitude of the influence each input
has to the neuron. After that, all the weighted inputs are summed and in the case the summation result is
over a certain threshold the neuron is fired. This triggering is modeled through an activation function that
determines the value of the output signal based on the inputs and the threshold. This analogy is illustrated
in figure 1.5.

Figure 1.5: Comparison between biological and artificial neuron.

To recap, an artificial neuron consists of the three following elements:

1. A set of synaptic weights, one for each input of the neuron, that model the magnitude of influence its
input has to the state of the neuron.

2. An adder, that sums all the weighted inputs.

3. An activation function that determines the value of the neuron’s output by comparing the result of
the adder to a certain threshold.

Based on the elements above, for a neuron k with m inputs, the output yk is calculated with the following
formula:

yk = f

(
m∑
i=1

wkixi + bk

)

11

National Technical University of Athens Training & Acceleration of Deep RL Agents

where xi is each input of the neuron, wki the synaptic weight, bk the threshold and f the activation
function.

Some recently used activation functions are the following:

• Rectifier Linear Unit (ReLU) : This is a standard choice due to its simplicity and its non-linear
nature which is highly needed in multi-layer neural networks.

ReLU(x) = max(0, x)

Figure 1.6: ReLU activation function.

• Sigmoid Function : This activation function is used when the output of the neuron must be
interpreted as a probability as it squashes its input between 0 and 1.

Sigmoid(x) =
1

1 + e−x

Figure 1.7: Sigmoid activation function.

• Tanh Function : This activation function has the ability of squashing its input between -1 and 1.

Tanh(x) =
e−2x − 1

e−2x + 1

12

National Technical University of Athens Training & Acceleration of Deep RL Agents

Figure 1.8: Tanh activation function.

• Softmax Function : This function is a generalization of the sigmoid function to multiple dimensions.
It operates on an entire set of neuron outputs (belonging to the same neural layer) and ensures that
the sum of the individual outputs will sum to one. It is widely used when the entire output of a
neural layer must be interpreted as a probability distribution.

σ(z)k =
ezk∑n
i=1 e

zi

where z = (z1, z2, ..., zn) the plain output of the neurons adders in the layer.

The functionality of a single neuron can have a mathematical interpretation that it will be proven useful
for understanding the need of multilayer networks containing more than one neurons.

In order to make things simple, let us assume an input vector X = [x1, x2] and a neuron with weights
W = [wk1, wk2] and threshold bk. The result of the neurons adder is :

vk = x1 ∗ wk1 + x2 ∗ wk2 + bk

It is clear, that this formula describes a line in the two dimensional space where the input data lives. Thus
the neuron can be used as a classifier where data belonging to one side of the separation line are linked with
one class and data belonging on the other side are inked to the other class. Of course, this example can be
generalized in more than two dimension where the line would be a hyperplane.

This realization may give us an intuition of the way that a neuron works but signifies one great weakness.
What if the data that have to be classified are not linearly separable? As a neuron is able to draw just
hyperplanes, separating non-linear separable data is an impossible task. This realization is illustrated in
figure 1.9.

Figure 1.9: Linear & non-linear separable data.

This weakness of the neuron can be solved with the use of multiple neurons and it was the main motivation
of developing multilayer neural networks that will be presented in later paragraphs.

13

National Technical University of Athens Training & Acceleration of Deep RL Agents

1.3.3 Learning Procedure of a Neuron

As illustrated in figure 1.9, the operation of a neuron is equivalent to that of drawing a line in order to
separate data belonging to two different classes. In order to draw the correct line, the values of weights wki
and threshold bk must be known. But how does a neuron know what weight values should be assigned to its
synapses?

For the parameters of the neuron to have the correct values, a learning process must be designed. This
learning process utilizes the gradient descent algorithm. For the explanation of the algorithm and how it
is applied to the neuron, we will assume a supervised problem containing a set of labeled training data
with each instance of the data being denoted as a vector Xi. Gradient descend algorithm appears in three
different flavors, stochastic gradient descend, mini-batch gradient descent and batch gradient descent. Each
flavor of gradient descent, differs to the number of training instances it operates on. Stochastic gradient
descent updates the neuron’s weights after consuming exactly one training instance while batch gradient
descent updates the weights after consuming all training data provided. Mini batch gradient descent is the
intermediate case where batches of data with size grater than one but less than the entire training set are
consumed. As stochastic and batch gradient descent can be considered as edge cases of mini-batch gradient
descent, the learning process using the later will be described.

Along with the training data being denoted as a vector Xi, let us assume that the output of the neuron
described by a parameter vector W n at the nth step of the learning process, for a specific input is denoted as
yk(Xi|Wn). Furthermore, let ŷi be the true label of the corresponding input vector. Then a loss function can
be defined that quantifies the error between the output of the neuron and the true label of the corresponding
training instance. Such loss functions can be the Mean Squared Error (MSE) loss function used for regression
problems, that for a batch size of N instances is defined as:

L(W n) =

∑N
i=1 (yk(Xi|W)− ŷi)2

N

or the Binary Cross-Entropy loss function used for pure classification tasks:

L(W n) =

N∑
i=1

yk(Xi|W n)log(ŷi) + (1− yk(Xi|W n))log(1− ŷi)

Minimization of the loss function is the goal of the learning process and thus, for each mini-batch of
training instances, the following update is performed on neuron’s parameters [9, 10]:

W n+1 = W n − γn∇L(W n)

where γn is a learning rate parameter possibly varying for different steps and ∇L(W n) = [∂L∂bk ,
∂L
∂w1

, ...].
Performing such updates, the parameters are changed so that the loss function converges to a minimum.
The overall process is described in algorithm section 3.

Algorithm 3 Neuron mini-batch gradient descent

Algorithm parameters : number of epochs E, learning rate γ, batch size N .

• For each of the E epochs.

– For each N sized batch of data in the training set containing data vectors Xi.

∗ Calculate neuron outputs yk(Xi).

∗ Calculate loss L(W) for the whole batch.

∗ Perform parameter update based on the following rule:

W ←W − γ∇L(W)

14

National Technical University of Athens Training & Acceleration of Deep RL Agents

1.3.4 Multilayer Neural Networks

As mentioned above, a single neuron in incapable of solving problems containing non-linearly separable
data. To cope with this problem, networks of multiple neurons arranged in different layers are used. Such
neural network is able to ”draw” non-linear lines in problem such as figure’s 1.9 data. In figure 1.10, an
example of a neural network is illustrated.

Figure 1.10: Multilayer neural network example [3].

Figure 1.10 illustrates the vanilla architecture of multilayer neural networks containing only simple layers
of neurons. Other types of layer do exist and they will be presented in the next paragraph. The vanilla
architecture possesses the three following characteristics [3]:

• Each neuron possesses a non-linear activation function.

• The network has one or more layer of neurons hidden after the input nodes and the output layer.

• The network exhibits a high degree of connectivity.

It is essential to note the critical role of the non-linear functions that neurons posses. In case each neuron
did non have non-linear activation functions but output the raw result of their adders, multiple layers would
have no reason of existence. As it will be pointed out in paragraph 1.3.6, each neural layer can be described
through a matrix-vector multiplication and thus, multiple layers with no intermediate non-linear functions
collapse into a two-layer input output model.

Regarding the training process of a neural network, this time the procedure is more complex compared
to the learning procedure of a single neuron. Again, the gradient descent algorithm will be used, and the
three different flavors, stochastic, mini-batch & batch are again possible. The problem lies in the fact that
there is no obvious target value the hidden layer’s neurons should have whereas the output layer’s neurons
do have a desired value, which is denoted as ŷk. To quantify the correction that must be done to hidden
layer’s neuron’s parameters, the backpropagation algorithm is used.

Backpropagation algorithm utilizes the well known chain rule to calculate the gradient of the loss function
for the different hidden layers. The calculation of the loss function back-propagates from the output layer
towards the input and thus the name of the algorithm. After the gradients are computed, the parameters
are changed using gradient descent.

For presenting the bacpropagation algorithm, let us assume again a supervised learning problem. We
denote as yj the output of the jth neuron of the output layer and as dj its desired output. The error ej of
the jth neuron is given by the subtraction of the two terms ej = dj−yj . Again, a loss function must defined,
and for simplicity we use the MSE loss function and this, we get Lj = 1

2e
2
j . For the entire output layer, we

get:

L =
∑
j∈C

Lj =
1

2

∑
j∈C

e2
j

15

National Technical University of Athens Training & Acceleration of Deep RL Agents

For training on a mini-batch, we average the loss function on the total number of instances in the batch.
For simplicity, we will continue assuming training with exactly one instance.

As already stated, the the output of the adder of a neuron with m inputs is:

vj =

m∑
i=1

wjixi + bj

and the final output is given after the application of the activation function :

yj = φj(vj)

Of course, L is a function of the parameters of the output layer of the neural network, and thus, the
correction ∆wi,j that must me applied to them in order to minimize the loss function can be calculated and
it is proportional to the partial derivative ∂L

∂wij
. Using the chain rule, we get the following formula:

∂L

∂wji
=
∂L

∂ej

∂ej
∂yj

∂yj
∂vj

∂vj
∂wji

For the individual terms, after calculating the partial derivatives, we get:

∂L

∂ej
= ej ,

∂ej
∂yj

= −1,
∂yj
∂vj

= φ′j(vj),
∂vj
∂wji

= xi

That said, the final correction that must be performed to the output layer’s neurons’ parameters is:

∆wji = −γ · ∂L
∂wji

= γ · δjxi

where δj is defined as the local gradient and it equals :

δj = − ∂L
∂vj

= − ∂L
∂ej

∂ej
∂yj

∂yj
∂vj

= ejφ
′
j(vj)

Now, let us assume the jth neuron of the first hidden layer exactly behind the output layer. Furthermore,
we use index k for the neurons of the output layer. The local gradient δj , can be written as:

δj = − ∂L
∂yj

∂yj
∂vj

= − ∂L
∂yj

ϕ′j (vj)

For the term ∂L
∂yj

we have:

∂L

∂yj
=
∑
k

ek
∂ek
∂yj

=
∑
k

ek
∂ek
∂vk

∂vk
∂yj

, because ek = dk − yk = dk − ϕk (vk)⇒ ∂ek
∂vk

= ϕ′k (vk)

Furthermore, vk =
∑m
j=0 wkjyj (n)⇒ ∂vk

∂yj
= wkj

Thus, the following equation is valid:

∂L

∂yj
= −

∑
k

ekϕ
′
k (vk)wkj =−

∑
k

δkwkj

Therefore, the local gradient of a hidden neuron before the output layer is given by the following equation:

δj = ϕ′j (vj)
∑
k

δkwkj

What has been achieved is a relation between the local gradients of one neural layer with the exactly next
one. In algorithm section 4, all steps of the back propagation are described:

16

National Technical University of Athens Training & Acceleration of Deep RL Agents

Algorithm 4 Back propagation

• For each training instance (or mini-batch), perform a forward pass and calculate the loss function L.

– For each layer in the neural network starting from the output layer and moving backwards:

∗ If neuron is in output layer :
δj = ejφ

′
j(vj)

∗ If neuron is in hidden layer :

δj = φ′j(vj)
∑
k

δkwkj

,where δk is the local gradients of the layer’s neurons right in front.

∗ Calculate parameter correction :
∆wji = γ · δj · xi

∗ Perform gradient descent update based on ∆wji.

Having calculated the parameter corrections, gradient descent can now be applied to minimize the loss
function.

1.3.5 Types of Layers

As already stated, the architecture of figure 1.10 is the vanilla architecture containing simple fully con-
nected neural layers. More types of neural layers do exist, each one of them excelling in different kinds of
tasks. In this paragraph, some of the mainly used neural layers will be presented.

Convolutional layers

Convolutional layers have been very successful in computer vision problems. They are capable of exploiting
spatial relations between features of image data. As the same kernel is applied to the whole image, the number
of parameters they contain is heavily reduced compared to an approach of using one neuron for each pixel of
the input image. In other words, they systematize the idea of spatial invariance, exploiting it to learn useful
representations with fewer parameters [4]. Their operation is illustrated in figure 1.11.

Figure 1.11: Operation of a convolutional layer [4].

As presented, the kernel containing trainable parameters is applied along the surface of the image with a
selected step size and yields the results. It is essential to note that convolutional layers commonly contain
more than one channels (more than one kernels), that simultaneously operate on the input data surface and
learning different useful representations.

Recurrent layers

Recurrent layers are another type of neural layers which have been very successful in time series prediction
and natural language processing tasks. Recurrent neurons’ output is fed back into their input and thus, their
calculations are performed on new data and their previous outputs as well forming a type of memory. In
figure 1.12, the general concept of a recurrent layer is presented where we can clearly see that each hidden
state Ht is a function of the input for the given time step Xi and the previous hidden state Ht−1.

17

National Technical University of Athens Training & Acceleration of Deep RL Agents

Figure 1.12: Operation of a recurrent neuron unfolded over time dimension [4].

As simple recurrent layers suffer from exploding or vanishing gradients during their training process after
back-propagating through time, more advanced layers have been created like Long-Short-Term-Memory
networks (LSTMs) and Gated Recurrent Units (GRUs) that perform some more complex calculations but
the main idea of the output feedback into the input remains the same. An illustration that quickly presents
the differences between simple RNNs and GRUs with LSTMs is presented in figure 1.13.

Figure 1.13: Operation of LSTMs (right) and GRUs (left)[4].

Attention Layers

Natural language processing was revolutionized in 2017 after ”Attention is All you Need” was published
[11]. This paper introduced a new type of layer, the attention layer, that implements the idea of using
Queries and Keys to boost specific Values that contain more useful information to be passed in the next
layer. Transformer models (like the well known BERT & GPT-3) make full use of those kind of layers to
achieve state of the art results in various language tasks. In figure 1.14 a high level diagram of the attention
mechanism is presented.

Figure 1.14: Attention mechanism[4].

Queries, keys and values are extracted after the input is processed by linear layers with parameters
W q,W k,W v respectively.

More layers that have impact on the operation of the neural network (pooling layers [12]), that make the
training process more stable (batch-normalization layers [13]) or that help reduce over-fitting phenomena
(dropout layers [14]) do exist but this paragraph cannot cover all of them.

18

National Technical University of Athens Training & Acceleration of Deep RL Agents

1.3.6 Neural Networks as Matrix Operations

In paragraph 1.3.2, it is stated that the output of the jth neuron of a layer given its parameters wj1, ..., wjn, bj
and its inputs x1, ..., xn is given by the following formula:

yj = f

(
n∑
i=1

wji · xi + bj

)
It is clearly seen that if we assume the weight vector of the neuron Wj = [wj1, ..., wjn] and the input vector

X = [x1, ..., xn], the output can be obtained as the dot product of the weight vector and the input vector
like:

yj = f
(
XWT

j + bj
)

To make things even simpler, one can assume the extended parameter vector of the neuron as Wj =
[wj1, ..., wjn, bj] and the extended input vector as X = [x1, ..., xn, 1], then the output is obtained only by the
dot product of the vectors:

yj = f
(
XWT

j

)
As long as the output of one neuron can be modeled as a matrix multiplication operation, then the output

of an entire neural layer can be modeled the same way as well. Let us assume the weight matrix of the neural
layer :

W =

w11 ... w1n

... wji ...
wm1 ... wmn

Each row of this matrix contains the weight parameters of each n-input neuron in the layer. Furthermore,

neurons’ thresholds are contained in a vector B = [b1, ..., bm]. The output of the layer is an m-element vector
Y = [y1, ..., ym] which is derived but the formula:

Y = f
(
XW T +B

)
Of course, function f is applied to the resulted vector in an element-wise way. Furthermore, as stated in

paragraph 1.3.4, in case of multilayer neural networks, it is necessary for f to be non-linear, otherwise the
multilayer neural network would be equivalent to a collapsed one-layer version of it. To prove this statement,
let us assume a two layer neural network, with W 1,W 2 and B1, B2 the parameters of the respective layers.
If H is the output of the hidden layer and O the output of the output layer, then if f is linear:

H = XW T
1 +B1

O = HW T
2 +B2 = (XW T

1 +B1)W T
2 +B2 = XW T

1W
T
2 +B1W

T
2 +B2 = XW T +B

It is clear that without a non-linear activation function, the neural network collapses into a single layer
with parameters W , B. Of course the same logic applies for an arbitrary number of layers and not just
two-layer neural network.

19

National Technical University of Athens Training & Acceleration of Deep RL Agents

1.4 Deep Reinforcement Learning Algorithms

In section 1.2, the mathematical background of Reinforcement Learning paradigm was presented, along
with two basic algorithms that aim to learn the optimal Q-function, Q∗. As stated in paragraphs 1.2.6 &
1.2.7, Q-Learning & SARSA algorithms have some serious disadvantages and limitations. Both algorithms
cannot be applied when the state space is infinite (as they rely on initializing action-values for every state on
a table) and in the example environment of paragraph 1.2.6 they cannot cope with a random initialization
of the environment. Basically, tabular approaches do not ultimately learn how to properly behave but they
memorize the best course of actions the agent should make for a given environment through trial and error.
Thus, even minor changes in the environment can totally change the ability of the agent to navigate properly.

In section 1.3, artificial neural networks where presented. Neural networks have revolutionized the field
of machine learning achieving state of the art results in numerous tasks. Neural networks can be combined
with reinforcement learning paradigm and create the sub-field of Deep Reinforcement Learning. As neural
network can process unstructured data and create meaningful representations out of them, they can deal
with the disadvantages of Q-Learning and SARSA algorithms and achieve state of the art results.

In this section, the deep reinforcement learning counterpart of Q-Learning algorithm will be presented and
more deep reinforcement learning algorithms utilizing neural networks. Specific applications along with the
code implementation of each algorithm will be presented in the next chapter.

1.4.1 Deep Q Learning

The fundamental idea behind Deep Q-learning algorithm is the following : instead of making a tabular
representation of the optimal Q function, an approach which is impossible when the state space is infinite,
let’s approximate the optimal Q-function with a neural network. It is well known that neural networks can
act as universal function approximators and thus, Q∗ can be approximated with a neural network [15, 4].

The original Q function, accepts to its input the state and the action to be performed and returns the
value of that specific action. The action that should be performed is the one that yields the greatest value
max
a
Q(s, a). Deep Q-Learning algorithm, approximates the Q function using a neural network, but this time,

the neural network does net accept the state and the action to its input in order to output the value of the
corresponding action, but accepts just the state. The output of the neural network has a dimension equal to
the number of possible actions and the selected action is again the one with the greatest value. This the the
”modified” Q-function Deepmind used to play Atari games and it is illustrated along with the the original
Q-function in figure 1.15 [16].

Figure 1.15: Deepminds ”modified” Q-function [2].

The neural network used is trained in a supervised way aiming to minimize the loss between its current
best action prediction value (that led the agent to state s2) and the target value r+γ ·max (QA (s2)). But a
simple substitution of the Q-table used in Q-Learning with a neural network introduces training instabilities
that undermine the performance of the algorithm and thus the algorithm must be further modified. The
modifications that Deepmind proposed to increase the stability of the learning procedure are the addition
of an experience replay buffer that stores past experiences and the use of a separate network to produce the
target values for the Q-Learning update [16, 17].

20

National Technical University of Athens Training & Acceleration of Deep RL Agents

The experience replay buffer

An empty buffer of finite size is initiated. After each time step, the agent’s experience et = (st, at, rt+1, st+1)
is stored in the buffer. Of course, the buffer will ultimately contain experiences from various episodes. When
updating the network’s parameters using Q-Learning update, the loss is computed over a mini-batch of
experiences randomly sampled from the experience replay buffer.

This mini-batch approach has two main advantages compared to the on-line version of updating for every
new experience. First, learning from consecutive samples is inefficient due to strong correlations between
the samples. By using random samples from the experience replay buffer correlations are broken and thus
the variance of the updates is reduced. Second, by using mini-batches the behavior distribution is averaged
over many previous states smoothing out learning and avoiding oscillations (catastrophic forgetting) [17].

The target network

As already mentioned, the training of the network is performed so that the loss between the predicted
action’s value and the target value r + γ ·max (QA(s2)) is minimized. The stability of learning is increased
if those target values are extracted by a copy of the network that is using an older set of parameters. This
way, a delay is added between the time an update is performed on the main network and the time this
update affects the network producing the target values. Of course, the target network is updated after a
given number of updates is performed on the main network [17, 18].

Those additions improve the stability of the training process but Deep Q-Learning algorithm still suffers
from catastrophic forgetting [18]. To sum up, the algorithm is presented in algorithm section 5

Algorithm 5 Deep Q-Learning algorithm

Algorithm parameters : experience replay buffer size N , mini-batch size B, learning rate a, ε ∈ [0, 1], discount
factor γ ∈ [0, 1).

• Initialize Q-Network with parameters θ.

• Initialize target Q̂-Network with parameters θ̂.

• Loop for each episode:

– Initialize s.

– Loop for each step of the episode until s is terminal:

∗ With probability ε select random action at else select at = argmaxaQ(s, a).

∗ Take action at, observe reward rt+1 and new state st+1.

∗ Store experience et = (st, at, rt+1, st+1) in experience replay buffer (replace existing experi-
ences if buffer is full).

∗ Sample mini-batch of transitions ej = (sj , aj , rj+1, sj+1) of size B.

∗ Set yj =

{
rj+1 if sj+1 is terminal state

rj+1 + γ · argmaxaQ̂(sj+1, a) otherwise

∗ Perform gradient descent on L (yj , Q(sj , aj)) with respect to network parameters θ.

∗ Every C steps update Q̂-Network parameters θ̂ = θ.

1.4.2 Policy Gradient Methods & REINFORCE

Deep Q-Learning algorithm presented in the previous paragraph is an algorithm which trains a neural
network to approximate the optimal action-value function Q∗. Afterwards, the agent performs the action
that maximizes the action-value function on the corresponding state. In this paragraph, the algorithm to
be presented will not learn the action-value function but a parameterized policy function. Again, as neural

21

National Technical University of Athens Training & Acceleration of Deep RL Agents

networks can act as universal function approximators, a neural network will be used to approximate the
policy function.

To begin with, let us assume a parameter vector θ to represent the parameterization of the policy function.
Then, we write π(a|s, θ) = Pr[a|St = s,θt = θ] for the probability of action a taken at time t. By measuring
the performance of the current policy described by parameter vector θ, with a performance measure J(θ),
we can update the parameter vector in order to maximize the performance measure using gradient ascent
algorithm:

θt+1 = θt + a∇J(θt)

Methods following this schema are called policy gradient methods and REINFORCE algorithm belongs to
this method category [8]. Due to the update rule, it is necessary for the parameterization to be differentiable
with respect to the parameters, a property neural networks do posses.

Since the policy function maps actions to probabilities for each different state, a neural network that tries
to approximate a policy function should have outputs that are interpreted as probabilities. Using a softmax
activation function to the output layer guarantees that the sum of the outputs of last layer’s neurons (one
neuron for each possible action) is 1 and thus, they can be interpreted as probabilities. The final action that
the agent performs is sampled from the action space using the probabilities provided from the output of the
policy network.

An advantage of this process is that it inherently deals with the exploration vs exploitation dilemma. In
DQN algorithm, it was necessary to introduce some randomness in the process by selecting a random action
with a probability of ε in order to make exploration of the state-action space possible. On the other hand, by
sampling an action using the probabilities provided by the policy network introduces the desired randomness
in order to make exploration possible [2].

Another advantage of policy gradient methods is their ability to approximate stochastic policies. If the
environment is deterministic, the final probabilities that the network will output for each state will be
deterministic as well, with a probability mass of 1 to the proper action. On the other hand, if the environment
is stochastic, the network will distribute the probability mass properly to different actions. Action-value
methods like DQN have no way of finding stochastic optimal policies [8].

Lastly, another theoretical advantage is that by using a policy parameterization, the action probabilities
change smoothly as a function of the learned parameters. Instead, when using ε−greedy selection, the action
probabilities may vary dramatically even for a small change in the estimated action values, if that change
results in an different action having the maximal value. Mainly for this reason, policy-gradient methods
posses stronger guarantees of convergence compared to action-value methods.

At this point, it is essential to define the performance measure J(θ) in order to be able to describe the
complete algorithm. For the shake of simplicity, we will assume that an episode starts from a random state
s0 and the no discounting case (γ = 1) will be considered. We denote as πθ the policy determined by
parameters θ. Then, for this episode, we define the performance as :

J(θ) = vπθ
(s0)

which is the value for policy πθ in state s0. According to Policy Gradient Theorem, the gradient of the
performance measure defined in the above equation is [8]:

∇J(θ) ∝ Eπ

[∑
a

qπ(St, a)∇π(a|St,θ)

]

Now, by multiplying and dividing with π(a, St,θ) and then replacing a by the sample At ∼ π, we get:

∇J(θ) ∝ Eπ
[
qπ(St, At)

∇π(At|St,θ)

π(At|St,θ)

]
= Eπ

[
Gt
∇π(At|St,θ)

π(At|St,θ)

]
= Eπ [Gt∇ln (π(At|St,θ))]

Of course, as already mentioned, for the shake of simplicity, the analysis above assumes the no discounting
case where γ equals 1. In algorithm section 6, the more general, discounting case scenario is presented.

22

National Technical University of Athens Training & Acceleration of Deep RL Agents

Algorithm 6 REINFORCE : Monte-Carlo Policy Gradient Control

Algorithm parameters : learning rate a, ε ∈ [0, 1], discount factor γ ∈ [0, 1).

• Initialize policy network with parameters θ.

• Loop for each episode:

– Generate an episode s0, a0, r1, ..., sT−1, aT−1, rT , following policy π(·|·,θ).

– For each step of the generated episode t = 0, 1, ..., T − 1:

∗ G←
∑T
k=t+1 γ

k−t−1rk

∗ θ ← θ + aγtG∇ln (π(at|st,θ))

Note that algorithm 6 is labeled as ”Monte-Carlo”, as the parameter update is performed after the com-
pletion of an entire episode.

1.4.3 Actor-Critic Methods & Asynchronous Actor-Critic

As presented in the previous paragraphs, Deep Q-Learning algorithm attempts to approximate the optimal
action value function Q∗ and REINFORCE algorithm attempts to approximate the optimal policy function
π∗. Actor-critic methods attempt to combine these two different approaches by learning both a policy and a
value function. The reason such combination is developed, is because the critic, which tries to approximate
the value function, performs boostrapping (updates the value estimate for a state from the estimated values
of subsequent states). The bias introduced through bootstrapping is often beneficial as it reduces variance
and it accelerates learning [8]. On the other hand, the actor tries to approximate the optimal policy function
as described in the previous paragraph.

The key idea behind the actor-critic approach is the calculation of the advantage. Advantage is an
attempt to quantify how much better or worse a state we transitioned to is, compared to what we expected.
By definition, what we expect about a state st is given by the value function V (st). The actual value
of that state after performing an action at and receiving a reward rt+1 to move to the next state st+1 is
rt+1 + γ · V (st+1). That said, the advantage is simply the difference:

At = rt+1 + γ · V (st+1)− V (st)

By using the advantage, the update rule for the actor approximating the optimal policy function with a
parameters θ is similar to that of REINFORCE algorithm with a slight modification:

θ ← θ + aγt ·At · ∇ln (π(at|st,θ))

Regarding the critic, its parameters w are updated the same way they did in Deep Q Learning algorithm
trying to match the target value of rt+1 + γ · V (st+1) by utilizing a loss function L (like mean square error).

Using these ideas, the one-step version (online) of the Advantage Actor-Critic is presented in algorithm
section 7. The algorithm is characterized as one-step because the update to the parameters is performed
after each step of each episode.

The problem with the one-step approach is the same with the one faced in Deep Q Learning. When
updating the value function, the target value is not accurate and this leads to training instabilities. The
problem can be solved by using more accurate target values by calculating the total return that follows
after the transition to one state. This approach is the episodic (Monte Carlo) Advantage Actor-Critic. It is
characterized as episodic because the update to the parameters is performed after the completion of an entire
episode, when the rewards of each action are known and the return after each transition can be calculated.
That said, the formula for the return at time step t is given by the following formula:

At = Gt − V (st) =

T∑
k=t+1

γk−t−1rk − V (st) = rt+1 + γrt+2 + γ2rt+3 + ...+ γT−1−trT − V (st)

23

National Technical University of Athens Training & Acceleration of Deep RL Agents

Algorithm 7 One-step Advantage Actor-Critic

Algorithm parameters : learning rates aw, aθ, ε ∈ [0, 1], discount factor γ ∈ [0, 1).

• Initialize policy network with parameters θ.

• Initialize value network with parameters w.

• Loop for each episode:

– For each step t = 0, 1, ..., T − 1:

∗ At ← rt+1 + γ · V (st+1)− V (st), if st+1 is terminal, V (st+1) = 0

∗ θ ← θ + aθγ
tAt∇ln (π(at|st,θ))

∗ target← rt+1 + γ · V (st+1), if st+1 is terminal, V (st+1) = 0

∗ w ← w + aw∇L(target, V (st))

Although episodic Advantage Actor-Critic solves the accuracy problem of the target values for the value
function, it is not considered a true Actor-Critic method as it does not perform bootstrapping. As already
told, bootstrapping is when we are making a prediction out of a prediction (calculating value the value
of the next state V (st+1)) like we did in the one-step version of the algorithm. As the episodic version
does not bootstrap, it does not gain the advantages of increased bias that Actor-Critic methods do provide.
Episodic Advantage Actor-Critic is often called as REINFORCE with baseline [8]. The complete algorithm
description can be found in algorithm section 8.

Algorithm 8 Episodic Advantage Actor-Critic (REINFORCE with baseline)

Algorithm parameters : learning rates aw, aθ, ε ∈ [0, 1], discount factor γ ∈ [0, 1).

• Initialize policy network with parameters θ.

• Initialize value network with parameters w.

• Loop for each episode:

– Generate an episode s0, a0, r1, ..., sT−1, aT−1, rT , following policy π(·|·,θ).

– For each step of the generated episode t = 0, 1, ..., T − 1:

∗ At ←
∑T
k=t+1 γ

k−t−1rk − V (st)

∗ θ ← θ + aθγ
tAt∇ln (π(at|st,θ))

∗ target←
∑T
k=t+1 γ

k−t−1rk

∗ w ← w + aw∇L(target, V (st))

An intermediate solution that offers both the bias Actor-Critic methods offer and increased stability
compared to 1-step Advantage Actor-Critic is the N-step Advantage Actor-Critic. In this modified version
of the algorithm, the update to the parameters is performed every N steps or by the time the episode finished
when this happens before N steps. This way we can have a more accurate target value for the value function
while still being able to perform bootstrapping as we do not have the rewards for the action after the N th

step. The advantage is now calculated with the following formula:

At = rt+1 + γrt+2 + ...+ γN−t−2rN + γN−t−1V (sN)− V (st)

It can be clearly seen why the N-step approach performs bootstrapping as V (sN) appears as a term in
the advantage, meaning that the algorithm is making a prediction out of a prediction. Of course, if the
episode ends before the N th step, only the observed rewards are discounted and summed and the value of
the terminal state is considered to be zero. The complete algorithm is now presented in algorithm section 9.

24

National Technical University of Athens Training & Acceleration of Deep RL Agents

Algorithm 9 N-step Advantage Actor-Critic

Algorithm parameters : learning rates aw, aθ, ε ∈ [0, 1], discount factor γ ∈ [0, 1), number of steps N.

• Initialize policy network with parameters θ.

• Initialize value network with parameters w.

• Loop for each episode:

– Generate an episode s0, a0, r1, ..., following policy π(·|·,θ) until the N th state or the end of the
episode (if the end comes before N th state).

– For each step of the generated episode t = 0, 1, ...:

∗ At ← rt+1 +γrt+2 + ...γN−t−2rN +γN−t−1V (sN)−V (st) (with terms referring to steps after
the episode end being zero)

∗ θ ← θ + aθγ
tAt∇ln (π(at|st,θ))

∗ target← rt+1 + γrt+2 + ...+ γN−t−2rN + γN−t−1V (sN) (with terms referring to steps after
the episode end being zero)

∗ w ← w + aw∇L(target, V (st))

Having presented the idea of the Advantage Actor-Critic algorithm, we will proceed to the Asynchronous
Advantage Actor-Critic, shortly referred to as A3C. This variation of the original Actor-Critic method
exploits parallel actor learners that are trained on their own replica of the environment while updating the
initial model parameters that they share. In more detail, every agent shares the same parameters θ,w for
their policy and value networks respectively and asynchronously, perform updates to them, that are visible
to everyone, the same way it was presented in the previous algorithm sections. [2, 19]

A3C algorithm appears to increase the stability of learning and decrease the training time needed for
convergence. The core of the Asynchronous Advantage Actor-Critic algorithm can be any version of the
actor-critic, either on-line, Monte-Carlo or N-step. In any case, the main difference between the asyn-
chronous approach with the original methods is the parallel nature that comes by training multiple agents
simultaneously [19].

It must be noted, that the asynchronous approach can be used along with the rest of the algorithms
like REINFORCE and Deep Q Learning, offering the same advantages. Furthermore, for the case of Deep
Q Learning, asynchronous approaches enables us to not rely on experience replay buffer to stabilize the
training. This is a major advantage because if, for any case, a type of recurrent neural network should be
used, it could not rely on an experience replay buffer due to its need to operate on sequential experiences.

1.4.4 Proximal Policy Optimization

Proximal Policy Optimization, shortly referred to as PPO, is an Actor-Critic method, developed by Ope-
nAI [5]. It aims to overcome the problems that common Actor-Critic approaches face while keeping the
implementation complexity at a minimum, unlike Actor-Critic with Experience Replay (ACER) & Trust
Region Policy Optimization (TRPO) which are other attempts to overcome those problems [20, 21]. While
Actor-Critic methods do provide significant improvements compared to vanilla policy gradient methods, they
are still sensitive to the choice of step size. Small step sizes can lead to significantly slow learning progress
where as large step sizes lead to noise and catastrophic drops in performance.

In order to deal with these problems, the general idea behind PPO is to try to make the updates of the
policy function delicate enough so that catastrophic drops in performance are not observed. Like TRPO,

PPO uses the probability ratio rt(θ) = πθ(at|st)
πθold (at|st) in the objective under optimization. Trying to maximize

the objective L(θ) = Êt [rt(θ)At] would lead to excessively large policy updates resulting in the problems
mentioned above. That said, it is essential that changes of the policy that move rt(θ) away from 1 are
penalized. The objective that the OpenAI team proposes is the following:

LCLIP (θ) = Êt [min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)]

25

National Technical University of Athens Training & Acceleration of Deep RL Agents

where ε is a hyperparameter. The second term inside the min is responsible for clipping the probability ratio
when its values are outside of the interval [1 − ε, 1 + ε]. The minimum of the the clipped and unclipped
objective is finally taken so that the final objective is a lower bound of the unclipped objective. This way,
the change in probability ratio is ignored when it would make the objective improve and on the contrary, it
is included when it makes the objective worse [5].

Figure 1.16: Main objective’s behavior for positive and negative advantages [5].

While the objective LCLIP is used by the policy network so that the optimal policy π∗ is discovered, for
the value network, a standard mean square error loss LV F (θ) can be used like in the previous algorithms.
Furthermore, in order to ensure sufficient exploration, the objective can further be augmented by adding
an entropy bonus. If policy and value networks share a number of parameters, the overall objective must
combine both the policy objective and the value function error term. The complete formula is presented in
the equation above:

LCLIP+V F+S(θ) = Ê
[
LCLIP (θ)− c1LV F (θ) + c2S[πθ](st)

]
where c1, c2 are coefficients and S denotes the entropy bonus.

Lastly, PPO algorithm can take advantage of multiple agents acting in the same environment like the A3C
algorithm. Massively parallel approaches can yield state of the art results while increasing the stability and
the convergence speed of the learning process [22]. The complete algorithm, as presented in the original
paper utilizing multiple agents, is illustrated in algorithm section 10.

Algorithm 10 Proximal Policy Optimization

• For episode=1,2,... :

– For actor=1,2,...,N :

∗ Run policy πθold in environment for T timesteps

∗ Compute advantage estimates A1, ..., AT

– Optimize L with respect to θ, with K epochs and minibatch size M ≤ NT
– θold ← θ

26

Chapter 2

Training Deep Reinforcement
Learning Agents

2.1 Main Development Tools

This section will cover the two main tools used for training Deep Reinforcement Learning agents, OpenAI
Gym and Pytorch. In short, OpenAI Gym is a library developed by OpenAI team for providing easy access
to a collection of environments for the agents to interact. Their work enables engineers and researchers to
focus their attention on the training algorithms than designing the environments. Pytorch on the other hand
is a machine learning library developed by Facebook for creating and training neural network architectures.

2.1.1 OpenAI Gym

In this previous chapter, there has been a thorough presentation of the theoretical background regarding
reinforcement learning, neural networks and deep reinforcement learning algorithms. In every algorithm
presented, the environment was always taken for granted. In reality, when trying to train an agent to
interact properly with an environment, a detailed simulation of this environment must be created because
having a robot agent to learn through trial and error in the real world is obviously not an efficient idea
(regarding both time and money).

A researcher, when trying to develop a new algorithm to achieve state of the art results or a student, when
trying to introduce himself in the world of reinforcement learning, should have to deal with the learning
paradigm and the algorithms rather than the design of a simulation of an environment. For this reason,
OpenAI has created a toolkit that enables an individual to deal with reinforcement learning exclusively.
This toolkit is OpenAI Gym and it enables the development and comparison of reinforcement learning
algorithms. Gym provides a growing collection of benchmark environments that expose a common and easy
to use interface for the interaction with them [23]. Indicatively, three environments from the entire collection
are illustrated in figure 2.1. On the left, the Cart Pole problem is illustrated where the agent’s goal is to try
to balance the pole by moving either left or right. In the center, the well known Atari 2600 Assault game is
presented where the agent’s goal is to play the game successfully. Finally, on the right, the agent’s goal is to
learn control the ant by making it walk forward as fast as possible.

As already stated, all the environments expose a common interface for the agent to interact with them.
The API is simple and its fundamental component is the environment object returned by make() function
which expects as input the name of the environment to be created. Afterwards, the following methods of
the environment object are used for the interaction and the development [24]:

• reset() : resets the environment by returning an initial state

• render() : responsible for rendering the next frame of the simulation

• step() : takes an action as an input and returns the next state, the received reward, a flag that
notifies whether a terminal state has been reached and info useful for debugging

27

National Technical University of Athens Training & Acceleration of Deep RL Agents

Figure 2.1: Cart pole problem (left), Atari 2600 Assault game (center), Ant (right).

The action space of the environment can been obtained via the action space attribute that also supports
random sampling an action from it via the sample() method. Furthermore, it is possible to obtain the state
space via the observation space attribute.

To summarize, in the code section above, an indicative example of the API’s usage is presented for
performing random actions in the Cart-Pole environment until a terminal state is reached.

1 import gym

2

3 # Create CartPole environment

4 env = gym.make('CartPole-v0')
5 env.reset()

6 done = False

7

8 while not done:

9 env.render()

10 action = env.action_space.sample()

11 state, reward, done, info = env.step(action)

2.1.2 Pytorch

Another important aspect of the present thesis is neural networks. Theoretical background regarding
neural networks was presented in the previous chapter and it has been shown the a lot of matrix math is
involved in their operation. Furthermore, as seen in paragraph 1.3.4, training of multilayer neural networks
(or any other type of neural layers they posses), involves the computation of derivatives from the output
towards the input of the network for making proper correction to each neuron’s parameters. This process is
known as the back propagation algorithm.

For this purpose, automatic differentiation libraries have been developed that are responsible for tracking
the performed computations and later replays them backward to compute the gradients. This way, any kind
of neural network architecture can be created and the library is responsible for calculating the gradients for
the training process.

Pytorch is one of these libraries and in the last years it has been the most popular choice by engineers in
either industry and academy [25]. The fundamental block of the library’s operation is the Tensor. A tensor
is basically a multidimensional rectangular array of numbers similar to the well known Numpy arrays. A
tensor can hold information regarding the input to a neural network, the output of a neural layer or the
parameters of a neural layer. Operations between Pytorch tensors can be computed on classic CPUs but
also on hardware accelerators like GPUs. Overall, three main modules constitute the whole operation of the
framework [26]:

28

National Technical University of Athens Training & Acceleration of Deep RL Agents

• Autograd module : as already stated, this module is responsible for tracking the performed
operations between tensors and later replays them backward in order to compute the gradients [27].

• Optim module : this module implements the optimization algorithms (Gradient Descent, Adam
e.t.c.) that leverage the computed gradients in order to update the parameters of a neural network.

• nn module : this module provides a user friendly way of defining network architectures (computation
graphs) that later autograd can perform operation tracking.

For now, no example code will be given for training a neural network in Pytorch as it is not as compact
as using the OpenAI Gym API in the previous paragraph but numerous code sections leveraging Pytorch to
train Deep Reinforcement Learning agents will be later presented.

2.2 Deep Reinforcement Learning Framework

As part of the present thesis, there has been an attempt to create a framework implementing four different
deep reinforcement learning algorithms the theory of which has been presented in the first chapter. The goal
of the whole implementation is to allow the training of different agents for various environments (having
either discrete or continuous action spaces) without the need of re-implementing the whole or part of an
algorithm and by just plugging in the desired neural network model and the environment object that exposes
the same API that openAI gym environments expose.

In this section, a general description of the frameworks operation and usage will be presented showing
how to create a neural network model and train an agent using the selected algorithm. The complete
code regarding the implementation of each algorithm will be presented in the appendix while the complete
repository for the framework can be found here.

2.2.1 Neural Network Definition

For each implemented algorithm to work, two arguments must be passed to its initialization function, the
neural network model and the environment that the agent will operate in. In order for a neural network
object to be valid, it must implement three essential methods: infer step(), infer batch() & infer action().
Each method’s functionality is described bellow:

• infer step() : This method expects as input a single state that the agent lies in. After performing the
calculations, it outputs : the Q-value of the state, and the selected action in case of a deepQ-network,
the action distribution (policy), the selected action and the value of the state in case of an actor critic
model or the action distribution (policy) and the selected action in case of a policy network utilized
for REINFORCE algorithm.

• infer batch() : Like infer step() but it does not return a selected action and it operates in a batch of
states, therefore returning a batch of distributions or values depending on the model.

• infer action() : This method operates on a single state and returns just the selected action of the
model. It is used for evaluation purposes.

That said, the creation of a neural network that will be used in the REINFORCE algorithm for a discrete
action space environment having a continuous valued four-dimensional observation space is illustrated in
the following code section. The network’s architecture does not concern us for the time as the goal is the
understanding of the implementation of the methods mentioned above.

1 import torch

2 import torch.nn as nn

3

4 class SimpleReinforce(nn.Module):

5

29

https://github.com/kostasang/MsC_Diploma

National Technical University of Athens Training & Acceleration of Deep RL Agents

6 def __init__(self):

7 super(SimpleReinforce, self).__init__()

8 self.model = nn.Sequential(

9 nn.Linear(4, 32),

10 nn.ReLU(),

11 nn.Linear(32, 16),

12 nn.ReLU(),

13 nn.Linear(16,2),

14 nn.Softmax(dim=1)

15)

16

17 def infer_step(self, x):

18 act_prob = self.model.forward(x)

19 dist = torch.distributions.Categorical(probs=act_prob)

20 action = dist.sample().item()

21 return dist, action

22

23 def infer_batch(self, x):

24 act_prob = self.model.forward(x)

25 dist = torch.distributions.Categorical(probs=act_prob)

26 return dist

27

28 def infer_action(self, x):

29 act_prob = self.model.forward(x)

30 dist = torch.distributions.Categorical(probs=act_prob)

31 action = dist.sample().item()

32 return action

As it can be seen, Pytorch’s distributions are heavily used. Given a selected action, the probability for
this specific function can be obtained via the distribution with using: dist.log prob(action).

2.2.2 Training the Agent

Having defined the model that implements the three methods that are required from the framework, one
can simply train the network using one of the implemented by the framework algorithms. The following
code section illustrates how the neural network defined above can be trained using REINFORCE algorithm:

1 import gym

2 import matplotlib.pyplot as plt

3 from models import SimpleReinforce

4 from diploma_framework.algorithms import Reinforce

5

6 env = gym.make('CartPole-v0')
7 model = SimpleReinforce()

8

9 alg = Reinforce(environment=env,

10 model=model,

11 lr=1e-03,

12 max_frames=150_000,

13 num_steps=200,

14 gamma=0.99)

15

16 rewards_rein = alg.run(eval_window=1000,

17 n_evaluations=10,

18 early_stopping=False,

30

National Technical University of Athens Training & Acceleration of Deep RL Agents

19 reward_threshold=197.5)

20

21 alg.save_model('models/trained_reinforce.joblib')

2.3 Cart Pole Problem

This section constitutes a first attempt to benchmark the algorithms presented in section 1.4 on Cart-Pole
environment. In the following paragraphs there will be a brief description of the specific environment and
then the performance of the different algorithms will be discussed.

2.3.1 The CartPole Environment

Cart pole environment can be considered the ”Hello World” problem of reinforcement learning. As de-
scribed in documentation, the environment simulates a pole which is attached by an un-actuated joint to a
cart, which moves along a frictionless track. The pendulum starts upright, and the goal is to prevent it from
falling over. An illustration of the environment can be seen in figure 2.2.

Figure 2.2: Cart pole environment.

After obtaining one environment instance using env = gym.make(’CartPole-v0’), one can check the en-
vironment’s observation space and action space using env.observation space, env.action space respectively.
For the observation space, each state consists of four components that are described in the table 2.3.1.

Num Observation Min Max
0 Cart Position -4.8 4.8
1 Cart Velocity -Inf Inf
2 Pole Angle ∼-0.418 rad ∼0.418 rad
3 Pole Tip Velocity -Inf Inf

Table 2.1: Observation space of Cart Pole environment.

It should be noted that one can use the raw pixels from the rendered environment as the observations for
training an agent instead of the provided 4-dimensional observation vector. For the solution presented in
the current section, the 4-dimensional observation vector will be used.

Regarding the action space for the specific environment, there are two discrete actions encoded with 0 and
1. Action 0 is translated into moving the cart to the left and action 1 is translated into moving the cart to
the right.

Termination of the episode comes with the following conditions :

• Pole angle is more than 12◦ or less than −12◦.

31

National Technical University of Athens Training & Acceleration of Deep RL Agents

• Center of the cart reaches the limits of display (more than 4.8 units away from the center).

• Episode length is greater than 200 frames.

For every step that is taken that leads the pole to an angle within the above limits and the cart again
within the above limits, a reward of +1 is received. In case a step leads the cart or the pole to an unwanted
state then a reward of 0 is received. Of course, at the 200th frame the game is won.

2.3.2 DQN Agent

The first algorithm to be tested on Cart Pole environment is DQN. Theoretical background about DQN
was described in section 1.4 and the detailed implementation in Python can be found in appendix and also in
the provided Github repository. In order to evaluate the algorithm, during the training process the average
cumulative reward is calculated periodically after a certain number of frames has been seen by the agent.
For every experiment from now on, the average cumulative reward of 10 episodes will be calculated every
1000 frames. It is necessary to average out the cumulative rewards on a number of episodes in order for the
related curves to be smooth and provide more information.

In case we were not interested about comparing the performance of different deep reinforcement learning
algorithms, we would initiate any attempt to train an agent with early stopping parameter set to True. This
way, when the stopping criteria are met (in case of the Cart Pole environment, having an agent that returns
an average cumulative reward of 200 after the evaluation), the training process would terminate. Although,
because we wish to compare the performance and the stability of different algorithms, the training process
will not be terminated upon certain stop criteria are met, but instead the algorithm will be left to reach
a maximum number of frames seen by the agent. For DQN and every algorithm after that, the maximum
number of frames seen by an agent is set to 150,000.

As Cart Pole environment can be considered as the ”hello world” problem of reinforcement learning, the
network that will be used for DQN and the rest of the algorithms is a simple feed-forward neural network
without great complexity. In more detail, the network used in the present task consists of 2 hidden layers of
neurons and the output layer. Each neuron in the hidden layers uses a ReLU activation function. Definition
of the model is presented in the following code section.

1 import torch

2 import torch.nn as nn

3

4 class SimpleDQN(nn.Module):

5

6 def __init__(self, n_states, n_actions):

7 super(SimpleDQN, self).__init__()

8 self.model = nn.Sequential(

9 nn.Linear(n_states, 32),

10 nn.ReLU(),

11 nn.Linear(32,16),

12 nn.ReLU(),

13 nn.Linear(16,n_actions)

14)

15

16 def infer_step(self, x):

17 qval = self.model(x)

18 action = qval.detach().argmax().item()

19 return qval, action

20

21 def infer_batch(self, x):

22 return self.model(x)

23

24 def infer_action(self, x):

32

National Technical University of Athens Training & Acceleration of Deep RL Agents

25 return self.model(x).detach().argmax().item()

26

27 model = SimpleDQN(4, 2)

It is true that deep reinforcement learning algorithms are really sensitive to the selection of their hyper-
parameter’s values. In case of the current environment, a really quick trial and error search lead to selection
of the hyperparameters presented in table 2.2.

Parameter Value Parameter Value
sync freq 1000 epsilon start 1

lr 10−3 epsilon end 0
batch size 128 epsilon decay 250

max frames 150000 gamma 0.9

Table 2.2: Selected hyperparameters used for DQN algorithm on Cart Pole environment.

Running the algorithm and logging the cumulative rewards after the selected number of frames as described
above leads to figure 2.3.

Figure 2.3: Average cumulative rewards during DQN agent training.

It is clear that the agent immediately starts learning. The first evaluation happens at the 1000th frame
with the cumulative reward being fairly low signifying that he agent still makes random moves leading the
pole to fall quickly since a reward of about 25 is gained. The situation changes after the 3000th frame where
the agent seems to already master the game with the evaluation returning and average cumulative reward of
200 after averaging out the rewards of 10 different episodes. As the CartPole-v0 environment considers the
problem solved after 200 frames of not losing (i.e. a cumulative reward of 200), the agents seems to already
have learned how to win the game. The overall training process that terminates after 150,000 frames lasts
3 minutes and 30 seconds.

As already stated at DQN algorithm’s theoretical background, the training process seems to lack stability.
Having the early stopping feature of the process disabled, the process carries on even after the agent seems to
be capable of winning the game. As the process carries on, it appears that the agent has severe sudden losses
of performance. For example, around the 40000th frame, the agent seems to have completely forgotten how
to ”play the game”. The same behavior appears along the entire training process with sudden and severe
performance drops. This is the main problem that DQN algorithm faces, named ”Catastrophic Forgetting”.

On the other hand, although catastrophic is a serious problem, it can easily be avoided by enabling the
early stopping feature and terminating the process after a certain average cumulative reward is achieved. This

33

National Technical University of Athens Training & Acceleration of Deep RL Agents

can certainly be done as we have apriori knowledge of the cumulative reward of a won episode. However,
there are environments that such information is not known or cannot be known. By enabling the early
stopping feature, DQN algorithm seems to have a fast convergence.

2.3.3 REINFORCE Agent

Moving on, we evaluate REINFORCE algorithm for Cart Pole problem. Once again, the neural network
that is used is a simple feed forward network without great complexity. Again, it consists of 2 hidden layers
and one output layer consisting of 32, 16 and 2 neurons respectively. Because the network will act as a
parameterization of the policy function, which outputs the probabilities of each action, a softmax activation
function is applied at the output layer while the rest of the layers have a common ReLU activation function.
The definition of the model is presented in the following code section:

1 import torch

2 import torch.nn as nn

3

4 class SimpleReinforce(nn.Module):

5

6 def __init__(self):

7 super(SimpleReinforce, self).__init__()

8 self.model = nn.Sequential(

9 nn.Linear(4, 32),

10 nn.ReLU(),

11 nn.Linear(32, 16),

12 nn.ReLU(),

13 nn.Linear(16,2),

14 nn.Softmax(dim=1)

15)

16

17 def infer_step(self, x):

18 act_prob = self.model.forward(x)

19 dist = torch.distributions.Categorical(probs=act_prob)

20 action = dist.sample().item()

21 return dist, action

22

23 def infer_batch(self, x):

24 act_prob = self.model.forward(x)

25 dist = torch.distributions.Categorical(probs=act_prob)

26 return dist

27

28 def infer_action(self, x):

29 act_prob = self.model.forward(x)

30 dist = torch.distributions.Categorical(probs=act_prob)

31 action = dist.sample().item()

32 return action

REINFORCE is executed using the set of hyperparameter values presented in table 2.3.

Parameter Value Parameter Value
lr 10−3 num steps 200

max frames 150000 gamma 0.99

Table 2.3: Selected hyperparameters used for REINFORCE algorithm on Cart Pole environment.

The plot of the logged cumulative rewards plotted after the training process is completed is illustrated in
figure 2.4.

34

National Technical University of Athens Training & Acceleration of Deep RL Agents

Figure 2.4: Average cumulative rewards during REINFORCE agent training.

Once again, it is clear that the agent goes through a successful learning process as the average cumulative
reward increases and finally reaches the ultimate goal of 200 therefore winning the game. Convergence
speed is clearly slower compared to that of DQN but the overall training process does not suffer from severe
performance drops although it still is not stable. Completion of the training process after 150,000 episodes
lasts 1 minute and 33 seconds, which is significantly faster compared to DQN.

2.3.4 A3C Agent

A3C algorithm belongs in the Actor Critic class of methods utilizing two neural networks to parameterize
both the policy function with the actor and the value function with the critic. For that reason it is necessary to
implement two neural networks, one to be the actor and another one to be the critic. For Cart Pole problem,
as before, we define two minimalistic neural networks without great complexity. The actor network, consists
of 2 hidden layers and the output layer.

As before, a ReLU activation function is applied to the output of each hidden layer and a softmax function
at the output of the output layer. The layers consist of 25, 50 and 2 neurons respectively. Regarding the critic
network, since the actor’s first layers learn a representation of the state space, we use this representation for
the critic network as well. This means the both the actor and the critic share the first two layers. However,
using Pytorch’s detach() method, we detach from the computation graph the output of the shared layers
when feeding it to the rest of the critic network in order to prevent the critic from getting involved with the
parameter updates of the shared layers. That said, critic’s unique layers are two, a hidden layer composed
by 25 neurons and the output layer containing simple one neuron. The definition of the model can be found
in the following code section:

1 import torch

2 import torch.nn as nn

3

4 class ActorCritic(nn.Module):

5

6 # Define double-headed model, one

7 # head for actor, another one for critic

8

9 def __init__(self):

10 super(ActorCritic, self).__init__()

11 self.l1 = nn.Linear(4,25)

12 self.l2 = nn.Linear(25, 50)

35

National Technical University of Athens Training & Acceleration of Deep RL Agents

13 self.actor_lin1 = nn.Linear(50,2)

14 self.l3 = nn.Linear(50,25)

15 self.critic_lin1 = nn.Linear(25,1)

16

17 def forward(self, x):

18 y = F.relu(self.l1(x))

19 y = F.relu(self.l2(y))

20 actor = F.log_softmax(self.actor_lin1(y), dim=1)

21 c = F.relu(self.l3(y.detach()))

22 critic = self.critic_lin1(c)

23 return actor, critic

24

25 def infer_step(self, x):

26 action_probs, value = self.forward(x)

27 dist = torch.distributions.Categorical(logits=action_probs)

28 action = dist.sample().item()

29 return dist, action, value

30

31 def infer_batch(self, x):

32 action_probs, value = self.forward(x)

33 dist = torch.distributions.Categorical(logits=action_probs)

34 return dist, value

35

36 def infer_action(self, x):

37 dist, _ = self.forward(x)

38 dist = torch.distributions.Categorical(logits=dist)

39 return dist.sample().cpu().numpy()[0]

A3C is executed using the set of hyperparameter values presented in table 2.4. It must be noted the
actor weight and critic weight parameters refer to the weight multiplied with the losses of two networks
which are later summed for the calculation of the total loss to be minimized.

Parameter Value Perparameter Value
n workers 32 actor weight 1

lr 10−3 critic weight 0.1
max frames 150000 gamma 0.99
num steps 200

Table 2.4: Selected hyperparameters used for A3C algorithm on Cart Pole environment.

The plot of the logged cumulative rewards plotted after the training process is completed is illustrated in
figure 2.5. Once again, it is clear that the agent progressively learns to play the game and finally masters
is achieving an average cumulative reward of 200.Compared to the two previous methods, A3C seems to
provide really stable training as there are no performance drops after a specific point. Furthermore, due to
its parallel nature, utilizing 32 different workers to explore the environment in simultaneously, the training
process achieves the illustrated results in just 1 minute and 20 seconds. However in case early stopping
feature was enabled, the converge of the algorithm would not be that fast as the network managed to master
the game after seeing approximately 80,000 frames.

36

National Technical University of Athens Training & Acceleration of Deep RL Agents

Figure 2.5: Average cumulative rewards during A3C agent training.

2.3.5 PPO Agent

The final experiment that is conducted, is training a PPO agent. PPO is considered an Actor Critic method
and it supports the use of multiple parallel workers. However, the current implementation of PPO involves
exactly one worker. For a more fair comparison with A3C, the same actor and critic neural networks are
used that are presented in the last code section. The algorithm is executed using the set of hyperparameter
values presented in table 2.5.

Figure 2.6: Average cumulative rewards during PPO agent training.

In figure 2.6, the plot of the logged cumulative rewards is illustrated. Compared to A3C’s evaluation
figure, PPO seems to have a very fast convergence mastering the game at approximately 20,000 frames.
Although performance drops do exist during the rest of the training process, they are immediately corrected
with the agent returning to ”master” performance collecting a cumulative reward of 200. However, since the
implementation of PPO does not involve multiple parallel workers, the training time is significantly greater
than that of A3C taking 6 minutes and 32 seconds to complete the overall process.

37

National Technical University of Athens Training & Acceleration of Deep RL Agents

Parameter Value Perparameter Value
lr 10−3 gamma 0.99

batch size 4 lamb 1
epochs 4 actor weight 1

max frames 150000 critic weight 0.1
num steps 150 entropy weight 0.001
clip param 0.2

Table 2.5: Selected hyperparameters used for PPO algorithm on Cart Pole environment.

2.3.6 Overall Comparison

The comparison of the four different algorithms that are used to train the agent is really interesting. In
figure 2.7, the evaluated average cumulative rewards for different algorithms are illustrated. The plot on the
right illustrates the same results with DQN performance excluded to make it more easily readable.

Figure 2.7: Performance comparison of different algorithms.

Having put the four different performance curves on the same plot, the superiority of A3C and PPO in
the Cart Pole environment is clear. A3C produces a really stable training while PPO although being a little
bit more unstable has the fastest convergence. Another useful plot is that of training duration for each
algorithm which is illustrated in figure 2.8.

Figure 2.8: Training duration for 150,000 frames.

Training duration results are expected. A3C is the fastest approach at it utilizes parallel workers that
simultaneously explore the environment and update the network’s parameters. On the other hand, PPO is

38

National Technical University of Athens Training & Acceleration of Deep RL Agents

the slowest as the implementation that is used does not utilize parallel workers like A3C and also, for each
time gradient descent is applied to the networks’ parameters, it is applied for multiple epochs (4 for this
specific example) and thus, it increases the training time. Furthermore, the fact that PPO has to optimize
two networks, the actor and the critic, instead of one like DQN and REINFORCE, is another reason that
leads to increased training duration.

2.4 Exploring More Complex Environments - DuckieTown

In section 2.3, a brief introduction to OpenAI’s Cart Pole environment was made and then four different
deep reinforcement learning algorithms were evaluated. It is true that Cart Pole environment is a fairly
simple case. Although its observation space is continuous, it has low dimensionality and a discrete action
space and thus, no complex neural network must be utilized. In the present section, we will deal with a
more complex problem using a more difficult environment called DuckieTown and we will utilize a more
complex neural network. In the following paragraphs, there will be a description of the environment and the
performance of PPO algorithm used for training the agent will be presented.

2.4.1 The DuckieTown Environment

DuckieTown environment [28] is a self-driving car simulator exposing an API which is the same as Ope-
nAI’s Gym. DuckieTown offers a wide range of tasks, from simple lane-following to full city navigation
with dynamic obstacles enabling the training and experimentation with reinforcement learning agents. An
illustration of the environment with an agent siting in a random position can be seen in figure 2.9.

Figure 2.9: DuckieTown environment.

While the previously studied CartPole environment’s state consisted of vectors containing four elements
describing cart position, cart velocity, pole angle and pole tip velocity, DuckieTown’s states are the actual
RGB images that are rendered and are visible to human eyes.

As far as the action space is concerned, the original environment has a continuous action space. This
means that instead of giving discrete values to step() method that encode a specific action, continuous
values are given that represent an actual quantity. In case of DuckieTown, an action is a two dimension
vector a = [a1, a2] where ai is the angular velocity of each wheel of a robot moving in the environment and
ai ∈ [−1, 1].

Regarding the rewards, DuckieTown implements a complex reward function that returns higher values
when an agent has the proper position in the right lane and moves with the highest possible speed simulta-
neously. Reward decreases as the agent does not have the proper position in lane (e.g. it is not at the center
of it) and it becomes negative when the agent collides with an obstacle or leaves the road.

39

National Technical University of Athens Training & Acceleration of Deep RL Agents

2.4.2 PPO Agent Training

In order to create an intelligent agent able to drive in DuckieTown, Proximal Policy Optimization algorithm
is used. This algorithm was chosen due to its fast convergence and its stable nature, characteristics that
were demonstrated in CartPole environment. Although PPO’s behaviour was really desirable in CartPole
problem, this does not necessarily mean that it will be the optimal training algorithm for DuckieTown as well.
However, we proceed with PPO primary for research reasons since approaches utilizing off-policy Q-Learning
already exist [29].

In order to perform proper training on DuckieTown environment, there is one major change that needs
to be implemented to basic PPO algorithm that was used on CartPole environment. During training on
CartPole, we consider as a state an one dimensional vector that contains information about the pole’s and
the cart’s velocity and position. Since the state contains information about velocity and not just positions,
previous states can be considered independent of the current state. We should recall what was presented in
paragraph 1.2.2, that the learning problem that Reinforcement Learning deals with is described using the
Markov Decision Process model. MDP model makes an important assumption, that at each step, actions
and rewards depend only on the current state and not on the entire history of the states and actions taken.
If we move to DuckieTown, states are just RGB frames that literally contain what the agent sees thought
its camera sensor. At this moment we should pause and think about the following scenario. Could a human
decide whether he should turn a car left or right, accelerate or break if just a single frame of a camera
installed on a car was presented to him? Clearly, a single frame does not hold any information about car’s
velocity or acceleration, which is useful information in order to properly drive the car. That said, a state,
at the form that DuckieTown outputs it is not independent of the previous states and does not fulfill the
Markovian assumption that needs to be valid in order for the agent to be trained properly. For this reason,
PPO is redesigned and instead of using frames as the states, a state is considered to be multiple frames
stacked together forming a tensor of dimension (1 × # stacked frames * 3 × height × width), where 1 is
the size of the batch containing exactly one state and 3 is the number of channels in each frame (RGB).
Stacking multiple frames together is a standard way to make the Markovian assumption valid [29] since the
dependence between frames that have a time difference greater than the size of the stack is much weaker.
We will refer to the new implementation of PPO algorithm that used stacked frames as a state as ”Stacked
Frame PPO”. The implementation can be found with the rest of the algorithms in the appendix.

Setting up the environment

As described in the previous paragraph, DuckieTown original environment has a continuous action space.
However, the deep reinforcement algorithms that are already implemented in the framework operate on
environments with discrete actions spaces. For this reason, it is necessary to convert the environment’s
continuous action space to discrete if we wish to use the same implementations of deep reinforcement learning
algorithms.

Hopefully, doing such a conversion is fairly easy by using OpenAI’s gym wrappers. Wrappers allow us
to perform transformations of action spaces and rewards. As in Péter Almási et al approach with Deep
Q-Learning, the action space is turned to discrete with each action mapped to specific values of angular
velocities for each wheel. The same mappings are used as those presented in [29]. In table 2.6 details
regarding those mappings are presented.

Discrete
action

Left wheel
angular velocity

Right wheel
angular velocity

Decription

0 0.04 0.4 Turn left
1 0.4 0.04 Turn right
2 0.3 0.3 Move forward

Table 2.6: Mappings of discrete actions to continuous values of wheel angular velocities.

In the following code section, the definition of the wrapper used to implement these mappings in the actual
environment is presented.

40

National Technical University of Athens Training & Acceleration of Deep RL Agents

1 import gym

2 from gym import spaces

3 import numpy as np

4

5 class DiscreteWrapper(gym.ActionWrapper):

6 """

7 Duckietown environment with discrete actions (left, right, forward)

8 instead of continuous control

9 """

10

11 def __init__(self, env):

12 gym.ActionWrapper.__init__(self, env)

13 self.action_space = spaces.Discrete(3)

14

15 def action(self, action):

16 # Turn left

17 if action == 0:

18 vels = [0.04, 0.4]

19 # Turn right

20 elif action == 1:

21 vels = [0.4, 0.04]

22 # Go forward

23 elif action == 2:

24 vels = [0.3, 0.3]

25 else:

26 assert False, "unknown action"

27 return np.array(vels)

28

29 def reverse_action(self, action):

30 raise NotImplementedError()

Apart from actions, in order to follow the same reward distribution that is used in Péter Almási’s et al
approach, a wrapper for the rewards also needs to be created. The defined wrapper is presented in the
following code section. The final reward function is basically the following:

reward =

10 · speed · dot dir − 100 · dist+ 400 · col pen ,when robot in correct lane
400 · col pen ,when robot in wrong lane
−40 ,when robot leave the track

where speed is the speed of the robot in the simulator, dot dir is calculated as the dot product of the
vectors pointing towards the heading of the robot and the tangent of the curve, dist is the distance from the
center of the right lane, and col pen is a penalty for collisions.

1 class DtRewardWrapper(gym.RewardWrapper):

2 """

3 Wrapper for modifying rewards to follow what is implemented in

4 https://arxiv.org/abs/2009.11212

5 """

6 def __init__(self, env):

7 super(DtRewardWrapper, self).__init__(env)

8

9 def reward(self, reward):

10 if reward == -1000:

11 reward = -40

12 elif reward < 0:

41

National Technical University of Athens Training & Acceleration of Deep RL Agents

13 reward = reward * 10

14 elif reward >=0:

15 reward = reward * 10

16 return reward

Finally, in order to apply these transformations defined by the wrappers to a DuckieTown environment,
one has simply to pass an environment instance throught the wrapper classes like presented bellow:

1 env = DtRewardWrapper(env)

2 env = DiscreteWrapper(env)

Creating the model

Having set up the environment’s important details, it is time to define the models the will be used, the
actor network and the critic network. Since the state that will be the input to the models will be stacked
images, a simple feed forward network consisting of plane dense layers cannot be used. Instead, our networks
will be convolutional neural networks able to process images and discover useful features in them.

As presented in Péter Almási’s et al approach, the frames coming from the environment pass through an
image preprocessing process. Preprocessing involves the following steps:

1. Resizing : While the original DuckieTown environment’s states are frames with size 480× 640 (height
× width), in order to reduce inference time of the models the environment is tweaked to return
frames with size 60× 80.

2. Cropping : The part of the image that does not contain useful information is cropped. The remaining
image has a size of 40× 80 and contains everything bellow the horizon.

3. Normalization : Pixel RGB values are scaled in the range of [0,1] for better training results.

Contrary to Péter Almási’s et al approach, no color segmentation is performed.
Given that the model will operate in stacked frames as described above, the final input to the model has

a shape of 15× 40× 80. In order to process the stacked frames, a convolutional core is used that it is shared
between the actor and the critic heads. The convolutional core’s output is also detached when passed to
the critic’s head input so that its parameters are tuned based only on actor’s output. Convolutional core’s
architecture is the same as Péter Almási’s et al approach [29]. Complete architecture of both actor and
critic are illustrated in figure 2.10. In total, actor and critic together contain 4,558,436 trainable parameters.
The model is defined in the following code section, in a class that implements the necessary methods for the
model object to be plugged in the deep reinforcement learning framework’s Stacked Frame PPO algorithm.

1 import torch

2 import torch.nn as nn

3 from torchvision import transforms as T

4 from torch.nn import functional as F

5

6 class CNNActorCritic(nn.Module):

7

8 def __init__(self, n_output, device):

9

10 super(CNNActorCritic, self).__init__()

11

12 self.device = device

13 self.transform = T.Compose([

14 T.Normalize(mean=[0]*15, std=[255]*15), # Turn input to 0-1 range from 0-255

15])

42

National Technical University of Athens Training & Acceleration of Deep RL Agents

16

17 self.conv_core = nn.Sequential(

18 nn.Conv2d(15, 32, 3),

19 nn.LeakyReLU(),

20 nn.MaxPool2d(2, 2),

21 nn.Conv2d(32, 32, 3),

22 nn.LeakyReLU(),

23 nn.MaxPool2d(2, 2),

24 nn.Conv2d(32, 64, 3),

25 nn.LeakyReLU(),

26 nn.MaxPool2d(2, 2),

27 nn.Flatten(),

28).to(self.device)

29

30 self.actor_head = nn.Sequential(

31 nn.Linear(1536,1024),

32 nn.LeakyReLU(),

33 nn.Linear(1024,512),

34 nn.LeakyReLU(),

35 nn.Linear(512,256),

36 nn.LeakyReLU(),

37 nn.Linear(256,128),

38 nn.LeakyReLU(),

39 nn.Linear(128, n_output)

40).to(device=self.device)

41

42 self.critic_head = nn.Sequential(

43 nn.Linear(1536,1024),

44 nn.LeakyReLU(),

45 nn.Linear(1024,512),

46 nn.LeakyReLU(),

47 nn.Linear(512,256),

48 nn.LeakyReLU(),

49 nn.Linear(256,128),

50 nn.LeakyReLU(),

51 nn.Linear(128, 1)

52).to(device=self.device)

53

54 def forward(self, x):

55 x = torch.permute(x, (0, 3, 1, 2)) # Place channel axis in correct position

56 x = self.transform(x) # Apply transform

57 x = T.functional.crop(x, top=20, left=0, height=40, width=80)

58 x = x.to(device=self.device)

59 visual_repr = self.conv_core(x).squeeze(-1).squeeze(-1) # Calculate ResNet output

60 return F.log_softmax(self.actor_head(visual_repr), dim=1).to('cpu'),
self.critic_head(visual_repr.detach()).to('cpu') # Calculate policy probs and value↪→

61

62 def infer_step(self, x):

63 action_probs, value = self.forward(x)

64 dist = torch.distributions.Categorical(logits=action_probs)

65 action = dist.sample().item()

66 return dist, action, value

67

68 def infer_batch(self, x):

69 action_probs, value = self.forward(x)

70 dist = torch.distributions.Categorical(logits=action_probs)

43

National Technical University of Athens Training & Acceleration of Deep RL Agents

71 return dist, value

72

73 def infer_action(self, x):

74 dist, _ = self.forward(x)

75 dist = torch.distributions.Categorical(logits=dist)

76 return dist.sample().cpu().numpy()[0]

As it can be seen, scaling and cropping of the original input frames are performed during the forward pass
of the model.

Figure 2.10: Model architecture.

Training precedure

Having Stacked Frame PPO implemented, preprocessing steps included in model’s forward pass and the
model architecture defined, we initiate the training of an agent on DuckieTown. The map is the empty loop
and the goal of the agent is simply to learn to drive the vehicle properly by following the proper lane. In
empty loop there are no pedestrians or other vehicles that the agent can collide with. Hyperparameters
chosen for the Stacked Frame PPO algorithm for the training procedure are presented in table 2.7. Every
training loop was run on a single AMD Ryzen 7 3700X 8-Core CPU and no hardware accelerator was used.
On the contrary, Péter Almási’s et al approach claims to have used an NVIDIA DGX Workstation, which
contains 4 pieces of V100 GPUs.

Parameter Value Parameter Value
lr 2× 10−5 gamma 0.99

batch size 8 lamb 1
epochs 3 actor weight 1

max frames 800,000 critic weight 0.5
num steps 500 entropy weight 0.01
clip param 0.2 stacked frames 5

Table 2.7: Selected hyperparameters used for PPO algorithm on DuckieTown environment.

While training, evaluation is performed every 5,000 frames by calculating both the average played frames
and the average cumulative reward of 5 different episodes. Compared to approaches used for CartPole
environment, the number of seen frames after which an evaluation if performed is increased from 1,000 to

44

National Technical University of Athens Training & Acceleration of Deep RL Agents

5,000 and the number of episodes to average is reduced from 10 to 5 in order to decrease the training time.
Furthermore, for the training procedure, early stopping is enabled with a reward threshold of 30,000 and a
frame threshold of 350,000. Given that the environment itself is set up with a maximum number of frames
of 3,500, what will kick in first and terminate the training procedure is the reward threshold. In figure 2.11,
average played frames and average cumulative rewards during the training procedure are illustrated in the
corresponding plots.

Figure 2.11: Average played frames (left) and average cumulative rewards (right) during PPO agent training.

As it can be seen, the agent hits the threshold of an average cumulative reward of 30,000 and the training
process is terminated. The trained model is saved for later use and fine tuning. It is clear that the agent
manages to learn proper behavior since the cumulative reward has increased considerable and the average
played frames have reached 3,500, a number that an agent performing random actions would never manage to
achieve. The achieved average cumulative reward of approximately 32,000 that is finally reached, is managed
after the agent sees 315,000 frames and the whole process takes approximately 3 hours and 15 minutes. The
final model is tested visually in order to confirm that it is capable of properly driving the vehicle. For obvious
reasons, a video of the agent actually driving the vehicle cannot be presented but instead, the model itself
is stored in the present thesis’ repository along with the code for recreating the results.

Since the reward threshold that was used was selected arbitrarily and based on what Péter Almási’s et al
paper has described, training was performed again, this time with the reward threshold set to 50,000. This
was done in order to check whether the model could perform even better with further training or it reached
the cumulative reward limit for the environment and for the given number of max episode length of 3,500.

Figure 2.12: Average played frames (left) and average cumulative rewards (right) during PPO agent training
(increased reward threshold).

45

National Technical University of Athens Training & Acceleration of Deep RL Agents

In figure 2.12, the progress of the training procedure is illustrated again. The maximum cumulative reward
was observed at frame 480,000 reaching approximately 35,000 which is a little more than what was achieved
previously. The overall training procedure presents instabilities with various catastrophic forgetting events
dropping the cumulative reward which is then increased again. The training procedure terminates after a
preset number of frames (800,000) and it lasts approximately 11 hours. As before, the best model was saved
and evaluated visually, exhibiting similar behavior as the previous model.

Apart from training results, it is really worthy to compare the observed training duration with Péter
Almási’s et al approach. As already stated, training on 315,000 frames lasts approximately 3 hours and 15
minutes without the need of any hardware acceleration. In [29], it is stated that training on 500,000 frames
using 4 V100 GPUs lasts approximately 40 hours. Assuming that the implementation of the DQN algorithm
that has been used is proper, this duration difference even when using dedicated hardware accelerators
signifies the superiority of Proximal Policy Optimization algorithm compared to DQN.

46

Chapter 3

Accelerating Deep Learning Models

3.1 Presentation of the Problem

As we have already mentioned in chapter 1, neural networks can act as universal function approximators
[4, 15]. For a neural network to be able to approximate a latent function, it has to contain enough trainable
parameters. As technology progresses and computation power increases, researchers are able to tackle harder
problems using larger neural networks. From trying to identify handwritten digits using simple feed-forward
networks to natural language processing tasks like explaining jokes using 540-billion parameter transformer
models [30], neural networks have proven their capability to excel at various tasks.

While larger architectures are able to solve increasingly more difficult problems, the same increase of
trainable parameters creates new problems. As previously described, each neural network layer can be
described via a matrix multiplication. Therefore, larger models lead to more matrix multiplications with
bigger matrices. This increase in complexity can lead to inference and training that are both power-hungry
and slow.

In chapter 2, we successfully trained a neural network to be able to drive a vehicle within an environment
that provided a simple simulation of city roads. Our model was nowhere near state of the art models used
in NLP tasks containing billion of parameters. It contains approximately 2.3 million trainable parameters
(just the actor) and yet the training process is certainly not an easy task for a basic computer requiring
almost 3 hours. Having the final network and its parameters we can use them in an actual robot that can
actually move autonomously in a real-world recreation of the simulated environment. It is common sense,
that the task of driving is a latency-critical problem. Decisions must be executed instantly since the vehicle
is moving. For example, lets suppose that we have a moving car traveling with a speed of 100 km/hour.
If this car is an autonomous car and a neural network decides about each action the car performs, a 0.2s
latency of the system to perform the calculations that are done by the neural network and decide for the
next action means that the car has moved approximately 5.5 meters without supervision. This distance is
important and can be proven lethal in various scenarios.

Although in our case the neural network is not that complex and the inference duration is less than 0.2s
and the moving robot certainly moves with a speed of less than 100 km/hour, it is an nice test case for
trying to reduce the inference time of the neural network in order to minimize the latency. In the presented
chapter, we well describe every technology used, both software and hardware along with the various steps
that are made in order accelerate the inference of the already trained neural network.

3.2 The ONNX Format

ONNX format stands for Open Neural Network Exchange format and it is an open format built to represent
machine learning models. ONNX defines a common set of operators - the building blocks of machine learning
and deep learning models - and a common file format to enable AI developers to use models with a variety of
frameworks, tools, runtimes, and compilers [31]. ONNX was originally named Toffee and was developed by
the PyTorch team at Facebook. In September 2017 it was renamed to ONNX and announced by Facebook

47

National Technical University of Athens Training & Acceleration of Deep RL Agents

and Microsoft. Later, IBM, Huawei, Intel, AMD, Arm and Qualcomm announced support for the initiative.
The goal of creating a global format for neural network models after defining a common set of operators

is to enable developers to easily move between frameworks at different stages of the development process.
Furthermore, it allows hardware vendors and others to improve the performance of artificial neural networks
of multiple frameworks at once by targeting the ONNX representation.

3.2.1 Converting models to ONNX format

In order to leverage ONNX format’s flexibility to work easily on different hardware and calculate the
speedup each device offers we will start by converting our currently trained model to ONNX format. Since
during inference time every decision is taken from the actor head of the actor-critic neural network, we begin
by isolating the actor in order to perform only the useful computations. The actor model consists of the
convolutional core of the initial actor-critic model which is responsible for extracting a useful representation
for the given stacked frames, and the actor head that contains four different feed-forward layers.

After isolating the actor, torch.onnx module is used in order to convert the Pytorch model into ONNX
format. This module is provided by Pytorch library and is eases the conversion of any Pytorch model. In
the following code section, the conversion step is presented:

1 torch.onnx.export(model, # model being run

2 dummy_input, # model input (or a tuple for multiple inputs)

3 "../models/actor.onnx", # where to save the model (can be a file or file-like object)

4 export_params=True, # store the trained parameter weights inside the model file

5 opset_version=11, # the ONNX version to export the model to

6 do_constant_folding=True, # whether to execute constant folding for optimization

7 input_names = ['input'], # the model's input names

8 output_names = ['output'], # the model's output names

9 dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes

10 'output' : {0 : 'batch_size'}})

The original Pytorch model is stored in the model variable and dummy input contains a dummy input
so that torch.onnx module can trace the graph that represents the neural network. Dynamic axes are the
dimension of the input and the output that can vary, in our case it is the dimension of the batch size which,
in general, can have an arbitrary value. After running the piece of code presented above, the initial Pytorch
model is stored in the actor.onnx file and can be later loaded into any ONNX inference session.

An ONNX inference session is responsible for loading the appropriate model and then perform inference
given numpy arrays as inputs. The following code section contains the definition of the ONNXActor model
that leverages an ONNX inference session in order to perform the forward propagation of the neural network.

1 import torch, onnxruntime, numpy as np

2

3 class ONNXActor():

4 # Implements actor using ONNX runtime

5

6 def __init__(self, onnx_path, providers):

7 # Initiliaze model

8 self.ort_session = onnxruntime.InferenceSession(onnx_path, providers=providers)

9

10 def forward(self, x):

11 # Implements forward pass of model

12 output = self.ort_session.run(None, {'input' : x.numpy().astype(np.float32)})[0]

13 return torch.Tensor(output)

14

15 def infer_action(self, x):

16 # Utilizes torch distributions to return an action

48

National Technical University of Athens Training & Acceleration of Deep RL Agents

17 dist_probs = self.forward(x)

18 dist = torch.distributions.Categorical(logits=dist_probs)

19 return dist.sample().numpy()[0]

As it can be seen, all the computations performed in the forward pass are now handled by the ONNX
runtime session which is initiated when an ONNXActor object is initialized. The providers variable that is
passed to the inference session specifies the hardware that the computations will be performed on. ONNX
supports various platforms, like CUDA and TensorRT for accelerating the inference. We will further analyze
the performance achieved by different providers and the coming paragraphs.

3.3 The Embedded Devices

An embedded system is a computer system that has a dedicated function within a larger mechanical or
electronic system. It is embedded as part of a complete device often including electrical or electronic hardware
and mechanical parts. Because an embedded system typically controls physical operations of the machine
that it is embedded within, it often has real-time computing constraints.

In our case, since the scenario of our problem is to deploy the trained neural network on an actual robot
which will try to navigate through a real-world DuckieTown, we need such a computer system to perform
the necessary computations efficiently and finally move the robot properly through the environment.

In the following paragraphs, the process of deploying the neural network on two different embedded devices
will be described along with the performance boost the is achieved via each devices hardware accelerator. The
first device that will be examined is NVIDIA’s Jetsion Xavier NX and the second device will be Xilinx’ Zynq
UltraScale+ MPSoC ZCU104. Each device’s hardware accelerators will be leveraged in order to decrease
the inference time of the deployed neural network and achieve low-latency autonomous driving.

3.3.1 Jetson Xavier NX

The NVIDIA Jetson Xavier NX Developer Kit constitutes a development board that includes a Jetson
Xavier NX module at its heart. The Jetson Xavier NX module is a small system on module with dimensions
of 70x45mm that manages to deliver 21 TOPS (at 15W or 20W) or up to 14 TOPS (at 10W). It can
run multiple modern neural networks in parallel and process data from multiple high-resolution sensors—a
requirement for full AI systems [6].

Figure 3.1: The Jetson Xavier NX developer kit [6].

49

National Technical University of Athens Training & Acceleration of Deep RL Agents

The Jetson Xavier NX module contains a 6-core NVIDIA Carmel ARM v8.2 64-bit CPU with 6MB L2 and
4MB L3 cache. Its accelerator is a 384-core NVIDIA Volta GPU with 48 Tensor Cores. Finally it contains
8 GB of 128-bit LPDDR4x memory. The developer kit contains USB ports, ethernet port, HDMI and other
modules enabling the communication with peripherals. In figure 3.1 the Jetson Xavier NX developer kit is
presented and in figure 3.2 we can see the Jetson Xavier NX module that lies in the heart of the developer
kit [6].

Figure 3.2: The Jetson Xavier NX module [6].

3.3.2 Xilinx Zynq UltraScale+ MPSoC ZCU104

The Xilinx Zynq UltraScale+ MPSoC ZCU104 evaluation kit enables designers to jumpstart designs for
embedded vision applications such as surveillance, Advanced Driver Assisted Systems (ADAS), machine vi-
sion, Augmented Reality (AR), drones and medical imaging. This kit features a Zynq UltraScale+ MPSoC
EV device with video codec and supports many common peripherals and interfaces for embedded vision
use case. The included ZU7EV device is equipped with a quad-core ARM Cortex-A53 applications pro-
cessor, dual-core Cortex-R5 real-time processor, Mali-400 MP2 graphics processing unit, 4KP60 capable
H.264/H.265 video codec, and 16nm FinFET+ programmable logic [32].

Figure 3.3: The ZCU104 evaluation kit.

50

National Technical University of Athens Training & Acceleration of Deep RL Agents

3.4 Accelerating Inference: The Case of a Single Agent

3.4.1 Jetson Xavier NX

For the acceleration of the forward pass of the actor model using Jetson Xavier NX, different configurations
will be tested. As a baseline, we will use the average inference time of the actor model using plain Pytorch
code run on top of Xavier’s CPU. The rest of the configurations that will be tested are presented in table
3.1.

Framework Hardware Data type
Pytorch CPU fp32
Pytorch GPU fp32
Pytorch GPU fp16
ONNX CPU fp32
ONNX GPU fp32
ONNX Tensrorrt fp32
ONNX CPU int8
ONNX GPU int8
ONNX Tensorrt int8

Table 3.1: Inference configurations for NVIDIA Xavier NX.

As far as different data types, used for representing the model’s parameters, are concerned, both Pytorch
and ONNX provide tools for easily casting the initial fp32 model to fp16 and int8. For example, using
Pytorch one can easily convert a model to fp16 with just one line of code by using the half() method which
returns the initial model converted to fp16. On the other hand, ONNX provides a quantization function that
given an initial fp32 ONNX file describing the model, it saves a different file describing the same model cast
to int8. These tools make it easier for machine learning engineers to discover the best configuration without
having to dive deeper to more low level hardware optimization every time a model needs to be placed into
production. In the following code section, an overview of how to cast a model to different datatype for each
framework is presented:

1 import torch

2 from onnxruntime.quantization import quantize_dynamic

3 from model import Actor

4

5 if __name__ == "__main__":

6

7 # Cast Pytorch model to fp16

8 model = Actor('cuda')
9 model.load_state_dict(state_dict=torch.load('models/actor_state_dict.pt'))

10 model = model.half()

11

12 # Cast ONNX model to int8

13 quantize_dynamic('models/actor.onnx', 'models/actor_8bit_dynamic.onnx')

Of course, while fp16 and int8 formats can decrease the inference time, they introduce errors to the final
output of the model for obvious reasons. This makes it necessary for us to extract some statistics for these
errors and find out if they lie withing a tolerable range. Overall, in table 3.2 the error introuced at the
output of the model is presented. Since the output of the actor is a three element vector which contains
the probabilities of each of the possible actions with a logarithmic function having being applied on them,
we apply a exponential function to the output of the model to negate the logarithm and make the error
calculation more interpretable. This way, we are sure the the output of the model is the actual probability
and not the log-ed probability.

51

National Technical University of Athens Training & Acceleration of Deep RL Agents

Framework Hardware Data type Mean absolute error Max absolute error
Pytorch CPU fp32 - -
Pytorch GPU fp32 - -
Pytorch GPU fp16 0.00010325558 0.00045317410
ONNX CPU fp32 2.400577e-08 1.7881393e-07
ONNX GPU fp32 2.400577e-08 1.7881393e-07
ONNX CPU int8 0.00051964243 0.00328561660
ONNX GPU int8 0.00051964243 0.00328561660

Table 3.2: Mean and max absolute error of every configuration for NVIDIA Xavier NX.

The results presented in the table clearly indicate the lowering the precision increases the error and this
is something that was expected. Furthermore, the conversion to ONNX format introduces some error even
when the fp32 data type is used but is clearly neglectable. Overall the maximum absolute error is observed
when int8 data type is used with the ONNX format and it is approximately a 0.32% difference of the initial
probability that the model should output. This amount of error can still be considered neglectable.

As far as the inference time is concerned, we will use the Pytorch fp32 model run on Xavier’s CPU as the
baseline for the speedup that each other configuration provides. By default, Pytorch utilizes every core of
Xavier’s CPU meaning that our baseline already utilizes some kind of acceleration. The average inference
time achieved for a single input is 10.509635ms. We have to underline again that we do not utilize batch
sizes greater that one due to the nature of the agent that has to infer the previous action in order to receive
the next state that will be fed into its input. In table 3.3 we present the average inference time achieved
for each configuration. The results are graphically presented in the bar plot of figure 3.5. Furthermore, in
figure 3.4, a box plot for all the configuration inferences is presented to graphically depict the variability of
the inference duration for specific configurations.

As it can be seen, the best average inference time is achieved when using ONNX framework and the fp32
data type run on top of Xavier’s GPU. This configuration manages to reduce the average inference time to
2.369108ms. It is essential to note that ONNX framework provides acceleration even when Xavier’s CPU is
utilized. This is due to graph optimizations that the ONNX runtime provides [33].

An interesting observation regards the int8 data type. One would expect that lowering the precision would
lead to more efficient computations but the results suggest that this is not the case. Every configuration that
utilizes int8 seems to perform worse than the same configuration utilizing the fp32 datatype. Furthermore,
GPU seems to really struggle when performing the computations using int8. A possible explanation for the
first obeservation is the following: The ONNX conversion to int8 is dynamic. This mean that at inference
time depending on the input and the output of each layer a scaling parameter is calculated. The scaling
parameter Q is the difference between two consecutive values a matrix element can have. After performing
the computations using int8 datatype, each layer has to fall back to fp32 format for the dynamic quantization
process to repeat. All this process can add an overhead that is not worth it due to the limited size of our
model. In case a larger model was used, the overhead would be miniscule compared to the time that would
be required to calculate the outputs of larger and more complex layers. Regarding the GPU’s inability to
perform better than CPU when int8 is used, this is due to missing kernels that are required for integer
calculations to be performed.

Framework Hardware Data type Average inference time (ms) Frames per second (FPS)
Pytorch CPU fp32 10.509635 95.150787
Pytorch GPU fp32 4.199729 238.110619
Pytorch GPU fp16 3.112479 321.287308
ONNX CPU fp32 3.026185 330.449033
ONNX GPU fp32 2.369108 422.099741
ONNX CPU int8 3.905829 256.027594
ONNX GPU int8 6.276672 159.320089

Table 3.3: Average inference time & FPS achieved with NVIDIA Xavier NX.

52

National Technical University of Athens Training & Acceleration of Deep RL Agents

Figure 3.4: Boxplot for NVIDIA Xavier NX inference.

Figure 3.5: Average inference time and speedup for NVIDIA Xavier NX.

3.4.2 Xilinx Zynq UltraScale+ MPSoC ZCU104

For the acceleration of the forward pass of the actor using Xilinx Zynq UltraScale+ MPSoC ZCU104,
four configurations will be evaluated. The first and the simplest one is the classic Pytorch code run on top
of the CPU that the board provides. This configuration will serve us a baseline to compare with the rest
of the configurations. The second and third configurations are again code run on top of the CPU but this
time ONNX is leveraged for fp32 and int8 data types. Finally, the fourth configuration utilizes the board’s
programmable logic. Using the FPGA of the board, a DPU (Deep Learning Processor Unit) will be leveraged
to accelerate the model’s inference. The Xilinx Deep Learning Processor Unit is a programmable engine
dedicated for convolutional neural network. The unit contains register configure module, data controller
module, and convolution computing module.

For proper configuration of the programmable logic, Xilinx provides Vitis AI. Vitis AI is a comprehensive
AI inference development platform for Xilinx devices, boards, and Alveo data center acceleration cards. It
consists of a rich set of AI models, optimized deep-learning processor unit (DPU) cores, tools, libraries, and
example designs for AI on edge and data center ends. It is designed with high efficiency and ease of use in
mind, unleashing the full potential of AI acceleration on Xilinx FPGAs and adaptive SoCs [7].

Vitis AI offers tools for optimizing, quantizing and compiling neural network models into DPU instructions.
Vitis AI optimizer (figure 3.6) is responsible for pruning a neural network resulting in models having less

53

National Technical University of Athens Training & Acceleration of Deep RL Agents

Framework Hardware Data type
Pytorch CPU fp32
ONNX CPU fp32
ONNX CPU int
Vitis AI DPU+CPU int8+fp32

Table 3.4: Inference configurations for ZCU104.

parameters which are therefore able to achieve faster inference. The quantizer (figure 3.7) is then responsible
to perform quantization of a model’s parameters. Since the initial parameters are stored in fp32, the optimizer
converts them to fixed point datatype like int8. Fixed point representation consumes less memory, achieves
faster inference and more energy efficient computations. The Vitis AI compiler (figure 3.8) maps the AI
model to a high-efficient instruction set and data flow. It also performs sophisticated optimizations such
as layer fusion, instruction scheduling, and reuses on-chip memory as much as possible. Finally, Vitis AI
also provides high level libraries and APIs for efficient inference using DPU cores. The complete schematic
illustrating each layer of abstraction is presented in figure 3.9.

Figure 3.6: Vitis AI optimizer [7].

Figure 3.7: Vitis AI quantizer [7].

For our case, we will make use of each tools in order to produce the desired .xmodel file which contains
the set of the instructions for the DPUs of our device. The process of converting the initial trained Pytorch
model to the .xmodel is presented in the appendix and in the Github repository of the present thesis.

Having obtained the .xmodel file, we are able to print the graph that describes the operations that take
place inside the model. In figure 3.12 the corresponding graph is illustrated. We can see that the graph
is split into four main sections. Sections marked with blue color are intended to be run on DPU. Sections
marked with red color are intended to be run on CPU. Each section corresponds to the following operations:

• The first section describes the pre-processing that the model performs. This includes scaling and
slicing the initial input frame. This subgraph is intended to be run on CPU.

54

National Technical University of Athens Training & Acceleration of Deep RL Agents

Figure 3.8: Vitis AI compiler [7].

• The second section describes the convolutional part of the model. It includes all the convolutional
and max pooling layers. This subgraph is intended to be run on DPU.

• The third part of the model describes the fully connected part of the model. As we can see, fully
connected layers are intended to be run on CPU.

• The fourth part of the model describes the model’s last fully connected layer. Vitis AI compiler
automatically transforms fully connected layers into convolutional layers whenever this is possible.

Figure 3.9: Vitis AI library [7].

Further investigating the documentation of Vitis AI, it is stated the fully connected layers are not supported
in the framework. The compiler tries to convert them to equivalent convolutional layers whenever this is
possible and the layers that are not converted are executed in CPU. For this reason, Vitis AI compiler is
unable to create a unified graph for the whole model to be run on DPU. In order to proceed with using the
DPUs, a hybrid model will be created that will consist of two parts. The first part is the convolutional part
and it will run on the programmable logic’s DPUs, the second part is the fully connected part and it will
run on the CPU. In the code section of appendix B.5, we present the implementation of the hybrid model
that inputs the data into the DPU accelerated convolutional layers and the DPU outputs are later fed into
the fully connected layers. For the fully connected part, Numpy library is used and the layer’s weights are
properly loaded from .npy files. We also have to note that the preprocessing step that regards scaling and
slicing, as well as conversion of the float input to int8 input that is handled by the GPUs is implemented
in the preprocess fn() method. The full application code that is run on ZC104 device is presented in the
appendix and in the thesis’ Github repository.

Having implemented our hybrid model, we are ready to calculate quantization errors and inference speed
for the four configurations mentioned above. In table 3.5 the introduced errors are calculated for the output
of the models for the various configurations. At a first glance we see that the DPU configuration seems to

55

National Technical University of Athens Training & Acceleration of Deep RL Agents

introduce really serious inaccuracies due to the static int8 quantization taking place. On the other hand,
dynamic quantization used by ONNX framework does not have the same problem.

Framework Hardware Data type Mean absolute error Max absolute error
Pytorch CPU fp32 - -
ONNX CPU fp32 1.323844e-08 1.1920929e-07
ONNX CPU int8 0.00050873094 0.002666235
Vitis AI DPU+CPU int8+fp32 0.11339324799 0.517653040

Table 3.5: Mean and max absolute error of every configuration for ZCU104.

Regarding the inference duration, in table 3.6 the average inference duration and the FPS achieved by
each configuration on ZCU104 is presented. Figure 3.10 illustrates a boxplot for the inference duration where
we can see the deviation in inference time that some configurations introduce. Figure 3.11 illustrates again
the average inference time as well as the speedup that each configuration achieves.

Framework Hardware Data type Average inference time (ms) Frames per second (FPS)
Pytorch CPU fp32 31.096884 32.157563
ONNX CPU fp32 11.864230 84.286971
ONNX CPU int8 10.761447 92.924304
Vitis AI DPU+CPU int8+fp32 32.210083 31.046179

Table 3.6: Average inference time & FPS achieved with ZCU104.

As it can be seen, the most promising configuration is the ONNX int8. The Vitis AI approach seems to
really underperform as its average inference time is greater than the baseline’s. The reason this is happening
is straightforward. As already mentioned above, DPUs handle only the convolutional section of the neural
network and fully connected layers are handled by the CPU. If we try to count the number of parameters
appearing in each part of the network we end up with 32096 parameters for the convolutional part and
with 2263299 parameters in the fully connect part, the majority of which is in the first fully connected layer
(1536×1024+1024 parameters). That said, we can see that the DPU only accelerates a small fraction of the
total computations without seriously affecting the overall inference time. The small increase in the inference
time can be explained due to the overhead for transferring data to the DPU and from the DPU.

Figure 3.10: Boxplot for ZCU104 inference.

56

National Technical University of Athens Training & Acceleration of Deep RL Agents

Figure 3.11: Average inference time and speedup for ZCU104.

Regarding the ONNX int8 configuration, this time it manages to perform better than its fp32 counterpart,
something that did not happen when we performed the computations on NVIDIA Jetson NX. As we already
stated, the dynamic quantization that is performed can add an unnecessary overhead that can lead to slower
inference time. This time, the cortex A53 CPU that the ZCU104 uses is less efficient than the NVIDIA
Carmel ARMv8.2 CPU of the Xavier NX and matrix multiplications are complex enough for the overhead
the dynamic quantization introduces to be worth it. Similar behavior would be expected if we tried to
benchmark a more complex model with greater number of parameters.

57

National Technical University of Athens Training & Acceleration of Deep RL Agents

Figure 3.12: Graph representing the produced .xmodel file.

58

National Technical University of Athens Training & Acceleration of Deep RL Agents

3.5 Accelerating Inference: The Case of Multiple Agents

3.5.1 New Scenario

In the previous section we investigated how to speed up the inference of a single agent which is deployed in
an environment. As we stated, in inference time the agent takes in a single state produced by the environment
and outputs a single action which is fed back to environment in order to produce the next state. This means
that the batch size that it is used in inference time is strictly fixed to one as there is only one state under
process from the agent.

This limitation results in low utilization of hardware accelerators, especially GPUs which can take advan-
tage of batch sizes greater than one and perform efficient, parallel computations across the batch dimension.
For this reason, we can leverage hardware accelerators to perform inference for more than one robots which
can be guided from the same neural network. This idea leads to the following scenario:

Let’s suppose that we need to deploy multiple self guided vehicles using a trained neural network like the
one that we currently used in the previous experiments. Those guided vehicles do not have the computational
power to perform inference on their own, so the will transmit their state, as their sensors receive it, to a
central device that will perform the inference for them. The central device, as it manipulates multiple
vehicles, it gathers different states and performs inference using a batch size greater than one and equal to
the number of vehicles under its responsibility. For the shake of the scenario, we will assume that each vehicle
needs to perform and action for more than 100 states per second, so the FPS that each vehicle must operate
is greater than 100. Certainly, inferring a batch of size greater than one is more time consuming although
the average inference time of each state in the batch might be lower. This means that if more vehicles are
under the central device’s supervision, the FPS for each vehicle will be lower. That said, will try to discover
which is the maximum number of vehicles that each hardware accelerator and each configuration can handle
for the vehicles under central device’s supervision to experience minimum FPS of 100. In figure 3.13, the
scenario described above is illustrated. As it can be seen, the central device collects states from each vehicle,
performs batch computation, and transmits back the proper actions each vehicle should perform.

Figure 3.13: Multiple agents scenario, controlled by one neural network in the central device.

59

National Technical University of Athens Training & Acceleration of Deep RL Agents

3.5.2 Jetson Xavier NX

As stated in the previous paragraph, increasing the batch size utilizes a hardware accelerator more effi-
ciently. Specifically for Jetson Xavier NX, in figure 3.14 we can how the inference time per batch is increasing
while we increase the batch size. As we can see, doubling the batch size does not result in double inference
time per batch. This means that on average, the computations for each state inside a batch are performed
faster. This conclusion can be validated by figure 3.16, where we can see clearly that while the batch size
increases, the average inference time per state is lower.

Figure 3.14: Average inference time per batch for batch computations.

Figure 3.15: Average inference time per state for batch computations.

For testing how many devices each configuration used on Jetson Xavier NX can support, we need to plot
the FPS each configuration achieves for different batch sizes. It is important to note that to calculate the
FPS we use the following formula:

FPS =
1000

Batch Inference Duration (ms)

60

National Technical University of Athens Training & Acceleration of Deep RL Agents

The reason that we use the batch inference duration and not the average inference duration per state is
that each agent will have to wait for the output for the entire batch to be computed in order to get its reply
from the central device. The results for this investigation are illustrated in figure 3.16. As we can see, the
configuration that supports the most is ONNX with fp32 data type run ton top of GPU. The configuration
with the worst performance is Pytorch with fp32 data type run on top of NX’s CPU. As expected, every
configuration that utilizes the CPU for the computation to take place is able to support way less agents in
order to achieve a minimum FPS of 100.

Figure 3.16: Average FPS for batch computations.

61

Epilogue

Ah the first chapter of the current thesis, we presented the theoretical background regarding reinforcement
learning, neural networks and how they can be blended together. As next step, we presented four different
deep reinforcement learning algorithms, Deep Q Learning, REINFORCE, Asynchronous Actor Critic and
Proximal Policy Optimization.

Using these deep reinforcement learning algorithms, we moved on to the second chapter were we imple-
mented all of them in Python. Specifically, a deep reinforcement learning framework was developed that
enabled us to reuse all of these algorithms for different neural network architectures and for different envi-
ronments. These made the experimentation really easy and enabled us to train deep reinforcement learning
agents initially for the simple Cart Pole environment and then for the more complex DuckieTown environ-
ment. Regarding DuckieTown environment, we compared with the work of Peter Almasi et al. [29]. Using a
similar neural network architecture, but a different algorithm to train the deep reinforcement learning agent,
we managed to achieve similar results training only on a CPU for a approximately 3 hours instead of using
multiple V100 GPUs for approximately 40 hours as it is stated in Peter Almasi’s et al. approach.

On the third and last chapter of the present thesis, we focused on the deployment of the trained deep
reinforcement learning agent in the real world. Specifically, our goal was to speed up the computations
that take place during the neural network forward pass in order to minimize the inference duration. The
motivation behind this attempt is that real world autonomous agents should respond quickly in order to
minimize the time interval between two consecutive actions, where the agent is basically ”blind”. For this
purpose the devices that we used where NVIDIA Xavier NX and Xilinx Zynq UltraScale+ MPSoC ZCU104.

Our work focused on two different scenarios, the scenario of the single agent and the scenario of multiple
agents. In the single agent scenario, an autonomous agent uses one of the two devices mentioned above in
order to perform the computations of the neural network. The configuration that produced the best results
was ONNX code run on top of NVIDIA Xaviers NX’s GPU which yielded a speed up of approximately
4.4 with the average inference time for a single state equal to 2.369108ms, a duration that translates into
approximately 422 FPS. In the multiple agents scenario, we have a swarm of agents that are controlled from
a central device, in our case NVIDIA Xavier NX. The central device performs batch inference, with the
batch size being the number of agents in the swarm. After our evaluation, by setting an minimum FPS of
100 for each agent, we found out again the the best configuration was ONNX code run on top of NVIDIA
Xavier NX’s GPU which was able to support 20 different agents in the swarm with an average FPS of 100
for each one of them.

As future work, regarding the learning part, more techniques can be utilized in order to increase the
efficiency of the learning process. Currently, the neural network has to see hundreds of thousands of frames
in order to be aple to drive the vehicle inside DuckieTown environment. The reason for this is that it lacks
prior knowledge. Human beings do have this prior knowledge, they understand the mechanics at the core
of the environment they operate in and they are able to learn more efficiently. For this reason the following
two approaches can be used : First, pretraining of the neural network through imitation learning can be
performed using data coming from a real human driving in the simulator of the DuckieTown environment.
This approach is a supervised learning task that requires gathered target data in order to work. To avoid
data gathering, one can use the second approach which is a bit bolder. Instead of pretraining the neural
network with a supervised learning task, the neural network can be pretrained with a self supervised task.
More specifically, a world model can be developed which will produce a meaningful embedding for each state
of the DuckieTown. The self supervision can be applied by forcing the model to predict the next state of
the environment given the current state and a randomly selected action.

Regarding, the acceleration part, more work can be put into accelerating the inference using FPGAs.
Currently, Xilinx compiler limitations made it impossible for us to run inference of the entire network on the
DPUs provided by ZCU104’s programmable logic.

62

Appendix A

Implementations of Deep
Reinforcement Learning Algorithms

A.1 Basic Deep Reinforcement Learning Algorithm Class

1 from typing import Callable, Tuple, Union

2 from diploma_framework.evaluation import test_env

3 import joblib, torch, numpy as np

4

5 class DeepRLAlgorithm():

6 """

7 Implements basic methods that every algorithm in the framework will inherit

8 """

9

10 def get_model(self) -> torch.nn.Module :

11 """

12 Returns th algorithms neural network model

13 """

14 return self.model

15

16 def save_model(self, path : str) -> None :

17 """

18 Saves the algorithm's model to the specified path

19 """

20 try:

21 joblib.dump(self.model, path)

22 except:

23 raise Exception(f'Poblem storing model to {path}')
24

25 def evaluate(self,

26 n_evaluations : int,

27 custom_test : Union[Callable,None] = None) -> Tuple[float, float] :

28 """

29 Evaluate model on environment n_evaluations times and

30 extract average metrics. Evaluation function can be the predifined one

31 or a custom user defined.

32 """

33 if custom_test is None:

34 evaluations = [test_env(self.env, self.model, vis=False) for _ in range(n_evaluations)]

35 else:

63

National Technical University of Athens Training & Acceleration of Deep RL Agents

36 evaluations = [custom_test(self.env, self.model, vis=False) for _ in range(n_evaluations)]

37

38 average_reward = np.mean([metric[0] for metric in evaluations])

39 average_nframes = np.mean([metric[1] for metric in evaluations])

40

41 return average_reward, average_nframes

A.2 Deep Q-Learning Algorithm

1 import torch, gym, copy, math, random, logging

2 import numpy as np

3

4 from tqdm import tqdm

5 from collections import deque

6 from typing import Union

7 import torch.nn as nn

8 import torch.optim as optim

9

10 from diploma_framework.algorithms._generic import DeepRLAlgorithm

11

12 logger = logging.getLogger('deepRL')
13

14 class DQN(DeepRLAlgorithm):

15 """

16 Implements Deep Q-Learning algorithm

17 """

18

19 def __init__(self,

20 environment: Union[object, str],

21 model: nn.Module,

22 sync_freq: int = 1000,

23 lr: float = 1e-03,

24 memory_size: int = 2000,

25 batch_size: int = 128,

26 max_frames: int = 150_000,

27 epsilon_start: float = 1.0,

28 epsilon_end: float = 0.0,

29 epsilon_decay: int = 250,

30 gamma: float = 0.9) -> None :

31

32 if isinstance(environment, str):

33 self.env = gym.make(environment)

34 else:

35 self.env = environment

36

37 self.model = model

38 self.target_model = copy.deepcopy(model)

39 self.sync_freq = sync_freq

40 self.batch_size = batch_size

41 self.max_frames = max_frames

42 self.epsilon_start = epsilon_start

64

National Technical University of Athens Training & Acceleration of Deep RL Agents

43 self.epsilon_end = epsilon_end

44 self.epsilon_decay = epsilon_decay

45 self.gamma = gamma

46

47 self.optimizer = optim.Adam(self.model.parameters(), lr=lr)

48 self.criterion = nn.MSELoss()

49 self.replay_buffer = deque(maxlen=memory_size)

50

51 def run(self,

52 eval_window: int = 1000,

53 n_evaluations: int = 10,

54 early_stopping: bool = True,

55 reward_threshold: float = 197.5) -> list:

56 """

57 Run the DQN algorithm with hyperparameters specified in arguments.

58 Returns list of test rewards throughout the agent's training loop.

59 """

60 logger.info('Initializing training')
61 test_rewards = []

62 test_frames = []

63 frame_idx = 0

64 early_stop = False

65

66 with tqdm(total = self.max_frames) as pbar:

67 while frame_idx < self.max_frames and not early_stop:

68

69 state0_ = self.env.reset()

70 state0 = torch.from_numpy(state0_).float().unsqueeze(dim=0)

71 done = False

72

73 # In episode :

74 while not done and not early_stop:

75

76 epsilon = self.epsilon_end + (self.epsilon_start-self.epsilon_end)*math.exp(-1 *frame_idx

/ self.epsilon_decay)↪→

77 frame_idx += 1

78 qval, action = self.model.infer_step(state0)

79

80 # Explore or exploit

81 if (random.random() < epsilon):

82 action = np.random.randint(0,self.env.action_space.n)

83 else:

84 pass

85

86 # Make the action

87 state1_, reward, done, _ = self.env.step(action)

88 state1 = torch.from_numpy(state1_).float().unsqueeze(dim=0)

89

90 # Store experience

91 exp = (state0, action, reward, state1, done)

92 self.replay_buffer.append(exp)

93 state0 = state1

94

95 # Train network after new experience is added

96 if len(self.replay_buffer) > self.batch_size:

97

65

National Technical University of Athens Training & Acceleration of Deep RL Agents

98 batch = random.sample(self.replay_buffer, self.batch_size)

99 state0_batch, action_batch, reward_batch, state1_batch, done_batch =

self._get_batch_data(batch)↪→

100

101 Q1 = self.model.infer_batch(state0_batch)

102 with torch.inference_mode():

103 Q2 = self.target_model.infer_batch(state1_batch)

104

105 # Bellman criterion

106 Y = reward_batch + self.gamma * ((1-done_batch) * torch.max(Q2, dim=1)[0])

107 X = Q1.gather(dim=1, index=action_batch.long().unsqueeze(dim=1)).squeeze()

108 loss = self.criterion(X, Y.detach())

109

110 # Perform update

111 self.optimizer.zero_grad()

112 loss.backward()

113 self.optimizer.step()

114

115 # Update target network every sync_freq steps

116 if (frame_idx % self.sync_freq == 0):

117 self.target_model.load_state_dict(self.model.state_dict())

118

119 if frame_idx % eval_window == 0:

120 reward_metric, frame_metric = self.evaluate(n_evaluations)

121 test_rewards.append(reward_metric)

122 test_frames.append(frame_metric)

123 pbar.update(eval_window)

124 pbar.set_description(f'Reward {reward_metric} - Frames {frame_metric}')
125 if reward_metric > reward_threshold and early_stopping:

126 early_stop = True

127 logger.info('Early stopping criteria met')
128

129 return test_rewards

130

131 def _get_batch_data(self, batch: tuple) -> tuple:

132 """

133 Given a batch of tuples of the form :

134 (s0, a1, r1, s1, done), returns batches of the five didfferet components

135 of the initial batch

136 """

137 state0_batch = []

138 action_batch = []

139 reward_batch = []

140 state1_batch = []

141 done_batch = []

142

143 for experience in batch:

144 state0, action, reward, state1, done = experience

145 state0_batch.append(state0)

146 action_batch.append(action)

147 reward_batch.append(reward)

148 state1_batch.append(state1)

149 done_batch.append(done)

150

151 state0_batch = torch.cat(state0_batch)

152 action_batch = torch.Tensor(action_batch)

66

National Technical University of Athens Training & Acceleration of Deep RL Agents

153 reward_batch = torch.Tensor(reward_batch)

154 state1_batch = torch.cat(state1_batch)

155 done_batch = torch.Tensor(done_batch)

156

157 return state0_batch, action_batch, reward_batch, state1_batch, done_batch

A.3 REINFORCE Algorithm

1 import torch, gym, logging

2 import numpy as np

3

4 from tqdm import tqdm

5 from typing import Union

6 import torch.nn as nn

7 import torch.optim as optim

8

9 from diploma_framework.algorithms._generic import DeepRLAlgorithm

10

11 logger = logging.getLogger('deepRL')
12

13 class Reinforce(DeepRLAlgorithm):

14 """

15 Class that implements REINFORCE algorithm

16 """

17

18 def __init__(self,

19 environment: Union[object, str],

20 model: nn.Module,

21 lr: float = 1e-03,

22 max_frames: int = 150_000,

23 num_steps: int = 150,

24 gamma: float = 0.99) -> None:

25

26

27 if isinstance(environment, str):

28 self.env = gym.make(environment)

29 else:

30 self.env = environment

31

32 self.model = model

33 self.max_frames = max_frames

34 self.num_steps = num_steps

35 self.gamma = gamma

36

37 self.optimizer = optim.Adam(self.model.parameters(), lr=lr)

38

39 def run(self,

40 eval_window: int = 1000,

41 n_evaluations: int = 10,

42 early_stopping: bool = True,

43 reward_threshold: float = 197.5) -> list:

67

National Technical University of Athens Training & Acceleration of Deep RL Agents

44 """

45 Run REINFORCE algorithm with hyperparameters specified in arguments.

46 Returns list of test rewards throughout the agent's training loop.

47 """

48 logger.info('Initializing training')
49 test_rewards = []

50 test_frames = []

51 frame_idx = 0

52 early_stop = False

53

54 with tqdm(total = self.max_frames) as pbar:

55 while frame_idx < self.max_frames and not early_stop:

56

57 curr_state = self.env.reset()

58 done = False

59 transitions = []

60 cumulative_reward = 0

61

62 for _ in range(self.num_steps):

63

64 act_dist, action =

self.model.infer_step(torch.from_numpy(curr_state).float().unsqueeze(dim=0))↪→

65 prev_state = curr_state

66 curr_state, reward, done, _ = self.env.step(action)

67 frame_idx += 1

68 cumulative_reward = reward + self.gamma * cumulative_reward

69 transitions.append((prev_state, action, cumulative_reward))

70

71 if frame_idx % eval_window == 0:

72 reward_metric, frame_metric = self.evaluate(n_evaluations)

73 test_rewards.append(reward_metric)

74 test_frames.append(frame_metric)

75 pbar.update(eval_window)

76 pbar.set_description(f'Reward {reward_metric} - Frames {frame_metric}')
77 if reward_metric > reward_threshold and early_stopping:

78 early_stop = True

79 logger.info('Early stopping criteria met')
80

81 if done:

82 break

83

84 # Do not update is criterions for early stop are met

85 if not (early_stopping and early_stop):

86

87 # Get batches

88 returns_batch = torch.Tensor([r for (s,a,r) in transitions]).flip(dims=(0,))

89 returns_batch /= returns_batch.max()

90

91 # List of numpy arrays to numpy and hen to Tensor for performance boost

92 state_batch = torch.Tensor(np.asarray([s for (s,a,r) in transitions]))

93 action_batch = torch.Tensor([a for (s,a,r) in transitions])

94 pred_dist_batch = self.model.infer_batch(state_batch)

95 prob_batch = pred_dist_batch.log_prob(action_batch)

96

97 # Calculate loss based on log prob and discounted rewards

98 loss = self.criterion(prob_batch, returns_batch)

68

National Technical University of Athens Training & Acceleration of Deep RL Agents

99 self.optimizer.zero_grad()

100 loss.backward()

101 self.optimizer.step()

102

103 return test_rewards

104

105 def criterion(self,

106 predicted_probs_batch: torch.Tensor,

107 returns_batch: torch.Tensor) -> float:

108 """

109 Reinforce algorithm loss function

110 """

111 # log is already applied to predicted_probs_batch

112 return -1 * torch.sum(returns_batch*predicted_probs_batch)

A.4 Asynchronous Actor-Critic Algorithm

1 import torch, gym, copy, logging

2 import multiprocessing as mp

3 import torch.nn as nn

4 import torch.optim as optim

5

6 from tqdm import tqdm

7 from typing import Union

8 from diploma_framework.algorithms._generic import DeepRLAlgorithm

9

10 test_lock = mp.Lock()

11

12 logger = logging.getLogger('deepRL')
13

14 class A3C(DeepRLAlgorithm):

15 """

16 Implements A3C algorithm

17 """

18

19 def __init__(self,

20 environment: Union[object, str],

21 model: nn.Module,

22 n_workers: int = 8,

23 lr: float = 1e-03,

24 max_frames: int = 150000,

25 num_steps: int = 200,

26 actor_weight: float = 1,

27 critic_weight: float = 0.1,

28 gamma: float = 0.99) -> None:

29

30 if isinstance(environment, str):

31 self.env = gym.make(environment)

32 else:

33 self.env = environment

34

69

National Technical University of Athens Training & Acceleration of Deep RL Agents

35 self.model = model

36 # Move model parameters to shared memory

37 self.model.share_memory()

38

39 self.n_workers = n_workers

40 self.lr = lr

41 self.max_frames = max_frames

42 self.num_steps = num_steps

43 self.actor_weight = actor_weight

44 self.critic_weight = critic_weight

45 self.gamma = gamma

46

47 # Shared variable to indicate early stopping

48 self.early_stop = mp.Value('B', False)

49

50 def run(self,

51 eval_window: int = 1000,

52 n_evaluations: int = 10,

53 early_stopping: bool = True,

54 reward_threshold: float = 197.5) -> list:

55 """

56 Run A3C algorithm with hyperparameters specified in arguments.

57 Returns list of test rewards throughout the agent's training loop.

58 """

59 logger.info('Initializing training')
60 manager = mp.Manager()

61 test_rewards = manager.list()

62 test_frames = manager.list()

63 actor_loss = manager.list()

64 critic_loss = manager.list()

65

66 processes = []

67 frame_counter = mp.Value('Q', 0)

68

69 with tqdm(total = self.max_frames) as pbar:

70 for i in range(self.n_workers):

71 p = mp.Process(target=self._worker, args=(i, test_rewards, test_frames, actor_loss,

critic_loss,↪→

72 frame_counter, eval_window, n_evaluations,

early_stopping,↪→

73 reward_threshold, pbar))

74 p.start()

75 processes.append(p)

76

77 for p in processes:

78 p.join()

79 for p in processes:

80 p.terminate()

81

82 return test_rewards, test_frames, actor_loss, critic_loss

83

84 def _worker(self,

85 worker_id: int,

86 test_rewards: list,

87 test_frames: list,

88 actor_losses: list,

70

National Technical University of Athens Training & Acceleration of Deep RL Agents

89 critic_losses: list,

90 frame_counter: mp.Value,

91 eval_window: int,

92 n_evaluations: int,

93 early_stopping: bool,

94 reward_threshold: float,

95 pbar: tqdm) -> None:

96 """

97 Process performed per different worker

98 """

99 env = copy.deepcopy(self.env)

100 env.reset()

101 optimizer = optim.Adam(self.model.parameters(), lr=self.lr)

102 self.early_stop.value = False

103

104 # Loop for epochs

105 while frame_counter.value < self.max_frames and not self.early_stop.value:

106

107 optimizer.zero_grad()

108 values, logprobs, rewards = [], [], []

109 done = False

110

111 state_ = env.reset()

112 state = torch.from_numpy(state_).float().unsqueeze(0)

113 step_counter = 0

114

115 bootstraping_value = torch.Tensor([0])

116 # Loop for steps in episode

117 while step_counter < self.num_steps and not done:

118

119 dist, action, value = self.model.infer_step(state)

120 values.append(value)

121 logprob_ = dist.log_prob(torch.Tensor([action]))

122 logprobs.append(logprob_)

123 state_, reward, done, _ = env.step(action)

124 state = torch.from_numpy(state_).float().unsqueeze(0)

125 if done:

126 env.reset()

127 if step_counter == self.num_steps and not done:

128 # Get value of next state

129 _, _, value = self.model.infer_step(state)

130 bootstraping_value = value.detach()

131 rewards.append(reward)

132

133 test_lock.acquire()

134 step_counter +=1

135 frame_counter.value += 1

136 if frame_counter.value % eval_window == 0:

137 counter = frame_counter.value

138 reward_metric, frame_metric = self.evaluate(n_evaluations)

139 test_rewards.append(reward_metric)

140 test_frames.append(frame_metric)

141 pbar.n = int(counter / eval_window * 1000)

142 pbar.refresh()

143 pbar.set_description(f'Reward {reward_metric} - Frames {frame_metric}')
144 if reward_metric > reward_threshold and early_stopping:

71

National Technical University of Athens Training & Acceleration of Deep RL Agents

145 logger.info('Early stopping criteria met')
146 self.early_stop.value = True

147 test_lock.release()

148

149 # Do not update is criterions for early stop are met

150 if not (early_stopping and self.early_stop.value):

151 actor_loss, critic_loss = self._update_params(optimizer, values, rewards, logprobs,

bootstraping_value)↪→

152 # Only worker 0 logs losses

153 if worker_id == 0:

154 actor_losses.append(actor_loss.item())

155 critic_losses.append(critic_loss.item())

156

157 def _update_params(self,

158 optimizer: torch.optim,

159 values: list,

160 rewards: list,

161 logprobs: list,

162 boostraping_value: torch.Tensor

163) -> tuple:

164 """

165 Implemenetaion of model's parameter update step

166 """

167 rewards = torch.Tensor(rewards).flip(dims=(0,)).view(-1)

168 logprobs = torch.stack(logprobs).flip(dims=(0,)).view(-1)

169 values = torch.stack(values).flip(dims=(0,)).view(-1)

170

171 returns = []

172

173 ret_ = boostraping_value

174 for i in range(rewards.shape[0]):

175 ret_ = rewards[i] + self.gamma * ret_

176 returns.append(ret_)

177 returns = torch.stack(returns).view(-1).detach()

178 loss, actor_loss, critic_loss = self._criterion(logprobs, values, returns)

179 loss.backward()

180 optimizer.step()

181 return actor_loss, critic_loss

182

183 def _criterion(self,

184 logprobs: torch.Tensor,

185 values: torch.Tensor,

186 returns: torch.Tensor) -> tuple:

187 """

188 Loss function for the A3C algorithm

189 """

190 actor_loss = -1*logprobs*((returns-values).detach())

191 critic_loss = torch.pow(values-returns, 2)

192 loss = self.actor_weight*actor_loss.mean() + self.critic_weight*critic_loss.mean()

193

194 return loss, actor_loss.mean(), critic_loss.mean()

72

National Technical University of Athens Training & Acceleration of Deep RL Agents

A.5 Proximal Policy Optimization Algorithm

1 import gym, torch, logging

2 import torch.optim as optim

3 import torch.nn as nn

4 import numpy as np

5

6 from tqdm import tqdm

7 from typing import Union

8 from diploma_framework.algorithms._generic import DeepRLAlgorithm

9

10 logger = logging.getLogger('deepRL')
11

12 class PPO(DeepRLAlgorithm):

13

14 """

15 Implements PPO algorithm

16

17 """

18

19 def __init__(self,

20 environment: Union[str, object],

21 model: nn.Module,

22 lr: float = 1e-03,

23 batch_size: int = 32,

24 epochs: int = 4,

25 max_frames: int = 150_000,

26 num_steps: int = 100,

27 clip_param: float = 0.2,

28 gamma: float = 0.99,

29 lamb: float = 1.0,

30 actor_weight: float = 1.0,

31 critic_weight: float = 0.5,

32 entropy_weight: float = 0.001

33) -> None:

34

35 if isinstance(environment, str):

36 self.env = gym.make(environment)

37 else:

38 self.env = environment

39

40 self.model = model

41 self.optimizer = optim.Adam(self.model.parameters(), lr=lr)

42 self.batch_size = batch_size

43 self.epochs = epochs

44 self.max_frames = max_frames

45 self.num_steps = num_steps

46 self.clip_param = clip_param

47 self.gamma = gamma

48 self.lamb = lamb

49 self.actor_weight = actor_weight

50 self.critic_weight = critic_weight

51 self.entropy_weight = entropy_weight

52

53 def run(self,

73

National Technical University of Athens Training & Acceleration of Deep RL Agents

54 eval_window: int = 1000,

55 n_evaluations: int = 10,

56 early_stopping: bool = True,

57 reward_threshold: float = 197.5) -> list:

58 """

59 Run the PPO algorithm with hyperparameters specified in arguments.

60 Returns list of test rewards throughout the agent's training loop.

61

62 eval_window : number of frames between each evaluation

63 """

64 logger.info('Initializing training')
65

66 test_rewards = []

67 test_frames = []

68 frame_idx = 0

69 early_stop = False

70

71 with tqdm(total = self.max_frames) as pbar:

72 while frame_idx < self.max_frames and not early_stop:

73

74 log_probs = []

75 values = []

76 states = []

77 actions = []

78 rewards = []

79 masks = []

80 entropy = 0

81

82 state = self.env.reset()

83 for _ in range(self.num_steps):

84

85 state = torch.FloatTensor(state).unsqueeze(0)

86 dist, action, value = self.model.infer_step(state)

87

88 next_state, reward, done, _ = self.env.step(action)

89 entropy += dist.entropy().mean()

90

91 action_log_probs = dist.log_prob(torch.Tensor([action]))

92 log_probs.append(action_log_probs)

93 values.append(value)

94 rewards.append(reward)

95 masks.append(1-done)

96

97 states.append(state)

98 actions.append(action)

99

100 state = next_state

101 frame_idx += 1

102 if frame_idx % eval_window == 0:

103 reward_metric, frame_metric = self.evaluate(n_evaluations)

104 test_rewards.append(reward_metric)

105 test_frames.append(frame_metric)

106 pbar.update(eval_window)

107 pbar.set_description(f'Reward {reward_metric} - Frames {frame_metric}')
108 if reward_metric > reward_threshold and early_stopping:

109 early_stop = True

74

National Technical University of Athens Training & Acceleration of Deep RL Agents

110 logger.info('Early stopping criteria met')
111

112

113 if done: break

114

115 next_state = torch.FloatTensor(next_state).unsqueeze(0)

116 _, _, next_value = self.model.infer_step(next_state)

117

118 returns = self._compute_returns(next_value, rewards, masks, values)

119

120 returns = torch.cat(returns).detach()

121 log_probs = torch.cat(log_probs).detach()

122 values = torch.cat(values).detach()

123 states = torch.cat(states, dim=0)

124 actions = torch.LongTensor(actions)

125 advantage = returns - values

126

127 self._update_params(states, actions, log_probs, returns, advantage)

128

129 return test_rewards, test_frames

130

131 def _compute_returns(self,

132 next_value: float,

133 rewards: list,

134 masks: list,

135 values: list) -> list:

136 """

137 Calculates return at each time step. Uses delta presented in PPO paper.

138 """

139 values = values + [next_value]

140 gae = 0

141 returns = []

142

143 for i in reversed(range(len(rewards))):

144 delta = rewards[i] + self.gamma * values[i + 1] * masks[i] - values[i]

145 gae = delta + self.gamma * self.lamb * masks[i] * gae

146 returns.insert(0, gae + values[i])

147

148 return returns

149

150 def _get_batch(self,

151 states: np.ndarray,

152 actions: np.ndarray,

153 log_probs: np.ndarray,

154 returns: np.ndarray,

155 advantage: np.ndarray) -> tuple:

156 """

157 Responsible for sampling a random batch out of the total saved data.

158 Returns sampled states, actions, log_probs, returns and advantages

159 """

160 total_experiences = states.size(0)

161 for _ in range(total_experiences // self.batch_size):

162 selections = np.random.randint(0, total_experiences, self.batch_size)

163 yield states[selections,:], actions[selections], log_probs[selections], returns[selections,:],

advantage[selections, :]↪→

164

75

National Technical University of Athens Training & Acceleration of Deep RL Agents

165 def _update_params(self,

166 states: np.ndarray,

167 actions: np.ndarray,

168 log_probs: np.ndarray,

169 returns: np.ndarray,

170 advantages: np.ndarray) -> None:

171 """

172 Performs the basic parameter update of PPO algorithm

173 """

174 for _ in range(self.epochs):

175 for state_batch, action_batch, old_log_probs_batch, return_batch, advantage_batch in

self._get_batch(states, actions, log_probs, returns, advantages):↪→

176

177 dist_batch, value_batch = self.model.infer_batch(state_batch)

178 entropy = dist_batch.entropy().mean()

179

180 new_log_probs_batch = dist_batch.log_prob(action_batch)

181

182 ratio = (new_log_probs_batch - old_log_probs_batch).exp()

183 surr1 = ratio*advantage_batch

184 surr2 = torch.clamp(ratio, 1-self.clip_param, 1+self.clip_param) * advantage_batch

185

186 actor_loss = -torch.min(surr1, surr2).mean()

187 critic_loss = (return_batch - value_batch).pow(2).mean()

188

189 loss = self.critic_weight*critic_loss + self.actor_weight*actor_loss - self.entropy_weight *

entropy↪→

190

191 self.optimizer.zero_grad()

192 loss.backward()

193 self.optimizer.step()

A.6 Stacked Frame Proximal Policy Optimization Algorithm

1 import gym, torch, logging, copy

2 import torch.optim as optim

3 import torch.nn as nn

4 import numpy as np

5

6 from tqdm import tqdm

7 from typing import Callable, List, Tuple, Union

8 from collections import deque

9 from diploma_framework.algorithms._generic import DeepRLAlgorithm

10

11 logger = logging.getLogger('deepRL')
12

13 class StackedFramePPO(DeepRLAlgorithm):

14 """

15 Implements PPO algorithm but considers as one state the selected

16 number of the last frames. This is used for converting an environment

17 that cannot be modeled as a Markov Decision Process into a Markov

76

National Technical University of Athens Training & Acceleration of Deep RL Agents

18 Decision Process. Normally used when the environment provides as state

19 the whole displayef frame.

20 """

21

22 def __init__(self,

23 environment: Union[str, object],

24 model: nn.Module,

25 lr: float = 1e-03,

26 batch_size: int = 32,

27 epochs: int = 4,

28 max_frames : int = 150_000,

29 num_steps: int = 100,

30 clip_param: float = 0.2,

31 gamma: float = 0.99,

32 lamb: float = 1.0,

33 actor_weight: float = 1.0,

34 critic_weight: float = 0.5,

35 entropy_weight: float = 0.001,

36 stacked_frames: int = 5

37) -> None:

38

39 if isinstance(environment, str):

40 self.env = gym.make(environment)

41 else:

42 self.env = environment

43

44 self.model = model

45 self.optimizer = optim.Adam(self.model.parameters(), lr=lr)

46 self.batch_size = batch_size

47 self.epochs = epochs

48 self.max_frames = max_frames

49 self.num_steps = num_steps

50 self.clip_param = clip_param

51 self.gamma = gamma

52 self.lamb = lamb

53 self.actor_weight = actor_weight

54 self.critic_weight = critic_weight

55 self.entropy_weight = entropy_weight

56 self.stacked_frames = stacked_frames

57

58 def run(self,

59 eval_window: int,

60 n_evaluations: int,

61 early_stopping: bool,

62 reward_threshold: float,

63 frames_threshold: float,

64 return_best: bool = True,

65 test_function: Union[Callable, None] = None) -> Tuple[List[float]] :

66 """

67 Run the PPO algorithm with hyperparameters specified in arguments.

68 Returns list of test rewards throughout the agent's training loop.

69

70 eval_window : number of frames between each evaluation

71 """

72 logger.info('Initializing training')
73

77

National Technical University of Athens Training & Acceleration of Deep RL Agents

74 test_rewards = []

75 test_frames = []

76 frame_idx = 0

77 early_stop = False

78 best_reward = float('-inf')
79 best_model = None

80

81 with tqdm(total = self.max_frames) as pbar:

82 while frame_idx < self.max_frames and not early_stop:

83

84 log_probs = []

85 values = []

86 states = []

87 actions = []

88 rewards = []

89 masks = []

90 entropy = 0

91

92 frame = self.env.reset()

93 stacked_frames = deque([torch.zeros(size=frame.shape).unsqueeze(0)]*self.stacked_frames,

94 maxlen=self.stacked_frames)

95

96 for _ in range(self.num_steps):

97

98 frame = torch.FloatTensor(frame).unsqueeze(0)

99 stacked_frames.append(frame)

100 state = torch.cat(tuple(stacked_frames), dim=-1)

101 dist, action, value = self.model.infer_step(state)

102

103 next_frame, reward, done, _ = self.env.step(action)

104 entropy += dist.entropy().mean()

105

106 action_log_probs = dist.log_prob(torch.Tensor([action]))

107 log_probs.append(action_log_probs)

108 values.append(value)

109 rewards.append(reward)

110 masks.append(1-done)

111

112 states.append(state)

113 actions.append(action)

114

115 frame = next_frame

116 frame_idx += 1

117 if frame_idx % eval_window == 0:

118 reward_metric, frame_metric = self.evaluate(n_evaluations, test_function)

119 test_rewards.append(reward_metric)

120 test_frames.append(frame_metric)

121 pbar.update(eval_window)

122 pbar.set_description(f'Reward {reward_metric} - Frames {frame_metric}')
123 if return_best and reward_metric > best_reward:

124 best_model = copy.deepcopy(self.model)

125 best_reward = reward_metric

126 logger.info(f'Current best at frame {int(frame_idx)} with reward

{best_reward:.2f}')↪→

127 if (reward_metric > reward_threshold or frame_metric > frames_threshold) and

early_stopping:↪→

78

National Technical University of Athens Training & Acceleration of Deep RL Agents

128 early_stop = True

129 logger.info('Early stopping criteria met')
130

131 if done: break

132

133 next_frame = torch.FloatTensor(next_frame).unsqueeze(0)

134 stacked_frames.append(next_frame)

135 next_state = torch.cat(tuple(stacked_frames), dim=-1)

136 _, _, next_value = self.model.infer_step(next_state)

137

138 returns = self._compute_returns(next_value, rewards, masks, values)

139

140 returns = torch.cat(returns).detach()

141 # Normalize returns by subtracting mean and deviding with std

142 returns = (returns - torch.mean(returns)) / (torch.std(returns) + 1e-10)

143 log_probs = torch.cat(log_probs).detach()

144 values = torch.cat(values).detach()

145 # Normalize returns by subtracting mean and deviding with std

146 values = (values - torch.mean(values)) / (torch.std(values) + 1e-10)

147 states = torch.cat(states, dim=0)

148 actions = torch.LongTensor(actions)

149 advantage = returns - values

150 # Normalize advantages by subtracting mean and deviding with std

151 advantage =(advantage - torch.mean(advantage)) / (torch.std(advantage) + 1e-10)

152

153 self._update_params(states, actions, log_probs, returns, advantage)

154

155 if return_best:

156 self.model = best_model

157

158 return test_rewards, test_frames

159

160 def _compute_returns(self,

161 next_value: float,

162 rewards: list,

163 masks: list,

164 values: list) -> list :

165 """

166 Calculates return at each time step. Uses delta presented in PPO paper.

167 """

168 values = values + [next_value]

169 gae = 0

170 returns = []

171

172 for i in reversed(range(len(rewards))):

173 delta = rewards[i] + self.gamma * values[i + 1] * masks[i] - values[i]

174 gae = delta + self.gamma * self.lamb * masks[i] * gae

175 returns.insert(0, gae + values[i])

176

177 return returns

178

179 def _get_batch(self,

180 states: np.ndarray,

181 actions: np.ndarray,

182 log_probs: np.ndarray,

183 returns: np.ndarray,

79

National Technical University of Athens Training & Acceleration of Deep RL Agents

184 advantage: np.ndarray) -> tuple:

185 """

186 Responsible for sampling a random batch out of the total saved data.

187 Returns sampled states, actions, log_probs, returns and advantages

188 """

189 total_experiences = states.size(0)

190 for _ in range(total_experiences // self.batch_size):

191 selections = np.random.randint(0, total_experiences, self.batch_size)

192 yield states[selections,:], actions[selections], log_probs[selections], returns[selections,:],

advantage[selections, :]↪→

193

194 def _update_params(self,

195 states: np.ndarray,

196 actions: np.ndarray,

197 log_probs: np.ndarray,

198 returns: np.ndarray,

199 advantages: np.ndarray) -> None:

200 """

201 Performs the basic parameter update of PPO algorithm

202 """

203 for _ in range(self.epochs):

204 for state_batch, action_batch, old_log_probs_batch, return_batch, advantage_batch in

self._get_batch(states, actions, log_probs, returns, advantages):↪→

205

206 dist_batch, value_batch = self.model.infer_batch(state_batch)

207 value_batch = (value_batch - torch.mean(value_batch)) / (torch.std(value_batch) + 1e-10)

208 entropy = dist_batch.entropy().mean()

209

210 new_log_probs_batch = dist_batch.log_prob(action_batch)

211

212 ratio = (new_log_probs_batch - old_log_probs_batch).exp()

213 surr1 = ratio*advantage_batch

214 surr2 = torch.clamp(ratio, 1-self.clip_param, 1+self.clip_param) * advantage_batch

215

216 actor_loss = -torch.min(surr1, surr2).mean()

217 critic_loss = (return_batch - value_batch).pow(2).mean()

218

219 loss = (self.critic_weight*critic_loss) + (self.actor_weight*actor_loss) -

(self.entropy_weight * entropy)↪→

220

221 self.optimizer.zero_grad()

222 loss.backward()

223 self.optimizer.step()

80

Appendix B

Neural Network Acceleration

B.1 Conversion to ONNX

1 import torch, onnxruntime, numpy as np

2 from torchvision import transforms as T

3 from torch.nn import functional as F

4

5 class Actor(torch.nn.Module):

6 #Implements the inference of only the actor model coming from the acotr critic object

7

8 def __init__(self,

9 actor_critic_model,

10 device = 'cpu'):
11 #Initilizes actor by copying necesseary layers

12 super(Actor, self).__init__()

13 self.device = device

14 self.conv_core = actor_critic_model.conv_core.to(device)

15 self.actor_head = actor_critic_model.actor_head.to(device)

16 self.transform = actor_critic_model.transform

17

18 def forward(self, x):

19 #Implements forward pass of model

20 x = torch.permute(x, (0, 3, 1, 2)) # Place channel axis in correct position

21 #x = self.transform(x) # Apply transform

22 x = x / 255

23 #x = T.functional.crop(x, top=20, left=0, height=40, width=80)

24 x = x[:,:,20:,:]

25 x = x.to(device=self.device)

26 visual_repr = self.conv_core(x).squeeze(-1).squeeze(-1)

27 dist = F.log_softmax(self.actor_head(visual_repr), dim=1)

28 return dist

29

30 def infer_action(self, x):

31 # Utilizes torch distributions to return an action

32 dist_probs = self.forward(x)

33 dist = torch.distributions.Categorical(logits=dist_probs)

34 return dist.sample().cpu().numpy()[0]

35

36 model = Actor(model)

37

81

National Technical University of Athens Training & Acceleration of Deep RL Agents

38 dummy_input = saved_states[10] # Randomly selected input state

39

40 torch.onnx.export(model, # model being run

41 dummy_input, # model input (or a tuple for multiple inputs)

42 "../models/actor.onnx", # where to save the model (can be a file or file-like object)

43 export_params=True, # store the trained parameter weights inside the model file

44 opset_version=11, # the ONNX version to export the model to

45 do_constant_folding=True, # whether to execute constant folding for optimization

46 input_names = ['input'], # the model's input names

47 output_names = ['output'], # the model's output names

48 dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes

49 'output' : {0 : 'batch_size'}})

B.2 ONNX Actor Model

1 import torch, onnxruntime, numpy as np

2

3 class ONNXActor():

4 # Implements actor using ONNX runtime

5

6 def __init__(self, onnx_path, providers):

7 # Initiliaze model

8 self.ort_session = onnxruntime.InferenceSession(onnx_path, providers=providers)

9

10 def forward(self, x):

11 # Implements forward pass of model

12 output = self.ort_session.run(None, {'input' : x.numpy().astype(np.float32)})[0]

13 return torch.Tensor(output)

14

15 def infer_action(self, x):

16 # Utilizes torch distributions to return an action

17 dist_probs = self.forward(x)

18 dist = torch.distributions.Categorical(logits=dist_probs)

19 return dist.sample().numpy()[0]

20

21

22 model_onnx = ONNXActor(onnx_path='../models/actor.onnx', providers=['CPUExecutionProvider'])

B.3 Vitis AI Compilation Process

B.3.1 Quantization utilities

1 import torch, joblib

2 import torchvision

3 import torch.nn as nn

4 import torch.nn.functional as F

5

82

National Technical University of Athens Training & Acceleration of Deep RL Agents

6 from tqdm import tqdm

7 from torch.utils.data import Dataset

8 from utilities.models import Actor

9

10 class StatesDataset(Dataset):

11

12 def __init__(self, path, golden_model_path='models/actor_state_dict.pt'):
13

14 states = joblib.load(path)

15 model = Actor()

16 model.load_state_dict(state_dict=torch.load(golden_model_path))

17 self.processed_states = []

18 for state in states:

19 #state = state.permute((0, 3, 1, 2))

20 #state = state / 255

21 #state = state[:,:,20:,:]

22 self.processed_states.append(state)

23 self.target = [model.forward(state) for state in self.processed_states]

24

25 def __len__(self):

26 return len(self.processed_states)

27

28 def __getitem__(self, index):

29 return self.processed_states[index].squeeze(0), self.target[index].squeeze(0)

30

31

32 def test(model, device, test_loader):

33 '''
34 test the model

35 '''
36 avg_error = 0

37 total_samples = 0

38 model.eval()

39 with torch.no_grad():

40 for data, target in tqdm(test_loader):

41 data, target = data.to(device), target.to(device)

42 output = model(data)

43

44 batch_avg_error = torch.abs(output - target).flatten().mean().item()

45 avg_error += (batch_avg_error * output.shape[0])

46 total_samples += output.shape[0]

47 avg_error /= total_samples

48 print(f'Average absolute error {avg_error}')
49 return avg_error

B.3.2 Quantization script

1 import os

2 import sys

3 import argparse

4 import random

5 import torch

6 import torchvision

83

National Technical University of Athens Training & Acceleration of Deep RL Agents

7 import torch.nn as nn

8 import torch.nn.functional as F

9 from pytorch_nndct.apis import torch_quantizer, dump_xmodel

10

11 from common import *

12 from utilities.models import Actor

13

14 DIVIDER = '---'
15

16

17 def quantize(build_dir,quant_mode,batchsize):

18

19 dset_dir = build_dir + '/dataset'
20 float_model = build_dir + '/float_model'
21 quant_model = build_dir + '/quant_model'
22

23

24 # use GPU if available

25 if (torch.cuda.device_count() > 0):

26 print('You have',torch.cuda.device_count(),'CUDA devices available')
27 for i in range(torch.cuda.device_count()):

28 print(' Device',str(i),': ',torch.cuda.get_device_name(i))
29 print('Selecting device 0..')
30 device = torch.device('cuda:0')
31 else:

32 print('No CUDA devices available..selecting CPU')
33 device = torch.device('cpu')
34

35 # load trained model

36 model = Actor().to(device)

37 model.load_state_dict(torch.load('models/actor_state_dict.pt'))
38

39 # force to merge BN with CONV for better quantization accuracy

40 optimize = 1

41

42 # override batchsize if in test mode

43 if (quant_mode=='test'):
44 batchsize = 1

45

46 rand_in = torch.randint(low=0, high=256, size=[batchsize, 60, 80, 15], dtype=torch.float32)

47 #rand_in = torch.randint(low=0, high=256, size=[batchsize, 15, 40, 80], dtype=torch.float32)

48

49 quantizer = torch_quantizer(quant_mode=quant_mode, bitwidth=8, module=model, input_args=(rand_in),

50 output_dir=quant_model, device=torch.device('cpu'))
51 quantized_model = quantizer.quant_model

52

53

54 # data loader

55 test_dataset = StatesDataset(path='data/test_set_1.joblib')
56

57 test_loader = torch.utils.data.DataLoader(test_dataset,

58 batch_size=batchsize,

59 shuffle=False)

60

61 # evaluate

62 test(quantized_model, device, test_loader)

84

National Technical University of Athens Training & Acceleration of Deep RL Agents

63

64

65 # export config

66 if quant_mode == 'calib':
67 quantizer.export_quant_config()

68 if quant_mode == 'test':
69 quantizer.export_xmodel(deploy_check=False, output_dir=quant_model)

70

71 return

72

73

74

75 def run_main():

76

77 # construct the argument parser and parse the arguments

78 ap = argparse.ArgumentParser()

79 ap.add_argument('-d', '--build_dir', type=str, default='build', help='Path to build folder. Default is

build')↪→

80 ap.add_argument('-q', '--quant_mode', type=str, default='calib', choices=['calib','test'],
help='Quantization mode (calib or test). Default is calib')↪→

81 ap.add_argument('-b', '--batchsize', type=int, default=100, help='Testing batchsize - must be an

integer. Default is 100')↪→

82 args = ap.parse_args()

83

84 print('\n'+DIVIDER)
85 print('PyTorch version : ',torch.__version__)
86 print(sys.version)

87 print(DIVIDER)

88 print(' Command line options:')
89 print ('--build_dir : ',args.build_dir)
90 print ('--quant_mode : ',args.quant_mode)
91 print ('--batchsize : ',args.batchsize)
92 print(DIVIDER)

93

94 quantize(args.build_dir,args.quant_mode,args.batchsize)

95

96 return

97

98

99

100 if __name__ == '__main__':
101 run_main()

B.3.3 Compilation script

1 if [$1 = zcu102]; then

2 ARCH=/opt/vitis_ai/compiler/arch/DPUCZDX8G/ZCU102/arch.json

3 TARGET=zcu102

4 echo "---"

5 echo "COMPILING MODEL FOR ZCU102.."

6 echo "---"

7 elif [$1 = zcu104]; then

8 ARCH=/opt/vitis_ai/compiler/arch/DPUCZDX8G/ZCU104/arch.json

85

National Technical University of Athens Training & Acceleration of Deep RL Agents

9 TARGET=zcu104

10 echo "---"

11 echo "COMPILING MODEL FOR ZCU104.."

12 echo "---"

13 elif [$1 = vck190]; then

14 ARCH=/opt/vitis_ai/compiler/arch/DPUCVDX8G/VCK190/arch.json

15 TARGET=vck190

16 echo "---"

17 echo "COMPILING MODEL FOR VCK190.."

18 echo "---"

19 elif [$1 = u50]; then

20 ARCH=/opt/vitis_ai/compiler/arch/DPUCAHX8H/U50/arch.json

21 TARGET=u50

22 echo "---"

23 echo "COMPILING MODEL FOR ALVEO U50.."

24 echo "---"

25 else

26 echo "Target not found. Valid choices are: zcu102, zcu104, vck190, u50 ..exiting"

27 exit 1

28 fi

29

30 BUILD=$2

31 LOG=$3

32

33 compile() {

34 vai_c_xir \

35 --xmodel ${BUILD}/quant_model/Actor_int.xmodel \

36 --arch $ARCH \

37 --net_name Actor_${TARGET} \

38 --output_dir ${BUILD}/compiled_model

39 }

40

41 compile 2>&1 | tee ${LOG}/compile_$TARGET.log

42

43

44 echo "---"

45 echo "MODEL COMPILED"

46 echo "---"

B.3.4 Complete pipeline script

1 rm -rf build

2 export BUILD=./build

3 export LOG=${BUILD}/logs

4 mkdir -p ${LOG}

5

6 python -u quantize.py -d ${BUILD} --quant_mode calib 2>&1 | tee ${LOG}/quant_calib.log

7

8 python -u quantize.py -d ${BUILD} --quant_mode test 2>&1 | tee ${LOG}/quant_test.log

9

10 source compile.sh zcu104 ${BUILD} ${LOG}

11

12 xir png build/compiled_model/Actor_zcu104.xmodel model.png

86

National Technical University of Athens Training & Acceleration of Deep RL Agents

B.4 DPU Actor Model

1 class FPGAActor():

2

3 def __init__(self, dpu_runner):

4

5 self.dpu_runner = dpu_runner

6 self.numpy_actor_head = []

7

8 input_fixpos = self.dpu_runner.get_input_tensors()[0].get_attr("fix_point")

9 print(input_fixpos)

10 self.input_scale = 2**input_fixpos

11

12 output_fixpos = self.dpu_runner.get_output_tensors()[0].get_attr("fix_point")

13 self.output_scale = 1 / (2**output_fixpos)

14

15 input_tensors = self.dpu_runner.get_input_tensors()

16 output_tensors = self.dpu_runner.get_output_tensors()

17 self.input_ndim = tuple(input_tensors[0].dims)

18 self.output_ndim = tuple(output_tensors[0].dims)

19 self.load_numpy_head()

20

21 print('Input tensor name: ', input_tensors[0].name)

22 print('Input tensor dim: ', input_tensors[0].dims)

23 print('Input tensor dtype: ', input_tensors[0].dtype)

24 print('Output tensor name: ', output_tensors[0].name)

25 print('Output tensor dim: ', output_tensors[0].dims)

26 print('Output tensor dtype: ', output_tensors[0].dtype)

27

28 def preprocess_fn(self, state):

29 """Preprocessing of state"""

30 state = state[:,20:,:,:] * (1/255) * (self.input_scale)

31 return state.astype(np.int8)

32

33 def load_numpy_head(self):

34 # load linear numpy head

35 for layer_idx in range(0,10,2):

36 weights = np.load(f'model_linear_layers/weights_{layer_idx}.npy')
37 bias = np.expand_dims(np.load(f'model_linear_layers/bias_{layer_idx}.npy'),1)
38 self.numpy_actor_head.append((weights, bias))

39

40 def forward(self, x):

41 # Implements forward pass using numpy linear layer

42

43 x = self.preprocess_fn(x)

44 visual_repr = np.empty(self.output_ndim, dtype=np.int8, order="C")

45 job_id = self.dpu_runner.execute_async(x, visual_repr)

46 self.dpu_runner.wait(job_id)

47 visual_repr = visual_repr * self.output_scale

48

49 # layer 1

87

National Technical University of Athens Training & Acceleration of Deep RL Agents

50 weights, bias = self.numpy_actor_head[0]

51 out = weights @ visual_repr.T + bias

52 out = np.where(out > 0, out, out * 0.01)

53 # layer 2

54 weights, bias = self.numpy_actor_head[1]

55 out = weights @ out + bias

56 out = np.where(out > 0, out, out * 0.01)

57 # layer 3

58 weights, bias = self.numpy_actor_head[2]

59 out = weights @ out + bias

60 out = np.where(out > 0, out, out * 0.01)

61 # layer 4

62 weights, bias = self.numpy_actor_head[3]

63 out = weights @ out + bias

64 out = np.where(out > 0, out, out * 0.01)

65 # layer 5

66 weights, bias = self.numpy_actor_head[4]

67 out = (weights @ out + bias).T

68 out = np.exp(out) / np.sum(np.exp(out), axis=1)

69 #out = np.log(out)

70 return out

B.5 ZCU104 Application Code

1 from ctypes import *

2 from typing import List

3 import numpy as np

4 import vart

5 import os

6 import pathlib

7 import xir

8 import time

9 import sys

10 import json

11 import argparse

12 import vitis_ai_library

13

14 _divider = '-------------------------------'
15

16

17 class Timer():

18 """

19 Class that implements a timer

20 """

21

22 def __init__(self) :

23 """Initilize times"""

24 self.t0 = None

25 self.total_time = 0

26 self.n_laps = 0

27

88

National Technical University of Athens Training & Acceleration of Deep RL Agents

28 def start(self):

29 """"Start timer"""

30 self.t0 = time.perf_counter()

31

32 def stop(self):

33 """Stops timer"""

34 dt = (time.perf_counter() - self.t0)

35 self.total_time += dt

36 self.n_laps += 1

37 return dt

38

39 def reset(self):

40 """Resets timer"""

41 self.t0 = None

42 self.total_time = 0

43 self.n_laps = 0

44

45 def get_average_time(self):

46 """Returns average lap time"""

47 return self.total_time / self.n_laps

48

49 def get_laps(self):

50 """Returns number of laps"""

51 return self.n_laps

52

53 def log_results(durations_list, dest_file):

54 """Log durations in json"""

55 with open(dest_file, 'w') as f:

56 json.dump(durations_list, f)

57

58 class FPGAActor():

59

60 def __init__(self, dpu_runner):

61

62 self.dpu_runner = dpu_runner

63 self.numpy_actor_head = []

64

65 input_fixpos = self.dpu_runner.get_input_tensors()[0].get_attr("fix_point")

66 print(input_fixpos)

67 self.input_scale = 2**input_fixpos

68

69 output_fixpos = self.dpu_runner.get_output_tensors()[0].get_attr("fix_point")

70 self.output_scale = 1 / (2**output_fixpos)

71

72 input_tensors = self.dpu_runner.get_input_tensors()

73 output_tensors = self.dpu_runner.get_output_tensors()

74 self.input_ndim = tuple(input_tensors[0].dims)

75 self.output_ndim = tuple(output_tensors[0].dims)

76 self.load_numpy_head()

77

78 print('Input tensor name: ', input_tensors[0].name)

79 print('Input tensor dim: ', input_tensors[0].dims)

80 print('Input tensor dtype: ', input_tensors[0].dtype)

81 print('Output tensor name: ', output_tensors[0].name)

82 print('Output tensor dim: ', output_tensors[0].dims)

83 print('Output tensor dtype: ', output_tensors[0].dtype)

89

National Technical University of Athens Training & Acceleration of Deep RL Agents

84

85 def preprocess_fn(self, state):

86 """Preprocessing of state"""

87 state = state[:,20:,:,:] * (1/255) * (self.input_scale)

88 return state.astype(np.int8)

89

90 def load_numpy_head(self):

91 # load linear numpy head

92 for layer_idx in range(0,10,2):

93 weights = np.load(f'model_linear_layers/weights_{layer_idx}.npy')
94 bias = np.expand_dims(np.load(f'model_linear_layers/bias_{layer_idx}.npy'),1)
95 self.numpy_actor_head.append((weights, bias))

96

97 def forward(self, x):

98 # Implements forward pass using numpy linear layer

99

100 x = self.preprocess_fn(x)

101 visual_repr = np.empty(self.output_ndim, dtype=np.int8, order="C")

102 job_id = self.dpu_runner.execute_async(x, visual_repr)

103 self.dpu_runner.wait(job_id)

104 visual_repr = visual_repr * self.output_scale

105

106 # layer 1

107 weights, bias = self.numpy_actor_head[0]

108 out = weights @ visual_repr.T + bias

109 out = np.where(out > 0, out, out * 0.01)

110 # layer 2

111 weights, bias = self.numpy_actor_head[1]

112 out = weights @ out + bias

113 out = np.where(out > 0, out, out * 0.01)

114 # layer 3

115 weights, bias = self.numpy_actor_head[2]

116 out = weights @ out + bias

117 out = np.where(out > 0, out, out * 0.01)

118 # layer 4

119 weights, bias = self.numpy_actor_head[3]

120 out = weights @ out + bias

121 out = np.where(out > 0, out, out * 0.01)

122 # layer 5

123 weights, bias = self.numpy_actor_head[4]

124 out = (weights @ out + bias).T

125 out = np.exp(out) / np.sum(np.exp(out), axis=1)

126 #out = np.log(out)

127 return out

128

129 def get_child_subgraph_dpu(graph: "Graph") -> List["Subgraph"]:

130 assert graph is not None, "'graph' should not be None."

131 root_subgraph = graph.get_root_subgraph()

132 assert (root_subgraph is not None), "Failed to get root subgraph of input Graph object."

133 if root_subgraph.is_leaf:

134 return []

135 child_subgraphs = root_subgraph.toposort_child_subgraph()

136 assert child_subgraphs is not None and len(child_subgraphs) > 0

137 return [

138 cs

139 for cs in child_subgraphs

90

National Technical University of Athens Training & Acceleration of Deep RL Agents

140 if cs.has_attr("device") and cs.get_attr("device").upper() == "DPU"

141]

142

143 def app(states_path, model):

144

145 states = np.load(states_path)

146 graph = xir.Graph.deserialize(model)

147 subgraphs = get_child_subgraph_dpu(graph)

148 dpu_runner = vart.Runner.create_runner(subgraphs[0], "run")

149 model = FPGAActor(dpu_runner)

150 timer = Timer()

151 outputs = np.empty(shape=(states.shape[0], 3))

152 durations = []

153 for i, state in enumerate(states):

154 timer.start()

155 out = model.forward(state)

156 outputs[i] = out

157 dt = timer.stop()

158 durations.append(dt)

159 if i == 0:

160 print(f'Model output shape : {out.shape}')
161

162 print(f'Averege inference time {timer.get_average_time() * 1000}ms on {timer.get_laps()} states.')
163 golden_outputs = np.load('golden_out.npy')
164 error = np.abs(outputs - golden_outputs).flatten()

165 max_error = np.max(error)

166 mean_error = np.mean(error)

167 print(f'Max absolute error: {max_error} Average absolute error: {mean_error}')
168 log_results(durations_list=durations, dest_file='zcu_fpga.json')
169

170 # only used if script is run as 'main' from command line

171 def main():

172

173 # construct the argument parser and parse the arguments

174 ap = argparse.ArgumentParser()

175 ap.add_argument('-d', '--states_path', type=str, default='test_set_small.npy', help='Path to joblibfile of

states')↪→

176 ap.add_argument('-m', '--model', type=str, default='Actor_zcu104.xmodel', help='Path of xmodel. Default

is Actor_zcu104.xmodel')↪→

177 args = ap.parse_args()

178

179 print ('Command line options:')
180 print (' -states_path : ', args.states_path)

181 print (' -model : ', args.model)

182

183 app(args.states_path, args.model)

184

185 if __name__ == '__main__':
186 main()

91

Bibliography

[1] Mahryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. The
MIT Press, 2nd edition, 2018.

[2] Alexander Zai and Brandon Brown. Deep Reinforcement Learning in Action. Alexander Zai, 1st
edition, 2020.

[3] Simon Haykin. Neural Networks and Learning Machines. Pearson, 3rd edition, 2009.

[4] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into deep learning. arXiv
preprint arXiv:2106.11342, 2021.

[5] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

[6] Nvidia jetson xavier nx [online].
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/.

[7] Vitis ai [online]. https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html.

[8] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. The MIT Press, 2nd edition, 2018.

[9] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2nd edition, 2006.

[10] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recogintion. Elsevier, 4th edition, 2009.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[12] Hossein Gholamalinezhad and Hossein Khosravi. Pooling methods in deep neural networks, a review,
2020.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015.

[14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958, 2014.

[15] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel Veness, Marc Bellemare, Alex
Graves, Martin Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement learning. Nature, 518:529–33, 02 2015.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html

[18] Melrose Roderick, James MacGlashan, and Stefanie Tellex. Implementing the deep q-network, 2017.

[19] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning, 2016.

[20] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu, and
Nando de Freitas. Sample efficient actor-critic with experience replay, 2017.

[21] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region
policy optimization, 2017.

[22] Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using
massively parallel deep reinforcement learning, 2021.

[23] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

[24] Openai gym documentation [online]. https://gym.openai.com/docs/.

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

[26] Pytorch documentation [online]. https://pytorch.org/docs/stable/index.html.

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch.
2017.

[28] Maxime Chevalier-Boisvert, Florian Golemo, Yanjun Cao, Bhairav Mehta, and Liam Paull.
Duckietown environments for openai gym. https://github.com/duckietown/gym-duckietown, 2018.

[29] Peter Almasi, Robert Moni, and Balint Gyires-Toth. Robust reinforcement learning-based autonomous
driving agent for simulation and real world. 2020 International Joint Conference on Neural Networks
(IJCNN), Jul 2020.

[30] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya,
Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson,
Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander
Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai,
Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child,
Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan
Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and
Noah Fiedel. Palm: Scaling language modeling with pathways. 4 2022.

[31] Onnx [online]. https://onnx.ai/.

[32] Xilinx zynq ultrascale+ mpsoc zcu104 evaluation kit [online].
https://www.xilinx.com/products/boards-and-kits/zcu104.html.

[33] Onnx graph optimizations [online].
https://onnxruntime.ai/docs/performance/graph-optimizations.html.

https://gym.openai.com/docs/
https://pytorch.org/docs/stable/index.html
https://github.com/duckietown/gym-duckietown
https://onnx.ai/
https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://onnxruntime.ai/docs/performance/graph-optimizations.html

	
	Abstract
	
	Theoretical Background
	Machine Leaning
	Definition
	Machine Learning Paradigms
	Instance-Based vs Model-Based Machine Learning

	Reinforcement Learning
	Learning Scenario
	Markov Decision Process Model
	Policy, State-Value & Action-Value Functions
	Optimal Policies & Policy Evaluation
	Classification of Reinforcement Learning Algorithms
	Q-Learning Algorithm
	SARSA Algorithm

	Neural Networks
	Inspiration
	Structure & Functionality of a Neuron
	Learning Procedure of a Neuron
	Multilayer Neural Networks
	Types of Layers
	Neural Networks as Matrix Operations

	Deep Reinforcement Learning Algorithms
	Deep Q Learning
	Policy Gradient Methods & REINFORCE
	Actor-Critic Methods & Asynchronous Actor-Critic
	Proximal Policy Optimization

	Training Deep Reinforcement Learning Agents
	Main Development Tools
	OpenAI Gym
	Pytorch

	Deep Reinforcement Learning Framework
	Neural Network Definition
	Training the Agent

	Cart Pole Problem
	The CartPole Environment
	DQN Agent
	REINFORCE Agent
	A3C Agent
	PPO Agent
	Overall Comparison

	Exploring More Complex Environments - DuckieTown
	The DuckieTown Environment
	PPO Agent Training

	Accelerating Deep Learning Models
	Presentation of the Problem
	The ONNX Format
	Converting models to ONNX format

	The Embedded Devices
	Jetson Xavier NX
	Xilinx Zynq UltraScale+ MPSoC ZCU104

	Accelerating Inference: The Case of a Single Agent
	Jetson Xavier NX
	Xilinx Zynq UltraScale+ MPSoC ZCU104

	Accelerating Inference: The Case of Multiple Agents
	New Scenario
	Jetson Xavier NX

	Epilogue
	Appendix
	Implementations of Deep Reinforcement Learning Algorithms
	Basic Deep Reinforcement Learning Algorithm Class
	Deep Q-Learning Algorithm
	REINFORCE Algorithm
	Asynchronous Actor-Critic Algorithm
	Proximal Policy Optimization Algorithm
	Stacked Frame Proximal Policy Optimization Algorithm

	Neural Network Acceleration
	Conversion to ONNX
	ONNX Actor Model
	Vitis AI Compilation Process
	Quantization utilities
	Quantization script
	Compilation script
	Complete pipeline script

	DPU Actor Model
	ZCU104 Application Code

	Bibliography

