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NepiAnyn

O oKOTOC TNC SUMAWHATLKAC Epyaciag NTav n avantuén alyopiBuwv yla tnv BeAtiotomnoinon
™C¢ Stadkaoilag KATavounG Epappoywy g UTIOAOYLOTIKA VEDN. KaBwg n xprion Tou UmoAoyLoTikoU
vEPOUG auAveTal, TAUTOXPOVO AUEAVOVTOL KOL OL QTALTACEL UTIOAOYLOTIKWY TIOPWV ylol TV
61aBeon unnpeowwy, onwg n e§umnpétnon epapuoywyv. OUwE, N TAPOX UTIOAOYLOTIKWY TIOPWV
amoTeAEL ONUOVTIKO KOOTOG Kal gival puokd adlvaTo Vo EXOUHE ATEPLOPLOTOUG TIOPOUG. ZUVETIWG
elval emraktikl n UAomoinon OoAYOPLOUIKWY TEXVIKWYV TIOU KOTOVEMOUV €dAPUOYEG OF
UTTOAOYLOTLKA VEDN LE TETOLOV TPOTIO, WOTE adevog va e€olkovopoUpe tn dtabeon mopwv KOTA TO
péyloto duvato Kal adetepou va SlatnpoUpe TNV eEUMNPETNON TWV EHAPUOYWY OTO ATALTOUHUEVO
eninedo.

Mo TNV Katovopn €papuoywyv o€ UTTOAOYLOTIKA CUOTHUATO, XPNOLHOTIOLETAL EUPEWS Eval
ouoTNUa EVOPXNOTPWONG yvwoto wG Kubernetes. To Kubernetes aflomolel tnv xprnion twv
containers yla tTnv dloxeiplon Katl katavopun epappoywv. MaAlota €va oo ta main components
tou Kubernetes eivat o Scheduler tou, o omnoloc kaBopilel To mwg Kat To mote Ba kataveunBouv ot
edappoyeg mou katadptdvouv otov cluster. Ze autd akplpwg Tto onueio mpoomabolpe va
€lOAYOUE OAYOPLOUIKEG TEXVIKEG, oL omoieg emnpedlouv tnv cuuneplpopd tou Scheduler kot
kaBopilouv Tov TpOTO TOU Ba KataveunBolv oL epapuoyes. Q¢ amotéAeopa, dnuloupyouvtal
{evyn epapupoywV, HE OKOTIO TNV KaAUutepn €€olkovopnon Twv SLaBécipwy opwv aAAd Kot Thv
adLaAewnttn dlaBeolpdTnTa TWV EPOPUOYWV

Mo tnv mepapatiky afloAdynon Twv mapandvw, VAomolibnke évag server amo ¢uokd
UNXavAUATA, TOU ETUTPEMEL TNV efumnpétnon edoapuoywv. H PBeAtiwon tng amédoong twv
epapuoywv mou mapatnpnonke opwg, ev amoteAel POVOOHUOVTO CUUBAV TOU CUYKEKPLUEVOU
duokou server, KaBwg oL alyoplBpoL elval UAOTIOLNUEVOL LE TETOLO TPOMO, WOTE va ennpedalouv
Vv oupnepldopd tou Kubernetes Scheduler aox£tw¢ Tou cuoTAUATOC IOV Bplokovtal. ZUVETIWG, N
TIAPATIAVW TEXVIKN KOTOVOUNG €dappoywy, Umopel va BeAtlwoel aobntd tnv avilotoixion
edappoywv o€ onolodAMOTE server, EE0LKOVOLWVTOG UTIOAOYLOTLKOUG TTOPOUG 0TO PEYLoTO Suvarto.

NEEerc KAsldua

Katavoun edpappoywv, Resource Management, Kubernetes Extending, Scheduler, Plugin, Docker,
Cluster, CPU sockets, CPU pinning, Containers, NedpoUmoAoylotikd cvotnua, Interference Aware,
AAyop1Buot, Virtualization, Servers, AlaBsolpotnta
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Abstract

The purpose of this thesis was the development of algorithmic concepts, in order to
optimize the process of distributing applications to cloud-based environments. Considering that the
usage of cloud computing has been increasing steadily over time, consequently has increased the
demand of more computing resources, in order to provide services, such as hosting applications.
Nonetheless, providing computing resources is a significant cost and it is physically impossible to
have unlimited assets. Therefore, it is imperative to implement algorithmic techniques, which
distribute applications to cloud computing services in such manner, so that on one hand, we save
the disposal of resources as much as possible and on the other hand, we maintain hosting
applications at the desired level.

In order to distribute applications to computing systems, an increasingly famous
orchestration system is used, known as Kubernetes. Kubernetes makes use of containers to manage
and distribute applications. Moreover, one of Kubernetes’ main components is its Scheduler, which
dictates when and how applications will be distributed, when arriving at the cluster. At that exact
point, we aim at adding algorithmic techniques, which will affect the Scheduler’s behavior and
determine the assignment of applications to server sockets. As a result, pairs of applications are
created, with the intension of conserving as many resources as possible, whilst also maintaining the
availability of our applications.

Regarding evaluating the above mentioned, a physical server was set up, so that to allow
application hosting. The improvement observed on application performance, is not dedicated to
this specific physical server, since the algorithms are constructed in such way, so that they alter the
behavior of the Kubernetes Scheduler, in spite of the system they are operating on. In conclusion,
the aforementioned technique of distributing applications, can improve noticeably the workload
share on any server, preserving computing resources as much as possible.

Keywords

Application distribution, Resource Management, Kubernetes Extending, Scheduler, Plugin, Docker,
Cluster, CPU sockets, CPU pinning, Cloud Computing, Interference Aware, Algorithms,
Virtualization, Servers, Availability
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1. Elcaywyn

Emxelproelg kat opyaviopoi onuepa mpoomabolv OAO Kol TEPLOCOTEPO VvV
€LKOVLKOTIOL)OOUV TOl GUCTAHOTO TOUC WOTE Vol BEATLWOOUV TNV EUTIELPLO TOU XPHOTN KATA
™V XprAon Twv epapuoywv Toug. 2Tto TOPeABOV TIOU XPNOLUOTIOLOUVTOV KATOVEUNUEVA
cuoTApaTa TopatneEnOnkav apketd TpoPAApata  Onwg oaotdbela Ttwv  Blwv  Twv
OUOTNUATWY, amWAEL SIKTUOU Kal eUKOAN dlaomacn TG aodAAsLag Tous. Q¢ anmotEAeopa
€Xouv avamtuxBOel VEEC TEXVIKEG UE TIC omolec Snpioupyouvtal KOAA OPYaAVWHEVA ELKOVLKA
niepBarlovta yla tnv e€unnpetnon epappoywv. Ta neptBailovta autd eEunnpeTouvVIaL O
Slakopoteg kal ta dedopéva Toug amobnkevovtal o€ data-centers, mapExoviag £ToL LOYUPNH
ETIEKTOOLUOTNTA OTLG EPAPHOYEG PE AVTAAAAYLLA VA AELTOUPYLKO KOOTOG. ZUVETIWG TTAEOV OL
XPNOTEC XpNOLUOTooUV TIG £dapuoyéC mou Bélouv amd kaBe tomoBeoia ywpic va
neplopilovtatl amo Tig SuvaTtOTNTEG TOU HNXOVHLATOC TOUG.

AUt n véa TPOYHOTIKOTNTA €XEL UAOTOLNOEL XAPLG TNV AVATITUEN TWV ELKOVLKWV
niepBarloviwy. Evag Baolkog TUTOG Elkovikomoinong elval n peTatpon Twv epapuoywv
o€ containers (containerization), o omoiog elval emiong yvwotog wg €lkovikomoinon
AELTOUPYLKOU CUOTAUATOG Kal adopd TNV SuvaTOTNTA €VOC AELTOUPYLKOU CUOTAMOTOC Va
ETUTPEMEL TNV SNLoupyia TTOAAATIAWY ATTOUOVWUEVWYV TEPLBaAAOVTWY Xpriotn. MEéow auThC
NG ELKOVIKOTOINONG TO AOYLOULKO UTIOPEL va MapéXeTal o popdr mokeETwy (containers).
AUTA TO TTAKETA ETUTPETOUV OTLG EPOAPUOYEG VO TPEEOUV TTOVTOU TIPOODEPOVTAG ETOL LEYAAN
gUKLVNOLO OTNV avamtuén Kol €yKOTAOTOON TOUG. AUTEG OL VEEG TEXVIKEG €EUTNPETNONG
epapUOywWV €XOUV BEATIWOEL CNUAVTLKA TNV EUTELPLO TOU XPROTn KaBwG n €lkovikomoinon
TWV UTIOAOYLOTLKWY CUOTNHATWV EXEL aUENOEL TN SlaBeouoOTNTA TWV TTOPWV OTLC EHAPLOYES
onUavtika. Opwe mapa autn tn BeAtiwon otnv dlaBeolpotTnTa TWV €hAPUOYWY, N AVAYKN
efunnpétnong Twv WBlwv kot Twv dedopévwy Toug, €XEL POKAAECEL avénon ota KOOoTn
ouvtipnong Twv SLOKOULOTWY Kol Twv data-centers Toug. ZuyKekpLUEva, ePapUOyEC TIOU
polpdalovtal TOPOUG KATA TNV EKTEAECNH TOUG, TOPATNPOUVIAL TWG AVILULETWT{ouV
TipoBANRpaATa AmOS00NC MOPA TNV TOCOTLKH LKAVOTIOINGN TWV UTIOAOYLOTIKWY OVAYKWYV TOUC.

Q¢ amotéAeoua, ylo TNV €AAXLOTOTIOINON TWV KOOTWV QUTWV £XOUV avartuyxOel
Sladopeg TEXVIKEG Olaxeiplong mopwv. Ouwg o €val UTIAPXOV YVWOTO TPOYPOUUA
evopxnotpwong edappoywv He to ovoupa Kubernetes, n Siaxeiplon twv umMoOAOYLOTIKWV
TOpwv PploKeETAL O TPWLIUO Kol avemapkég otado. To Kubernetes amotelel €vav
gfalpetikd umoPndlo yla TNV AUTOUATONOLNON TNV EyKATACTAONG £dOpUoywv, TNV
Slaxeiplon Toug Kal yla TNV SLaBecIpoTnTO TOUG TTPOG Tov Xpnotn. Q¢ amotéAsopa NTav
OVAUEVOUEVN N XPON TOU OTNV SLOXELPLON TTOKETOPLOUEVWY €DOPUOYWY OTA TAQLCLOL TNG
€LKOVIKOTIOlNONG. ZKOTIOG pag €ival va emekteivoupe tov Kubernetes, wote va pmopet va
avtilapBavetal moleg epapuoyeg mpokaAoUv mpoPAnuata anodoong HeTafl TOUG, Kal
HECW OAYOPLOUKWY TEXVIKWY, VO TIC OHOSOTOLO0UNE KATAAANAQ, HELWVOVTOC £TOL TO
KOOTN ouVTAPNONG ToU Kat BeATIwvovTac T anddoon Touc.
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2. KuBepvAtnc kat Elkovikomoinon

MpotoU &ekwvooupe TNV meplypadn TNG onpaciog emiyvwong Tou UTTOAOYLOTIKOU
ouoTNUATOG Yo TAPEUPOAEC peTafl edopUoywV O €va UTOAOYLOTIKO VEDOG, elval
amapaitnto va £€nynbel avoAuTik@ n €lkovikomoinon. Ta UTIOAOYLOTIKA VEDN £Xouv
eTUTPEYPEL TNV amoBnkeuaon Kot MpooméAacn SeSoUEVWV HEOW TOU IVIEPVET, XwPLE MAEOV va
XpeLdletal n anobnkevon toug otov okAnpo Sioko tou xprRotn. QG amotéAeopa, oL XProTEG
UTopoUV va XpnoLUoToLoouv £hapUOYEG MECW OLASIKTUOKWY OUVOECEWY, Xwpic va
XPELATETAL VO EYKOTOOTAOOUV KATL OTOV MPOCWTILKO TOug uTtoAoylotr. Etol, ol edappoyeg
mA£ov, oteyalovtol og eEUTINPETNTI) UE CUYKEKPLUEVEG CUYKEVTPWTLKEG OPXLTEKTOVIKEC KOl Ol
XPNOTEC UTTOPOUV VA TIG XPNOLUOTIOW 00UV HECW TNG KATAAANANC Slemadng Kal TnG avaAoyng
Sltadiktuakng olvdeong. ZUVENMWG, €lKoVIKOoTioinon €xoupe otav n Yndloky popdn ULag
ebappoyng dnuloupyeital mpog xprion avti ya tnv dla tnv edpappoyn kaboautr. Onote pag
elval katavonto we To UTTOAOYLOTIKO VEDOG BacileTal 0TNV ELKOVIKOTIOLNGON YLO VO KAVEL TNV
Xpron Twv edbapuoywy 1o eUKOAN KAl 0PECTH OTOV XPHOTN.

H ewovikomoinon oto umoAoyloTiko VEPOoG avadepetal otn Snuloupyila ELKOVIKWY
UTTOAOYLOTIKWY MNXOVNHATWY, AOYLOMIKWY KOl AELTOUPYLKWY CUCTNUATWY, QTTOTPEMOVIAG
€TOL TNV avaykn ylo EXxwPLoTr eykataotaon Aoylopkol o€ KABe ¢uolky pnxavr Tou
T(POKELTOL VA TO XpNOLUoTIooEL. OPWwG N ELKOVIKOTIOINON cuvavTATal o€ TTOAAEG LOPdEG, yLa
VO UIMOPECEL KOVEIC £TOL va LKAVOTIOUNOEL TIC OLadOPETIKEG QAVAYKEG OTNV Slaxeiplon
edappoywV Kol XpHon UTIOAOYLOTIKWY TTOPwV. OL TPELC BACLKOTEPOL TUTIOL ELKOVIKOTIOINONG
elvat  yvwotol wg, Ewovikomoinon Awakopwotyy, Eiwkovikomoinon Alemadrc Kot
Ewkovikomoinon AmoBnkeutikou xwpou. O TO YVWOTOG TUTIOG E€LKOVLKOTOLNONG Tou
EMNPEALEL TO UTIOAOYLOTIKO VEDOG TO TIEPLOCOTEPO ELvOL N ELKOVIKOTONGON OLOKOMLOTH.
JUYKEKPLUEVA, N ELKOVLKOTIOLNON SLOKOULOTH ETILTPETEL OTOUG MAPOXOUG vt BeATLoTOMOLOUV
TNV XPRON TWV UNXOVNUATWY TOUG KOl VO ETILITPEMOUV 0TI EDAPUOYEG TOUG VAL TPEXOUV HE
KaAUTepn amodoon. Auto kabilotatal eplKTO, KABWE N ELKOVIKOTOLNGN QUTH EMLTPEMEL TOV
SLoXwPLoPO Kal TNV amopévwon TwV MNXOVNUATWY TOU UToOAoyLoTH, amo 1o KdAbe
T(POYPOLLLULOL TIOU UTTOPEL Vo TpEEEL o€ auTov. OL dpuoikol mopol Tou umoloylotr ekppalovral
€TOL E AOYLKEG QVIUTOPOOTACELG, OTIWG YLt TTOPASELYMO O EMEEEPYAOTAG EVOG UTIOAOYLOTA
(CPU &nAadn) , o omoiog mAfov ekdpaletal wg VCPU, dnAadn Yndlakog enefepyaotrc. Auth
N AOYLKN QMOUOVWON TWV TIOPWV €VOC UTIOAOYLOTH, ETULTPEMEL TNV SNULOUPYLO ELKOVIKWV
punxavnudatwy (VMs) otov i6lo tov umoAoyLoTr, EMLTPEMOVTAG TNV KOAUTEPN KATOVOUN TWV
edappOywV avAaAoya LE TLG OVAYKEG TOUG.

MEpa amo TLG ELKOVLKEG NXOVEG, LE TNV ELKOVLKOTIOLNON €XOUE KOL TNV QVATTTUEN TWV
containers, dAAWG oTa EAANVIKA TIEPLEKTEC, MECW TWV OTOLWV UITopoUV va otnplyBouv Kat
va avamntuxBouv epapuoyEg onwe epapuoyEg dtadiktuou. Ta containers autd gival popntd
METAEL pnxavnuATwy, aflomota Kot KALLOKOUEVO ETILTPEMOVTAG TNV EUKOAN avartuén Kal
Slaxeiplon twv edappoywv toug. To Kubernetes r aAAuwg ota eAAnvikd KuBepvAtng,
ETUTPEMEL TNV Slaxeiplon TETOLWV KLBWTiwV - containers Ko XpnNOLULOTIOLELTAL EVPEWS YL TNV
Slaxelplon Twv edappoywv TOUC. JUYKEKPLUEVA, TO Kubernetes eilval pwo ¢opnth,
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ETIEKTAOLU TTAATHOPHA avoLxToU AOYLOULKOU TIou SlaxelpileTal MAKETAPLOUEVESG EPOPUOYEC
Kal umnpecieq eAéyxoviag TNV TAPAUETPONOINCN KAl TNV auTtopatomoinon toug. Qg
QTOTEAEOHA, EXEL EVA UEYAAO KOL OVATITUCCOUEVO OLKOGUOTNHA TO OTIOLO [LOG ETILTPETIEL VAL
TPEEOVUE KATOVEUNUEVA OUOTAMATA ME Aveon kal elaotikotnta. Etol, to Kubernetes
ETUTPETEL OTOUC TTAPOXOUG UTINPECLWV VA XPNOLUOTIOLOUV amodoTIKA Toug GpUOLKOUG TOUG
TOPoUC evw TapdAnAa datnpouv to enimedo anddoon Twv edpapuoywv mou avalntd o
nehatng. To Kubernetes OSiaxelpiletal TG £POPUOYEC, QUTOMOTOTIOLEL TNV OVATTUEN
AoyLopLkoU Kol poodEpeL peyaAutepn achAAELa.

‘Exovtag mA€ov katavonoel tnv xpnowuotnta tou Kubernetes, sival onpavtiko va
e€nynooupe Kol TNV AELToupyia TOU KOl TNV APXLTEKTOVIKN TOU. ApXLKA, OTav gykaBlotoU e
1o Kubernetes og éva cuotnua £€XOUHE Hio cuotada yvwotn Kot wg cluster. H cuotada tou
Kubernetes amoteAsital amo éva MARB0G pnxavwv-gpyatwy, oL omoieg ovopalovtotl KoppBot
(Nodes) kot TPEXOUV TG TIAKETAPLOMEVEG €PAPHOYEG. TO OGUVOAO €VOG N TEPLOCOTEPWV
TETOLWV TIEPLKETWV UE KOWOXpNoTo Siktuo Kal xwpo amobrkeuong ovoudletal Pod. To Pod
ota eAAnvika KapouAa, gival to pkpotepo avarmtUiLuo Koppdtt Aoylopkol oto Kubernetes
Kol Slaxelplletal €va n MepLooOTeEPA KOVTELWVEP £dappoywy. Ot edapUOYEG QUTEC TPEXOUV
mavta mavw otoug KopBoug, dnAadn otig pnxoveg-epyates. Ouwg pia (1 Kot MeEPLOCOTEPEC
av B€hovpe va £xoupe vPnAn SaBeolpudTNTA 0TO CUCTNMA HOG) UNXOVH €XEL TOV POAO TOU
KouPou-adevin, n omola dlaxelpiletal tn cuotada tou Kubernetes kat tig Asltoupyieg Tou.
Ztov kOpPo autov Bpioketal to eninedo eAéyxou tou Kubernetes, to omoio Ba mapeL TG
anmodACELG AMAPAITNTEG YL TNV ASLTOUPYLa TNG ouOTAdA, KABWG Kal Yyl TUXOV UETABOAEG
Kol cupBavta oto cuotnua. OL anmodACELC KoL OL EVEPYELEG AUTEG Aapfavovtal amo diadopa
UTTO-UEPN TOU eTiMéSou eléyyou, omwc to Kube-apiserver, to omoio eival umevBbuvo va
eruBePfatwvel kat va emaAnBevel ta dedopéva ylo AN QVTLIKEIPEVO OTIWG yLa TTapAdELy
Ta Pods mou avadepOnkav mponyoupevwe. EmumAéov, undpxel kat to Eted, To omoio eivatl
€Vag OUVETIAG Xwpo¢ amobnkeuong vPnAng dtabeopuotntog yla va amobnkelel OAa ta
Sebopéva tng ouvotadag poac. Akoun, umapxel kat o Controller-Manager, o omoiloc tpéxel
OAeG TG peBOdoug eAéyxou yla TNV cuoTAda. JUYKEKPLUEVA , €XEL TIOAATIAOUG EAEYKTEG OL
omoiol glval uTELOUVOL yLa TA TEPLOCOTEPA KOMUATLA TNG cuoTadag OMwG ylo mopadelyua,
Tou¢ KopPoug, ta Pods, TIg umnpeoie¢ mou ektelovuvtal KATL. TEAOG, TO €€ApTnuUa TOU
Kubernetes mou Ba poag amacxoAroel meploodtepo €ivat o Scheduler, 1 aAwg o
Apopoloynting. O ApopoAoyntrc mapakoAouBel cuvexwg yla véa Pods, ta omola Sev €xouv
akoun dpopoloynBei mpog kavevav Koppo, wote va e€untnpetnbolv. Etol, o ApopoAoyntng
Ba BaBuoloyroel kaBe Slabéopo kKOUPO wG TPog To véo Pod Kal pe autov tov tpomo Ba
eTUAEEEL TOV KOAUTEPO WG TTPOG TNV EPapuoyn.
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3. Enéktaon tou KuBepvrtn kot YAortoinon AAyopiBuwv

Onwg €ywve katavonto, n dtadikacia AnPng anopdacswv mpog TNV SpopoAdynaon Kat
KaTavoun Twv epapuoywv oe eva cuotnpa tou Kubernetes yivetal and tov ApopoAoyntn.
ZUYKeKPLEVQ, TO eTtimedo AQYPng anmoddoewv yia tnv §popoAoynon pLag epopUoyng VoG
€vog Pod, mpog évav ouykekplpuévo Koppo kat dpa emakoAoUBwC oe €va CUYKEKPLUEVO
dUOLKO pnxavnua, yivetoatl otov ApopoAoyntn. ZUVENTWG, TO EPWTNHA TIOLOL UTTOAOYLOTLKOL
mopot Ba kKaAUPouv TIC QAVAYKEC TNG EKAOTOTE £PapUOYNG, OTOVTATOL OnNO TOV
ApopoloyntA. H ouveldntomoinon authi HoG EMITPENEL VA €EETACOUE TOV TPOTIO UE TOV
OTOl0 UTMOPOUE VA EMNPEACOUNE TNV cupnePLdopd Tou ApopoAoynTth Kat va kaboplooupe
Tov Tpomo mou Ba katavepunBouv ol edpappoyeg. H owotn emdoyn Twv KOUPBwWY yla Tig
epapUOYEC TTIOU TPEXOUV OTO cUOTNUO Hag, Bo amoTteAEé0eL ONUAVTIKO gpyaAsio mpog TNV
g€olkovounon MoOpwV Kot TNV Lkavotnta tou Kubernetes va Statnpel ti¢ epappoyEC Tou o
vPnAn andédoon.

3.1 O Apopoloyntnc tou KuBepvntn

O Apopoloyntig, mpwv anodooilosl molog KOUPOG Talplalel MePLOCOTEPO YO KABE
Pod mou katadBavel oto cvotnua pac, AapBAveL UTTIOYLYV TOU OPKETOUG TTOPAYOVTEC OTIWG
Ol QTALTAOELC UTTOAOYLOTIKWY TIOPpWV, TPoSLaypadEC CUYYEVELAC, TIEPLOPLOMOL TIOALTIKAG N
AoylopkoU Kot dAAa. MNa va emnpedocoupe tv dadikacia autr, mpocBeoape SkoUG Hag
TIAPAYOVIEG TPOG TNV €mAoy ] Tou KOTAAANAou kOpPou, emekteivovtag €tol TOV
Apopoloynty pe TNV Xpnon mpooBetwv Asttoupywwv (plugins). MAéov o PBaoikotepog
TapAyovIag yla tnv €mAoyn tou KatdAAnAou kopBou Ba eival o SIKOG pag, o omoiog
npoodidel oto Kubernetes eniyvwon mapeuBoAwv PeTall edbapuoywy.

H BeAtlotomoinon XpAong Twv UTOAOYLOTIKWY TOPWV amo Ttov ApopoAoyntn
apKouTaV AmAd OToV EAEYXO VO LKOWOTIOLOUVTAL Ol TEXVLKEG OTMALTAOELS TWV EPAPULOYWVY KOl
eddoov auTEG Mpaypatt KaAumtovtay, n SpopoAoynon Adupave pEPOG. Opwg, Omweg ExeL
napatnpenOei, epapUoyEG TMOU POLVOUEVIKA KAAUTITOV LE EUKOALO T OTTOLTAOEL TOUG
auteg, epdavilav coBapa mpoBAnpata anodoong. Auto odeiletal oTig MapeUPOAEC TToU
UTOPEL va €XOUV OUYKEKPLUEVEG edapUoyeG He AAAEG Otav Mpolpalovial Kowoug
UTIOAOYLOTLKOUG TTOPOUG. MNMAEOV OKOTIOC pag elval n eMEkTaon Tou Spopoloyntr HE Tt Xprion
Twv plugins, wote va avtthapfdavetal moleg epapUoyES TPOoKAAoUV TapeUPOAEG o AAAEG
KOLL VOL TG KATAVELEL OVAAOYWG.
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3.2 Enéktaon tou ApopoAoyntni

H enéktaon tou ApopoAoyntr WOTE VA TOU MPOCSWOOUE TNV CUUTIEPLPOPA TIOU
emBupoLpe yivetal pe tn BornBela tou MAatciou ApopoAoynong n oAAlwg Scheduling
Framework. H cupumnepidpopd tou Apopoloyntn pmopetl va aAAdéel epooov ypael KAVELG
gva elBIKO apxelo mapapetpomnoinong tou Apopoloyntr) HeE To omoio Oa emnpedlel TG
Sladopeg paocelg Spopoldynong evog Pod. KaBe ¢don ektibetal péow evog onueiou
EMEKTAONG YVWOTO Kal w¢ extension point.

OAa ta mapamdvw yivovral epKTa pe tTn Xprion tou mAalciov dpopoldynonc. To
mAaiolo SpopoAoynong ival plot BUCUOTOUHEVN QPXLTEKTOVIKI Yl Tov ApopoAoyntr) Tou
Kubernetes. MpooBEtel pLa véa opdda amod enekTAoeL otov uTtdpxovia Apopoloyntr. Ot
ETIEKTAOELG AUTEG LETOYAWTTI{OVTOL OTN CUVEXELA TTAVW oToV SpopoAoynTr Kot emnpedlouv
€T0L AvaAOyw¢ TNV cuunepLdpopd Tou, eVw TIAPAAANAQ LG ETUTPEMOUV va SLATNPOUUE TOV
Apopoloynth eukoAa Slatnprotpo kat eAadpu.

KaBe dwadikaoia SpopoAroynong evog Pod, xwplletal os SUo dpaoslc. H mpwtn dpaon
Aéyetal ¢aon SpopoAoynong (scheduling cycle) kat n &gltepn ¢dpdon Aéyetatr ddon
6éopevong (binding cycle). Katd tnv ¢pdon SpopoAdynong, UTIAPXOUV CUYKEKPLUEVA onUEla
enéktaong tou Kubernetes ta omoia €Aéyxouv TOV TPOMO ME TOV oOmoia Ta§vouel o
Apopoloyntig ta adikvoupeva Pods, GpIATpApEL TOUC KOUPBOUG £TOL WOTE va HEIVOUV LOVO
edktol KOpPoL Kol otn ouveéxela Toug Babuoloyel wote va Bpetl To KaAutepo {euydpl yla
v edappoyn pac. Metd tnv emthoyr) tou KataAAnAotepou koppou, ekwva n daon
6éopevong. Kata auth tnv ¢aon, pa Stadopetikr opada anod onueia emekTaong EEKWVAEL,
Tou ennpedlouv tn cupnepldopd dpopoAdynong mpv tng SEopevon g epapuoyng otov
KoupBo, katd tnv dldpkela tTnG SECHELONC KAl META TO MEPAG TNG. Me QUTOV TOV TPOTO
OAOKANPWVETAL KAL N AVATITUEN TNE EPOPHLOYIC OTOV OTOXEUUEVO KOUPO.

H mapovoa BBAoBnAkn eméktaong tou Spopoloyntr mMpoodépel MOMA onueia
EMEKTOONG, EMElG OUWG Oa oTaBoUpE O AUTA TIOU ATAV AOPALTNTA YLa VA TTPOCSWOOUHE
otov Spopodoyntr) TN cupnepldopd mou BEAOUUE. APXIKA, TIPWTO CNUELO EMEKTAONG TIOU
ekTiBeTaL amo to mAaiolo Spopordynong eivat to Oidtpo (Filter).

To Filter Plugin xpnolpomoleitat yio va amokAeLoToUV KOUBoL ou dgv pmopouv va
PEEouV TNV edappoyn. Av karmoto Filter plugin onuewwoel évav koppo wg akataAAnlo, Tote
Kal OAa ta urtoAouna plugins Tou 6lou eidoug, Ba Tov mapakauPouv.

Ztn ouvexela adol TAéov €xouv eleyxBel oL kOpPoL kat eival dtabBEatpol 6ooL povo
talpldlouv otnv edpapuoyn pag, kahovuvtat plugins ta onola adopolv ™mv
BaBUoOAOYNON TWV EVOTTOUELVAVTWY KOUBwWV. AUTO TO onueio eMEKTAONC OVOUALETOL ONUELD
enéktaong BaBuoAoynong n al\wwg Scoring extension point. Plugins mou xpnolponolouve
10 onuelo autd, €xouv Vo ddoelg. Katd tnv mpwtn ¢daon, mou ovopdletal kat ¢padaon
BaBuoAdynong ot SwaBéoiuol kOpPol mou Tmepdoav TNV ddon  GATPAPIOUATOG
TiPONYoUpEVWG, BabpoAoyouvtal avaloya PE Ta XapaKTNPLOTIKA TouG. ZTnv Seutepn ddon
Kal apou £xouv BabuoloynOel 6Aol oL kopPol €xoupe TNV opaiomoinon BabuoAoyiag n
oAMwwc "scoring normalization". Kata tn didpkela ¢ $Acnc aUTAG, TPOmomolouvTal oL
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BaBuoloyiag Tou KABe KOUPBou, TPOTOU O APOUOAOYNTAG TOAPOUCLACEL TNV TEALKN
BaBuoloyia twv KOpPwv. H paon auty pag emtpenel va dtopbwaooupe tnv Baduoloyia
TWV KOPPBwWV Kal va emaAnBevooupe Mwg eival mpAyUatL o€ €va Aoylkd oplopevo medio
TLHLWV.

3.3 AAVOopLOULKEC TEYVIKEC

Otav 6popoloyoupe edpappoyég otoug KOuBoug , o Spopoloyntng tou KuBepvntn
Ba tpéfel kabe plugin otn dnAwpévn Oelpd TouC £TOL WOTE Vo amodaoiosl Kot va eTAEEEL
Tov KaAUtepo KOpBo yla tnv edappoyn mou KateédpOaoce otov oépPep. KabBe aAyoplOukn
TEXVIKN TIOU Ttapoucolaletal o aut) T SUTAWUATIKN epyaocia €xel yvwpova adevog To
OTpApLopa TWV KOUPWYV WOTE va EXOUUE LOOTIOON KOTOVOUN TWV €DAPUOYWVY OTOUG
SlaBéopoug kOpPoug kal acdetépou tnv BabuoAoynon toug cUpdwvVO PE TO UTAPXOV
doptio mou £€xouv. Juykekplpéva Katd tnv ¢acn tng Babuoldynong twv Koppwv, o
Spopoioyntnc Aappavet to poptio epappoywv Tou KABe KOUBOU. ITN CUVEXELR, cUUDWVA
HE TNV EKAOTOTE aAyoplOuLk texvikn, BaBuoAoyel Tov KABe kOUBO cUNPwWVA TAvVTA UE TV
muBavn npooBnkn Tng véag adikvoupevng edappoyng. H Babuoloyia tou koppou dnAadn,
umnoAoyiletat otnv mepintwon mou Ba npocBEtape tnv véa edappoyn.

H BaBuoloynon twv KOpBwv Paociletal oTOV UMOAOYLOMO TNG OVOUEVOUEVNC
kaBuotépnong mou Ba mpokAnBel amod tnv tomobétnon Svo 1 meplocdtEpwWY edapUOYWY
pall otov (6lo kOpPo. Etol 600 Xelpodtepn €ival n kKabBuotépnon toco uYPnAotepn Ba eival
kat n BaBuoAoyia tou kOuPou. Auto dopBwvetal pe avtiotpodn tng BabupoAoyiag Katd tnv
¢don Opalomoinong BabuoAoyiag. Zuvenwg, 000 UIKPOTEPN KOOUOTEPNON EXOUUE KATA
NV TonoB£tnon epappoywv pall, tooo KaAUTePN Aoy anoteAel o KOUBOC AUTOGC.

OL aAyoplBULKEG TEXVIKEG edappdlovTal Katd thv Slapkela tTng BaBuoAdynong twv
KOMBwV, kaBwg n dpaon Otpapiopatog eivat Kowr) aveéapTATWES TEXVLKNG WOTE VA EXOUUE
LOOTIOON KATOVOMN TWV €PAPUOYWY OTO MEPN TOU CUOCTAUOTOG. ZUYKEKPLUEVA, OL TPELG
SL0POPETIKEG TEXVIKEG TIOU EdappOcapLE elval oL EEAG.

Mpwtn aAyoplBuLkA TEXVLKA TIou €EETAOTNKE €lval 0 AANOTOG aAyOpLOUOG 1 oAALWG
Greedy Algorithm, o onolo¢ npoonaBel va tonoBetrostl pall 660 to SUVOTOV EPLOCOTEPEC
epapuoyECg, mou TPokaAoUV  Alyec mapepBOAEG otnv anmddoon TwV CUV-TOTOBETNUEVWV
edbappoywv. H beltepn aAyoplBuik texvikn mpoomabel va Spdoel pe tov akplpwg
avtiotpodo tpomo. Ovopdletal XopLlotikog aAyoplBpog  aAlwwg Sparing algorithm, kaBwg
npoomnaBel va xapioel tnv eniboon Twv meplocotepwv edapuoywy, tomobetwvrag pall
epappoyéc pe vPnAn S6wabeon va MpokKaAéoouv TAPEUPOAEC O OUV-TOMOOETNUEVEC
edappoyéc. Kat’ autov tov tpomo «Bucoialovtag» edapuoyEg mou Ba dnuloupyoucav
nipoBAAaTA 0€ AANEG, EMLTPEMOVTAG OTLG UTIOAOLEG va Slatnprioouv TNV anodoon Toug o€
amodekta emnineda. TENOG, SOKLUAOTNKE KAl €vag TILO OUVOETOG aAyoplOuog, Baclopévog
otnv tomoAoyia Twv kOUPwv Kal ovopdotnke Socket-based Algorithm. Zuykekplpéva, autog
0 aAyoplBuog, mpoomnaBel mio €€unva va tormobetnoel epappoyec pall, cuvdualovrag Tig
OVOEKTIKEC PE TIC ETIOETIKEC KOL TIG EVALOONTEC HE TILO NpPEUEG. Kot autdv Ttov Tpodmo ta
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levyn edappoywv mou polpalovtal UTTOAOYLOTLKOUG TIOPOUC HE TETOLO TPOTIO WOTE va
g€olkovopouvTal 0To EMAKPO.

3.4 XapaKTnpLoUOC EGOpLOYWYV

Onwg €ywve eVKOAA QVTIANTITO, N LKAVOTNTA TWV OAYOPLOUKWY TEXVIKWY va §pouv
Kal va mipoodEpouv otov KuBepvntn tnv emiyvwon mopepBoAwv oTIC amodO0el Twv
epappoywyv, Baciletal apxLlkd oTNV EMiYyVWON TWV XOPAKTNPLOTIKWY TWV £HAPUOYWV QUTWV.
KaBe epappoyr mou Spaactnplonoleital o€ €va GUOLKO pNXAVNUA SEV ONUALVEL TTWG EXEL KOl
v 6o cupnepidpopd pe TG uTOAoueG. AviBEtwg, €xel moapatnpnBel mwg n kAbe
epapuoyn Spa SladopeTikd OTAV OUV-TOTOBETEITAL PE GAAEG KOl UTIAPXOUV CUVETIWG,
Sladopetikol TumoL epappoywv pe Stadopetikoug Babuolg emidpaong Kal eMOeTIKOTNTAC.
Ta 8Uo Baolkd xapaktnplotikd Kabe edappoyng mou kabopilouv tn cupmepidopd NG,
opilovtal wg n emBetikOTNTA TNG EPapUOYNC Kal n evaobnaia tnc.

H emBetikotnta pag epappoyns kabopilel tnv Lkavotnta TG va eMnPeAleL TNV
anodoon AMwv edpapupoywv Otav polpalovial Kowoug TOPoUG. ZUYKEKPLUEVA, TETOLEG
edapuoyEG MPokaAoUV TNV Helwon Tng anddoong Twv MEPLOCOTEPWY EdappoywV TIou Ba
tonoBetnBOolV pall Toug. Opwg po emBeTIKA epappoyr) 6 Ba To MPOKAAECEL O OAEG TLG
epapuoyéc mou Ba tomoBetnBouv pall tng. Autd cupPaivel €meldr) UTIAPXEL Kol €va
OEVUTEPO ONUOVTLIKO XAPAKTNPLOTIKO TWV €PAPUOYWV WG TPOG TLG MAPEUPBOAEG LETAEU TOUG.
AUTO TO XOPAKTNPLOTIKO YVWOTO w¢ evatoBnoia, kaBopilel av kal katd moco pa epapuoyn
Suvatal vo TTaPoUCLACEL ONUAVTIKA Helwon anodoong LETA TtV TOToBETNoN TG UE AAAEG
epapuoyéc. Auta ta SUO XOPOKTNPLOTIKA OUVETIWG, ONnULOUPYoUV TECOEPLG KAAOELC
epappoywv. H mpwtn KAAON, TOU KATA TNV OLAPKELX TWV TELPOHOTIKWYV HETPAOEWV
ovopdletal kAdon A, elvat n tafn edappoywv mou Oev elval EMIOETIKEG KAl OUTE
evailoBnteg. Teétoleg, edapuoyeg Bewpolvral WAVIKEG KoL N KAAUTEPNn emloyn yla
tonoBEtnon e omolovdnmote GAAo TUTIO ePaPHOYNG. ZTN CUVEXELA, OL EPAPUOYEG KAAONG
B, elval edpappoyég mou emiong Sev elval emIBeTIKEG, OpWE Twpa eudavilouv auvénuévn
evaltobnola. Edopupoyéc TETOOU TUTIOU £€XOUV TO TPOTEPNUA VA HUNV  TIPOKAAoUV
napeUBoArég otnv anoddoon AAwWV ePappoywyV, OUWG OVTAG gVALOONTEC avTIHETWTT{OUV
nipoBAAMATA KOTA TNV TOMOBETNON TOUG PE GAAEG €TLOETIKEG DapPUOYEG. ATIO TNV GAAN
HEPLA, €dAPUOYEC TOU elval pev eTUOeTIKEC alAd Oev elval evaiocBnteg avkouv otnv
katnyopia . TEAOC, umtapyxouv Kal ehapUOYEG OL OTIOLEG Elval Kol EMIOETIKEG TIPOKAAWVTOG
uelwon otic anodooslc AN WV cuv-TomoBeTnUEVWY edpappoywy, aAAd Kot evaiodnTeg ovtag
£T0L EVAAWTEC TIPOG AAAEG TP POAEC. AUTEC oL edaplUOYEG amoteAoUV TNV Katnyopila A
Kal xpl{ouv oNUAVTIKAG TPOCOoXNG OTaV TOMOBETOUVTAL O€ £V CUOTNUAL.
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4. Tuykpttikn A€loAdynon kot NMepiBaAAov EktéAdeong

Jupdwva pe Ta Mopanmavw, n emnéktacn tou KuBepvAtn PBaociletat adevog otnv
EMEKTAON Tou (&lou tou Apopoloynth Tou, cUUdWVA LE TNV EKAOCTOTE AAYOPLOULKN TEXVLKNA
Kal adeTEPOU  OTNV  AvVAyvwPLoOn KoL TOV  XOPOKTNPOMO Twv €£hOopUOywV TIOU
Spaotnplomolovvtal 0To cUOTNHA Tou. H MEpapATIK) afloAOynon TwV MOPATAVW EYLVE UE
v Snuloupyia tou katdAAnAou meplBAaAAovtog ektéAeong KaBwg KoL WE TNV XPAon
OUYKEKPLUEVWY YVWOTWV €POPUOYWY OPOCHHWY, WOTE va Yivel bkt n HETPNON NG
andédoong cLUPWVA HE TA TIELPOATIKA TTPOTUTIAL.

4.1 Xpnon ebopuoywv 0pocnULwV

Mo tnv anoktnon HUETPACEWV Kal TNV €nNaAnBsuon Twv OAYOPLOUIKWY TEXVIKWV
xpnowornow|Bnke n yvwotn PBLPALONAKN petponpoypappdtwyv SPEC Benchmark suite. Ot
€POPUOYEG- UETPOTIPOYPAULOTO TIOU XPNOLUOTOoLBnKav €ouv oKOTO Vo TTPOCOOLWOOUV
PEOQALOTIKEG KOTOLOTAOELG OTTO TIPOYP AT EKTEAECEWYV Java PEXPL CUVOETEG UTTOAOYLOTIKEG
Siepyaociegc. H PBiBAoOnkn SPEC CPU emutpémel tnv ofloAOynon TNC UTIOAOYLOTLKNAG
LKOVOTNTOC TNG €PAPHOYNG WC TIPOC TNV Xpnon tou emnefepyaoct. Me auTov Tov TPOTO,
dnuloupyoUue oevapla Tpocopoiwong adlkvolpevwy edopuoywy Kat a§loAoyoUue av
TIPAYHOTL OL OAYOPLOULKEG TEXVIKEG BEATLWVOUV TNV ATOS00N TOUG O€ GUYKPLON HE TOV QA0
Tuxaio alyoplBuo dpopoloynonc.

MNa tv AqPn autwv Twv PETPAOEWY, €lVOL AMAPOITNTO VO KOTOUETPHOOUUE TOV
XPOVO €KTEAEONC TNG ekAoToTe £dapuoyns. ApXIKA, kaBe opoonuo edpapuoync mou Ba
xpnolpomnownBeil ota dtadopa cevapla, TPEXEL ATMOUOVWHEVO HE TIANPN EAEYXO TIAVW OTOUG
SlaBéououg umoloyloTikoUg mopouc. Etol €xoupe tnv amodoon kdbe edopuoyng oe
baviko oevaplo Xwpic mapeuPoAEC, Kal UTOPOUE TAEOV va UTIOAOYLICOUME Tov Babuo
uelwong tng anddoong ota Stadopa oevapLla IPOCOUOLWOoNG. ZUYKEKPLUEVA, KABE agevaplo
ektéeoncg Ba tomoBetnoel pall Vo SLapopeTikEC epapUoyEC OTOUG KOUPBOUG WOTE OTN
ouvexela va €xoupe évav Ttivaka NxN (omou N Stadopetikol TUTOL LETPOTIPOYPAUUATWY) HE
TLG LETPNOELG EKTEAEONG TNG KAOE edappoyng.

Exovtag mA€ov TIG KOTOAANAEG METPAOELG MMOPOUUE va KOTAAASOUME oOTnV
Katnyopia edapuoyng He T xpnon Hlag oswpdc amo Seikteg mpoPAsPng. O Seiktng
nPOPBAsP NG autodCg uTtoAoyileL Kal TNV evaloBnoia tng ekdotote epapUoyns, cUUPWVA HE TIG
TIMEG eKTEAeONG TNG (6lag, aAAd kol tnv €mBETIKOTNTA TNG OoUUPWVA HE TNV MElwoN
anodoong twv AAwv edpappoywv otav tonobetnOnkav pall tng. Me auTOvV TOV TPOTO,
kaBlotatat duvatr n katnyoplomoinon tng kaBe edappoyng, wote va yivel duvatn n
Slaxeiplon Toug amo TNV EKACTOTE AAYOPLOULKA TEXVLKA.
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4.2 Anuovupyia NeptBar\ovtoc Ektéleonc

Ma tnv mepapatikn afloAoynon tng 0£ong tng SUTAWUATIKAG, Snuoupynbnke éva
TepLBAANOV EKTEAEONG VLA TNV TIPOCOUOLWON PECALOTIKWY CUVONKWVY KATA TNV eEUMnNpETNON
edappoywv amo €vav TAPOXO0. ZUYKEKPLUEVA, OTAONKE €val UTIOAOYLOTIKO oUoTnua
BACLOUEVO OTNV QPXLTEKTOVLKN €LKOVIKOTIOINONG, TO oOmolo amoteAeital omd TECOEPLS
UTIOAOYLOTEG ME TNV (6l UTIOAOYLOTIKA KAVOTNTA. AUTA T TECCEPO UTIOAOYLOTIKA
ouoTUaTa anotéAeoav Touc 4 KopBouc tng ocuotadag tou Kubernetes.

ITn OUVEXELA OL EPOPHOYEC OpOCNUA TIOU XpnoLomoLitnkay, KatnyopLlomoiénkav
TMAVW OE QUTA TA HNXOVAMOTA WOTE va Katoaypadel n cupnepldpopd TOUG KATW OO TNV
OUYKEKPLUEVN QAPXLTEKTOVIKN KOL UTTOAOYLOTIKA LKOWOTNTA TWV CUCTNMATWVY. Ma tnv Afgn
LKAVOTIOLNTLKAG TtooOTNTAG METPACEWY, UAomowBnkav TmoAAamAd oevdpla  ¢$optou
epyaociag, Stadopetiky évtaong kabe dpopd, wote va efetaotel o kABe alyoplOuog umo
kaBe mBavr) cuvenkn mieonc.

5. AntoteAéopata Kat ALoAdynon

OL OoAYOPLOULKEG TEXVIKEC WC TwWPA £XOUV TIEPLOPLOTEL OTO va AapPBavouv TIC
anmodACELG KATAVOUNG Twv edapuoywv o éva uPnAo eninmedo. AUTO €lvol QVOAUEVOUEVO
KaBwg ol alyoplBuol edappolovtal katd tnv Sldpkela tng SPOopoAdynong, HECW TOU
MAatoiou ApopoAoynong. Me autdv Tov TPOTo, oL EPAPOYEG KATOVEOVTOL OTOUG KOUPBOUG,
OMWG META N eTAOYN TNG opadag emegepyacTwy Tou Ba XpNOLLOTIOLOOUV YLaL TNV EKTEAEDN
TOUC TTOPAUEVEL TUX QLA

Ma autov tov AOyo, uAomolnOnke kot n texvikn tou CPU-pinning, 6nAadn tou
«KAPPLTOWHUATOGH HLOG EPOPUOYAG OE LA OUYKEKPLUEVN OMASA ETMEEEPYAOTWY. ZUVETWG
onuoupynBnke éva DaemonSet tou Kubernetes, 6nAadn évag Saipovag mou TPEXEL
nieplodikad kal kaAel Tnv Alota Twv ePapoywy ou TPEXOUV OTOV EKAOTOTE KOUPOo. Me tnv
Xpnon Twv control groups , UMOPOUUE va KAPPITOWOOUHE Mo edapuoyrn o €vav n
TIEPLOCOTEPOUC eMefepyaoTEG, SNAadn kat’ eméktaon o€ €va socket eme€epyaotr). Me autov
TOV TPOTIO UmopoU e va SoUpe tnv BeAtiwon mou mpood£pouv oL aAYOPLOUIKEG TEXVLKEG
otnv anodoon twv ebappoywyV €ite Le TO Kapditowpa enesepyaot EVEPYOTOLNUEVO ElteE
Xwpig auto.

MNa t™v ANPn amoteAeopdtwyv ta omoia Ba emaAnBelouv TNV KAVOTNTA TOU
SpopoAoynTr va apoucoLalel LKavoTnTa EMyVWong Twv MApEUBOAWY HETAEY edappoywy,
elval amapaitnto va efetaotovv TOAATAEC SLOPOPETIKEC OUVONKEG Tleong Tou
cuotApatog. Na autév tov Adyo, xpnolpomowBnkav tpelg dadopetikol tumoL ¢poptou
epyoaoiag KAlLakoUevng evtaong. O MpwTog TUMOG, YWWOoTOG WG POpTog pyaciog XoaUnAng
évtaong (low-intensity workload) amoteAeital kupiwg amo edpapuoyeg oL omoieg eival
XAUNANG €MBeTIKOTNTAC. JUYKEKPLUEVA, N TTAsloPndia Twv edappoywv Sev Ba mpokaAouv
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ONUAVTIKA TipoPAnuata otnv eniboon Twv GAwWV SNULOUPYWVTOG £TOL GUVONKEG NTLOC
Tleong oto oUOTNUA. ITN OUVEXELX £€eTAOTNKOV Kol POPTOL €pyaoiog peoaiag évraong
(mid-intensity), mou amoteAolvtal and LOOPPOTNUEVEG KATOVOUEG TwV Slddopwv TUTMWVY
edappoywV. ZUYKEKPLUEVA, TIPOOTIAB0oUV va TIPOCOUOLWOOUV KOTAOTACEL] UEONG TILEONG
oTo oloTnua ywo va e€etdoouv TG TBaveEC mapeUPBoAEC peTall edapuoywyv OTNV TILO
ouvnBOLOUEVN KATAOTOON €VOG UTIOAOYLOTLKOU CUOTNUATOG. TEAOC, O TPLTog TUmog hpopTou
epyaociag sival yvwotog we vPnAng évtaong (high-intensity workloads). Me autouc toug
TUTouG poptou epyaciog e€etalovral oL Lo akpaieg cuvOnKeg mieong 0To CUCTNUA, OTIOU
A€oV ocuoowpelovtal TOAEG edappoyeg uPnANg emBetikotnTag. ‘Etol poag Sivetal n
duvatotnta va €EETACOUUE TNV KAVOTNTA TwV OAyopiBpwv Kal oe Tétoleq OUOUEVELS
ouvOnKec.

H amoteAeopatikoTnNTa TwV £POPUOYWV OUWC TPOUTOBETEL TOV AVOAUTIKO KOl
EekaBapo oplopd tng mapeUPoAnG pag edbappoyns. ApXLKA TPEMEL va oploTel EekaBapa og
Tolo onpeio peiwong Tng amodoong pLag epapuoyng Exoupe mapeUBoAn. Auth n peiwon
¢ anodoong g edappoyng, MEPAV TOU amodektol opiou amoteAel mapdfacn NG
oupdwviag petafl MEAATN KoL TAPOXOU. JUYKEKPLUEVA, OTAV O TIAPOXOC £EUTINPETEL TLC
epapUOYEC KATIOOU TIEAATN, CURPWVELTAL €va Oplo pelwong amodoong to omoio eival
omobeKTO. AUTO TO Oplo av EemepaoTel, TOTe £Xoupe mapafacn KoL n amodoon Twv
oAyopiBuwv pog Baoiletal akpPwg mavw o autd. MNooeg mapaPLioEl EXOUME YL TOV
EKAOTOTE aAyoplOuo, clpudwva mAvTa UE TO Oplo TIOU €XeL oupdwvnBel petall mapoyxou
Kol TteAQTN.

5.1 ArtoteAEOUOTOL LETPNOEWV

ITn ouvéEXeEld akoAouBoUv oL UETPACEL TOU ekAoTOTE oAyopiBuou. la Tov
UTIOAOYLOMO TWV ATIOTEAECUATWY Xpnotponowdnkav tpia Stadopetikd opla mapeUBoAng
mou Oa pmopovoav va ocupdwvnBolv petafld meAATn Kol Tapoxou. Autd Ta oOpla
gmonuaivouv avtiotolxa, mMwg ol €pappoyEC &gV UMOpPOUV VA TIAPOUGCLACOUV HELWON
anodoong ueyoAUTePN TNG TAENG tou 10%, 20% kot 30%. Itnv mepimtwaon mou mapatnpenOel
uelwon ¢ andédoong peyaAUTEPN TOU 0piou, TOTE £XOUE Kal pia mapdapaon.

Mapakdtw akoAouBoUV CUYKEVIPWTLKA TO amoTeEAEopATA Tou KABe alyopiBuou yla
To KABe Oplo, ApPXLKA HE TIC EPOPUOYEC “KAPPITOWUEVEC” OTOUC EMEEEPYAOTEC KAl OTN
OUVEXELQ XWPLC, TAvTa 0 GUYKPLON E TOV KAAOOLKO Tuxaio alyoplBuo dpopoldynonc tou
KuBepvntn.
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ANAHZTOZ AATOPIOMOZ
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XAPIZTIKOZ AATOPIOMOZ

Random vs Sparing vs Sparing with CPU pin
10.2

B Random
B No CPU pin
BBl CPU-pinned

10 A

Average Violations

low mid high
Workloads

Metprioeig Xapiotikol AAyopifuou

Onw¢ evkoAa mapatnpel Kavelg, n TLO QMOTEAECUATLK) OAYOPLOUIKN) TEXVLKA
Sdpopodoynong eival tou Socket-based alyopiBuou pe evepyomolnuévo to “KAeibwua” Twv
edapuoywv otoug eme€epyaotéC TouC. O aAyoplOUOG OuyKekpluEva, amodelyel va
dnuloupynoel omatoAeg teTtpadeg edapuoywv mou Ba pmopoucav va aflomolnbouv
KaAUTEPQ, OMWG akplBwG KAvav ol aAot SUo o AmAnotol aAyoplOpoL. ZUYKEKPLUEVA, O
aAyOpLOUOG SNULOUPYEL TIG TETPASEG UE OKOTO LETA oL Suadeg epapuoywv oto Kabe socket
enefepyaotn va ivat n BEATLOTN. MNa autd akplPwg, N TEXVLKA QUTH TIAPOUCIACE ONUOVTLKN
BeAtiwon e evepyomolnuévo TO OUOTNUO KAEWOWHATOG TwV €POPUOYWV OTOUG
EMELEPYAOTEG.

6. Zuvoyn kot MeAAovTikr) S0UAELA

6.1 Z0voln

‘Exovtag mAéov Snuloupynoel mAnBwpa edappoywv mpog €ETAcN, AAYOPLOULKEG
TEXVIKEG, ouotadeg KuBepvntn kat peBodoug katnyoplomoinong epapuoywy, Katadpeépape
KATL EExwpLoTo otnv anodoon emnilyvwong napepoAlwv otov KuBepvAtn. Authi n avotnta
tou KuBepvAtn va pmopel mAéov va KoTOavéEUeEL To €Eumva TIG £DAPUOYEG O Eva
UTIOAOYLOTIKO oUoTnua, amodelyoviag €£tol tnv OSnuioupyia Zeuyapwv Tmou Ba
T(POKAAETOUV TLAPEUPBOAEG peTaEL TOUG €lval KATL TTou Sev €xel dnuLoupynBel eMapKwG wg
twpa. Ou aAyoplOUIKEG TEXVIKEG, HMe TNV Ponbesia Tou KAPPLTOWUATOG TOUG OTOUG
enefepyaoTEC TTIOU TOUC €XOUV avateBel amd Tov aAyoplOUo, EMULTPEMOUV TNV UElwON TwV
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napofLacewv PEXPL Kal 74% otnv KOAUTEPN TepUMTwOon. AUt n HElwon Twv mopaBLlacswyv
Kal dpa oavénon t™ng amodoong twv edapupoywv odeiletal otnv  e€olkovounon
UTTOAOYLOTLKWYV TIOPWV TIOU OTOXEVEL 0 KABOe aAyoplOuog. Av kot o aplBpog Twv edpapuoywy
OPOCHUWV TIPOG EEETOON TWV TEXVLIKWV ATAV HIKPOG, KaBwG Kol to TepBAAoOV eKTEAEDNG
amoteAoutav amd TECOEPLG UTOAOYLOTEC, N OSUTAWMOTIK QUTH OTOTEAECE TNV TPWTN
coBapn mpoomnabela va €xoupe Evav kavo KuBepvntn pe eniyvwon ribavwy rapepufoAwv
HETAEL edapUOywWV.

6.2 MeA\ovTtikn SOUAELL

Onwg avadepbnke, n mapovoa OSUTAWMATIKY TEPLOPIOTNKE OF MIKPO OplOuo
edappoywyv, kal anotéAece 1o Mpwto cofapod PBrua otnv BeAtiwon tou KuBepvitn. Opwg
yla tnv mapoucioon €vog PeAALOTIKOU Kal lkavol cuothpotog KuPepvAtn, TpEmeL va
efetaotel pa Stadopetiki kal mo peaAlotiky Sladikaoia eAéyxou Twv aAyoplOuKwy
TEXVIKWV. JUYKEKPLUEVO, OL edoppoyeC TAéov O Ba eival évag otabepog aplOuog
OUYKEKPLUEVOU TUTIOU UTIOAOYLOTIKAG £pyaociag Siepyactwv, aAAd avtilBetwe N (dnAadn
tuxaiog kat uPNASGG aplBudGg) Uikpo-uTinpEaieg  aAAlwg microservices mou cuvnBilovtal va
e€unnpeTOUVTAL OE UTIOAOYLOTIKA ouoTAMaTo TopOXwWV. AKOUn, oL edappoyEG TAEOV
npodavwg, dev Ba pmopolv va €xouv xopaktnplotel vwpitepa adol eudavidovtal yia
npwtn ¢opd otov efumnpeTnTr). JUVENWG, €lval amapaitntn n Snuioupyia plag Véag
TEXVIKAG KaTnyoplomoinong epapUoywyv mou e TNV Xpnon aAAwv péowv mpoPAednc Ba
UMOpPEL va KATATAEEL TNV VEX EPOPHOYI) OE MO OO TG TECOEPLG KOTNYOPLEG TpLV SpAceL o
oAyopLBuog Spopordynong. Katt tétoo Ba eivat Suvato pe tn xpron evog CUYKEKPLUEVOU
kevol KOUPou omou Ba aflomoleital yla tnv Katnyoplomoinon tng edappoyng, xwpig tnv
eMidpacon Kal Tn HElwoN TNS amodoonc tne anod Kamola aAAn epapuoyn.

AUuTH n VEO KATAOTAON OMOLTEL KOl KAAUTEPN TtapakoAouBbnon twv epappoywv. To
KAsldwpa Twv edappoywv otoug enefepyaotec S Ba elval TMAEOV O ATTAN) HUEMOVWHEVN
ouvaptnon mou Ba akoAouBel TNV aAyoplOpLKr TEXVLKN KATA Tov i8lo tpdmo. AvtiBetwe Ba
XPELaoTEL va tepva e TNV MAnpodopia TnG BEong twv edpappoywv os eva Custom Resource,
6nAadn og €vav €L61KNG KATAOKEUNRG TIOPO. AUTOG 0 L8IKOG TTOpOoG Oa meplypddeL avVOAUTIKA
TNV KOTAOTOOoN ToU KABe KOUPBO e KOvoUC UTTOAOYLOTIKOUG OpouUG. EToL ava maoa oTiyun
Kol 0 oAyoplBpog dpopoddynonc aAla Kat o alyoplBpocg KAELOWHATOC TwV ePapUOYWY OTO
DaemonSet, Ba yvwpilouv tnv katdotoon tou koupou kat Ba AapBdvouv tnv owoTA
anodaon avaloywg.

H peallotikn kot €€0VUXLOTIKY Ttapouciacn Twv mopoanavw Ba dnuioupyrnoouv
gMavAaotacn ota vePoUTOAOYLOTIKA CUCTHHATA EMITPENOVTOG eMITEAOUG otov KuBepvnitn,
va Kataveépel £dPapUoOyEG MeE TAAPN emiyvwon mubavwyv moapeUPoAwv HETAU TOUG,
ETUTPEMOVTAC £TCL OTOUG TAPOXOUG va €EOLKOVOUOUV TIOPOUC yla TG €PapUOYEC TOUG,
Slatnpwvtag Teg OpwG o vPnAa entimeda anddoong.
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1. Introduction

1.1 Thesis Purpose

Organizations are continuously virtualizing their client architectures, data
environments, and back-end systems in order to improve the user experience provided to
customers. In the past, distributed client computing, has had and still has many limitations,
such as network losses, compromised security and unpredictability creating as a result, a
suboptimal quality of service. Virtualization has allowed a more converged infrastructure to
take place, which created well-managed virtual clients. That way, applications and client
operating environments are hosted on servers and their data are stored in data centers,
providing scalability in exchange for a monthly operating cost. Therefore, users can access
services from any location, without being tied to a single client device. However, hosting
such applications on servers is expensive and requires an important amount of computing
resources (such as CPU, RAM, etc.) to be provided. Thus, the continuous increase in number
of workloads uploaded and executed on the cloud, has forced cloud providers and data
center operators to embrace workload co-location and resource sharing as the primary
concern regarding resource efficiency. Correspondingly, one of the most common and
gradually increasing problems in informatics is about resource management and cost
reduction in providing the above-mentioned cloud services. Resource management
frameworks have been developed and are still being valued as necessary tools in resource
efficiency, by every major cloud operator that provides hosting to applications.

Another type of virtualization, that is also gaining popularity rapidly, is
containerization. Containerization also known as operating-system-level virtualization refers
to the operating system feature in which the kernel allows the existence of multiple isolated
user-space instances. This practice has led to the increasing popularity of Docker, a platform
as a service (PaaS) framework[2] that uses the aforementioned operating-system-level
virtualization, delivering software in packages called containers. Containers allow
applications to run anywhere (provided the container is targeted at the operating system)
providing great mobility on development and deployment. Furthermore, containerization
allows one application to be isolated from other applications, thus achieving easier
maintenance, testing, and debugging.

The purpose of this thesis is to provide solutions in resource management for cloud
operators and data centers. Organizations are not only using container-based virtualization
to develop their applications, but also to allow cloud computing to increase availability and
help them improve the user experience. As a result, it is imperative that computing
resources are well managed and distributed to support such cloud technologies.
Nonetheless, orchestrators focus mostly on availability rather than performance
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optimization. One exceedingly popular container orchestration system is Kubernetes.
Kubernetes has been an excellent candidate for automating software deployment, scaling,
and managing applications. However, Kubernetes still lacks interference awareness and the
ability to co-locate applications based on application usage and efficiency.

In this work, we propose a set of algorithmic solutions that customize the behavior
of the Kubernetes scheduler, implementing interference awareness. These algorithmic
concepts are deployed on the scheduler via a plug-in framework creating an out-of-tree
version of the Kubernetes scheduler, allowing it to efficiently place applications on a cluster
of physical machines. The purpose of this project is for our set of scheduler plug-ins to meet
the Quality of Service (QOS) constrains, whilst also ensuring resource utilization at the
maximum possible value. Four different algorithmic solutions are presented with this paper,
all of them outperforming the default Kubernetes scheduler in application efficiency. These
algorithmic concepts are implemented via the above-mentioned scheduler plug-ins and are
compared with the default scheduler and with each other. Several types of applications in
different sets of workloads arrived to our cluster, testing our scheduler plugins and stressing
the available resources in discrete tasks. In order to simulate the arriving applications, we
used specific benchmarks from the SPEC library, which were classified into the required
types of applications beforehand, with the use of our custom predictors.

2. Theoretical Background

2.1 The Issue

Orchestration software usability is growing rapidly, offering solutions in automation
deployment and high-availability for container-based virtualized systems. Nonetheless,
resource management is still based on coarse metrics and neglects interference effects,
overlooking the stress applied upon shared resources. More specifically, Kubernetes, a
widely used container orchestration tool lacks interference awareness when scheduling
applications on a server. The default scheduling mechanism of Kubernetes filters the
available nodes and deploys the applications given that there are enough resources.
However, the potential interference between collocated applications is not taken into
consideration by the default scheduler and as a result, performance issues appear. The
resource criteria required by every application might be met, but application
contentiousness is not considered, which can lead to performance degradation.

Applications arriving at a server have a set of characteristics that define application
intertemporality. Specifically, in the span of a server runtime, the collocation of several
applications on a CPU socket will cause significant changes on application performance,
based on a set of two characteristics, namely contentiousness and sensitivity[14].
Contentiousness defines the potential of one application, to affect other applications
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hindering their performance and increasing their runtime. Sensitivity on the other hand,
defines how susceptible one application is to performance decline because of increased
stress applied on needed resources. As a result, four sets of applications can be extracted
from the above two attributes. For an easier reference throughout this document,
applications that are insensitive (little to no change in runtime and performance when
stressed by other applications) and non-contentious (do not alter the performance of other
applications, when collocated together), will be classified under category A. On the same
page, applications that are sensitive but also non-contentious are classified under category
B, those that are insensitive but contentious are classified under category C and lastly, those
that are both sensitive and contentious are classified under category D.

2.2 Solution Setup

The purpose of this thesis and project is to create algorithmic solutions that aim to
create pairs of applications, which fit well together and eliminate performance degradation.
Applications require certain amounts of computing resources, with the most common
resource type being CPU. CPUs can have multiple cores and sockets allowing a greater
number of physical Processors to do the computational work. In order to simulate
application distribution and resource management for our project, we set up a server
consisting of four physical machines. Each CPU has two sockets and each socket has four
cores so as a result, we have a total of eight virtual CPUs (or vCPUs). In Kubernetes terms,
each physical machine (and as a result, each CPU) is set as a Kubernetes Node, where
applications will be sent to. To accurately test application degradation and sufficiently
evaluate the performance of our algorithmic solutions, we require quadruples of
applications to be formed and sent to each Node. Then accordingly, two pairs of applications
will be created, one for each socket. Therefore, our workloads consisted of sixteen
applications, distributed by the Kubernetes Scheduler as quadruples to the four Nodes.

We created several different workloads of applications to stress our server’s
resources and display different scenarios of application arrival. These workloads can be then
classified into three categories, High, Mid and Low. This characterization describes the
intensity of each workload and the contentiousness of most applications. Workloads aimed
to accurately evaluate our algorithms in different scenarios of intensity. The applications
used in the workloads, had to meet certain research criteria. Thus, we used the well-known
benchmark library named SPEC, which offered us a set of benchmarks with multiple
attribute cases. A set of predictors classified the benchmarks into the above-mentioned four
categories.

To test diverse ways of application distribution and improve application
performance, we implemented three different algorithms. The first algorithm is the greedy
one, which tries to fit as many non-contentious applications together in nodes, before
pairing other contentious applications with them. However, such an algorithm can and will
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create wasteful pairings, by not collocating contentious applications with insensitive ones as
much as possible. As a result, the second developed algorithm, named resourceful, tries to
create good socket pairs, by setting up as many good pairs as possible, avoiding pairing
insensitive applications with non-contentious ones and instead pairing them with
contentious ones. Furthermore, a third algorithm was developed in order to test a different
approach of pairing applications into quadruples. This algorithm, called neglectful, tries to
sacrifice applications that are contentious by pairing them together, in order to allow
sensitive applications to reach optimal performance. All these algorithms are evaluated by
comparing their performance with the usual random scheduling algorithm that does not
consider such application characteristics.

2.2.1 Virtualization

Before we dive into the importance of interference awareness and resource
management in cloud services, it is vital we understand the use of virtualized systems for
such operations. Virtualization and cloud computing are increasingly becoming more
popular and are a core dynamic for many organizations. Cloud computing, simply means
storing and accessing data and programs over the Internet, instead of a physical machine’s
hard drive. Users can access applications remotely through internet connection devices and
by this, computer resources are used more efficiently and effectively. As a result,
applications are centralized in server-specific architectures and then are accessed over
wireless connection based on a thin local client or a web browser. Therefore, virtualization
occurs when a virtual version of something is created, instead of an actual version. As we
can easily understand, virtualization is the backbone of Cloud Computing, since it allows the
imitation of hardware within a software program. Via virtualized systems, cloud computing
can function and provide service to end users over the Internet. To summarize, virtualization
in cloud computing refers to the creation of virtual hardware, software and operating
systems, thereby preventing the need for separately installing software on every physical
machine [1].

Different virtualization types have been developed, in order to satisfy computing
needs on software management and resource optimization. The three major types of
virtualization are known as, Server virtualization, Client Virtualization and Storage
Virtualization[1]. The most common type of virtualization, and the one that affects cloud
computing the most, is Server virtualization. Specifically, Server Virtualization in cloud
provides certain advantages like hardware optimization and improvement to application
uptime. Server virtualization accomplishes that by abstracting or isolating the computer’s
hardware from all the software that might run on that hardware. This abstraction is
achieved by the hypervisor, a specialized software product, recognizing the computer’s
physical resources and creating logical aliases for those resources. For example, a physical
processor can be abstracted into a logical representation called a virtual CPU or vCPU. The
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hypervisor is responsible for managing all the virtual resources that it abstracts and handles
all the data exchanges between virtual resources and their physical counterparts. This logical
isolation [1], combined with careful resource management, enables the creation and control
of multiple Virtual Machines on the same physical computer at the same time, with each VM
capable of acting as a complete, fully functional computer. Nonetheless, Virtual Machines
are not the only solution when creating virtual environments. Instead, containers may
provide even better support for web applications and microservices, since containers are
portable, scalable, and reliable. With the increasing popularity of Docker and Kubernetes,
container-based systems are becoming more popular, as a solution, in cloud-based Server
virtualization.

Hosted Virtualization

Application Application Application

Virtual Machine 1 Virtual Machine 2 Virtual Machine 3

Virtual Machine Monitor (VMM)

Host Operating System

Shared Hardware

a7

Virtualization Hierarchy

However, the actual number of VMs or container-based systems that can be created
is limited by the physical resources present on the host server and the computing demands
imposed by the enterprise applications running on the virtualized environment. The logical
representation of the computer resources is attached to the actual set of physical resources
and therefore, the provided resources to virtualized systems must be competently
managed, to save up costs. This intent has fabricated an entire new area of interest known
as, resource management.

2.2.2 Resource Management

The increasing number of CPU cores and storage capacity in data centers has
increased competition of software components for finite resources on the platform.
Applications, hosted on such data centers, compete for resource usage, and interfere with
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each other. Therefore, a negative impact is produced on service assurance, the performance
of the applications and on the end user’s overall quality of experience. Current virtualized
environments have orchestrators, which help improve workload management and
application resource allocation. Specifically, Kubernetes is a well-known orchestration tool
for managing and scheduling applications on containerized systems and has subsequently
gained a massive following in cloud-based computing. Kubernetes helps automate software
deployment, scaling, and management whilst also allocating resources to deployed
applications in a cloud-based environment. However, Kubernetes allocates resources to
hosted applications aiming to improve availability[4] rather than performance optimization.
Resource management proposals for frameworks such as Kubernetes depend on coarse
metrics like CPU or memory utilization, thus neglecting interference effects neglecting the
imposed stress from applications onto shared resources.

In this paper, we aim to examine resource management under the prism of
interference awareness, implementing a new way of monitoring applications on a server
with the use of the well-known framework Kubernetes. Kubernetes, with its default
behavior, will schedule applications onto available machines given that there are available
resources for the applications to run on. That way, not considering the contentiousness of
applications collocated together; performance issues may arrive reducing the targeted
Quality of Service (QoS) of applications. As a result, we aim to understand how applications
affect each other when hosted together on the same physical machine. The resource criteria
for the scheduled applications might be met, thus creating the assumption that applications
are running without performance degradation, however the shared pool of resources
between the applications can still be stressed to the point where performance issues come
forth.

Subsequently, it is crucial we understand how applications operate and how much
stress they impose on shared computing resources. In this paper, we study the impact that
collocated applications can have, on the resource known as CPU. Since our environment of
study is virtualized, the CPU resource type will be instead be referenced as vCPU. Collocated
applications hosted on a physical machine, will not necessarily cause performance
downgrade to each other. Instead, this possibility is examined under two sets of
characteristics, known as contentiousness and sensitivity. One application can be
contentious and as a result, stress the shared pool of resources enough to hinder the ability
of other applications to operate. On the other hand, one application can be insensitive and
being collocated with a contentious application, will cause no performance drop, as it can
withstand such a stress and operate under the targeted QoS. This revelation, generates two
tasks to carry out with the first being a way to classify the applications, and the latter being
about finding an approach to pair different types of applications together.
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2.2.3 CPU Socket Architecture

Before we can classify applications based on their characteristics, it is essential we
firstly understand how applications interact with the shared pool of CPU they have, at a
cloud-based server. In a multi-node cluster environment like most cloud systems, resources
are grouped and are assembled as separate node, with their own memory and CPU resource
count. In multiprocessing systems, which dictate and consist of most of today’s computing
environments, we have what could be called NUMA nodes. Non-uniform memory access
(NUMA) is a computer memory design used in such systems, where the memory access time
depends on the memory location relative to the processor. Under NUMA, a processor can
access its own local memory faster than non-local memory. That allows modern CPUs to
operate considerably faster than those that used a shared memory link. However, with
today’s dramatically increased size of operating systems and of the applications run on
them, a system can starve several processors at the same time, since only one processor can
access the computer’s memory. This is surpassed by grouping CPUs in a multi-channel
memory architecture. NUMA nodes consist of CPUs and one shared memory link. Not every
CPU is coupled under the same memory thus causing significant CPU throttling but instead,
different Nodes balance the memory load and serve applications with their respective CPU
resources.

This implementation allows the assemblage of several CPU sockets under a shared
memory link and a NUMA node. A CPU socket is the physical socket where the physical CPU
capsules are places. In many of today’s cloud computing designs, physical CPUs have
multiple sockets and each socket hosts several CPU cores. Then each core hosts two threads
that execute the load requested by the application. In a node environment like in
Kubernetes, physical restrictions still exist and need to be examined. Creating a NUMA node
under each physical machine, equals the creation of a group of CPU sockets with a shared
memory link. Each socket can have several amounts of CPU cores that enable it to run
applications. Those CPU cores are only accessible by applications hosted directly on those
sockets and such applications will battle for CPU resources only when collocated there.
Every socket as a result is a shared pool of CPU resources to run computational tasks and
every applications hosted on them, will affect the rest collocated there.

2.2.4 Application Characteristics

Now that we understand how applications make use of computing resources, such as
CPU, it is easy to classify them based on their behavior. Specifically, applications placed on a
physical machine, will stress the available resources, in order to complete their tasks. In a
real-time server environment, infinite space is not available and as a result, applications will
be collocated together and share resources among the pool of available ones. Several
applications might run on the same physical machine, given that there are enough resources
and their resource criteria are met. This can falsely create the belief that since their
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resource criteria are met, applications will run appropriately and show no signs of
performance degradation. This common misbelief is caused by the ignorance of application
contentiousness. Application contentiousness defines the ability of one application to
severely alter the performance of other collocated applications. More specifically, two or
more applications can be collocated, with all of their resource criteria met, and performance
degradation will still be observed, because of at least one application is contentious.
Therefore, applications observed during our time will be labeled with the contentiousness
tag, depending on whether they can alter the runtimes of other applications.

However, not all applications will display performance degradation when collocated
with contentious applications. The behavioral factor that decides whether one application
will be susceptible to performance drop is their sensitivity. Many applications can be
collocated with others, with increased stress on the shared pool of resources and still show
no sign of performance issues. Such applications will be classed as insensitive, whereas
those that do show performance decline will be classed as sensitive.

The two tags, namely contentiousness and sensitivity, describe the deciding
behavioral factors of application collocation. Resource criteria fail to explain the
interference caused between collocated applications, whereas sensitivity and
contentiousness do so. Correspondingly, it is easily understood, that four different
application categories can be created, depending on the two given tags. Under category A
(which will be called catA for the rest of this paper), we will classify applications that are
insensitive and non-contentious. Such applications cause no interference to how other
applications run, whilst also having no performance issues regardless of the amount of
stress allocated to their resources. Under category B (catB), we place applications that are
non-contentious too, but also sensitive. These applications do not cause performance issues
to other collocated applications; however, they are susceptible to performance issues on
their own. On the other hand, applications that are contentious and insensitive will be
classed under category C (catC). Such applications are insensitive and as a result can
withstand stress upon their shared resources by other applications, but also cause severe
interference to other collocated applications. Lastly, applications that are both sensitive and
contentious will be classed under category D (catD). Applications that fall under category D,
are not only susceptible to performance degradation, but also cause performance issues to
other collocated applications.

In practical terms, it is imperative that applications are classified under the
aforementioned categories, in order to have a better understanding of their behavior.
Therefore, a set of predictors need to be implemented, which will cross-validate application
runtimes when collocated together. A change in runtime performance that surpasses the
established QoS, will be the factor in deciding under which category applications will fall
onto. Correspondingly, applications will be scheduled on a virtualized system depending on
the application category they fall under.
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2.2.5 Scheduling Applications

In a virtualized system, physical resources are abstracted into logical
representations, such as the CPU cores. When scheduling applications in such systems, with
the use of well-known frameworks like Kubernetes, the criteria are limited in satisfying
resource quota and providing the necessary resources for the applications to run on. A
physical server may consist of several CPU cores, and as a result with several CPU sockets.
Given that we now are in a virtualized environment, each CPU is represented as a vCPU and
is shared between hosted applications. The default scheduling mechanism of any container-
management framework will search in satisfying the resource needs of as many applications
as possible, regardless of the interference caused by their collocation.

Thus, a new scheduling mechanism needs to be created that can understand the
category, under which an application may fall, and enforce algorithmic solutions on
distributing them to the available nodes. Kubernetes can make use of VMs or physical
machines and represent them as available nodes that will host and manage arriving
applications. When an application arrives to a server, the Kubernetes scheduler ranks the
available nodes and selects the best fit, on which to host the arriving application. In this
paper, we examine the behavioral change of the Kubernetes scheduler, when applying
plugins that implement different algorithms to application scheduling and receive
measurements in evaluating them.

With our set of scheduler plugins, we aim to change the focus of the Kubernetes
scheduler from resource quota availability to interference awareness. Regardless of which
algorithm is implemented to our scheduler, the aim is to alter the behavioral focus of
Kubernetes scheduling, in order to better pair applications together on available nodes and
reduce performance issues created by application interference.

2.2.6 Interference awareness

Many enterprises and organizations have developed interference aware[5]
scheduling mechanisms to increase resource utilization in cloud environments. Due to
concurrent running of co-located tasks on top of physical machines, the performance of
some tasks suffers significantly because of interference. Older scheduling mechanisms that
aimed into distributing applications depending on resource quota, failed to constrain
performance issues attributed to interference. To improve the QoS and reduce the amount
of Service Level Agreement (SLA) violations between the user and the cloud service
provider, interference-scheduling approaches have been developed.

Predictor models have been introduced to estimate potential interference latency
during application co-location, followed by interference aware schedulers that distribute
applications, depending on the classification imposed by the predictors[13]. Such
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mechanisms have already been developed and implemented in virtualized systems, yet no
concrete breakthrough has happened around Kubernetes. Intel has proposed a Resource
Aware CPU Scheduling mechanism, known as Intel CPU Manager for Kubernetes[3] (also
called CMK). This mechanism enables core pinning and isolation, depending on resource
guota dictated by applications. However, interference metrics are not considered and CPU
pinning is based on CPU affinity and CPU limits, set upon the placed Pod.

Our proposal aims not only in creating a set of predictors that classify applications
based on their interference, but also in allowing actual CPU pinning on arriving applications.
The predictors cross-validate application runtimes and classify applications, in order to tag
them accordingly when arriving at a server farm. The base metrics in performance
evaluation are based on CPU stress and execution runtime. Runtimes that exceed the set
QoS are classed as SLA violations and are registered for the predictors’ evaluation. Then, the
scheduling plugins implemented on the Kubernetes scheduler filter and score available
Nodes, in order to choose the best fit for the arriving application. That way Kubernetes can
acquire interference awareness and utilize CPU resources accordingly.

2.3 Kubernetes

Though already mentioned many times in the introductory part of this thesis,
Kubernetes is a huge and complex orchestration tool that needs increased analysis into
understanding its key features. In order to efficiently comprehend and then develop an
interference aware logic, it is imperative that we firstly understand its primary features and
components.

2.3.1 Understanding Kubernetes

Before we dive into the importance of interference awareness in containerized
systems, that Kubernetes manages and orchestrates, it is important to understand the
reason behind the increased popularity of Kubernetes. An interference aware Kubernetes, is
not just a thesis topic to be examined under the prism of academic research, but an actual
practical problem in cloud-based server hosting. Kubernetes is widely used by many hosting
platforms and is a standard approach in managing and developing containerized software in
cloud-based environments, such as data centers. Early on, organizations and server
providers ran applications on physical servers. There was no way to define resource
boundaries and collocated applications on a physical machine caused resource allocations
issues. The solution to that was to run each application on a different server, which caused
resources to be unutilized and increased expenses dramatically.

In today’s virtualized and containerized deployment era, virtualization has allowed
providers to multiple VMs or containers on a single physical server’s CPU. Virtualization has
enabled applications to be isolated between VMs, have better resource utilization and
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better scalability. Containers like VMs, have relaxed isolation properties to share the
Operating System (OS) among applications. As a result, containers have become extremely
popular since they provide many benefits such as:

e Agile application creation and deployment.

e Continuous development, integration, and deployment.

e Environmental consistency across development, testing and production.

e Cloud portability. Can run on all major public clouds.

e Loosely coupled, distributed and elastic applications. Applications are broken
into smaller, independent pieces and can thus be deployed and managed
dynamically.

e Resource isolation and predictable application performance (NOT interference
aware though!)

e Resource utilization providing high efficiency and density with application
collocation.

App App App
Traditional Deployment Virtualized Deployment Container Deployment

From Traditional to Containerized Applications

Kubernetes is a portable, extensible, open-source platform for managing
containerized workloads and services that facilitates both declarative configuration and
automation. It has, as a result, a large rapidly growing ecosystem that allows us to run
distributed systems resiliently. Kubernetes has allowed service providers, to efficiently
make use of their physical machines, utilize the available resources and ensure the
desired QoS that the client demands [4]. Kubernetes manages the available resources,
automates software development and deployment, offers self-healing to the hosted
containers by restarting failed containers and allows for increased security and secret
configuration management. Nonetheless, the management of such containerized
systems is made available by the use of Container Runtime systems. Originally,
Kubernetes interfaced exclusively with Docker runtime, through “Dockershim”[2], a
platform as a service (PaaS) product that uses OS-level virtualization to deliver software
in containers.
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2.3.2 Docker

In order to understand how Kubernetes manages containers, it is imperative we
understand how Docker firstly enables the packaging of applications into containers.
Docker is an open platform for developing, shipping and running applications. Docker
allows us to separate applications from the infrastructure so that software can be
delivered quickly. Software is packaged in containers and thus can be run in a loosely
isolated environment. This isolation allows many containers to run simultaneously on a
physical host, that way improving resource utilization.

Specifically, Docker streamlines the development lifecycle by allowing developers
to work in standardized environments using local containers which provide applications
and services[2]. Docker is lightweight and fast. It provides a viable, cost-effective
alternative to hypervisor-based virtual machines, so that more of the compute capacity
can be used to achieve hosting goals. Docker manages that by using a client-server
architecture. The Docker client talks to the Docker daemon, which then builds, runs, and
distributes the Docker containers. The Docker client and daemon communicate using a
REST API, over UNIX sockets or a network interface.

DOCKER COMPONENTS

DOCKER_HOST

[ docker build

} / Docker daemo \
' ORACLE
[ docker pull }// ages \@

[ docker run
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Docker Components

Docker is a viable and preferred option for containerizing applications in order to
manage them with the use of Kubernetes. In this thesis, Docker images are created and then
deployed as containers to run standardized tests and evaluate Kubernetes performance. A
Docker image is a Docker object and a read-only template with instructions for creating a
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Docker container. Docker images are built with the use of Dockerfiles[2] and therefore, a
change to a Dockerfile will rebuild the image, only changing the layers needed. This is part
of what makes images so lightweight, small and fast, when compared to other virtualization
technologies. Therefore, we can summarize into having lightweight, easily deployed and
isolated applications running as containers, on a virtualized system that are managed by
Kubernetes.

2.3.3 Kubernetes components

Now that we have understood the use of Kubernetes and Docker, it is time to dive
deep into the Kubernetes architecture and understand the way it implements all of its
features. Firstly, when Kubernetes is deployed on a system, we get a cluster[6]. A
Kubernetes cluster consists of a set of worker machines, called nodes that run containerized
applications. Every cluster needs to have at least one worker node. The application
workload hosted on the worker nodes, comes in containerized nature, as already described.
A group of one or more containers, with shared storage and network resources, is called a
Pod[6]. Pods are the smallest deployable units of computing that can be created and
managed in Kubernetes. Aside from the worker nodes hosting the Pods, we also have a
physical machine [or set of physical machines when aiming for High Availability (HA)] that is
the control plane, also known as the master node, which manages the cluster and its
functions.

© o P

Node Node

=0

P ——

Kubernetes Cluster Architecture
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The control plane has components that make global decisions about the cluster, as
well as detecting and responding to cluster events. The first component we will describe is
the kube-apiserver or simply the API server.

Kube-apiserver: The APl server is a component of the Kubernetes control plane that
exposes the Kubernetes API. It is designed to scale horizontally, by deploying more instances
and that way balancing the traffic. The Kubernetes API server is responsible for validating
and configuring data for the API objects such as Pods, services, and others[6]. The API Server
services REST operations and provides the frontend to the cluster’s shared state through
which all other components interact. It exposes an HTTP API that lets end users, different
parts of the cluster, and external components to communicate with one another.
Furthermore, the Kubernetes API allows us to query and manipulate the state of API objects
in Kubernetes. We exploit that capability later, when we manipulate the Kubernetes
scheduler and via the Kubernetes API, we can query the cluster state and provide
interference awareness to the desired scheduler. Kubernetes stores the serialized state of
objects by writing them into the etcd[6].

Etcd: Etcd is a consistent and highly available key value store used as Kubernetes’
backing store for all cluster data. It is the primary data store of Kubernetes and allows
Kubernetes to store data and manage the critical information that distributes systems need
to keep running. The status of the system is saved at the etcd providing a single and
standard truth about the state of the system Etcd is highly available, fast and secure since it
supports TLS and SSL client certificate authentication[7].

Kube-scheduler: This control plane component watches for newly created Pods with
no assigned node and selects a node for them to run on. A node, also called a worker node,
is a physical or virtual machine that hosts deployed Pods. It ranks each valid Node and binds
the Pod to the suitable Node[6]. The scheduler considers several factors in order to decide
and find the best fit for the Pods, from the available nodes. These factors include resource
requirements, affinity specifications, software, and policy constraints, and more. For us to
implement interference awareness to Kubernetes, we created our own set of factors, via
the use of scheduler plugins, to alter the behavior of the scheduler. This will be described
thoroughly at a later stage of the thesis.

Kube-controller-manager: The controller manager is the control plane component
that runs controller processes[6]. These processes are control loops that watch the state of
the cluster, then make or request changes where needs. Each controller tries to move the
cluster from its current state, closer to the desired state. A controller tracks at least one
Kubernetes resource type. Almost every Kubernetes object includes two nested object fields
that govern the object’s configuration, the object spec and the object status. The spec field
provides the characteristics that the object wants to have, its desired state. The status field
describes the current state of the object, supplied by the Kubernetes systems and its
components. The controller will act in order to get the object to each desired state.
Sometimes the controller may carry the action out itself, though more commonly, in
Kubernetes, a controller will send messages to the APl Server to proceed with the task.
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Kubernetes that way can handle constant change and could be changing at any point as
work happens and control loops automatically make changes to help the cluster reach its
desired state. Some types of controllers are:

e Node controller: Responsible for noticing and responding when nodes go down

e Job controller: Watches for Job objects that represent one-off tasks, then
created Pods to run those tasks to completion.

e Endpoints controller: Populates the Endpoints object

e Service Account & Token controllers: Create default accounts and API access
tokens for new namespaces.

Aside from the control plane components, there are Node components that run on

every node, maintaining running pods and providing the Kubernetes runtime environment.

Kubelet: Kubelet is an agent that runs on each node in the cluster. It can register the
node with the API Server using either the hostname, a flag to override the hostname, or a
specific log for a cloud provider[6]. The kubelet works in terms of a PodSpec. A PodSpec is a
YAML or JSON object that describes a pod. The kubelet takes a set of PodSpecs that
provided through various mechanisms (primarily thought the API Server) and ensures that
the containers described in those PodSpecs are running and healthy. It will not manage
containers that were not created by Kubernetes. Other than receiving the PodSpec from the
API| Server, there are three more ways that a container manifest can be provided to the
Kubelet.

e File: A container manifest can be passed as a file to the Kubelet in order to be
deployed and monitored. A path will be provided and files under it will be
monitored periodically for updates.

e HTTP endpoint: HTTP endpoints can be passed as parameters on the command
line.

e HTTP server: The kubelet can also listen for HTTP and respond to a simple API
call.

Kube-proxy: Kube-proxy is a network proxy that runs on each node in the cluster.

This reflects services as defined in the Kubernetes APl on each node and can do simple TCP,
UDP, and SCTP stream forwarding or round-robin TCP, UDP, and SCTP forwarding across a
set of back-ends. More specifically, kube-proxy maintains network rules on nodes. These
network rules allow network communication to the Pods from network sessions inside or
outside the cluster.

Container runtime: The container runtime is the software that is responsible for
running the containers. As already referenced, Docker is a container runtime environment
that is used in Kubernetes, though since being deprecated in 2016; containerd and CRI-O are
used more often.

Addons: Addons use Kubernetes resources to implement cluster features. Many
add-ons extend the functionality of Kubernetes, however in this thesis we will focus more
on two specific ones, that were later used in our test environment cluster.
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Calico: The first one to describe is Calico. Calico is an open source networking and
network security solution for containers, virtual machines, and native host-based
workloads[8]. It also supports Kubernetes and was as a result used in this thesis’ testing
environment, as a networking plugin for the cluster. Calico offers rich network policy models
in order to lock down communication so that the only traffic flows are the ones the system
wants. Furthermore, Calico’s core design principles leverage best practice cloud-native
design patterns. The result is a solution with scalability in multi-node clusters. This helps
with implementing Kubernetes network policy during the development of the API. It
implements the full set of features defined by the Kubernetes-API giving users the required
flexibility.

CoreDNS: CoreDNS is a flexible, extensible DNS server that can server as the
Kubernetes cluster DNS[9]. It can replace kube-dns in the cluster in providing the DNS server
functionality. CoreDNS is a single container per instance, while kube-dns uses three. Thus,
the larger number of containers per instance in kube-dns increases base memory
requirements and adds some performance overhead, legitimizing the CoreDNS choice.

2.3.4 Pods

Aside from the vital Kubernetes components, worker nodes host applications, in
small deployable unites called Pods. A Pod is a group of one or more containers, with shared
storage and network resource, and a specification for how to run the containers[6]. A Pod’s
contents are always co-located and c-scheduler, and run in a shared context. A Pod, models
an application-specific “logical host”, which contains one or more application containers
that are relatively tightly coupled. These co-located containers form a single cohesive unit of
service and the Pod wraps these containers, storage resources, and an ephemeral network
identity together as a single unit. They are automatically co-located and co-scheduled on the
same physical or virtual machine in the cluster. They communicate with each other and
coordinate when and how they are terminated.

Pods resource sharing is enabled via data sharing and communication among their
constituent containers. A Pod can specify a set of shared storage volumes. At its core, a
volume is a directory, possibly with data in it, which is accessible to the containers in a pod.
How that directory comes to be, the medium that backs it, and the contents of it, are
determined by the particular volume type used. All containers in the Pod can access the
shared volumes, allowing those containers to share data that way. Volumes also allow
persistent data in a Pod to survive in case one of the containers within needs to be restarted
or terminated. Aside from storage sharing, Pods communicate via networking too.

Each Pod is assigned a unique IP address for each address family. Every container in
a Pod shares the network namespace, including the IP address and network ports. Inside a
Pod, the containers that belong to the Pod can communicate with one another using
localhost. When containers in a Pod communicate with entities outside the Pod, the must
coordinate how they use the shared network resources, such as ports. Within a Pod,
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containers share an IP address and port space and can find each other using standard inter-
process communications like SystemV semaphores or POSIX shared memory. Containers in
different Pods have distinct IP address and cannot communicate by IPC without special
configuration. Containers that want to interact with a container running in a different Pod
can use IP networking to communicate.

Regardless of single or multiple containers, shared storage and network
communication, all Pods are created from pods templates. Pod Templates are specifications
for creating Pods, and are included in workload resources such as Deployments, Jobs and
DaemonSets. Each controller for a workload resource uses the PodTemplate inside the
workload object to make the actual Pod[6]. The PodTemplate is part of the desired state of
the Pod. Modifying the pod template or switching to a new pod template has no direct
effect on the Pods that already exist. If a pod template for a workload resource is changes,
that resource needs to create replacement Pods that use the update template. On Nodes,
the kubelet does not directly observe or manage any of the details around pod templates
and update, since those details are abstracted anyway. That abstraction and separation of
concerns simplifies system semantics, and makes it feasible to extend the cluster’s behavior.

As already mentioned, when the Pod template for a workload resource is changed,
the controller creates new Pods based on the update template instead of updating or
patching the existing Pods. In order to update or maintain a set of Pods, workload resources
can be used.

2.3.4.1 Deployments

One workload resource that provides declarative update for Pods is the Deployment.
In the Deployment, one can describe the desired state and the Deployment Controller
changes the actual state to the desired state at a controlled rate[6]. The Deployment can
declare a new state of the Pods by updating the PodTemplateSpec of the Deployment. The
Deployment manages moving the Pods to their new state at a controlled rate. The
Deployment can also rollback the pods to an earlier version if the current state is not stable.
Furthermore, assuming that horizontal Pod auto-scaling is enabled in the cluster, an auto-
scaler can be set up for the Deployment, which chooses the minimum and maximum
number of Pods necessary to run based on the CPU utilization of the existing Pods. In order
to accomplish the aforementioned techniques, the Deployments will roll out a ReplicaSet.

2.3.4.2 ReplicaSets

A ReplicaSet’s purpose is to maintain a stable set of replica Pods running at any given
time. As such, it is often used to guarantee the availability of a specified number of identical
Pods. A ReplicaSet is defined with fields, including a selector that specifies how to identify
Pods it can acquire, a number of replicas indicating how many Pods it should be
maintaining, and a pod template specifying the data of new Pods it should create to meet
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the number of replicas criteria[6]. A ReplicaSet then fulfills its purpose by creating and
deleting Pods as needed to reach the desired number. When a ReplicaSet needs to create
new Pods, it uses its Pod template.

Conclusively, a Deployment is a high-level concept that manages ReplicaSets and
provides declarative updates to Pods along with a lot of other useful features.

2.3.4.3 DaemonSets

DaemonSets are similar to Deployments in that they both create Pods, and those
Pods have processes, which are not expected to terminate, such as web servers and storage
servers. Deployments are used for stateless services, like frontends, where scaling up and
down the number of replicas and rolling our updates are more important than controlling
exactly which host the Pod runs on. On the other hand, a DaemonSet is used when it is
important that a copy of a Pod always runs on certain hosts, if the DaemonSet provides
node-level functionality that allows other Pods to run correctly on that particular node. For
example, in a scheduling plugin, a DaemonSet component that enables the functionality of
binding a Pod to a CPU socket, will make sure that the affected Pod will run at the selected
Node.

2.3.5 Nodes

Kubernetes runs all of its components, Pods, and workload resources on Nodes. A
node may be a virtual or physical machine, depending on the cluster[6]. Each node is
managed by the control plane and contains the services necessary to run Pods.

There are two ways to have Nodes added to the APl server:

1. The kubelet on a node self-registers to the control plane

2. Auser manually adds a Node object

After a Node object is created the control plane checks whether new Node object is
valid. Kubernetes creates a Node object internally and checks that a kubelet has registered
to the API server matching the metadata name field of the Node. If the Node is healthy, it is
eligible to run Pods. Otherwise, the Node is ignored for any cluster activity until it becomes
healthy.

Each Node that is self-registered report their resource capacity during registration. If
it is manually added, then the user needs to set the node’s capacity information when
adding it. Then the pods can consume the available resources in order to run on them. The
Kubernetes scheduler ensures that there are enough resources for all the Pods on a Node.
The scheduler checks that the sum of the requests of containers on the node is no greater
than the node’s capacity. That sum of requests includes all containers managed by the
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kubelet, but excludes any containers started directly by the container runtime, and also
excludes any processes running outside of the kubelet’s control.

2.3.6 Cluster Architecture

Kubernetes has a “hub-and-spoke” API pattern[6]. All API usage from nodes (or the
pods they run) terminates at the APl-server. None of the control plane components is
designed to expose remote services. The APl-server is configured to listen for remote
connections on a secure HTTPS port with one or more forms of client authentication
enabled.

The control plane components also communicate with the cluster API-server over
the secure port. As a result, the default operating mode for connections from the nodes and
pods running on the node to the control plane is secured by default and can run over
untrusted and/or public networks.

The control plane has two primary communication paths to the nodes. The first is
from the APIl-server to the kubelet process, which runs on each node in the cluster. The
second is from the apiserver to any node, pod, or service through the apiserver’s proxy
functionality. The connections from the apiserver to the kubelet terminate at the kubelet’s
HTTPS endpoint. On the other hand, the connections from the apiserver to a node, pod, or
service default to plain HTTP connections and are therefore neither authenticated nor
encrypted. However, they can be run over a secure HTTPS connection by prefixing https: to
the node, pod, or service name.

2.3.7 Scheduler

Now, with a basic understanding of Kubernetes’ functionalities, a more thorough
understanding of the Kubernetes’ scheduler can be achieved. As already described, a
scheduler watches for newly created Pods that have no Node assigned. For every Pod that
the scheduler discovers, the scheduler becomes responsible for finding the best Node for
that Pod to run on.

The Kubernetes scheduler also known as kube-scheduler is the default scheduler and
runs as part of the control plane. Kube-scheduler is designed so that, if someone wants and
needs to, can write their own scheduling component and use that instead. For every newly
created pod or other unscheduled pods, kube-scheduler selects an optimal node for them to
run on. However, every container in pods has different requirements for resources.
Therefore, existing nodes need to be filtered according to the specific scheduling
requirements. After the scheduler finds available nodes, it runs a set of functions to score
the nodes and picks the Node with the highest score among them, to run the Pod. The
scheduler then notifies the API server about this decision in a process called binding. The
factors that need to be taken into account for scheduling decisions include individual and

N.T.U.A — School of Electrical and Computer Engineering 41



collective resource requirements, hardware, software, and policy constraints, affinity
specifications, data locality, workload interference and so on.

Consequently, the 2-step operation, in which the kube-scheduler selects a node for
the arriving pod, comes as followed:

1. Filtering

2. Scoring

The filtering step find the set of Nodes where it is feasible to schedule the Pod. The
filters check the candidate Nodes for certain parameters, such as resource availability. If the
Node does meet the Pod’s resource requests, it adds the Node to the suitable Node list. In
the scoring step, the scheduler ranks the remaining nodes to choose the most suitable Pod
placement. The scheduler assigns a score to each Node that survived filtering, basing this
score on the active scoring rules. Finally, kube-scheduler assigns the Pod to the Node with
the highest ranking. If there is more than one node with equal scores, kube-scheduler selects
one of these at random.

The Kubernetes scheduler is configurable and one can implement different
scheduling profiles. A scheduling profile allows the configuration of different stages of
scheduling in the kube-scheduler, via extension points. Plugins provide scheduling behaviors
by implementing one or more of these extension points, such as filtering, scoring, sorting and
more. This is the basis of our interference awareness implementation. By using the plugin
extension points of the Kubernetes scheduler, we can enable our custom filtering and scoring
steps in accordance with interference avoidance and enhanced application collocation.

2.4 Benchmarking

In order to create test cases and validate the assumptions of our thesis, it is
imperative that actual applications are used, which will in fact stress the resources, cause
interference to other workloads and allow a suitable evaluation of the scheduling plugins we
have implemented. Using benchmarks, allows us to have quantitative data, choose from a
selection of different types of test applications and helps imitate real workload scenarios.

Benchmarks are the acts of running computer programs, or other operations, in
order to assess the relative performance of an object, in our case, the runtime performance
of workloads during cloud hosting.

2.4.1 SPEC Benchmarks

For our test environment, the set of benchmarks that were used originate from the
SPEC Benchmark suite. The benchmarks aim to test real-life situations from Java scenarios
to simple computation jobs. The SPEC CPU suites test CPU performance by measuring the
run time of several programs. For our workload cases, the CPU suite will be used in order to
evaluate CPU performance and provide information on interference between applications.
The 2006 SPEC CPU benchmarks contains two packages, the one being CINT2006 with two
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suites, which tests integer arithmetic programs such as compilers, word processors etc, and
the other one being CFP2006 with four suites, testing floating point performance, such as
physical simulations, image processing etc. From these benchmark suites, we selected
certain benchmarks to create different types of application templates and use them as test
workloads arriving at a server farm.
e 400.perlbench: This workload includes certain jobs, such as an email indexer and
a SPEC tool that checks benchmark outputs.
e 445.gobmk: Plays the game of Go, a simply described but deeply complex game.
e 462.libquantum: Simulates a quantum computer, running Shor’s polynomial-
time factorization algorithm.
e 471.omnetpp: Uses the OMNet++ discrete event simulator to model a large
Ethernet campus network.
e 434.zeusmp: ZEUS-MP is a computational fluid dynamics code developed at
NCSA for the simulation of astrophysical phenomena.
e 436.cactusADM: Solves the Einstein evolution equations using a staggered
leapfrog numerical method.
e 444.namd: Simulates large biomolecular systems.
e 450.soplex: Solves a linear program using a simplex algorithm and sparse linear
algebra. Test cases include railroad planning and military aircraft models.
e 459.GemsFDTD: Solves the Maxwell equations in 3D using the FDTD method

These benchmarks will imitate an application being hosted on a Kubernetes server. A
benchmark will be hosted on a container, and since a Pod can have multiple containers of
the same benchmark running, we are able to create widely different and complex Pod
specifications.

2.4.1.1 Runtimes

In order to evaluate benchmark and CPU performance, the benchmark runtime will
be registered. The base runtime performance that will be used as the basis for any service
level objectives, is the runtime recorded from the benchmarks when they are hosted alone.
When applications are collocated together on nodes, the new runtime performances will be
registered and compared with the base runtime of the benchmark, to determine if the
Service Level Objectives have been met.

Since benchmarks have different singular runtimes, it is also imperative that
workloads executing applications, have established common total runtimes, by repeated
benchmark executions. For example, 436.cactusADM may have a singular runtime execution
of 10 minutes and 444.namd may have a singular execution of 5 minutes. As a result, and to
have a better depiction of the performance degradation that might occur when collocating
the two different applications on a node, it is crucial that 444.namd executes twice as many
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times over the course of action, so that the total runtime is the same. Then the average
runtime is calculated and compared with the base runtime of each benchmark, to assess if
the SLOs have been met.

An SLO or also Service Level Object is a key element of a service-level agreement
(SLA) between a service provider and a customer. SLOs are agreed upon as a means of
measuring the performance of the Service Provider and are outlines as a way of avoiding
disputed between the two parties based on misunderstanding. In this thesis, we will cover
multiple SLOs in order to test the efficiency of the scheduling algorithms. These SLOs will be
determined on the runtime performances of the applications, by dividing the runtime
performance of an application when collocated with others with the base runtime that it
obtained when it operated alone. For example, the service-level agreement between a
cloud provider and the customer might have established an SLO objective of 1.2, meaning
that any application running on the server should avoid showing an increase in runtime
performance by 20% or more. Such SLA violations, will dictate how efficient one scheduling
algorithm has been, under the stress of a certain workload.

2.4.1.2 Containerization

For benchmarks to run on a computer, it was never anything more than a suite
installation, allowing users to run test workloads at ease. However, testing benchmarks via
Pod placement requires firstly the containerization of the benchmark suite.

In order to create a container that includes the SPEC Benchmark suite, we created a
Dockerfile. Docker can build images automatically by reading the instructions from a
Dockerfile. A Dockerfile is a text document that contains all the commands a user could call
on the command line to assemble an image/container. The Dockerfile is as follows:

6 lines (5 sloc) 153 Bytes

cmbant/docker-gcc-build

NTAINER jdologl@cslab.ece.ntua.gr

Y SPEC_bench /benchmarks/SPEC_bench

D ['runspec']

Dockerizing SPEC Library

This Dockerfile builds the image on a gcc compiler to allow the SPEC benchmark to
run on. Then it copies the SPEC benchmark suites on the Docker image and by choosing the
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correct work directory, we run the runspec tool to access the suite. The image is also
uploaded to DockerHub and can be pulled via jmmisd/testspec .

2.4.1.3 Categorization

With the benchmark suite now containerized, we are able to construct Kubernetes
Pods that can be deployed on a cluster. In order to categorize the benchmarks into the four
available categories, we first need to acquire their runtimes. Once the benchmarks have
been executed alone in the cluster, and their runtimes are registered, we can begin the
process of classifying them. The classification process of the benchmarks resides on the
cross-running of the benchmarks on the same socket. Each benchmark will run with every
other benchmark allowing us to register their runtimes when collocated together. After the
runtime data is available, we are able to start the classification progress with the use of the
whiskers. The whiskers implement a method that handles a dictionary of results for each
benchmark and calculates a limit based on the provided metrics. That limit is compared with
a maximum value calculated once again by the whisker algorithm and that comparison is
pivotal in the categorization of the application.

3. Solution Presentation

3.1 Environment Used

In order to assess the current proposal, a test environment was set up that allowed
the simulation of a hosting provider infrastructure. We set up four computing systems that
allowed as a result, the creation of a 4-node cluster to take place.

3.1.1 System Setup

The infrastructure available in our lab consists of four computing machines that are
locally connected to each other. Each computing machine has 24 CPUs in total, of x86_64
architecture. Each core has two threads and every socket consists of six cores and as a result
twelve threads. The CPU model name is an Intel Xeon CPU of 2.40 GHz frequency. In order
to evaluate different pairing algorithms and construct specific topologies where applications
will be collocated, two NUMA nodes are apparent on each machine. Each NUMA node has
its own memory link and balances its own load. NUMA nodeO has the first two sockets
meaning twelve CPUs. All of the computing machines are interconnected in a local network,
in order to communicate with each other. The first CPU, called termi7 is the machine
selected to act as the master node. However, all four of the physical machines will work also
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as worker nodes, meaning that the first master node, also works as a worker node and will
host applications, since it has the capabilities for it. The rest of the physical machines are
called termi8, termi9 and termilO for identification purposes. All of the machines share the
same architecture, number of cores and NUMA nodes. In each NUMA nodes, there are
shared resources that up to four applications can utilize. They will be placed as pairs into the
two sockets available in one NUMA node interfering with each other.

3.1.2 Cluster Setup

With the hardware topology well known and understood, the deployment and
configuration of the cluster is now able to begin. The first terminal also called termi7 will
serve as the master node, hosting every Kubernetes core component and allowing the
cluster to take place. Then the control plane components that are created will set up the
cluster. However, the deployment of a multi-node cluster that has each node on a different
computing machine is challenging and not the same with deploying a local cluster on a
single machine.

For that reason the Kubernetes cluster was deployed with the use of Kubespray.
Kubespray is a composition of Ansible playbooks, inventory, provisioning tools, and domain
knowledge for Kubernetes configuration managements tasks[11]. Kubespray allows us to
run on bare metal, which is exactly the case for our cluster setup. It uses Ansible as its
substrate for provisioning and orchestration.

Ansible on the other hand is an IT automation engine, which automates cloud
provisioning, configuration management, intra-service orchestration and other IT needs[12].
By using an Ansible inventory, we can configure the Kubespray cluster inventory and
provision how the cluster should be installed. That way and with the use of the Ansible
playbook, we are able to deploy the Kubernetes cluster in its desired setup. Furthermore,
the Calico plugin is installed and used via the Ansible playbook to enable network
communication between the different bare metal nodes.

3.2 Kubernetes Framework

With the four-node cluster set-up and Kubernetes available and at a healthy state,
the deployment of applications can begin. However, with the cluster scheduler being at a
default state, the application deployment would completely ignore interference issues from
application collocation. Thus, it is necessary that the scheduling algorithms be implemented
via the scheduler plugins. The scheduling framework allows the creation of out-of-tree
scheduling plugins that alter the behavior of the Kubernetes scheduler.
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3.2.1 Scheduling Framework

The Kubernetes scheduler is a primary component of the Kubernetes control plane,
and as already described, it is the component that chooses which Nodes will host the
available pods that have not already been scheduled. Through filtering and scoring the
feasible nodes, the scheduler will choose the best node candidate, and the Pod will be
hosted on the selected Node. However, the default behavior of the Kubernetes scheduler is
not interference aware and mismanages resource utilization when collocating applications.
This can be altered, via the Scheduler configuration. The behavior of the scheduler can be
customized by writing a custom configuration file and passing its path as a command line
argument. A scheduling Profile allows the configuration of the different stages of scheduling
in the Kubernetes scheduler. Each stage is exposed in an extension point. Plugins provide
scheduling behaviors by implementing one or more of these extension points.

All of this is available via the implementation of the Scheduling Framework. The
scheduling framework is a pluggable architecture for the Kubernetes scheduler. It adds a
new set of plugin APIs to the existing scheduler. Plugins are compiled into the scheduler and
the APIs allow most scheduling features to be implemented as plugins, while keeping the
scheduling “core” lightweight and maintainable. The scheduling framework allows us to
write custom, performant scheduler features without forking the scheduler’s code. Custom
scheduler can write their plugins “out-of-tree” and compile a scheduler binary with their
own plugins included. A custom interference aware scheduler will make use of different
extension points to create “out-of-tree” plugins and schedule the Pods in an interference
aware manner.

3.2.1.1 Scheduling & Binding Cycle

Each attempt to schedule one pods is split into two phases, the scheduling cycle and
the binding cycle[10]. The scheduling cycle selects a node for the pod, and the binding cycle
applies that decision to the cluster. Together, a scheduling cycle and a binding cycle are
referred to as a “scheduling context”. Scheduling cycles are run serially, while binding cycles
may run concurrently. During the scheduling cycle, there are certain extension points that
the scheduling framework exposes, which control how the scheduler sorts the arriving pods,
filters the feasible nodes and scores them, to choose the correct fit. After the selection of
the best node candidate has been made, the binding cycle begins. During the binding cycle,
a different set of extension points, allows further implementation of scheduling behaviors
pre-bind, during binding time, or even post-bind. That way the available Pod is bound to the
targeted Node.
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3.2.1.2 Extension Points

Plugins can use one or more extension points to alter the scheduler behavior and

enforce different scheduling techniques during the scheduling or the bind cycle. The

extension points that the scheduling framework exposes are as follows[10]:

QueueSort: These plugins are used to sort pods into the scheduling queue. A
queue sort plugin essentially provides the ability to sort the queue of a
concurrent influx of arriving pods, to allow Kubernetes to schedule certain pods
before others. Only one QueueSort plugin may be enabled at a time.

PreFilter: These plugins are used to pre-process info about the pod, or to check
certain conditions that the cluster or the pod must meet. A pre-filter plugin
should implement a PreFilter function, and if PreFilter returns an error, the
scheduling cycle is aborted. The PreFilter plugin is called once in each scheduling
cycle.

Filter: These plugins are used to filter out nodes that cannot run the Pod. For
each node, the scheduler will call filter plugins in their configured order. If any
filter plugin marks the node as infeasible, the remaining plugins will not be called
for that node. Nodes may be evaluated concurrently, and the Filter plugin may
be called more than once in the same scheduling cycle.

PostFilter: These plugins are called after the Filter phase, but only when no
feasible nodes were found for the pod. Plugins are again called in their
configured order. If any PostFilter plugin marks the node as Schedulable, the
remaining plugins will not be called. A typical PostFilter implementation is
preemption, which tries to make the pod schedulable by preempting other Pods.
PreScore: This is an informational extension point for performing pre-scoring
work. Plugins will be called with a list of nodes that passed the filtering phase. A
plugin may use this data to update internal state or to generate logs/metrics.
Scoring: These plugins have two phases:

1. The first phase is called “score” which is used to rank nodes that have
passed the filtering phase. The scheduler will call Score of each scoring
plugin for each node.

2. The second phase is the “score normalization” phase, which is used to
modify scores before the scheduler computes a final ranking of Nodes,
and each score plugin receives scores given by the same plugin to all
nodes in “normalize scoring” phase. It is called once per plugin per
scheduling cycle right after the “score” phase.

The output of a score plugin must be an integer in range of [MinNodeScore,
MaxNodeScore]. If not, the scheduling cycle is aborted. This is the output after
running the optional NormalizeScore function of the plugin. If NormalizeScore is
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not provided, the output of Score must be in this range. After the optional
NormalizeScore, the scheduler will combine node score from all plugins
according to the configured plugin weights. If either Score or NormalizeScore
returns an error, the scheduling cycle is aborted.

e Reserve: A plugin that implements the Reserve extension has two methods,
namely Reserve and Unreserve, which back two informational scheduling phases,
with the same names respectively. Plugins, which maintain runtime state (also
known as “stateful plugins”, should use these phases to be notified by the
scheduler when resources on a node are being reserved and unreserved for a
given Pod.

The Reserve phase happens before the scheduler actually binds a Pod to
its designated node. It exists to prevent race conditions while the scheduler waits
for the bind to succeed. The Reserve method of each Reserve plugin may
succeed or fail. If one Reserve method call fails, subsequent plugins are not
executed and the Reserve phase is considered to have failed. If the Reserve
method of all plugins succeeds, the Reserve phase is considered to be successful
and the rest of the scheduling cycle and the binding cycle are executed.

The Unreserve phase is triggered if the Reserve phase or a later phase
fails. When this happens, the Unreserve method of all Reserve plugins will be
executed in the reverse order of the Reserve method calls. This phase exists to
clean up the state associated with the reserved Pod.

e Permit: These plugins are used to prevent or delay the binding of a Pod. A permit
plugin can do one of three things.

1. Approve: Once all permit plugins approve a pod, it is sent for binding.

2. Deny: If any permit plugin denies a pod it is returned to the scheduling
gueue. This will trigger the Unreserve method in the Reverse plugin.

3. Wait: If a permit plugin returns “wait”, then the pod is kept in the permit
phase until a plugin approves it. If a timeout occurs, wait becomes deny
and the pod is returned to the scheduling queue, triggering the
unreserved method in the Reserve phase.

Permit plugins are executed as the last step of a scheduling cycle, however
waiting in the permit phase happens at the beginning of a binding cycle, before
PreBind plugins are executed.

While any plugin can receive the list of reserved pods from the cache and
approve them, via the FrameworkHandle, we expect only the permit plugins to
approve the binding of reserved Pods that are in a “waiting” state. Once a pod is
approved, it is sent to the pre-bind phase.

e PreBind: These plugins are used to perform any work required before a pod is
bound. For example, a pre-bind plugin may provision a network volume and
mount it on the target node before allowing the pod to run there. If any PreBind
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plugin returns an error, the pod is rejected and returned to the scheduling
queue.

e Bind: These plugins are used to bind a pod to a Node. Bind plugins will not be
called until all PreBind plugins have completed. Each bind plugin is called in the
configured order. A bind plugin may choose whether to handle the given Pod. If a
bind plugin chooses to handle a Pod, the remaining bind plugins are skipped.

e PostBind: This is an informational extension point. PostBind plugins are called
after a pod is successfully bound. This is the end of a binding cycle, and can be
used to clean up associated resources.

Based on the aforementioned extension points, the scheduling Cycle can be
summarized to the following graphic:
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3.2.1.3  Plugin API

There are two steps to the plugin API. First, plugins must register and get configured,
then they use the extension point interfaces mentioned.

Most plugin functions will be called with a CycleState argument[10]. A CycleState
represents the current scheduling context. It will provide APIs for accessing data whose
scope is the current scheduling context. Because binding cycles may execute concurrently,
plugins can use the CycleState to make sure they are handling the right request. The
CycleState also provides an APl that can be used to pass data between plugins at different
extension points. Multiple plugins can share the state or communicate via this mechanism.
This state is preserved only during a single scheduling context and the data available
through a CycleState is not valid after a scheduling context ends, so plugins should not hold
references to that data longer than necessary. It is worth noting that plugins are assumed to
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be trusted. The scheduler does not prevent one plugin from accessing or modifying another
plugin’s state.

While the CycleState provides APIs relevant to a single scheduling context, the
FrameworkHandle provides APIs relevant to the lifetime of a plugin[10]. This is how plugins
can get a client and, or read data from the scheduler’s cache of cluster state. The handle will
also provide APIs to list and approve or reject waiting pods. Frameworkhandle provides
access to both the Kubernetes API server and the scheduler’s internal cache. The two are
not guaranteed to be coordinated and extreme care should be taken when writing a plugin
that uses data from both of them. Providing plugins access to the API server is necessary to
implement useful features, especially when those features consume object types that the
scheduler does not normally consider. Providing a SharedinformerFactory allows plugins to
share caches safely.

Each plugin must define a constructor and add it to the hard-coded registry. After
the plugin is registered, the scheduler uses its configuration to decide which plugins to
instantiate. If a plugin registers for multiple extension points, it is instantiated only once.
After the plugin is registered, there are two types of concurrency that should be considered.
A plugin might be invoked several times concurrently when evaluating multiple nodes and a
plugin may be called concurrently from different scheduling contexts. In the main thread of
the scheduler, only one scheduling cycle is processed at a time. Any extension point up to
and including permit will be finished before the next scheduling cycle begins. After the
permit extension point, the binding cycle is executed asynchronously. This means that a
plugin could be called concurrently from two different scheduling contexts, if at least one of
the calls is to an extension point after permit. Stateful plugins should take care to handle
such situations. Finally, the Unreserve method in Reserve plugins may be called from either
the main thread or the bind thread, depending on how the pod was rejected.

3.2.1.4 Plugin Configuration

The scheduler’s component configuration will allow plugins to be enabled, disabled,
or otherwise configured. Plugin configuration is separated into two parts.

1. A list of enabled plugins for each extension point (and in the order they
should run in). If one of these lists is omitted, the default list will be used.

2. An optional set of custom plugin arguments for each plugin. Omitting
config arguments for a plugin is equivalent to using the default config for
that plugin.

Extension points organize the plugin configuration. A plugin that registers with
multiple points must be included in each list accordingly. When specified, the list of plugins
for a particular extension point are the only ones enabled. If an extension point is omitted
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from the config, then the default set of plugins is used for that extension point.
Furthermore, plugins may receive arguments from their config with arbitrary structure.
Because one plugin may appear in multiple extension points, the config is in a separate list
of PluginConfig[10].

The scheduling framework allows a set of use cases to be implemented.

1. Plugins can allow a functionality of co-scheduling applications. For
arriving Pods in a batch, such plugin would accumulate pods in the permit
phase by using the wait option. Because the permit stage happens after
reserve, subsequent pods will be scheduled as if the waiting pod is using
those resources. Once enough pods from the batch are waiting, they can
all be approved at the same time allowing co-scheduling to happen.

2. Plugins can also implement Dynamic Resource Binding, meaning that
Topology-Aware Volume Provisioning can be implemented as a plugin,
that registers for filter and pre-bind extension points. At the filtering
phase, the plugin can ensure that the pod will be scheduled in a zone,
which is capable of provisioning the desired volume. Then at the PreBind
phase, the plugin can provision the volume before letting the scheduler
bind the pod.

3. Last but not least, the scheduling framework allows the creation of
custom, performant scheduler features without forking the scheduler’s
code, that way keeping the scheduling “core” lightweight and
maintainable. That way the custom plugins are enabled as normal plugins
in the scheduler config, allowing the implementation of different
scheduler features. One certain example is the subject of this thesis,
aiming to create custom plugins that alter the scheduler behavior to
become interference-aware when scheduling applications on physical
servers.

The scheduling framework is expected to be backward compatible with the existing
Kubernetes scheduler. As a result, it is logical that all existing tests of the scheduler pass
during and after the framework is developed.

1. Unit Tests. Each Plugin developed for the framework is expected to have
its own unit tests with reasonable coverage.

2. Integration Tests. As we build extension points, we must add appropriate
integration tests that ensure plugins registered at these extension points
are invoked and the framework processes their return values correctly. If
a plugin adds a new functionality that didn’t exist in the pas, it must be
accompanied by integration tests with reasonable coverage.

3. End-to-end tests. These tests should be added for new scheduling
features and plugins that interact with external components of
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Kubernetes such as the APl server. They are however not needed, when
integration tests provide adequate coverage.

3.2.2 Pods Template

Before an interference-aware plugin is analyzed, a better understanding of the
applications used is necessary. As already described, the benchmarks are containerized into
Docker components, and via Kubernetes, they can be scheduled as Pods and handled by the
scheduler inside a server farm. However, for such benchmark applications to be run
correctly, a Pod template needs to be established, that will dictate how they are to be de
described in a default manner. The Pod template is as follows:

13 lines (13 sloc) 243 Bytes

apiVersion: vl
kind: Pod
metadata:
name: namd
labels:
greedy: catA
spec:
containers:
- image: jmmisd/testspec:1.0.0
command: ["/bin/bash"]
args: ["-c" , "source shrc" , "bin/relocate" , "runspec --config=cslab-spec-static.cfg --size=ref \
--noreportable --iterations=3 namd" , " sleep 9999999999999999" ]

name: spec-ctn

restartPolicy: "Never"

Pod Template of a SPEC Benchmark

The Pod pulls the Docker image that has the SPEC Benchmark library and then calls
the runspec commands, in order to run the desired benchmark under the targeted
configuration. From the SPEC library, ten benchmarks are used and classified accordingly.

3.3 Application Classification

Now that the benchmarks are deployable to Kubernetes, the classification progress
of each benchmark can begin. Firstly, each benchmark needs to run alone in a single socket,
allowing us to document their single runtime performance. Then every single benchmark
will run with each other benchmark in order to produce an NxN matrix (given that we have
N total benchmarks) of results about runtime performances of collocated benchmarks.
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More specifically, each script execution collocates two different SPEC benchmarks on
the same CPU socket in the same node. Then the two applications are executed at the same
time and for the same duration (with minimal time differences). Each runtime performance
is documented to be later crosschecked with the individual runtime performance of the
application.

Now with the runtime data available, we can use the whisker classification progress
to classify and categorize the ten SPEC benchmarks respectively.

3.3.1 Predictors

In order to classify and have an accurate description of each Benchmark application
used, it is imperative that a predictor is used. A predictor will decide if an application is
contentious or sensitive, before deploying it to the cluster. By running a series of tests and
recording different runtimes, a predictor algorithm is able to decide the category of an
application before it is even deployed. In order to classify a benchmark, a dictionary of every
single runtime registered is needed, when collocated with every other possible pairing on
the same socket.

Then the whisker method selects the top and bottom quartiles of that dictionary.
The top quartile is at the 75% percentile whilst the bottom quartile is the 25% percentile
from the available measurements. Then the predictor calculates the whisker limit based on
those two calculations and then compares it to the max available value. That comparison is
the deciding factor on whether that benchmarks surpasses that limit and is indeed
contentious or sensitive.

3.3.2 Classification Process

In order to classify the applications, the whisker produced from the execution of the
method is compared to a QoS standard, which has been set by us. The QoS limit that was
established on factoring one application’s sensitivity and contentiousness is 20% or
numerically 1.2. The whisker result of a SPEC benchmark application above 1.2 regarding the
Sensitivity matrix, classifies the application as a sensitive one. On the other hand a whisker
result above 1.2 regarding the Contentiousness matrix, classifies the application as a
contentious one. That way we can derive the two characteristics of our benchmarks and
conclude on which category one application is classified to. More elaborately, the script
implements the following case scenarios to decide and tag the applications depending on
their characteristics:

e |If an application has a sensitivity whisker of 1.2 or higher, then it is classified as a

sensitive one.
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e If an application has a contentiousness whisker of 1.2 or higher, then it is also
classified as a contentious one.

This set of data classifies the application to category D (or catD) and the appropriate
tag is placed upon every single newly created Pod that executes that specific benchmark.

Accordingly, the sensitivity and contentiousness whiskers will classify each and every
benchmark to their respective category depending on the whisker value surpassing the QoS
value set by us. An average and standard QoS value that is largely used is the QoS of 1.2,
meaning that an increase in more than 20% of runtime performance is enough to classify
the benchmarks as contentious or sensitive, according to the current classification process.

This resulted in the following classification matrix:

Benchmark Category
Zeusmp catC
Namd catA
Gobmk catA
Omnetpp catB
Perlbench catB
cactusADM catA
libquantum2 catD
GemsFDTD catD
Libquantum catD
soplex2 catD

3.4 Algorithms

With the cluster set-up to a stable and empty state, and with the benchmarks
containerized and classified, it is time that the algorithmic solutions of application
distributing are thoroughly described. These algorithms will then be compared to the
standard and non-interference-aware way to analyze the improvement applied to
application runtime performance. All of these algorithms are implemented with the help of
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the scheduling framework providing an easy, deployable, and easily maintained way of
adding interference awareness to the Kubernetes scheduler.
The three algorithmic solutions are as follows:

1. The Greedy Algorithm

2. The Socket-Based Algorithm
3. The Sparing Algorithm

3.4.1 Interference Impact

A random scheduler will allocate applications to nodes after checking that the
resource requirements are met. That way it seemingly ensures that applications have
enough resources to run in an efficient way and meet the service requirements. However,
Kubernetes, lacking interference awareness, will still fail to meet the service requirements
set by the client and as a result, applications will have severe performance issues.
Collocated applications may have enough resources available from the common resource
pool on the node, but will still have contentiousness issues, battling to achieve full resource
utilization when they run concurrently. This is the reason behind researching new
algorithmic solutions that utilize applications categorized depending on sensitivity and
contentiousness.

When collocating applications on a socket, the shared CPU resource pool comes
under stress and the runtime performance of applications is hindered. This can cause a
performance drop that can exceed the SLOs set from the client. This creates two issues that
require solution. The first issue resides on applications scheduling to the cluster nodes.
Before applications are even hosted on CPU sockets, Kubernetes decides the node on which
they will run on. In a small-scale test of quadruples arriving to each node, there can be
quadruples that are inherently considered a bad set and will cause SLO violations regardless
of how they are placed in sockets. That requires that algorithmic solutions are established
and implemented onto the Kubernetes scheduler in an effort to avoid such cases from
happening.

3.4.2 Algorithmic Approach

When scheduling applications on nodes, the Kubernetes scheduler will run each
plugin in the selected order to evaluate and decide which node is the best fit. Each
algorithmic solution presented in this paper, is based on a principle of filtering and scoring
the available nodes. The filtering function is mainly used to ensure the even distribution
between applications and to allow us to run standardized small workloads on our 4-node
cluster. After the filtering process has ended, the scoring plugin will rank the available nodes
and choose the best fit for our Pod, depending on its category. In a simplified explanation,
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the scoring function will give a perfect score on every empty node and accordingly score
every other node that is hosting applications already. The scoring function is dependent and
hard-coded on the algorithmic technique implemented.

When a new pod arrives at the scheduler, the scoring plugin reads the tag provided
by the Pod description template and calculates the total score that each node already has. If
a node is empty, that node is given the best score and is as a result, chosen as the best fit. If
two or more nodes are empty, then the selected node is chosen randomly. The same applies
to nodes with the same score throughout the scoring process. The scoring plugin also
utilizes a reversing function during Normalization. As already explained, Score Normalization
modify scores before the scheduler computes a final ranking of the nodes. In this case, the
plugin reverses the scoring provided from the Scoring function. This is mandatory because
the scoring plugin provides the score depending on how many applications are hosted. Each
application on a node, regardless of category has a positive weight and as a result the more
applications on a server, equate to a higher score. However, this is the opposite of what is
expected. An empty node would receive the lowest score of 0, when it should be instead the
best fit for every arriving Pod. As a result, each application provides a positive weight when
its score is calculated, and during the NormalizeScoring phase, the ranking is simply
reversed.

Thus, the final score of each node is correct after the NormalizeScoring phase, and
the best-fit node is selected for the Pod. The scoring plugin is different on every algorithmic
solution and provides different results that are thoroughly observed in the following
sections.

3.4.3 CPU Pinning

After the scheduler has distributed the Pods accordingly, depending on which
algorithm was enabled, the process of CPU pinning applications begins. The set-up
environment that is used, utilizes two CPU sockets on each node (physical machine). Thus,
each quadruple of applications arriving at a node will be randomly split into the two sockets.
This can still create not only wasteful pairs, where sockets remain un-utilized, but also
create contentious pairs that battle for resources and cause severe performance issues. As a
result, a daemon, which could also be described as an internal scheduler, is needed to
monitor and manage how the arriving applications will be split. Each node needs a running
daemon, implementing a simple utilization pairing algorithm to ensure that the best pairs
possible are created on each socket. The DaemonSet that runs on each Node uses an entry-
point via the Golang client, to periodically request the list of Pods on a specific namespace.
This is accomplished with the use of the Kubernetes API.

In order to effectively change the socket selection of a Pod, the DaemonSet then
finds and utilizes cgroups. Cgroups also known as Control Groups provide a mechanism for
aggregating and partitioning sets of tasks, with all their future children, into hierarchical
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groups of specialized behavior. More specifically, cgroup’s filesystem allows us to change
the set of cores that are used to run a Pod. Each socket has certain specific cores that it
utilizes, and with the use of cgroup’s files, we can pin each Pod to the specific set of CPU
cores we wish to do so.

3.4.4 The Greedy Algorithm

The first algorithm that was implemented to the scheduling framework is the Greedy
algorithm. As its name suggests they course of action that this plugin implements, is to
greedily assign as many non-contentious pods together in the early quadruple, so that to
minimize the chance of bad pairs forming in sockets. That way, sensitive applications are
more likely to be placed with non-contentious ones and as a result display minimal
performance degradation. However, since the algorithmic approach is in fact greedy, there
can still be certain quadruples formed which contain many contentious applications. Nodes
hosting such formations will have increased interference and as a result cause heavy
performance issues to applications hosted there.

3.44.1 Concept
The algorithm applied resides on the following principle:

Algorithm:

Input: N applications in set
Outputs: N/2 pairs per socket
Sets <- {1. non-contentious/insensitive,
2.non-contentious/sensitive,
3.Contentious/insensitive,
4.Contentious/sensitive}
Quiets <- Non-Contentious or insensitive (1,2,3)
Not quiets <- The rest (4)
For set € sets do
If set arriving is quiet then
If server is empty then

o Place set
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If server is not empty then

o Pair set with other quiet till there is a quadruple formed
(Preferring 1s, then 2s and lastly 3s)

If set is Not quiet then

o Add the set to a new empty socket or pair it randomly in a
socket if no server is empty.

Complexity: O(n)

3.44.2 Plugin

The Greedy plugin will only track applications that have a tag describing their
contentiousness and sensitivity. Any Pod arriving to the scheduler that does not have a tag
will be ignored and be handled with the default behavior.

Every plugin that has been created firstly filters the nodes in order to allow only
quadruples to be formed and utilizes a hard-coded scoring function that simply calculates
the score of each node based on the applications running on it. If it is empty, it has a score
of zero and if it has applications, it calculates the total score depending on how many and
which type of Pods are hosted there. Then during the normalization phase, that scoring is
reversed and as a result, the node with the lowest score (or zero) is the one with the
highest, and as a result chosen as the best fit.

3.4.4.3 Scheduling Process

The scheduling process that the Greedy algorithm instantiates when a new Pod
arrives at the cluster is a hard-coded scoring-based function.

The Greedy algorithm has a simple scoring function that allocates a low score to
every non-contentious and insensitive app, also known as Category A. Applications under
category B (which are sensitive but non-contentious) have a slightly higher score and Pods
with the tag of category C (contentious and insensitive) have an even higher one. Lastly
applications under category D, which are both contentious and sensitive have the highest
scoring as they will ruin pairs in nodes, contradicting the very principle under which the
Greedy algorithm works on.

As a result, during every scheduling cycle the plugin will implement the following
path of execution:
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e Recognize the arriving Pod and check for the available tag, indicating that the
pod is to be tracked by the plugin.
e Filter the available nodes in order to disqualify full ones.
e Score the feasible nodes given the greedy algorithmic principle.
e Category A receives the lowest score when paired regardless with anyone,
category B the second lowest and so on.
e Normalize the scoring and choose the best fit for the new application
After the scheduling process is completed, the CPU-pinning DaemonSet will get a list
of all deployed Pods in the node with the CPU socket they are pinned at, and will decide if
the application is placed correctly. If not, Pods will be swapped around the available CPU
sockets, in order to minimize contentiousness issues.

3.4.5 The Sparing Algorithm

The second algorithm that was implemented to the scheduling framework is the
Sparing algorithm. This algorithm similarly to the Greedy one, tests a more radical and
greedy approach by inherently understand the impossibility of having perfect runtime
performances for all hosted applications, and tries as a result to pair inherently bad
applications together that way sparing the rest of the applications from being very affected.
More specifically, applications that fall under category D, meaning applications that have
both contentiousness and sensitivity, will be paired together and as a result leave the rest of
the applications free to pair each other at the rest of the nodes. The result of such an
algorithmic approach is to create a similar result with the Greedy algorithm but instead
trying to achieve good results with the exact opposite approach.

3.4.5.1 Concept

Algorithm:

Input: N applications in set

Outputs: N/2 pairs per socket

Sets <- {1. non-contentious/insensitive,
2.non-contentious/sensitive,
3.Contentious/insensitive,

4.Contentious/sensitive}
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Quiets <- Non-Contentious (1,2)
Not quiets <- Contentious (3,4)
For set € sets do
If set arriving is not quiet then
If server is empty then
o Place set
If server is not empty then

o Pair set with other not quiet till there is a quadruple formed (Preferring
4s and lastly 3s)

If set is quiet then
If server is empty then
o Place set
If server is not empty then

o Pair set with other quiet till there is a quadruple formed (Preferring 1s
and lastly 2s)

Complexity: O(n)

3.4.5.2 Plugin

The Sparing plugin works with the exact same mechanics as the rest of the plugins
developed. The key difference is apparent at the scoring function of the plugin, where the
lowest scores are set when pairing applications of the category D together. Every other pair
has a linear approach following the principles of the sparing algorithm concept described
above.

As a result, during the normalization phase later, we will have two main scenarios
folding out. Firstly, if the arriving application is of class category D or C, and thus considered
a bad contentious pairing component, the scheduler will try to bind it in the most clustered
node, given that there are no empty ones. The second scenario unfolds when applications of
category A or B arrives. These applications will try to create pairs together if such an
available spot is available. Thus, sensitive applications are rarely placed with contentious
ones, reducing SLO violations as much as possible.
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3.4.5.3 Scheduling Process

The sparing algorithm follows another simple hard-coded process of deciding the
best node for every arriving Pod.

More specifically the scoring plugin implements a linear scoring function. Every
arriving application under category D, has a very low score (and as a result during
normalization phase a very high score, only second to an empty node) and so does every
Pod under category C, with a slightly higher score. Then applications that are non-
contentious receive a very high score unless when paired together. Then, they are similarly
scored with a very low total in order to be paired together. Consequently, the scheduling
process is as follows:

e Recognize the arriving Pod and check for the available tag, indicating that the

pod is to be tracked by the plugin.

e Filter the available nodes in order to disqualify full ones.

e Score the feasible nodes given the sparing algorithmic principle.

e [f the arriving application is a contentious one, (meaning either category C or D)

then pair it with another contentious application.

e If the arriving application is a non-contentious one (meaning category A or B)

then it is also paired with another non-contentious application.

e Schedule the Pod to the chosen node.

After the scheduling process is completed, the CPU-pinning DaemonSet will again
abide by the same rules of fitting applications in the most preferred way applicable.

3.4.6 The Socket-Based Algorithm

Finally yet importantly, there is a different approach in pairing applications together.
This algorithm is based on removing the wasteful behavior showcased by other algorithms
and tries to get good pairings between applications. This is possible by taking advantage of
the CPU-pinning DaemonSet that was created to split arriving applications on the node, into
the different sockets.

3.4.6.1 Concept

Before explaining the concept behind this application, it is imperative that pairing
between different categories is well understood.

Two characteristics describe each application. Specifically, contentiousness and sensitivity.
Thus, the applications are assigned into four categories:
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Categories Application Tags Description

Category 1 Non-contentious and Best ones, can fit
=ACEoY 2 insensitive everywhere
Category 2 Non-contentious and Optimally fit with
=ALCEOTY < sensitive Categories 1 and 2
Category 3 Contentious and Can fit with its own kind,
=ACEOY S insensitive Category 3

. " Worst ones, can fit with
Category 4 Contentious and sensitive

Category 1 only

As a result, we have these pairs in sockets:
Best: 1-2, 1-4, 2-2, 3-3

Worst: 2-3, 2-4, 3-4. 4-4

Wasteful: 1-1, 1-3

Wasteful pairings: This means that such pairings work perfectly but might cause problems
on different sockets by not being resourceful enough.

Then the algorithm applied resides on the following principle:

Algorithm:

Input: N applications in set

Outputs: N/2 pairs per socket

Sets <- {1. passive/insensitive,
2.Passive/sensitive,
3.Aggressive/insensitive,

4 Aggressive/sensitive}

Quiets <- Passive or insensitive (1, 2, 3)

Not quiets <- The rest (4)
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For set € sets do
If set is quiet then
If server is empty then
o Place set
If server is not empty then
o Pair set with other quiet till there is a Best set
o If there is no best set, form a Wasteful one
If set is Not quiet then

o Add the set to a new empty socket or pair it randomly in a socket if
no server is empty.

Complexity: O(n)

3.4.6.2 Plugin

The Socket-Based Plugin aims at minimizing wasteful pairings by allowing only
specific sets of applications to fit together. More specifically, arriving Pods under category A
will be fitted preferably with Pods under category D, thus allowing applications under
category D to run in the best practice possible, since there is no other type of application
they can be placed with avoiding performance issues. On the same note, applications under
category B will prefer being placed with each other and applications under category C will
do the same.

After the arriving workload has been scheduled, a set of quadruples will be hosted
on each node. How pairs will be formed on the different CPU sockets is based on luck and
can as a result cause a variety of different performance results. This makes the CPU-pinning
DaemonSet imperative for the intended run of the plugin.

3.4.6.3 Scheduling Process

The socket-based algorithm is again based on a hard-coded scoring function that
abides on a resourceful principle. Avoid creating pairs that could have been used better. A
pairing of two applications, with each one being category A, wastes a chance of utilizing one
application to be fitted with other sensitive ones, that need non-contentious applications
with them. As a result, we have the following scheduling process.
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e Recognize the arriving Pod and check for the available tag, indicating that the
pod is to be tracked by the plugin.
e Filter the available nodes in order to disqualify full ones.
e Score the feasible nodes given the socket-based algorithmic principle.
e |f the arriving application is of type A, its score will be incredibly low against
contentious applications to create good fits.
e If the arriving application is of type B, its score will be incredibly low against its
own category, but very high with every other application in a linear manner
(from category A to D).
e If the arriving application is of type C, preferably score it with itself and if not
possible, pair it with other applications from category A.
e Lastly, if the arriving Pod is of type D, it will only have a low score when paired
with applications from category A.
e Schedule the Pod to the chosen lowest-scored node.
After the scheduling process is completed, the CPU-pinning DaemonSet will again
abide by the same rules of fitting applications in the most preferred way applicable, ensuring
that the socket-based algorithm works as intended.

4. Solution assessment

4.1 Evaluation Process

In order to evaluate and assess how each algorithm is performing, several factors
and measurements need to be examined. Each algorithm developed, will be compared to
the default Kubernetes scheduler, which will serve as the base workload performance
metric. In order for an algorithm to be effective and provide interference awareness to the
scheduler, an improvement has to be seen in comparison to the default, random way of
scheduling applications. The default scheduler will assign applications randomly, from an
interference perspective, allowing us to measure every performance runtime of the
scheduled applications. The runtime of each benchmark is registered and compared to
different SLOs

Each workload will record several if any, violations when exceeding the Service Level
Agreement (SLA) set between the service provider and the customer. The service provider
will set several Service Level Objectives (SLOs) to try to evaluate how its applications are
performing. Each application will have its runtime divided by its default one, providing a
numerical value that is later compared with the SLOs set by the service provider. If the
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numerical value is greater than the SLO, then we have a violation, with each violation
hindering the efficiency score of the algorithm.

In order to efficiently measure the algorithmic performance of each plugin, every
out-of-tree scheduler will be stressed under the same number of workloads, varying in
contentiousness and load.

4.1.1 Service Level Objectives

Whilst the increase in runtime performance of applications, is a metric that
showcases interference between applications, the performance of such applications
may not be hindered enough to cause customer discontent. This results in an
agreement, between the service provider and the customer, in order to better
understand and evaluate how applications are performing. That SLA can be about the
application uptime, the response time, or about the application performance. In our
case, every SLO is focused around application performance. Each application is running
and trying to fulfill a task in a set amount of time. An increase in runtime performance
can violate the SLO set by the service provider, and dissatisfy the customer. For our
measurements, three SLOs were set, at 1.1, 1.2 and 1.3. Respectively the three
objectives will present a violation if an application has an increase in runtime
performance of 10%, 20% or 30%.

4.1.2 Runtime Violations

The number of violations registered for each plugin and as a result each
algorithm, is providing us with the efficiency of that algorithm under a workload. The
violation is filed only if the target SLO is exceeded. Given that three different SLOs have
been set to better test and evaluate the algorithms, that runtime performance will be
compared with the entirety of the target SLOs.

4.1.3 Benchmark Runtimes

Respectively the three objectives will present a violation if an application has an
increase in runtime performance of 10%, 20% or 30%. That increase is compared to the
default benchmark runtime that was registered before the workloads were applied and
each application was running isolated on a socket. In order to calculate the benchmark
runtimes correctly during a workload run, all applications on the same node need to be run
concurrently and for the same time. Since the benchmarks have different default runtimes,
they were run recursively in different batches to have a total runtime of around the same
volume. For example, the benchmark soplex has a default runtime of 323 seconds whereas
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the cactusADM benchmark has a default runtime of about 1333 seconds. Dividing these
numbers will provide us with the approximate ratio of running the applications
concurrently, which is four (4) for this example. This means that in order to concurrently run
the two benchmarks and receive correct measurements, soplex will need to run four times
more than cactusADM. The same logic applies to every concurrent run of benchmarks.

4.1.4 Workloads

To have a concrete image of how plugins are effectively changing the interference
awareness efficiency of the Kubernetes scheduler, different sets of workloads need to be
run and evaluated. Thus, several workloads were created which could be roughly be
classified into three different major categories.

The first category of workloads is the Heavy-Workload one. This category has many
contentious applications that cause a lot of interference to collocated applications and
stress the resources to heavy amounts. Another type of workload category is the Medium-
Workload one that has a balanced amount of contentious and non-contentious applications,
in order to evaluate the algorithms under an average stress test. Lastly but not least, all
algorithms are also stressed with Low intensity workloads, namely under the category Low-
Workload. Such workloads cause little interference even when randomly scheduled and
allow us to compare different algorithms in low stress scenarios.

4.2 Algorithmic Assessment

In the following section, each algorithm is stressed under many different workloads,
evenly chosen between low, medium and heavy intensity in order to register the number of
violations happening every run. The amount of violations happening is also dependent on
the SLO objective set at the time. Then these violations are analyzed with the use of
boxplots, providing us with an average metric in order to compare algorithms sufficiently.
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4.2.1 First Service Level Objective

SLO=1.1
Low workload Mid workload High workload
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Algorithms under SLO of 1.1

Under an SLO of 1.1, there are the following violations:

Here we notice that when we have an SLO that is strict, which requires that
applications do not exceed the 10% increase in performance, the overall best performer is
the Socket-Based algorithm. However, when the arriving workload is a High intensity one,
the Greedy algorithm seemed to have surpassed the others in efficiency. That is expected
since having few non-contentious applications and greedily pairing them together, will
reduce potential violations significantly more. In lower intensity workloads though, the
Socket-Based algorithm provided the least amount of violations.

N.T.U.A - School of Electrical and Computer Engineering 68



4.2.2 Second Service Level Objective

Under an SLO of 1.2, there are the following violations:
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Low workload Mid workload High workload

16 -
14 4
12 4

10 A

1 =
B, BF

random greedy socket sparing random greedy socket sparing random greedy socket sparing
Algorithms

Violations
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On a more conservative approach of an SLO of 1.2 (or 20%), we notice similar
efficiency from all algorithms. Every algorithm significantly outperformed the default
scheduler and reduced violations regardless of the provided workload. In the scenario
where the arriving workload is either pretty balanced or has little intensity (Low and Mid
workloads), we noticed that the Greedy algorithm failed to reduce violations as much as the
other two, though not for a significant amount. That is because the greedy nature of that
algorithm, as its name suggests, will sometimes create wasteful pairings that could have
been utilized in a more specialized manner avoiding the creation of wrongful pairs.
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4.2.3 Third Service Level Objective

SLO=1.3
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Under an SLO of 1.3, there are the following violations:

When the Service Level Objective is rather loose and allows violations to reach up to
30% of an increase in runtime performance, we notice that the balanced Socket-Based
approach performs in incredible fashion. By allocating applications in a selective manner
and forming quadruples of similar contentiousness, the socket-based algorithm, even
without any CPU pinning, allocated applications to Nodes in order to allow the formation of
only acceptable pairs. Even in cases where that did not succeed, the very loose SLO, did not
register enough violations, since all nodes had evenly distributed contentiousness.

4.2.4 CPU-pinning Process

Whilst algorithms have significantly improved the performance of hosted
applications, the applications are randomly hosted on the CPU-sockets. For that exact
reason, the CPU-pinning process must be enabled allowing us to choose how applications
will be paired. More specifically the DaemonSet responsible for managing applications on
each node will map the arriving applications into several hard-coded checks.

e Get the list of applications running collocated on the same CPU-socket.
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e Check if the pairing that was already randomly created is sufficient and causes no
interference issues. Allowed pairings fall under these categories:
+»* catA: No restrictions.
+»* catB: 1) Alone, 2) with catA, 3)with cat B
++» catC: 1) Alone, 2) with catA, 3) with cat C
++ catD: 1)Alone, 2) with catA
e |f the current state of the node is not the aimed one, start implementing each
category rule.
e [f one of the above restrictions cannot be met, skip it.
e If none of the above restrictions can be met, then pair the applications randomly.

The CPU-pinning process allowed us to improve the performance of each algorithm
by up to 27%. This is showcased in the following boxplots.
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SLO=1.2 With CPU pinning
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The difference and improvement that was delivered from the CPU pinning is better
explained in the following diagrams that compare every algorithm with itself (with and
without CPU pinning) and with the default scheduler.
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SOCKET-BASED ALGORITHM
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4.2.5 Proposed Solution

The most effective way of scheduling applications is by implementing the socket-
based algorithm with CPU-pinning. The algorithm avoids creating wasteful quadruples and
manages to efficiently schedule applications to the available nodes. Then the CPU-pinning
Daemon-Set that is present on each node, allocates the CPU resources accordingly to pairs
of applications hosted on each node. As it is obvious by the diagrams before, the Socket-
Based algorithm with CPU-pinning provides the least amount of violations for every
workload type and every SLO.

5. Conclusion

After many tests, classification processes, algorithmic implementations and
application CPU pinning, a major breakthrough is established in extending Kubernetes.
Kubernetes has lacked any interference awareness in its existence, and now we are able to
create a cloud-native way of adding that as an extension. The algorithms via the scheduling
framework, alongside with a CPU-pinning DaemonSet have reduced application interference
up to the point of a 74% reduction in SLO violations (Socket-based algorithm with CPU
pinning, when stressed under low-stress workloads). Applications have better runtimes due
to resourceful application collocation. Even though the workloads were of a moderate size,
and the test environment was rather small and limited to certain sockets, the whole project
is a first and vital step into creating a cloud-native, Kubernetes-extensible way of have
interference aware systems that utilize resources and reduce costs for cloud providers.

In a larger cloud-based environment with different types of applications, a different
and more sophisticated approach would be required. However, the core principle would still
be the same in extending Kubernetes and making it interference-aware. The scheduling
framework will schedule classified application into the available worker nodes and a CPU-
pinning internal scheduler will schedule them to the available CPU sockets. That way,
application co-location will no longer be an issue regardless of the infrastructure that hosts
the arriving workloads.

6. Related Work

6.1 Intel CPU Manager

One interference aware system for Kubernetes that has been developed in a cloud-
native way, is the Intel CPU Manager[3]. When using CPU-intensive workloads, the pods
hosted on a cloud-based system can become throttled if there is a limited amount of CPUs
available. In such a scenario, some of these pods will contend for resources available and
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cause interfering issues on one another. Intel’s CPU Manager uses a control called CPU
affinity, which dictates which CPUs a Pod can use.

By default, all the pods and the containers running on a compute node of the
Kubernetes cluster, can execute on any available cores in the system. When the CPU
Manager is enabled with the static policy, it manages a shared pool of CPUs. When Kubelet
creates a container, with a CPU request, CPUs for that container are removed from the
shared pool and assigned exclusively for the lifetime of the container.

With the use of exclusive CPUs, each container running on the cluster does not share
its resources and a better performance is expected due to isolation. In co-located workloads
with aggressive applications the shared pool of resources can be stressed thus hindering the
performance of hosted Pods. Intel’s CPU Manager provides some interference awareness to
Kubernetes by allocating CPU core to containers using the affinity metric. However, CPU
pinning is not available and providing concrete core and socket selection for the Pod is
impossible. Furthermore, applications cannot utilize the same cores from a socket thus
potentially wasting resources. In our thesis, Pods that are not aggressive can use shared CPU
cores thus not only avoiding performance degradation but also utilizing CPU quota to its
fullest.

6.2 Workload Classification

Workload classification in terms of resource consumption is an active research field
for many years and has as a result provided several models in classifying workloads on
resource usage. Researchers like Haritatos proposed a classification process that exhibits
which shared resource was pressured mostly.

In this thesis, workload classification is based on two sets of characteristics, namely
contentiousness and sensitivity. These two characteristics were proposed by Tang et al.
[14]as more elaborate metrics to capture the interference potential of applications. Zhao et
al.[18] proposed a method to directly predict performance degradation due to interference.

In that note, we aim to classify applications with the use of the contentiousness and
sensitivity tags. The metric used in classifying applications and resolving the selection of
those tags is CPU usage. ActiManager firstly implemented the same process of measuring
and classifying applications based on their interference. The whisker method used in this
research is based on a larger classification process by ActiManager, aiming to preemptively
classify applications arriving at a server[15]. Instead of quantifying these metrics, the
coarser classes of quiet and not-quiet were used in the algorithmic implementations, to
better analyze performing events.
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6.3 Interference Aware Managers

Interference awareness has existed as a major field of research and has been
implemented significantly in cloud based environments. PACMan[16] suggests the use of
laboratory nodes to profile VMs and derives the potential degradation for the co-location of
VMs, greatly limiting the applicability of their approach. DeepDive[17] does not rely on any
prior information about the application and relies on online monitoring to identify
interference. It instead, clones the VM to a sandboxed environment where it is stressed
accordingly to discover potential interference. If that interference is validated, then the
probe of the VM is generated and tested with potential destinations to pick the best
selection.

In our approach, aside from it being an extension of Kubernetes and as a result
something new to the current selection of Interference aware managers, we do not require
any prior information and also we do not interfere with the production execution of the
arriving workload. Instead every benchmark executed is classified using the established
predictor and then handled by the scheduler accordingly, without interfering with its
execution.

7. Future Work

The aim of this thesis is to be the pivotal start in creating cloud-native interference
aware systems. With the use of Kubernetes and its Scheduling Framework, we were able to
extend the Kubernetes scheduler into understanding how collocated applications affect and
interfere with each other.

However, for this proposal to succeed a much more realistic test case needs to be
examined. At first, a different test environment is required. Workloads will no longer consist
of sixteen applications arriving and running concurrently, but will instead host an N amount
of microservices. That amount is accordingly specified to imitate a live production system of
a cloud-based hosting server farm. As a result, there is no limit in how many applications will
be scheduled per Node. Instead, nodes will host applications depending on their CPU
resource quota and the scoring mechanism of the scheduler. Furthermore, all Benchmarked
applications were categorized via the use of the predictor before they arrived at the server
farm. Such an assumption is not apparent in realistic hosting server environments.
Therefore, a new kind of predictor alongside the usage of an empty Node where the
application can run is needed. There, the application can run without any interference and
can be classified during its execution. That way, not only do we succeed in allowing the
application to run without any interruption, but we also provide a realistic classification
process for newly arriving Pods.
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This new reality creates the need of better monitoring. Sockets inside NUMA nodes,
will need to be registered as a Custom Resource in a cloud-native way in order to utilize the
Kubernetes APl in monitoring and logging hosted Pods per socket. That Custom Resource
Definition extends the Kubernetes APl and allows us to register all running Pods per socket.
Then the Kubernetes scheduler retrieves that information to decide which socket is the best
available fit for each arriving Pod. Lastly, the internal DaemonSet will pin the Pods to the
available socket, in a similar manner with the current research. This time however, the CPU
pinning process is not a simple hardcoded function, but is instead executed based on the
available information from the Custom Resource Definition describing Sockets’ status.

A realistic and thorough examination of the above sentiment will revolutionize
cloud-native systems allowing them to become truly interference aware and save resources
reducing costs significantly. Cloud providers will be able to extend current Kubernetes-
based systems in becoming interference aware, that way utilizing computing resources.
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All of the needed code is available and thoroughly explained in the following github
repository.

Github.com/dimitrisdol/thesis_workspace
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