
National Technical University of Athens
School of Electrical and Computer Engineering

Division of

Reinforcement in Cooperative Games

Deep Learning Approaches

Diploma Thesis
of

KONSTANTINOS BARDIS

Supervisor: Stefanos Kollias

Professor

Athens, April 2022





National Technical University of Athens

School of Electrical and Computer Engineering

Division of

Reinforcement in Cooperative Games

Deep Learning Approaches

Diploma Thesis
of

KONSTANTINOS BARDIS

Supervisor: Stefanos Kollias

Professor

Approved by the examination committee on .

(Signature) (Signature) (Signature)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stefanos Kollias Giorgos Stafilopatis Girgos Stamou

Professor Professor Professor

Athens, April 2022





National Technical University of Athens

School of Electrical and Computer Engineering

Division of

Copyright © – All rights reserved.

Konstantinos Bardis, 2021.

The copying, storage and distribution of this diploma thesis, exall or part of it, is

prohibited for commercial purposes. Reprinting, storage and distribution for non - profit,

educational or of a research nature is allowed, provided that the source is indicated and

that this message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work

/ contributions of third parties for which the permission of the authors / beneficiaries is

required and are not a product of partial or complete plagiarism, while the sources used

are limited to the bibliographic references only and meet the rules of scientific citing. The

points where I have used ideas, text, files and / or sources of other authors are clearly

mentioned in the text with the appropriate citation and the relevant complete reference

is included in the bibliographic references section. I fully, individually and personally

undertake all legal and administrative consequences that may arise in the event that it is

proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Konstantinos Bardis





Abstract

A Multi-Agent system is a system which necessitates the coordination and interac-

tion between several decision-making entities (Agents) to accomplish a given task they

otherwise would not be able to. There is a growing need of algorithms tailored to this

setting, since modern systems are relying more and more on decentralized cooperation

between several agents, which poses several additional challenges over the more well-

studied single agent setting, like the non-stationarity induced by other agents’ decisions,

which behooves some important modifications to existing algorithms or the development

of dedicated approaches from the ground-up. This diploma thesis aims to first study the

modern literature on MARL, explain the challenges and opportunities it affords, and then

to utilize several of these algorithms in multi-agent settings using the libraries PettingZoo

and RLLib in cooperative settings.

Αυτή η Πτυχιακή Εργασία απασκοπεί στο να µελετήσει συστήµατα πολλών πρακτόρων

οι οποίοι επικοινωνούν και µαθαίνουν µέσω ϐαθειάς ενισχυτικής µάθησης προκειµένου να

πετύχουν να ϕέρουν εις πέραν εργασίες που κανένας πράκτορας από µόνος του δεν ϑα

µπορούσε. Τα τελευταία χρόνια, µε την άνοδο της Τεχνητής Νοηµοσύνης και την µεγαλύτερη

εξάρτηση των σύγχρονων συστηµάτων από αυτοµατοποιηµένες διαδικασίες και αλγορίθµους,

κρίνεται όλο και πιο έντονη η ανάπτυξη συστηµάτων που ϑα επιτρέπουν την αποκεντρωµένη,

αποτελεσµατική επικοινωνία και συνεργασία µεταξύ πρακτόρων σε πραγµατικές συνθήκες.

Η ιδιαιτερότητα της ανάγκης συντονισµού µεταξύ πολλών δρώντων καθιστά το πεδίο αυτό πιο

πολύπλοκο σε σχέση µε το πιο καλά µελετηµένο πλαίσιο του ατοµικού δράστη, και απαιτεί

επιπρόσθετους, πιο εξειδικευµένους αλγόριθµους και προσεγγίσεις για την επίτευξη των

στόχων του. Σε αυτήν την εργασία λοιπόν ϑα µελετήσουµε αρχικά τις προκλήσεις αλλά και

τις ευκαιρίες που δίνει η ϐαθειά ενισχυτική µάθηση, ένα µέρος της σύγχρονης ϐιβλιογραφίας

για τις προσεγγίσεις που ϑεωρούνται οι πλέον αποτελεσµατικές και τέλος ϑα κάνουµε µια

συγκριτική µελέτη µερικών εξάυτών µε την ϐοήθεια των ϐιβλιοθηκών PettingZoo και RLLib.

Keywords

Multi-Agent, Reinforcement Learning, Neural Networks, RLLib, PettingZoo, Gym

Diploma Thesis 1





Table of Contents

Abstract 1

1 Introduction 9

2 Related Work 13

3 Background 17

4 Experiments 27

5 Conclusion 55

A Appendix 57

Bibliography 67

List of Abbreviations 69

Diploma Thesis 3





List of Figures

3.1 Architectures of A3C vs A2C . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 IMPALA Learning Architecture . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Soft Actor-Critic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Transformer Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Reference scores vs baseline . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Reference average reward over time . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Spread scores vs baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Spread average reward over time . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Speaker-Listener scores vs baseline . . . . . . . . . . . . . . . . . . . . . 40

4.7 Speaker-Listener average reward over time . . . . . . . . . . . . . . . . . . 41

4.8 Entombed scores vs baseline . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.9 Entombed average reward over time . . . . . . . . . . . . . . . . . . . . . . 46

4.10 Space Invaders scores vs baseline . . . . . . . . . . . . . . . . . . . . . . 47

4.11 Space Invaders average reward over time . . . . . . . . . . . . . . . . . . . 49

4.12 Cooperative Pong scores vs baseline . . . . . . . . . . . . . . . . . . . . . 51

4.13 Cooperative Pong scores average reward over time . . . . . . . . . . . . . 53

Diploma Thesis 5





List of Tables

4.1 Baseline scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.1 Hyperparameter optimal values - SAC Independent . . . . . . . . . . . . . 57

A.2 Hyperparameter optimal values - SAC Shared . . . . . . . . . . . . . . . . 57

A.3 Hyperparameters - SAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.4 Hyperparameter optimal values - PPO Independent . . . . . . . . . . . . . 58

A.5 Hyperparameter optimal values - PPO Shared . . . . . . . . . . . . . . . . 58

A.6 Hyperparameters - PPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.7 Hyperparameter optimal values - A2C Independent . . . . . . . . . . . . . 59

A.8 Hyperparameter optimal values - A2C Shared . . . . . . . . . . . . . . . . 59

A.9 Hyperparameters - A2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.10 Hyperparameter optimal values - A3C Independent . . . . . . . . . . . . . 60

A.11 Hyperparameter optimal values - A3C Shared . . . . . . . . . . . . . . . . 60

A.12 Hyperparameters - A3C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.13 Hyperparameter optimal values - IMPALA Independent . . . . . . . . . . . 60

A.14 Hyperparameter optimal values - IMPALA Shared . . . . . . . . . . . . . . 60

A.15 Hyperparameters - IMPALA . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Diploma Thesis 7





Chapter 1

Introduction

Multi-Agent Reinforcement Learning (MARL) is a discipline that concerns itself with

the study and development of systems where several agents interact with each other,

either in a cooperative, adversarial or mixed manner, and learn optimal behaviors via

trial and error, effectively serving as an extension to the more well-developed single agent

optimal control problem.

There are several significant impediments to the progress of MARL. To begin with,

in contrast to single agent situations where it usually is relatively easy to establish an

overarching objective for the agent, typically to maximize some score or to minimize some

cost, in multi-agent settings it is not so, since it can be quite unclear what to formalize as

the overall multi-agent learning problem, as the returns of the agents can be correlated

and incapable of being maximized independently, with two issues standing out: Stability

of the learning process and consistent adaptation to the actions of the rest of the agents

[6]. These two concepts are central to the very premise of MARL, which in contrast

to more classical optimal control methods, can enable agents to adapt to unforeseen

circumstances and learn in an online manner.

In addition, another fundamental problem inherent in MARL is the issue of non-

stationarity of the environment from the perspective of each individual agent, as it changes

due to the actions of the other agents, outside of the individual’s control, eliminating for-

mal convergence guarantees ( [15], [16] ). This non-stationarity creates problems for both

value-based methods, such as Q-learning and its variants, and policy gradient methods,

like PPO and ACTKR [60]; It precludes the former from utilizing experience replay in the

usual manner, while it leads to unacceptably high variance in the latter [28]. Nevertheless,

[31] empirically provide good evidence that such independent approaches can usually be

effective in practice, an observation we will ourselves exploit in our experimental section.

Furthermore, multi-agent settings exacerbate the Curse of Dimensionality, since not

only do individual agents have to deal with potentially high (or infinite) dimensional action

and state spaces, as in Atari or Robotic locomotion problems, but also the growth of state

and action variables as well as the number of agents can be exponential [6], calling for

more sophisticated ways of circumventing that issue.

The fact there are several agents interacting with each other also intensifies the prob-

lem of learning under partially observable environments, also occasionally present in

single agent settings yet lesser in intensity [7]. To more effectively model this problem and

Diploma Thesis 9



Chapter 1. Introduction

enable the agents to learn, extensions of the standard Markov Decision Process (MDP)

have been proposed, the main among them being Partially Observable Markov Decision

Process (POMDP) [36] and then Dec-POMDP for decentralized, multi-agent settings. These

will be discussed in more detail in the upcoming sections, along with popular algorithmic

approaches to model them effectively, as they are the conceptual basis of MARL problems.

Credit assignment [33] is another issue central to reinforcement learning, even in

single agent settings. It can defined as the problem of figuring out an action’s actual

influence towards future rewards, ringing notions of causality [32]. It is an issue that

inevitably comes up whenever an agent interacts sequentially with an environment and

receives rewards sparsely, wherein usually after a long trajectory of actions, rewards and

observations, it often is not clear to what extent each of these actions contributed to

the observed outcomes. Obviously, this problem is only more complicated in the MARL

setting, particularly in cooperative settings with global rewards ( [52], [44] ).

Another issue befalling MARL research was, and to an extend still is, the shortage

of standardized APIs for conducting reproducible research, unlike with the single Agent

case, substantially increasing the engineering workload required to reuse existing code

for research purposes. In fact, as per [54] while around 69 pip-installable libraries exist

for the single agent formulation, only 5 MARL libraries with a significant number of cus-

tomary users exist. In fact, we will be using the library provided by [54] called PettingZoo

in our experiments, since it provides a convenient API supported by a formally sound way

to represent MARL environments, a challenge to properly program in itself.

Notwithstanding that multitude of challenges, MARL is on track to becoming one

of the most influential disciplines of machine learning, particularly as the reliance on

autonomous AI systems increases. We can already witness some exciting areas that

stand to be benefited strongly from the continuous maturation and adoption of MARL, a

select few of which we will succinctly discuss.

Robotics seems like a natural application area for MARL, and with good reason; The

ability of agents to adapt on the fly against ever changing and partially observable condi-

tions is a central selling point of modern MARL algorithms, compared to planning methods

which often require complete knowledge of the environment beforehand. One basic task

is that of navigation, where a robot or team of robots must traverse a path between a

given starting point and a destination, even one that is not fixed, under the constraint

that it evades obstacles and potentially harmful interactions with other agents or people

[19].

A related task is that of area sweeping tasks, when the agents have to comprehensively

survey a given territory towards, for example, search and rescue missions, exploration

or retrieval of otherwise inaccessible objects [30]. Other interesting robotics applications

involve ’pursuit’- type of tasks, with some agents acting as "predators" attempting to

capture some "prey" agents ( [21], [22] ) and "Multi-target observation" as an extension of

the aforementioned exploration task wherein several agents have to keep track of a target

simultaneously ( [57], [14] ).

Closely related to robotics are applications in UAVs (Unmanned Aerial Vehicles). For

instance, [41] approximate a Nash Correlated equilibrium with a modified multi-agent

10 Diploma Thesis



Q-learning algorithm for the task of optimal sensing coverage of an unknown field, while

careful to minimize the overlapping sections of their field of views, a particularly useful

objective for search and rescue operations. [43] utilized MADDPG, a multi-version vari-

ant of DDPG, to attack the multi-UAV target assignment and path planning (MUTAPP)

problem and allow teams of drones to avoid obstacles and reach target areas in dynamic

environments while avoiding collisions in real time.

Of course, a wide variety of applications exist outside of robotics-related domains. [5]

utilize a modified version of a popular actor-critic algorithm (A2C) to rapidly identify and

resolve conflicts between aircraft in high-density, stochastic and dynamic intersection and

merging points with extremely high success rates (99.97 % and 100 % respectively). [45]

utilize independent PPO in a MARL setting to control the energy exchanges in a factory,

and compared it to a rule-based control strategy, with the MARL system enabling much

faster reactions and often better performance.

[42] developed a MARL algorithm to regulate the energy exchange between a commu-

nity of buildings, modelling each one as an agent and improving the energy status of the

community as a whole. MARL has even been used in studying social behaviors in matrix

games such as Prisoner’s Dilemma [23] with experiments showing how conflict arises over

the fight for common and scarce resources.

Besides the fantastically varied applications, MARL is also interesting because of its

connection to Hierarchical Reinforcement Learning (HRL): More specifically, as in the case

of Feudal RL [13], HRL can be interpreted as a special case of a multi-agent system, where

the agents correspond to the multiple levels of the hierarchy. This formulation can aid in

the design and implementation of even more sophisticated HRL architectures.

Having discussed the main challenges inherent in MARL, along with some opportune

domains where it can truly shine, the structure of the Dissertation is the following: We will

first present a comprehensive literature review of prior work in algorithmic approaches in

MARL problems, with special emphasis on the domain of video games, which are consid-

ered among the most challenging and fruitful testsbeds due to the variety of skills they

demand for success. In the next section we will analyze the framework of Dec-POMPDs

and Stochastic Markov Games our algorithms usually operate under, and describe the

methods we will use in our experiments. Our empirical section follows next, where we use

said algorithms in a variety of environments and compare their performance, and lastly

we cap off with directions for future research.

Diploma Thesis 11





Chapter 2

Related Work

Several algorithms have been proposed in the last few years to deal with the problem

of Multi-agent learning. Some of them are novel, explicitly designed for Multi-agent set-

tings like COMA [16], while others are slightly modified versions of standard single-agent

algorithms. In fact, as mentioned in the prior introductory section, there has been a num-

ber of successful applications using even vanilla single-agent algorithms for independent

learning, making it a valid approach in practice.

There are two primary ways of categorizing MARL algorithms: Those that learn under

a centralized manner and those that learn in a decentralized one. Centralized methods

[10] adopt the framework of cooperative games [39] and directly augment the single-

agent algorithms, enabling them to learn a single, "centralized" policy to produce the joint

actions of all agents simultaneously. Decentralized methods on the other hand use the

standard competitive formulation of a Markov Game by [27], and every agent optimizes

their reward signal independently. That formulation, while potentially sufficient for some

general-sum games, still is vulnerable to instability even in simple matrix games [15].

Nonetheless, more recent work lies in between those two antithetical approaches at-

tempting to combine their strengths and mitigate their weaknesses: Centralized Training

and Decentralized Execution (CTDE) and Value Decomposition (VD). CTDE improves upon

Decentralized training by learning a centralized critic and adopting an actor-critic struc-

ture. VD joins all agents’ individual Q-functions into a joint Q-function ( [44], [52] ), and

has been considered as a de facto standard in MARL literature.

COMA [15], one of the most influential MARL algorithms, promotes the use of a cen-

tralized critic during training to estimate the Q-function by utilizing the joint action and

full information available on the state, and decentralized actors to optimize each agent’s

policy, while conditioned solely on the action-observation history of each. It also incorpo-

rates a "counterfactual baseline", that uses the centralized critic to calculate an advantage

function which is able to marginalize out a single agent’s action while keeping the other

agents’ actions fixed, and compare that with the estimated return for the current joint

action. This helps solve the multi-agent credit assignment problem, as only actions that

immediately affect an agent’s rewards are encouraged by the advantage function. COMA

managed to significantly outperform other MARL actor-critic methods in the extremely

challenging StarCraft unit micromanagement environment, known for its high stochastic-

ity, high dimensional state-action space and delayed rewards.

Diploma Thesis 13



Chapter 2. Related Work

Another algorithm following the CTDE paradigm was proposed in [28], dubbed MAD-

DPG, essentially a multi-agent variant of DDPG (Deep Deterministic Policy Gradient). It

works as an extension of the single-agent variant, by augmenting the critic with the extra

information about the policies of other agents, with the actors confined to local awareness.

This allows the policies to use extra information during training, but not at test time, en-

abling faster and more stable learning. MADDPG learns an augmented critic for every

agent, does not assume a differentiable model of environment dynamics nor any structure

on the inter-agent communication. They further train an ensemble of K different poli-

cies for each agent that cumulatively increases the robustness of the overall multi-agent

system. Various experiments they conducted with Open AI’s Multi-particle environment

showed promising results, in both competitive and cooperative environments indicating

a degree of generalization ability, though it is known to often have difficulty adapting in

other environments, limiting its utility.

Incidentally, the authors of MADDPG note that a potential avenue for improving on

the method’s scalability, specifically the linear growth of the input space Q with N , the

number of agents, would be to modify the Q-function to only consider agents in a certain

neighborhood of an given agent. Mean Field Multi-Agent learning, proposed in [61], builds

exactly on that idea. They approximate the interactions within a population of agents by

the interaction of each agent with the average effect from the neighboring agents.To ensure

that learning the Q-function is feasible even as the dimension of the joint action a grows

with the number of agents N , they factorize it using only pairwise local interactions:

Qj(s, a) =
1

N j

∑
k∈N(j)

Qj(s, a j, ak) (2.1)

This pairwise interaction can be approximated using the mean field theory developed

by [51], and effectively allows the approximation of the Q-function independent of the

number of agents,transforming a many-body problem to a two-body one. This decom-

position also ameliorates the noise accumulation caused by the exploration of several

agents, a problem not addressed in approaches with centralized critic Q-functions, as in

COMA or MADDPG.

PPO [49] is considered a state-of-the-art algorithm for single agent problems. It is

no surprise then that [63] attempt to adapt it to multi-agent problems, particularly co-

operative games. MAPPO then follows the algorithmic structure of PPO by learning a

policy πθ and a value function Vφ(s) for each agent, which is only used during training for

variance reduction, taking advantage of global information. Several implementation de-

tails were deemed critical to the success of the algorithm, such as Generalized Advantage

Estimation (GAE) [48] with value normalization to stabilize value learning, incorporating

agent-specific features in the global state under the condition that the state dimension

does not explode, avoid mini-batching and too many epochs, tune the clipping ration ϸ,

which balances stability and convergence speed, and use zero states with agent ID as the

value input for dead agents.

A major selling point of the algorithm is that while it required minimal hyper-parameter

tuning, no domain-specific algorithmic tweaks and could be trained even in a single desk-

14 Diploma Thesis



top machine, it still managed to attain superior performance to other powerful algorithms

in StarCraft, MPE and Hanabi domains. In fact, despite being an on-policy algorithm,

which are known for their sample inefficiency, in most scenarios it achieved off-policy

sample efficiency, thus enabling it to be trained in a single machine.The authors do how-

ever note that there are several limitations, such as using only discrete states, exclusively

cooperative environments, and generally homogeneous agents.

As mentioned, MAPPO handles the issue of agent death via "death masking", a variant

of an "absorbing state" which is a special, terminal state in a fully connected layer, where

inactive agents (whether by addition or removal) are placed, irrespective of action choice,

until the group of agents or episode terminates. However, using such states introduces

significant problems as they not only complicate the training process of the function ap-

proximators but also waste quite substantial computational resources for agents that by

definition do not affect the environment. That also gives rise to the problem of "Posthu-

mous Credit Assignment", a situation when an agent must learn to maximize rewards it

cannot experience. [11] propose a novel algorithm, dubbed MA-POCA, especially to deal

with those issues.

MA-POCA proposes using a novel algorithm, based on the CTDE framework, where the

centralized critic can handle a varying number of agents per time step by applying a self-

attention mechanism [58] to only the active agents, which allows the critic to compute the

future expected value of the group of states without requiring the use of absorbing states,

and to implement counterfactual baselines [16] for both discrete and continuous action

spaces for homogeneous or heterogeneous agents, both explicit limitations of MAPPO,

thus allowing for the creation of new agents during the episode. MA-POCA is then shown

to outperform both COMA and Independent PPO in a variety of environments, several of

which were created using the Unity game engine specifically to that end.

[20] Also used an attention mechanism when learning a centralized critic, to enable

more efficient and scalable learning based on the idea that in many environments and in

the real world, it would be far more beneficial for an agent to actively choose which other

agents to pay attention to at every time-step instead of just attending to everyone in the

vicinity. Their approach is applicable in cooperative, competitive and mixed environments,

scales linearly with the number of agents, can train policies with any reward scheme and

different action spaces per agent, incorporates a variance reducing baseline and a set of

centralized critics that dynamically attend to relevant information for each agent at each

time step, thus making for a very versatile and scalable approach.

While the CTDE framework may be conveniently realizable in actor-critic and policy

gradient settings, like in COMA, it is not at all straightforward in value-based methods

such as Q-Learning, as already mentioned in the introduction, in part due to exponential

growth in the combined action and observation spaces. One approach put forth by [52]

for cooperative games trains individual agents with a novel additive value-decomposition

network (VDN) such that the team value function is linearly decomposed into agent-wise

value functions by back-propagating the total gradient Q through the neural networks

representing those individual component value functions. The main assumption they

make is that the individual agent’s value functions can additively compose the joint action-

Diploma Thesis 15



Chapter 2. Related Work

value function, which is also its main weakness since not every multi-agent problem is

amenable to such decomposition and linear summation.

An alternative formulation by [44] works as an extension of VDN and occupies the

middle ground between Independent Q-Learning, where each agent learns an individual

action-value function Qa , and a fully centralized state-action value function Qtotal learned

by COMA. The key insight, as detailed by the authors, is that a full factorization of the

VDN value function is not necessary to extract effective policies; Rather, it is sufficient to

ensure that the same result is reached from a global argmax of Qtotal as with individual

argmax operations performed of each Qa . The condition sufficient for that result to hold

is that a monotonicity constraint is imposed on the relationship between Qtotal and each

Qa :

∂Qtotal
∂Qa

⩾ 0,∀a (2.2)

The QMIX algorithm manages to obtain much better results from both IQL and VDN in

the Starcraft environment, at the cost of additional architectural complexity, since it used

a neural network to combine the local functions rather than the simple linear summation

of its predecessor VDN.

16 Diploma Thesis



Chapter 3

Background

Markov Decision Processes (MDPs) are the theoretical paradigm underpinning most

optimal control and single agent reinforcement learning algorithms and theory. That

framework can also be extended to accommodate for multi-agent settings, which is a

necessary modification since an MDP by itself is no longer adequate to describe the

environment, given that actions from the other agents affect the environment dynamics.

One such extension was proposed by [27] in the form of Markov Games, and remains

a foundational concept upon which MARL is based on. Borrowing notation from [7], we

can define a Markov Game by the tuple (N, S, {Ai}i∈N , P, {Ri}i∈N , γ) where

• N = 1,2,3...N is the set of participating agents, where N > 1.

• S is the state space observed by all agents.

• Ai is the action space of the i-th agent and A := A1 × A2 × ... × AN the joint action

space.

• P : S × A → δ(S) is the transition probability to each state s′ ∈ S given a starting

state s ∈ S and a joint action a ∈ A.

• Ri : S × A × S → ℜ is the reward function of the i-th agent for a transition from

state-action pair (s, a) to state s′, representing the instantaneous reward received.

• γ ∈ [0,1] is the discount factor, a hyperparameter that controls the discount rate

between current and future rewards.

Another generalization of the MDP that explicitly incorporates partial observability

and thus allows for modelling highly complex cooperative and competitive sequential de-

cision environments is the Decentralized POMPD (Dec-POMDP), an extension of Partially

Observable MDP (POMDP) and itself a subset of Partially Observable Stochastic Games

(POSG). As in the Markov Games specification, the objective is still the maximization of

the expected return via the selection of an optimal joint policy.

Going by the formulation by [38], a Dec-POMDP is defined by the tuple (N, S, O, A, P, r, γ
where

• N ≧ 1 is the number of agents.

Diploma Thesis 17



Chapter 3. Background

• S the state space of the environments.

• O := O1 × O2 × ...ON is the joint observation space of all agents, where Oi is the

observation space of agent i; At time t the environment is at state st ∈ S and ot ∈ Oi is

the local observation of agent i which is correlated with st , as the environment’s state

can contain information not visible to an agent locally, such as the total number of

agents active at any given moment.

• A := A1 ×A2 × ...AN is the joint action space of all agents, again with Ai denoting the

individual action space of agent i. Note that the observation and action spaces do

not have to be equal.

• P : S×A×S → [0,1] is the transition function where P(s′|s, a) denotes the probability

of the environment transitioning to state s′ given current state s and joint action

a ∈ A.

• r : S×A×S →ℜ is the central reward function, where r(s, a) is the reward received

by all agents when joint action a ∈ A is taken and the environment is in state s ∈ S.

• γ ∈ [0,1] is the discount factor.

Having discussed the theoretical framework that formalizes the decision-making pro-

cess of the MARL problem, we will now overview the algorithms we will be utilizing in our

experiments. These algorithms can support both discrete and continuous action spaces,

a desirable property even though the environments we will experiment with use only

discrete actions, and are state-of-the-art in standard reinforcement learning settings.

Utilizing parallel training to speed up learning in actor-critic methods is something

that Asynchronous Advantage Actor-Critic (A3C) and its cousin Advantage Actor-Critic

(A2C) do well. First proposed by [34], they essentially constitute a classic variant of policy

gradient methods with parallelization capabilities that also have a stabilizing effect on

training as they decorrelate the agents’ data into a more stationary process since at any

given time-step the parallel actor-learners will experience a variety of different states.It is

also able to train on both discrete and continuous action spaces by default and also train

via both feedforward and recurrent agents, making it quite a versatile agent.

In A3C the critics get synced with global parameters periodically while several actors

get trained in parallel. The loss function to be minimized is the mean squared error

between the Q-values and the state-values, or the advantage values Jv(w) = (Gt −Vw(s))2
,

via gradient ascent to find the optimal w or set of weights for the neural networks. This

function is used as the baseline in the policy gradient update rule. The outline for A3C,

borrowed from the excellent survey by [59], that we will also follow for other descriptions

as well, is the following:

1. Initialize global parameters θ and w as the actor and critic weight vectors respec-

tively and similar thread-specific ones θ′ and w′.

2. Initialize time step t = 1.

18 Diploma Thesis



3. While T ≤ TMAX :

(a) Reset gradient: dθ = 0, dw = 0

(b) Synchronize thread-specific parameters with global ones as θ′ = θ and w′ = w

(c) Let tstart = t and sample a starting state st

(d) While st , TERMNAL AND t − tstart ≤ tmax :

i. Choose At ∼ πθ′(At |St), receive new reward Rt and new state st+1

ii. Update t = t + 1 and T = T + 1

(e) Initialize the variable holding the return estimation

R =

0 if st is TERMINAL

Vw′(st) otherwise

(f) For i = t − 1, ..., tstart :

• R ← γR + Ri , where Ri is a Monte Carlo measure of Gi

• Accumulate gradients with respect to θ′:

dθ← dθ + ∇θ′ log πθ′(ai |si)(R − Vw′(si))

• Accumulate gradients with respect to w′:

dw ← dw + 2(R − Vw′(si))∇w′(R − Vw′(si))

(g) Update asynchronously θ using dθ and w using dw

Thus, using this structure of executing updates, A3C efficiently enables parallelism

when training agents simultaneously. The gradient accumulation step is a parallelized

form of stochastic gradient descent since the weight matrices only get updated "a bit"

towards the steepest descent direction.

While A3C’s idea of having multiple workers each with their own weights interacting

with their own copy of the environment enhances exploration, it is sub-optimal in the

sense that the asynchronous nature of the updates from the global parameters pool can

lead to some thread-specific agents working with old weights of prior policies leading to

sub-optimal aggregated updates. To resolve this, A2C proposes instead to synchronously

resolve this inconsistency via a central "coordinator" which has to wait for all the agents to

have sent their updates before updating the global parameters, to ensure that in the next

iteration all actors start from the same policy. Thus the training can be more cohesive and

converge faster, due to the synchronized gradient update. A2C has also been shown to be

more effective in utilizing GPUs and working with large mini-batches compared to A3C,

while retaining equal or better performance to A3C, further adding to its overall efficiency.

A graphical illustration of the differing architectures, also by [59], further elucidates those

differences:

Diploma Thesis 19



Chapter 3. Background

Figure 3.1. Architectures of A3C vs A2C

The next algorithm we will be utilizing is IMPALA, proposed by [2], having been de-

signed expressly with the purpose of being able to handle multi-task environments and

achieve very high throughput, able to scale to thousands of machines efficiently. It decou-

ples acting and learning from the usual actor-critic setup and utilizes a novel mechanism

called V-Trace for off-policy correction to stabilize learning, which along with its native

scalable architecture allows it to be even more data efficient than A3C-based agents

and more robust to both hyperparameter values and network configurations. The algo-

rithm also incorporates several other optimization tricks native to TensorFlow [1] such as

preparing the next batch of data for the learner while the computation is still underway

or by compiling parts of the computational graph with XLA (a TensorFlow Just-In-Time

compiler).

The following visualization 3.2, obtained from the original paper, clearly summarizes

how this algorithm works with both a single learner and with multiply synchronous ones.

In the first case, each actor generates trajectories and sends them to the learner via a

queue, and the actor retrieves the latest policy updates from the learner before starting

collection of the new trajectory. In the second case, policy parameters are distributed

across multiple learners that work synchronously.

IMPALA actors, instead of transferring gradients with respect to the policy parameters

to a central parameter server like in A3C, instead communicate by means of trajectories,

namely tuples of sequences of (states, actions, rewards) to a centralized learner. Since

this central learner has access to entire trajectories it can enable the parallel use of GPU

resources to achieve the high throughput mentioned earlier. This however can lead to a

significant lag between the behavior policy and the central learner one, behooving the use

of "V-Trace" to correct for this inconsistency. Do note that the architecture allows for the

presence of several learners to learn the target policy π by receiving trajectories from the

set of actors.

V-trace is a novel off-policy actor-critic correction method, that is designed to correct

the lag between actor and learner policies. To explain how this works, we again borrow

notation from [59], and we first let the value function Vθ be parameterized by θ and the

policy πφ parameterized by φ. We know the trajectories in the replay buffer are collected

20 Diploma Thesis



Figure 3.2. IMPALA Learning Architecture

by an older policy µ, which is the source of our problem as well. As training time t, given

a sample from the replay buffer, a tuple of the form (st , at , st+1, rt) the value function

parameter θ is learned via a "Least Squares Loss" (L2) loss between the current value and

a V-trace value target. The n-step V-trace target is defined as:

vt = Vθ(st) +
t+n−1∑
i=t

γ i−t
( i−1∏
j=t

cj
)
δiV

= Vθ(st) +
t+n−1∑
i=t

γ i−t
( i−1∏
j=t

cj
)
ρi(ri + γVθ(si+1) − Vθ(si))

Where the red part δiV is a temporal difference for V whereas ρi = min
(
ρ̄, π(ai |si )

µ(ai |si )
)

and cj = min
(
c̄,

π(aj |sj)
µ(aj |sj)

)
are truncated importance sampling (IS) weights. The product of

ct , ..., ci−1 measures how much a temporal difference δiV observed at time i impacts the

update of the value function at a previous time t. In the on-policy case, ρi = 1 and cj = 1

and the V-trace target reduces to an on-policy n-step Bellman target.

ρ̄ and c̄ are two truncation constants with ρ̄ ≧ c̄. ρ̄ impacts the fixed-point of the value

function we want to converge to while c̄ impacts the speed of convergence. If ρ̄ = ∞ , we

converge to the value function of the target policy V π; Else, if ρ̄ is less than infinity our

fixed point is the value function V πρ̄ of a policy πρ̄, lying somewhere around µ and π. If at

the limit ρ̄ is close to zero, we obtain the value function of the behavior policy V µ.

The value function parameter is thus updated in the following direction:

∆θ = (vt − Vθ(st))∇θVθ(st)

whereas the policy parameter φ is updated through the policy gradient

Diploma Thesis 21



Chapter 3. Background

∆φ = ρt∇φ log πφ(at |st)
(
rt + γvt+1 − Vθ(st)

)
+ ∇φH(πφ)

= ρt∇φ log πφ(at |st)
(
rt + γvt+1 − Vθ(st)

)
− ∇φ

∑
a

πφ(a|st) log πφ(a|st)

with rt + γvt+1 being the estimated Q-value, from which a state-dependent baseline

Vθ(st) is subtracted, and H(πφ) an entropy bonus to encourage exploration. Thus the

overall update is obtained by summing all these terms and scaling by the appropriate

coefficients, which are hyperparameters of the algorithm. The combination of its scalable

architecture along with the novel corrective mechanism of the V-trace and the software

optimizations allowed IMPALA to outperform the A3C algorithm in terms of data efficiency,

scalability and even final performance in a variety of challenging environments.

Another state-of-the-art algorithm we will be using that has achieved remarkable

success on difficult environments is Soft Actor-Critic (SAC) by [17], another model-free,

stochastic formulation for continuous environments, and specifically its variant built

to handle discrete action spaces, put forth by [9] based on the same principles. It is

based on the maximum entropy framework, which adds an entropy maximization term to

the standard objective function, where the original can be recovered using a temperature

parameter, which also happens to be an important hyperparameter of SAC. The maximum

entropy polices framework is more robust against epistemic uncertainty and improves

exploration by acquiring diverse behaviors, by incorporating the entropy measure of the

policy into the reward function; In other words, the agent is expected to maximize random

behavior (exploration) on the condition it still overcomes the task at hand.

SAC consists of three ingredients: An actor-critic architecture with separate stochastic

policy and value function networks, an off-policy formulation that enables reuse of pre-

viously collected data for efficiency, and the aforementioned entropy maximization term

to boost exploration and promote training stability. More specifically, while standard RL

only maximizes the expected sum of rewards
∑
t E(st ,at )∼ρπ [r(st , at)], the more flexible max-

imum entropy objective used by SAC which seeks to maximize both expected return and

entropy simultaneously is given by

J(θ) =
T∑
t=1

E(st ,at )∼ρπθ [r(st , at) + αH(πθ(.|st))]

H denotes the entropy measure and α is the "temperature" hyperparameter, con-

trolling the relative importance of the entropy term against the pure reward term, thus

controlling the degree to which the policy is stochastic. The conventional RL objective can

obviously be recovered in the limit as α → 0. The authors note that this formulation of the

objective has several advantages: The first one, as mentioned several times already, is the

explicit incentive given to exploratory behavior policies while ensuring that unpromising

avenues are quickly abandoned. It also enables the policy to capture multiple nodes of

near-optimal policy, which means that in problems where there are several actions that

all seem attractive the policy will assign about equal probability mass to each of them.

Lastly, it improves learning speed by virtue of more efficient exploration, and can be easily

extended to infinite horizon problems via the use of a discount factor γ.

22 Diploma Thesis



SAC aims to learn three functions:

• The target policy πθ, parameterized by θ.

• The soft Q-value parameterized by w, dubbed Qw.

• The soft state-value function parameterized by ψ, Vψ.

The soft Q-value and soft state-value functions are defined as

Q(st , at) = r(st , at) + γEst+1∼ρπ (s)[V (st+1)] ; according to Bellman equation.

where V (st) = Eat∼π[Q(st , at) − α log π(at |st)] ; soft state value function.

Thus,

Q(st , at) = r(st , at) + γE(st+1,at+1)∼ρπ [Q(st+1, at+1) − α log π(at+1|st+1)]

ρπ(s) and ρπ(s, a) denote the state and state-action marginals of the state distribution

induced by the policy π(a|s).

The soft state-value function is trained to minimize the mean squared error (MSE):

JV (ψ) = Est∼D[
1

2

(
Vψ(st) − E[Qw(st , at) − log πθ(at |st)]

)2]

with gradient: ∇ψJV (ψ) = ∇ψVψ(st)
(
Vψ(st) − Qw(st , at) + log πθ(at |st)

)
where D is the replay buffer.

The soft Q-function is trained to minimize the soft Bellman residual:

JQ(w) = E(st ,at )∼D[
1

2

(
Qw(st , at) − (r(st , at) + γEst+1∼ρπ (s)[Vψ̄(st+1)])

)2]

with gradient: ∇wJQ(w) = ∇wQw(st , at)
(
Qw(st , at) − r(st , at) − γVψ̄(st+1)

)
where ψ̄ can be an exponentially moving average of the value network weights, which

has been shown to stabilize training ([35]).

SAC then updates the policy to minimize the KL-Divergence criterion:

πnew = arg min
π′∈Π

DKL

(
π′(.|st)∥

exp(Qπold(st , .))
Zπold(st)

)
= arg min

π′∈Π
DKL

(
π′(.|st)∥ exp(Qπold(st , .) − log Zπold(st))

)
We can safely ignore the partition function Zπold(st)) that normalizes the distribution

and is in general intractable, since it does not contribute to the gradient with respect to

the new policy.

Taking the derivative with respect to θ then gives us the following objective:

Diploma Thesis 23



Chapter 3. Background

Jπ(θ) = ∇θDKL

(
πθ(.|st)∥ exp(Qw(st , .) − log Zw(st))

)
= Eat∼π

[
− log

(exp(Qw(st , at) − log Zw(st))
πθ(at |st)

)]
= Eat∼π[log πθ(at |st) − Qw(st , at) + log Zw(st)]

Having computed those quantities, it then becomes easy to demonstrate the full SAC

algorithm:

Figure 3.3. Soft Actor-Critic Algorithm

The algorithm also makes use of two Q-functions to mitigate positive bias in the

policy improvement step, a frequent problem in earlier, more naive implementations of

Q-learning algorithms without this dueling architecture, and use their minimum for the

value gradient.Notably, it still can learn challenging tasks like the Humanoid with only one

Q-function but using two speeds up training, particularly on hard tasks. The combination

of the stochastic policies, maximum entropy objective and data efficiency make SAC stand

out among many other algorithms as one of the most effective tools available.

The final algorithm we will be using is often used as a benchmark to measure new

approaches and is none other than PPO (Proximal Policy Optimization), proposed by [49].

PPO builds upon TRPO (Trust region policy optimization), an algorithm proposed earlier

by the same authors in [47]. Given that PPO is an evolution of TRPO, we will first briefly

discuss the TRPO formulation, following again notation from [59], and then move on

to PPO. The idea of TRPO then is to only take parameter updates close enough to the

old policy, so that no rapid changes to it are made at each step, endangering stability of

training. To quantify the degree of difference between the old and new policies the authors

use the KL-Divergence constraint on the size of the policy update at each iteration.

Off-policy methods by definition use a behavior policy � to collect experience trajec-

tories, usually by incorporating a high degree of exploration, and a target policy µ that

24 Diploma Thesis



the algorithm tries to optimize for, usually a greedy one. The objective function then

measures the total advantage over the state visitation distribution and action, while the

mismatch between the training data distribution and the true policy state distribution is

compensated by the IS (Importance Sampling) estimator

J(θ) =
∑
s∈S

ρπθold

∑
a∈A

(
πθ(a|s)Âθold

(s, a)
)

=
∑
s∈S

ρπθold

∑
a∈A

(
�(a|s)

πθ(a|s)
�(a|s)

Âθold
(s, a)

)
; Importance sampling

= Es∼ρπθold ,a∼�
[πθ(a|s)
�(a|s)

Âθold
(s, a)

]
Where θold are the policy parameters before the update and thus known a-priori; ρπθold

is the discounted state distribution and �(a|s) the behavior policy. Note that since the

true rewards are usually unknown, we have to resort to an approximation of the true

advantage function A(.) denoted Â(.).

Even when training on policy there can be a significant mismatch between the updates

when they run asynchronously, as we also noted in the A3C algorithm. TRPO makes a

note for that situation by labelling the behavior policy as πθold
(a|s), which transforms the

objective function to

J(θ) = Es∼ρπθold ,a∼πθold

[ πθ(a|s)
πθold

(a|s)
Âθold

(s, a)
]

TRPO then aims to maximize the given objective function J(θ) under the aforemen-

tioned trust region constraint, to ensure that the newly updated policy is "close" to the

old one to prevent any major discontinuities from arising, quantified by enforcing that the

KL-Divergence be "small" enough, within a parameter δ:

Es∼ρπθold
[DKL(πθold

(.|s)∥πθ(.|s)] ≤ δ

In that way, not only is the new policy constrained from diverging too much at any

individual update, but also guaranteed to be a monotonic improvement.

PPO then comes as an improvement to TRPO in two major ways: It is much simpler

to understand, and hence implement, and is characterized by better sample complexity

(empirically), all the while without sacrificing anything in terms of effectiveness, outper-

forming other online policy gradient methods quite handily.The simplification works by

using a clipped surrogate objective. More specifically, we first denote a probability ration

between old and new policies as

r(θ) =
πθ(a|s)
πθold

(a|s)

Then, the objective function of TRPO (on policy) becomes:

JTRPO(θ) = E[r(θ)Âθold
(s, a)]

However, that is an unbounded objective function which does not guarantee that

Diploma Thesis 25



Chapter 3. Background

updates will not change the policy significantly; Since ensuring stability during learning

is the basic promise of trust region optimization, a constraint needs to be imposed to force

r(θ) to stay within a small interval around 1: [1 − ϸ,1 + ϸ], where ϸ is a hyperparameter.

By incorporating this restriction, the objective function becomes

JCLIP(θ) = E[min(r(θ)Âθold
(s, a), clip(r(θ),1 − ϸ,1 + ϸ)Âθold

(s, a))]

The function clip(r(θ),1 − ϸ,1 + ϸ) does exactly what it implies, as it clips the ration

between old and new policies to be within the interval we specified earlier. Then, the

objective function of PPO takes the minimum between the original value and the clipped

version, removing the incentive to increase the policy update too much for supposedly

better rewards.

In case we are applying PPO on a network architecture with shared parameters for

both policy (actor) and value (critic) functions, an approach actually employed quite often

in cooperative games, such as the ones we will consider, the objective function should

also be augmented with an error term on the value estimation (formula in red color) and

an entropy term (formula in blue) to encourage exploration:

JCLIP’(θ) = E[JCLIP(θ) − c1(Vθ(s) − Vtarget)2 + c2H(s, πθ(.))]

with both c1 and c2 being hyperparameters.

In spite of the very high performance of PPO in challenging environments like simu-

lated robotic locomotion and Atari game playing, there are still blind-spots as evidenced

by [18]:

• PPO can be unstable in continuous action spaces if rewards vanish outside bounded

support.

• PPO can get stuck at suboptimal actions when up against discrete action spaces

with sparse, high rewards.

• Policy can be sensitive to initialization when locally optimal actions lie close to the

initialization parameters.

They then go on to suggest that using the Beta distribution for policy parameterization

in continuous action spaces can be more robust to outliers and helpful to avoid failure

modes, boosting the performance in MuJoCo environments, and using KL regulariza-

tion as an alternative surrogate model helps especially when moving outside of current

benchmarks and on the initialization issue.

26 Diploma Thesis



Chapter 4

Experiments

In this section, we will be experimenting with a variety of environments provided by

the PettingZoo library, with discrete action spaces. More specifically, we will work with

the following:

Multi Particle Environments (MPE) is a set of communication-oriented environments

where particle agents can (occasionally) move, communicate, see each other, push each

other around and interact with fixed landmarks. They originally hail from OpenAI’s MPE

codebase [37], and while the originals were archived after they were used in the MAADPG

paper by [28], up-to-date, maintained versions with various fixes (like making rewards

consistent and cleaning up the observation spaces of certain environments) are included

in PettingZoo and are the ones we will be utilizing.

There are both competitive and cooperative environments available, where the agents

have to work together to achieve goals and receive a mixture of rewards based not only

on their individual performance but also on the success of the other agents. We will be

working with the latter subset, that includes:

• Simple Reference: The environment has 2 agents and 3 landmarks with different

colors, and every agent wants to get closer to a target landmark, which however

is known only by the other agent. Both are simultaneous listeners and speakers

and rewarded locally by their distance to the target landmark and globally by the

average distance of all agents to their respective targets.

• Simple Speaker Listener: Similar to Simple Reference except the one agent is the

speaker that can speak but cannot move while the other is the listener that cannot

move but has to navigate to the correct landmark.

• Simple Spread: An environment with N agents and landmarks, where agents must

learn to cover all landmarks while avoiding collisions. All agents are globally re-

warded based on how far the closest agent is to each landmark, while they are

penalized is they collide with each other.

We will also be using a couple of Atari environments, since that suite was quite in-

strumental in the development of modern reinforcement learning in general. The original

Arcade Learning Environment was developed by [53] while the multiplayer games were

Diploma Thesis 27



Chapter 4. Experiments

introduced in [3]. While most of the games are of the competitive flavor, we have picked

up a couple that are (mostly) cooperative:

• Entombed (cooperative) is an exploration game where the two agents need to work

together to make it as far as possible down in the maze.

• Space Invaders encourages cooperation as the players can choose to maximize their

score by collaborating to clear the levels. However, there can also be a competitive

aspect if an agent decides to sabotage the other since there is a large bonus should

the other player be hit by the enemies.

Lastly, we will also work with an environment unique to PettingZoo, part of the "But-

terfly" suite, created with PyGame with visual Atari spaces. All of them require a high

degree of coordination and thus learning emergent behaviors is crucial to achieving a

successful policy. We will work with:

• Cooperative Pong is a game of simple pong where the objective is to keep the ball in

play for the longest time. One agent is tiered cake-shaped as well, increasing the

challenge of coordination.

It is also important to briefly discuss the theoretical framework used by the PettingZoo

library to represent the games computationally, which builds on top of the Markov Games

paradigm we talked about in length in the prior section. Motivated by the problems in

POSG and EFG models [54] developed the Agent Environment Cycle (AEC) framework,

which in similar function to Gym allows agents to sequentially observe their environment,

take actions, receive rewards emitted from other agents and wait for the next agents to

complete their respective turns.

Modelling games via an AEC API has several benefits, as noted by the authors: They

allow for clearer attribution of rewards to different origins, enabling more effective learn-

ing; It more closely models how computer games are executed in code, particularly since

the POSG-based APIs can be conceptually unclear for code-level implementations; It for-

mally allows for rewards after every step as it is required in RL settings, whereas EFG

formally only accounts for end-of-game rewards; It is simple enough to serve as a mental

model even to non-experts, unlike the EFG paradigm which requires familiarity with rela-

tively advanced game-theoretic concepts; It is much more flexible in dealing with varying

agent populations, for example in cases of death or creation mid-episode and really is

the least bad option for a universal API since simultaneous stepping requires the use of

no-op actions which can be very burdensome whereas in sequential stepping the queuing

of actions is not too inconvenient.

We will consider 2 types of Multi-Agent learning. The first one is fully Independent

Learning, which as discussed in the introduction, despite suffering from various issues

like non-stationarity from the perspective of any one agent due to the environment chang-

ing from the actions of other agents, empirically has been shown to work well in more

than a few occasions. The second is going to be Parameter Sharing, which is an extreme

28 Diploma Thesis



case of centralized training where all policies are represented by a single function ap-

proximator (in our case neural networks) with the same shared parameters [55]. Even

though this does give rise to scalability issues and can be quite challenging to work with

heterogeneous agents, it again has been shown to achieve state of the art performance,

and can actually work well even with non homogeneous agents with appropriate padding,

a technique we will ourselves use in some of our environments.

For the hyperparameter tuning of our algorithms along with every other core function-

ality related to training we will be using the excellent RLLib [25] and Tune [26] libraries,

part of the open source Ray project for building distributed and scalable applications,

providing us with all necessary tools to conduct our analysis.

The hyperparameter tuning algorithm we will be utilizing is a novel technique called

Heteroscedastic and Evolutionary Bayesian Optimisation solver (HEBO) [12] that empir-

ically was shown to be extremely effective by placing first in the NeurIPS 2020 Black-

Box Optimization challenge, along with the Asynchronous Successive Halving Algorithm

(ASHA) [24] for more efficient termination of unfruitful trials.

HEBO is a black-box Bayesian optimization algorithm that performs well under chal-

lenging conditions. The authors conducted extensive trials and came up with statistically

important findings that most hyperparameter tuning tasks not only exhibit heteroscedas-

ticity and non-stationarity, but also are ill-suited for individual acquisition functions (their

role being to query novel input locations) which often conflict in their solutions, imposing

the use of multi-objective formulations to significantly improve performance.

HEBO manages to effectively deal with those issues, as evidenced by its first place in

the NeurIPS competition, primarily by combining non-linear input and output warping

and adopting multi-objective acquisitions and secondarily by utilizing robust acquisition

function formulations. More specifically, and without getting bogged down in details, the

algorithm employs the following strategies:

To tackle heteroscedasticity, they use the Box-Cox transformation [4] on the outputs as

a corrective mapping for non-normally distributed data, achieved by minimizing the nega-

tive Box-Cox likelihood function. Alternatively, when labels take on arbitrary values, they

use the Yeo-Johnson transform [62] instead of Box-Cox.To account for non-stationarity,

they use input warping in the vein of the Kumaraswamy transform as used in [50]. To-

gether those corrections provide for an improved and more flexible surrogate model, one

also relatively simple to implement as well.

To acquire a more robust objective, an essential step for early rounds of training where

data is scarce and the model can be severely misspecified, that will allow the algorithm to

avoid worst-case solutions and more skillfully differentiate between acquisition functions

and surrogate models, they consider an expected formulation by borrowing ideas from

domain randomization, as in [56] by considering an expected formulation. They then

go on to prove that by only using the predictive mean and variance it is possible to

approximate the expected objective efficiently.

The final component of HEBO is the use of a multi-objective acquisition function

to seek a Pareto-front solution. This formulation facilitates the process of "hedging"

between differing acquisitions so that no single objective function can dominate the overall

Diploma Thesis 29



Chapter 4. Experiments

solution. The method they use to solve the objective is via an evolutionary solver, due

to the discrete nature of hyperparameters in machine learning tasks that gradient-based

solvers do not easily handle.

ASHA is a hyperparameter optimization algorithm designed to take advantage of ag-

gressive early stopping and distributed training, as it scales linearly with the number of

workers, enabling it to work effectively in tasks requiring a large number of cores. It is a

very effective algorithm, as the authors demonstrated empirically that it managed to out-

perform several other state-of-the-art methods like Fabolas, PBT, BOHB and Vizier in a

number of Neural Architecture Search benchmarks, namely designing CNNs for CIFAR-10

and RNNs for the Penn Treebank.

ASHA is inspired by the Successive Halving Algorithm (SHA) which is a principled way

to conduct trials by allocating a larger fractions of resources to more promising configura-

tions. ASHA is designed to be able to evaluate orders of magnitude more hyperparameter

configurations than available parallel workers in small multiples of the wall-clock time

required to train a single model. Intuitively, ASHA promotes configurations to the next

rung whenever possible instead of waiting for a rung to complete before proceeding, and

if no promotions are possible,it simply adds a configuration to the base rung so that

more can be promoted to the upper rungs. We also present the pseudo-code for clarity

purposes, taken directly from the relevant paper in 4.1.

In our experiments, we utilize a sophisticated neural network-based function approx-

imator for our learners by [40], who built on top of the famed self-attention architecture,

which has seen great success in Natural Language Processing (NLP) settings. They essen-

tially adapted transformers, very large models that have proven their ability to effectively

process long horizons of information for all sorts of tasks in NLP, to boost performance

in partially observable RL domains. The proposed architecture, which we will be using

ourselves, is dubbed Gated Transformer-XL (GTrXL) and manages to outperform LSTMs

in the challenging multi-task DMLab-30 benchmark suite and achieve state-of-the-art

performance, all the while being easy to train and implement and more expressive than

its multi-layered LSTM competitors.

Self-attention architectures [58] are less susceptible to vanishing and exploding gradi-

ents than Recurrent Neural Networks (RNNs) as they, unlike them, avoid compressing the

past into fixed-size hidden state chunks. Much work has also validated their superiority

in a wide variety of domains like language modelling, machine translation and question

answering, making them prime candidates for use where sequential information process-

ing is central to learning, such as RL tasks. Nevertheless, LSTMs still generally remain

the mainstream models for when memory is required for RL tasks, as most traditional

transformer architectures are actually hard to implement and optimize, requiring tricks

like complex learning rate schedules or specialized weight initialization schemes even in

the supervised learning case that are not sufficient to enable transformers to solve even

simple bandit tasks and tabular MDPs.

[40] attempt to solve the stability issues by introducing a novel gating mechanism

to crucial points in the transformer’s sub modules and reordering layer normalization.

Pictorially, the final architecture, along with other transformer variants, can be illustrated

30 Diploma Thesis



Algorithm 4.1: Asynchronous Successive Halting (ASHA)

input minimum resource r, maximum resource R, reduction factor η, minimum early-

stopping rate s

1: function ASHA()
2: repeat
3: for for each free worker do
4: (θ, k) = get_job()
5: run_then_return_val_loss(θ, rηs+k)
6: end for
7: for completed job (θ, k) with loss l do
8: Update configuration θ in rung k with loss l
9: end for

10: until desired

11: end function
12: function get_job()
13: //Check if there is a promotable configuration

14: for k = [logη(R/r)] − s − 1, ...,1,0 do
15: candidates = top_k(rung k, |rung k| / η)

16: promotable = {t ∈ candidates : t not promoted}

17: if |promotable| > 0 then
18: return promotable[0], k + 1

19: end if
20: //If not, grow bottom rung

21: Draw random configuration θ
22: return θ,0
23: end for
24: end function

as follows:

Figure 4.1. Transformer Variants

Diploma Thesis 31



Chapter 4. Experiments

There are two main components of interest, namely the "Identity Map Reordering"

technique and the modified gating mechanisms that contribute to the stabilization of the

learning process, which we will briefly discuss.

The transformer variant TrXL-I using the "Identity Map Reordering" is depicted in

the center of 4.1 and works by placing the normalization on only the input stream of

the sub-modules, enabling an identity map from the input of the transformer at the

first layer to the output at the last layer, in contrast to the vanilla transformer which

incorporates a series of layer normalization operations that non-linearly transform the

state encoding. The authors speculate that this tweak works well as it allows the agent to

learn a Markovian Policy at the start of training process, by having the value and policy

heads consume the state encoding without transforms. In other words, the network

is initialied such that π(.|st , ...s1) ≈ π(.|st) and V π(st |st−1, ..., s1) ≈ V π(st |st−1) , under

the assumption that the sub-modules at initialization produce values close to zero in

expectation.

The second improvement is the replacement of the residual connections of the stan-

dard architecture with gating layers, which is illustrated in the right part of 4.1, with

red denoting the modifications proposed. The final GTrXL layer block is thus defined as

follows:

Y
(l)
= RelativeMultiHeadAttention(LayerNorm([StopGrad(M (l−1)), (E(l−1))]))

Y (l) = g(l)
MHA(E(l−1),ReLU(Y

(l)
)

E
(l)
= f (l)(LayerNorm(Y (l)))

E(l) = g(l)
MLP

(Y (l),ReLU(E
(l)

))

Where g denotes the gating function. The authors ablated a variety of gating layers,

with the Gated Recurrent Unit (GRU) [8] being the most performant of those, which is

also what we will be using in our experiments. It is described by the following equations:

r = σ(W (l)
r y + U

(l)
r x)

z = σ(W (l)
z y + U

(l)
z x − b

(l)
g

ĥ = tanh(W (l)
g y + U

(l)
g (r ⊙ x))

g(l)(x, y) = (1 − z) ⊙ x + z ⊙ ĥ

Before commencing any actual learning on our environments, it is imperative that

we establish a measure of baseline performance so that we can later compare it to our

actual algorithms and see if they are learning anything, and if they do, assess the degree

to which they do. To that end, we employ a random policy on all of our games for a total

of 250 episodes each, a number large enough to give us a fairly accurate baseline. Table

4.1 shows those baseline results.

The environments are evaluated with their default settings, that can be found in their

32 Diploma Thesis



Environment Random policy score

Entombed 6.36

Space Invaders 844.86

Simple Spread -118.52

Simple Reference -56.47

Simple Speaker-Listener -79.17

Cooperative Pong -5.32

Table 4.1. Baseline scores

respective documentation pages in PettingZoo (for instance Atari) though we have taken

some important preprocessing steps that will be analyzed per environment.

Having established our baselines, we will first look into the performances in the MPE

environments, with the use of violin plots for the entirety of the rewards observed during

the optimization runs, that essentially were runs with a much larger number of episodes

following the hyperparameter optimization ones which worked with fewer episodes for

computational efficiency reasons. To supplement our understanding, we will then peek

at the "learning curves" of our algorithms per environment, that is the mean reward of all

agents per iteration, to get an insight into how their training progressed across time.

It should also be noted that the number of episodes per environment was not held

constant, again due to computational reasons, as the visual Atari environments were

far slower to train than their lightweight MPE counterparts, thus shorter lines may be

observed in the learning curve plots, without that however affecting the results in any

meaningful way.

MPE environments in general received relatively light preprocessing. The Reference

and Spread ones did not receive any preprocessing at all, besides being wrapped ap-

propriately for use with the RLLib library. The Speaker-Listener however required some

additional preprocessing, in the form of padding both the action and observation spaces

of the heterogeneous agents to the same length, a necessary move for algorithms using

shared learning techniques to work, as already discussed at length by [55], who rigorously

proved not only that disjoint observation spaces allow for learning optimal policies but

also that the padding of heterogeneous action spaces allow for convergence to optimal

policies.

The results from the Reference environment are interesting, though mostly unsatis-

factory. We can clearly see that most algorithms’ median, as indicated by the internal box

plot within the overarching violin plots, lie below or just above the red line, indicating the

random policy baseline. Generally, the Shared and Independent policies are equally per-

formant, with the shared policies generally having slightly better median returns, though

exceptions do occur. We observe that there are rather long tails towards the negative

ends, which implies that the algorithms took quite a while to figure out the game and

start amassing positive (or less negative) rewards, or never managed to do well in the first

place.

Regarding the A2C algorithm, a very interesting contrast between the independent and

Diploma Thesis 33

https://www.pettingzoo.ml/atari


Chapter 4. Experiments

A2C A3C IMPALA PPO SAC
algorithm

200

150

100

50

0

re
w

ar
ds

baseline
independent
shared

Figure 4.2. Reference scores vs baseline

shared learners occurs: The independent ones show a much higher median score and a

more concentrated distribution around the baseline, while the shared learners have an

almost uniform distribution with very elongated tails and a median far below the baseline,

which can only mean that it effectively did not manage to learn anything useful even with

the "optimal" hyperparameters.

The situation with the Asynchronous variant of the algorithm, A3C, is much smoother

that the one observed with A2C. The distributions of the returns are very similar, and the

median returns are almost exactly the same. It is however unfortunate that the median

is very near the baseline, indicating a not very good fit, though there is a significant

concentration of returns over the baseline implying that it does not fail entirely.

IMPALA admittedly seems the best fit algorithm, with both learner variants visibly

over the baseline and the shared one being the best performing algorithm of the entire

batch. It is also noticeable that the shared learner, even though follows roughly the

same distribution, has longer tails of more negative rewards, indicating that it took a

while longer to achieve relatively good performance over its independent variant, though

ultimately doing better.

PPO shared again seems to outperform the independent one but only slightly, with

34 Diploma Thesis



both variants having a similar distribution of rewards. The median of the independent

learner hovers just below the baseline but in general both versions do not really seem

to have achieve good performance. They also have the second longest tail into negative

rewards territory, behind A2C’s particularly problematic performance.

Lastly, SAC performance is very roughly even among the variants, with the inde-

pendent slightly outperforming the shared, though to an almost negligible degree. It is

interesting to note that they seem to have the tightest distribution of all algorithms, im-

plying a sense of relative stability in their performance: Not too good but not venturing

too long into sub-baseline territory.

100

80

60

M
e
a
n
 r

e
w

a
rd

Independent

A2C
A3C
IMPALA
PPO
SAC

0 50 100 150 200 250 300 350 400
no_trial

120

100

80

60

40

M
e
a
n
 r

e
w

a
rd

Shared

A2C
A3C
IMPALA
PPO
SAC

Figure 4.3. Reference average reward over time

Our learning curves also play intuitively nice, and corroborate our findings from the

violin plots. We can generally witness the fact that none of the algorithms, of either

variant, really ever managed to understand the environment well enough to consistently

score ever-increasing rewards as the training was running and almost all of them languish

in noisy straight lines, instead of increasing curves as we would ideally expect.

Diploma Thesis 35



Chapter 4. Experiments

Of particular interest is A2C’s extreme variance, in both its learning variants, com-

pared to every single other method in this batch. It is the only one that manages to

achieve rewards of up to -100 points as independent learners and a whooping -120 with

shared learning, indicating that the latter, slightly more sophisticated MARL methodol-

ogy, completely failed in this regard. Given that its Asynchronous variant, A3C, achieved

a significantly stabler learning curve indicates that perhaps the asynchronous manner of

updating in A3C accelerated and stabilized the learning process.

IMPALA seems to be the one algorithm doing slightly better than the rest with both

its variants, though only by a short margin. In fact, we can observe a slightly upwards

trend in its shared variant and some distance from the other shared learning algorithms,

crowning it as the best such approach. The independent is also the best, though with

even less of a trend and a shorter distance from some of its competitors.

PPO, in somewhat ironic fashion, can actually be observed having a clear downwards

slope, particularly with its independent variant, which means that further training would

only serve to further compromise performance. The shared learner is more stable for

most of its training but can also clearly be seen degrading rapidly towards the end of its

training, indicating that it under-fit the environment. There is some cause to believe that

the hyperparameters were poorly configured, something that would require several more

reruns to establish more confidently, as PPO unfortunately can be quite sensitive, despite

it being designed to perform in a more robust manner.

SAC is also rather obtuse in its performance, despite receiving very extensive training,

though notably it is also characterized as the algorithm with the least amount of variance

in its training, as both learners are almost uniformly a straight line with very few ups and

downs. It is also clear that it did not see any benefit from the longer training time, and

would not have improved with more training either, failing in the same way as PPO.

The next graph 4.4 is about the Spread environment, where things in general look

better than in the previous case. We see that almost all of our algorithms achieve median

scores over the baseline, though not very far away from it. We can also observe that there

are several long tails of negative returns, and that again there is equality between shared

and independent learning variants, with shared learning only a bit superior.

A2C in this case seems much more principled, and actually presents the reverse situ-

ation from what we saw in the prior 4.2 figure: The shared variant is not only significantly

better performing, and actually among the best performing configurations of the batch,

but also it now has a much more centered distribution, with a significantly larger median

value than the independent learner, which not only scores just below the baseline but

also has by far the longest negative tail.

A3C also achieves median returns over the baseline for both learners, with the shared

learner achieving slightly higher maximums, even though it does have a longer tail of

negative values. The shared variant for this case achieved the highest median score of all

algorithms in this game, albeit only marginally over A2C and in general not far away from

the other well-performing algorithms.

IMPALA again achieves pretty good performance in both learning configurations, with

the shared variant slightly outclassed by the independent learner, albeit with the most

36 Diploma Thesis



concentrated distribution among all other trials, while the tail of the independent being

almost double the length, indicating a much larger total number of rewards having strong

negative rewards.

PPO shared again outclasses the independent variant, having a slightly higher median

performance and maximum values, with also a shorter tail of extreme negative values,

though only slightly so. SAC again has around even performance with both variants,

with independent learning very slightly sporting a higher median, though both have very

similar distributions and tails, almost identical, again indicating the stability of training

across the different paradigms.

A2C A3C IMPALA PPO SAC
algorithm

350

300

250

200

150

100

50

re
w

a
rd

s

baseline
independent
shared

Figure 4.4. Spread scores vs baseline

The learning curves concur with our prior assessment from the violin plots. We can

clearly see that no algorithms, of either variant, really achieve consistent learning as

would be indicated by an upwards curve indicating a mean of increasing mean rewards

over time. Instead, we get a very similar-looking plot as in 4.3, with all learning curves

being mostly flat lines with varying degrees of noise.

Diploma Thesis 37



Chapter 4. Experiments

A2C independent displays similar extreme variance as its counterpart in the previous

environment, achieving by far the lowest score of -180, but funnily also the highest

at -100. The shared variant interestingly seems to behave much more stably than its

independent variant, and having variability in line with the rest of the algorithms, though

not better performance.

180

160

140

120

100

M
e
a
n
 r

e
w

a
rd

Independent

A2C
A3C
IMPALA
PPO
SAC

0 50 100 150 200 250 300 350 400
no_trial

160

140

120

100

M
e
a
n
 r

e
w

a
rd

Shared

A2C
A3C
IMPALA
PPO
SAC

Figure 4.5. Spread average reward over time

A3C presents the reverse image: Its independent learner presents significant stability,

and has one of the only 2 curves that seem to have a somewhat upward trending line

with its independent variant, progressing very slowly but steadily. Its shared learner on

the other hand has the largest variance of the batch, though interestingly also achieves

the highest running score. Though quite noisy, it could be surmised that with additional

training it could improve to a degree.

IMPALA independent also has the second weakly increasing trend, again achieving

the highest score among the independent learners, with a similar but clearer trend with

the one found in the Reference environment. Meanwhile its shared variant languished

38 Diploma Thesis



somewhere among the middle point of its other competitors without achieving anything

worthwhile.

PPO has colourful performance across its training, with significant variance and a

changing trend, alternating between degrading and improving. It its independent variant

it seems to hit a long stub after a while, indicating that more training would only further

worsen it, while its shared variant seems to be slowly trending upwards, though with

quite a lot of noise.

SAC is nearly identical to the one in the previous game, with markedly little variance

and a curve with a clear lack of any trend, implying that despite its long train time it failed

to learn anything of importance.

The next graph and final MPE environment is the Speaker-Listener, which effectively

works the same way as Reference except that one agent is the ‘speaker’ and can speak but

cannot move, while the other agent is the ’listener’ that cannot speak, but must navigate

to correct landmark.

The results in this environment are quite divergent from the previous two, where

the tails were rather limited and the performances would more or less hover around the

baseline. Here however we can see that all algorithms have extremely long tails, which

we have actually chosen to truncate for visualization purposes, indicating a significant

challenge to start accruing positive rewards. Thankfully, despite those extremely skewed

distributions, we can see that some algorithms do manage to achieve rather good median

scores, with again shared and independent learning approaches being roughly equally

matched.

A2C here again does a reversal in its performance, more closely resembling the Ref-

erence game with both approaches having extremely negatively skewed distributions and

medians well below the baseline, Nevertheless, they still have a fat piece of the density

function over the baseline and reaching the highest maximal scores of the batch, possibly

meaning that while it took a long while to learn the dynamics they eventually started to

get much better, though possible requiring much additional training to move the median.

A3C again proves to be a better choice than its asynchronous variant as both learners

achieve scores comfortably over the baseline, with the shared learner slightly having a

higher median and a fatter positive distribution tail. IMPALA achieves almost identical

performance-wise, with the two approaches being prety much the same, continuing on

the trail of stability that it has established from the first game. A3C and IMPALA are also

similar in their negative curves, which they are the thinnest among the batch.

PPO is an interesting case due to the very significant differences between the shared

and independent learners: While both are objectively not particularly good with respect

to the baseline, shared learning is very far away from the line, with the lowest median

performance and its distribution itself is extremely elongated towards the negative rewards

frontier, signalling that it failed substantially at learning a policy that produced enough

’good’ rewards. Independent learning is much more concentrated over the line, implying

that it might have done a somewhat good job.

SAC continues in the trend of equality between the learners, but with unsatisfactory

median scores, both just below the random baseline. It also has rather far tails towards

Diploma Thesis 39



Chapter 4. Experiments

A2C A3C IMPALA PPO SAC
algorithm

300

250

200

150

100

50

0

50

100

re
w

a
rd

s

baseline
independent
shared

Figure 4.6. Speaker-Listener scores vs baseline

the negative end, second only to A2C’s intense asymmetry, but still has a non-trivial mass

of rewards over the baseline, indicating that it might have too used a lot more training

iterations to build up more positive performance.

We then take a look at our learning curves for a more nuanced view. We can see again

the expected correspondence with our findings from the plots up above, that again do not

show any algorithms as being particularly well-adapted to our final MPE environment,

with curves similar to what we have already witnessed; relatively straight, with varying

degrees of noise, and without the coveted increasing trend. No clear winner emerges from

the two variants, though independent learners tend to go less into extremely negative

territory.

A2C again seems to be extremely volatile in both its versions, showing that this al-

gorithm in general, at least given its specific set of tuned hyperparameters, could not

handle the cooperative behaviors it should have come up with in the MPE environments,

the result being extreme variance an overall poor performance. Interestingly, its indepen-

40 Diploma Thesis



400

300

200

100

M
e
a
n
 r

e
w

a
rd

Independent

A2C
A3C
IMPALA
PPO
SAC

0 50 100 150 200 250 300 350 400
no_trial

400

300

200

100

M
e
a
n
 r

e
w

a
rd

Shared

A2C
A3C
IMPALA
PPO
SAC

Figure 4.7. Speaker-Listener average reward over time

dent learner, following a chasm of performance directly prior, seems to have picked up a

more confidently increasing line, on par to achieving the best performance among these

learners. Its shared learner on the other hand never exhibits similar behavior, constantly

going wildly up and down without ever establishing a stable foothold.

A3C, as we saw in the violin plots, establishes itself as the best algorithm in both

variants, while also exhibiting stability and little variance during its training, except for

a probably random fluke at some point in its shared learning. This does not really mean

good performance in absolute terms however, as it very quickly plateaus at a score just

over the baseline and does not seem to be able to do much better.

IMPALA exhibits similar behavior with A3C, again plateauing almost immediately but

with a score roughly equivalent to A3C, and with very little variance. SAC is also following

in the same trend as IMPALA and like its versions in other environments, achieving a

relatively worse score with little variance in spite of its long training time.

Finally, PPO again negatively surprises with its performance, by having only the third

Diploma Thesis 41



Chapter 4. Experiments

best score as an independent learner, though with relatively little variance minus a large

drop just before it finishes its run, while its shared learner is by far the worst of the batch

by having a clear downwards slide and achieving the lowest possible score, again implying

that its sensitivity to changes has impacted its performance.

Moving on from the MPE games, we now investigate the performance on the Atari and

Butterfly environments, which we "bundle" together since they are very similar in function

and have received identical preprocessing. Essentially, they are all high-dimensional

state-space visual environments, that feed the agent with images instead of a small list of

positional information, like MPEs; Therefore, they also require a fair bit more processing

for the algorithms to more efficiently process them, following conventions already set by

research papers.

The Arcade Learning Environment (ALE), long considered instrumental in the devel-

opment of modern reinforcement learning, is not without its flaws: As thoroughly argued

by [29], ALE suffers from determinism, meaning that the underlying emulator is deter-

ministic given the agent’s actions, e.g the agent always starts at the same initial state

and given a sequence of actions always gets the same results. This determinism can be

exploited by agents who simply memorize effective sequences of actions and ignore the

perceived state altogether.

To resolve this situation, the same authors [29] proposed the use of sticky actions

to inject stochasticity into the ALE, that also help evaluate the robustness of learned

policies. They have been designed to adhere to the following criteria:

• The stochasticity should only be minimally non-Markovian with respect to the en-

vironment. This entails that the action to be executed by the emulator should be

conditioned only on the action chosen by the agent and on the previous action

execute by the emulator.

• The difficulty of the environment should not be affected, meaning that the algorithms

which do not exploit the determinism of the environment should not be additionally

hindered by the new stochasticity.

• It should be easy to implement in ALE without requiring changes to the underlying

emulator.

Sticky actions then introduce a stickiness parameter ψ that defines the probability

the environment will execute the agent’s previous action again, instead of the agent’s new

action. More formally, at time step t the agent decides to execute action α; However, the

action At the environment in fact executes is

At =

α with prob 1 − ψ

αt−1 with prob ψ

Sticky actions also synergize well with other aspects of the ALE, like frame skipping,

which we will also be doing as part of our preprocessing, as at each intermediate time

step between the skipped frames there is a probability ψ of executing the prior action.

42 Diploma Thesis



Sticky actions are also more reasonable than random delays as in the former case the

agent can make a different decision at any time by sending a new action to the emulator,

while in the latter the action taken has to be executed until the delay is passed, in effect

preventing the agent from making another call in the nick of time.

Another issue with ALE is frame flickering, meaning often not every sprite every frame

is rendered owing to hardware restrictions. For instance, sprites in some games like Joust

or Wizard of Wor are rendered every two or three frames. The standard way of handling

this issue is by computing the pixel-wise maximum of the previous n observations, the

way we also followed.

Finally, other more basic preprocessing steps undertaken involve skipping frames

for faster processing and less predictable sequences of states, resizing the observations

for faster processing and down-scaling them, turning them into gray scale and stack-

ing frames to allow the agent to see everything on the screen despite the flickering we

mentioned above.

More specifically, for all our remaining environments, namely Entombed, Space In-

vaders and Cooperative Pong, we chose to take the maximum over the last 2 frames to

deal with flickering, set ψ = 0.25 (sticky action parameter, probability of repeating the old

action in lieu of the newest one) to inject stochasticity, skip over every 4 frames for faster

processing, resizing the images to 84x84 per [35] , stacking images up to batches of 4 and

finally normalising to the range of (−1,1) for neural network training stability purposes.

Having discussed the preprocessing pipeline for our Atari games, we now turn our

attention to the Cooperative Entombed environment performances. Here we can clearly

see the seemingly peculiar structure that the violin plots follow, with most of them having 3

dense sections of returns instead of the more "traditional" KDE curve we had seen earlier.

This can be explained by the nature of this particular game, as it can be described as an

exploration-type of game with 5 stages, with agents only receiving rewards when the stage

resets (usually via agent losing a life) or after progressing to the next state, and can only

receive specified kinds of reward signals, like +4, +8 or +12 points, as can be seen by the

dense concentrations around some of these specific values. Note that the violin plots we

are studying do not give us a specific insight into how many levels the agents manage to

complete during the training.

This is also the first time that we can clearly see that the shared learning paradigm

clearly outperforms the independent learning one, with several instances of shared learn-

ing having an obvious advantage over its counterpart, which several times failed com-

pletely to obtain any meaningful rewards. This is intuitively satisfying in this case since

the purpose of the game is to collaborate in order to progress through the stages.

More specifically, we can see that the performances of the algorithms A2C and A3C

are very nearly identical. They both have median scores just below the random policy

baseline, a rather disappointing find, and have roughly equal concentrations of the dif-

ferent types of rewards at all possible stages. It is interesting to note that the shared and

independent variants are virtually indistinguishable, implying that these algorithms both

failed by design to make much progress in this environment and the learning paradigm

under which they operated probably would not have made much difference.

Diploma Thesis 43



Chapter 4. Experiments

A2C A3C IMPALA PPO SAC
algorithm

4

6

8

10

12

14

re
w

a
rd

s

baseline
independent
shared

Figure 4.8. Entombed scores vs baseline

44 Diploma Thesis



IMPALA presents another interesting image and is an algorithm which in independent

learning mode seems to largely fail, with a median score at the lowest possible level

and only scarcely receiving higher rewards, that only get rarer the higher their value,

with a small concentration around 6 and a tiny one around 8. The shared learner does

significantly better, with a median much closer to the baseline of roughly 6 points (though

still below it) and with a noticeable tail over higher values, though scant after +8.

PPO behaves very much like IMPALA, with the shared learner achieving a much higher

score than the independent learner, albeit still below the random baseline score. The in-

dependent PPO learner is almost exactly the same in behavior as its IMPALA counterpart,

with almost all the mass of the returns around the lowest possible value of return. The

shared one though interestingly cuts off sharply after the baseline, unlike the IMPALA

one, indicating a much poorer overall fit and much lower ceiling.

Admittedly, the SAC algorithm presents by far the most interesting image of the trials

in this game. Its independent learner variant is by far the poorest performer of the entire

batch, being literally a degenerate distribution stuck at exclusively receiving the lowest

possible reward, failing completely at learning anything of interest. Meanwhile, the shared

variant achieved by far the best score of the batch, with a fat distribution around +8 and

over the median.

We now will take a look at the learning curves, illustrated in 4.9. Given the whimsical

nature of the rewards encountered in Entombed, these curves can actually reveal quite a

bit more than the violin plots we saw earlier. Indeed, we can see some interesting patterns

emerging. Shared methods seem to be outperforming the independent ones on grounds

of several curves of the former lying in a higher area of rewards than the latter, in which

several asymptotically or actually reached the lowest possible reward threshold.

More specifically, A2C now appears to have much more controlled variance, in line with

that of all the other algorithms. It seems competitive against A3C in their independent

variants, achieving consistently the second highest score, though neither of the curves

show any signs of powerful learning. Its shared variant is also pretty competitive, again

claiming second place and treading close to other competitors.

A3C is an intriguing case, as while it achieves the best performance during its training

with independent learners, it achieves the worst with the shared learner, implying that

the asynchronous update mechanisms and the shared learning did not work well in this

Atari environment. It is a good question to see if this trend continues with our other 2

games, as we will shortly do.

IMPALA is another one algorithm that entirely fails to learn with the independent

paradigm, following a constant downward slide and ending up flat-lining at the end, only

achieving the lowest possible score. Its shared variant does comparably far better, but still

remains quite unimpressive compared to its competitors. This is the first environment

where we witness IMPALA perform poorly, so again it is an interesting question whether

or not this was a fluke, perhaps owing to the specific hyperparameter set used, or a more

general problem it may have with more complex, visual environments.

PPO continues its trend of disappointing performance, by not only being extremely

slow to train as independent learning goes, as evidenced by its tiny curve compared to

Diploma Thesis 45



Chapter 4. Experiments

the others, but also having very high variance as a shared learner and again achieving

extremely low scores.

SAC, as we already saw in the violin plots, gives rise to an interesting dichotomy: While

its independent variant is degenerate from the start at the lowest possible score, its shared

variant achieves the highest score of all algorithms in the shortest amount of time. This,

along with all the other algorithms that failed as independent learners, is quite satisfying

intuitively as Entombed is a highly cooperative environment, where coordination is key to

receiving rewards, something that is very hard to achieve with independent methods.

4

5

6

7

M
e
a
n
 r

e
w

a
rd

Independent

A2C
A3C
IMPALA
PPO
SAC

0 50 100 150 200 250 300 350 400
no_trial

4

5

6

7

M
e
a
n
 r

e
w

a
rd

Shared

A2C
A3C
IMPALA
PPO
SAC

Figure 4.9. Entombed average reward over time

Our second Atari environment is going to be Space Invaders, in multiplayer version.

The return density plot 4.10 has quite a few interesting things to tell us, with the match

up being shared and independent learning returning back to being quite a stalemate,

as we have cases when either one can prevail, even quite substantially, over the other.

We can also observe here another by now rather familiar artifact, that of very long tails,

although this time thankfully these tend to be towards the higher return side.

46 Diploma Thesis



A2C A3C IMPALA PPO SAC
algorithm

500

750

1000

1250

1500

1750

2000

2250

2500

re
w

a
rd

s

baseline
independent
shared

Figure 4.10. Space Invaders scores vs baseline

A2C presents relatively good performance, with median mass of returns for both

learner variants being over the baseline. The independent learner seems to achieve visibly

better performance than the shared variant, being closer to 1000 score than the shared

which seems barely over the edge at roughly 800 points. Independent also has a much

higher tail into very high score, which gets very thin over 1250 points though, indicating

that it might have benefited more from even more extensive training.

A3C achieves all-round superior performance to A2C, and in fact the independent

variant achieves by far the best median performance at roughly 1600 points. It has an

extremely thin tail of returns below the median, indicating that the algorithm was in fact

quite rapidly learning how to navigate the environment in a productive way and receiving

a very large number of high performance rewards following a period of training. With sig-

nificantly more training episodes, it potentially seems like it could solve the environment

entirely, if it were to continue on that upwards path.

Meanwhile, the shared learner, even though comfortably higher than the baseline,

Diploma Thesis 47



Chapter 4. Experiments

hovers in a much more most regime of roughly 1100 points, which does again indicate

that it could potentially benefit from more extensive training to boost its performance.

This hint is further reinforced by observing the much higher tail of the shared learner,

indicating that it was in fact finding ways to experience high returns, higher in fact that

the peak of the independent one.

In training IMPALA we again see a reversal of the performance between the two vari-

ants, where the shared learner is clearly much more superior. The independent one’s

entire mass of returns lies clearly below the baseline, with the median just short of the

baseline and with a relatively short extreme tail upwards. This implies that the indepen-

dent learner did not really converge to any useful policies and did not start receiving any

really positive returns at any point, thus a longer training run would probably not have

helped much.

This stands in somewhat contrast with what we see in the shared learner, which

achieves a pretty good median of around 1100, far away from the baseline, and does have

an almost uniform distribution of returns on its entire life. In fact, it has the highest

maximum among the batch, implying that it could too benefit to a degree from more

training or more advanced exploration techniques.

PPO with both of its variants continues its surprising trend of under-performance.

Its independent variant achieves the second worst median performance, only exceeded

by IMPALA’s equivalent, while its shared variant does not do much better with a score

only mildly over the random score baseline and a dense concentration of returns below it.

This perspective provides us with the insight that it also largely failed to work well in this

environment despite its long run time, and probably would require much more significant

investment of computational resources if it were to get up to speed.

Lastly, we have SAC and another clear winner in the face of shared learning, by

achieving the second highest score of the entire batch at a comfortable ≈ 1250 points and

way over the baseline, while its independent variant languishes barely over the baseline

at a mere ≈ 800 points median score. This also potentially means that SAC shared, given

a much more significant training budget, could also conceivably solve the game with the

given tuned hyperparameters.

As customary, we now take a look at the learning curves of our algorithms, in 4.11.

Here, unlike Entombed, and again corroborating our violin plots, we can observe more

balanced performance between the two paradigms of learning we employed, with both

having algorithms achieving pretty high scores. In fact, this is the game with the highest

scores versus the baseline, that we have experimented with so far.

We can clearly observe A2C behaving in the same manner as it did with the Entombed

environment: Its independent learner being a very competitive sport, achieving clearly

the second highest consistent stream of average rewards, whereas its shared variant

achieving the worst scores and even falling into a global minimum of scores at a point,

after which it plateaus. It is interesting to observe that its independent learner has a

significant downturn towards the end of its training, which could make the points before

candidates for early stopping.

A3C achieves the highest performance with a very clear edge over every other algo-

48 Diploma Thesis



800

1000

1200

1400

1600

M
e
a
n
 r

e
w

a
rd

Independent

A2C
A3C
IMPALA
PPO
SAC

0 50 100 150 200 250 300 350 400
no_trial

600

800

1000

1200

1400

1600

M
e
a
n
 r

e
w

a
rd

Shared
A2C
A3C
IMPALA
PPO
SAC

Figure 4.11. Space Invaders average reward over time

rithm in its independent variant, while its shared variant is only able to achieve mediocre

performance, though far from the worst. This most likely disproves our earlier assump-

tion that asynchronous updating and Atari games do not mix and match, though it does

propose that it works better with independent learners.

IMPALA significantly under performs, achieving no learning and plateauing almost

immediately in its independent configuration, while it does markedly better as a shared

learner, being the runner-up and only second to SAC. This performance, along with its

performance in Entombed, makes for a somewhat convincing case that it is IMPALA that

does not work well at all with independent learning in complex environments like Atari,

while with a more sophisticated architecture that explicitly allows for communication it

is able to perform well.

The trend of PPO disappointing with its performance continues here, even in an envi-

ronment that allowed for some pretty high scores for several other algorithms, particularly

with its independent variant which also flat-lined along with IMPALA, almost merging with

Diploma Thesis 49



Chapter 4. Experiments

it. Its shared variant does slightly better, with a somewhat increasing curve, but again

one that took a very long time to train and was thus cut short for computational budget

reasons. It is conceivable that were for this trend to continue, with a much larger budget,

it could reach a competitive score after all, though that is far from certain, as we have

already seen instances before of peaks followed by longer, permanent lows.

SAC is again an interesting case, with its independent learner being even slower

to train than PPO’s and achieving similarly disappointing performance, and its shared

learner starting at a high point, but steadily continuing to retain the highest performance.

Nonetheless, the overall trend seems to be diminishing, allowing for the scenario where it

outperformed the other algorithms in part due to chance, such as lucky initialisation.

The last game we will be looking into in the vein of shared vs independent learning is

a game unique to PettingZoo called Cooperative Pong, part of its unique set of Butterfly

environments. As mentioned earlier, those games were created with the use of PyGame

with visual Atari spaces, so in effect they function in a very similar manner to the original

ALE games.They have been designed explicitly to require a high degree of coordination

and thus are very challenging to learn without very specialized techniques.

We chose the Cooperative Pong environment for its relatively lightweight computa-

tional overhead and because it seems to require its agents to emerge with quite novel

behaviors to succeed in it. Its state space consists of images, just like Atari’s, with half

of the screen available to each agent. The last figure 4.12 however paints a different,

bleaker, picture of the performance of our algorithms compared to all other previous en-

vironments and particularly Atari ones, in which we saw several instances of promising

performances.

In this environment, there is not really much to discuss. All algorithms, regardless of

the variant of learning utilized, are below the baseline and almost equally matched in their

sub-par performances. There are slight differences in the length of the tails of the various

distributions, all of which significantly above the baseline, with A2C shared in particular

having the far shorter one, meaning that it never even accidentally managed to reach any

high rewards. We also observe that the SAC variants have some mass of returns over the

baseline, perhaps implying that they could have benefited from a significantly expanded

training regime, though that is a far from certain conclusion.

These results in general show that the emergent behaviors required to solve this par-

ticular environment were not even remotely close to being discovered by the configurations

we tried, even after extensive hyperparameter tuning of a rather larger number of param-

eters for each algorithm, clearly illustrating the very high degree of difficulty inherent in a

setting where a degree of "novelty" is crucial. This illustrates the need for more advanced

MARL algorithms to be utilized, that allow the agents to communicate more effectively

with one another or for more advanced exploration techniques to be involved.

We will now take a look at our final learning curves plot in 4.13, in case we get any

additional insights to help us diagnose this apparent generalisation failure. These plots

indeed convey a bit more information on how each algorithm fared during its training,

compared to our rather uninformative violin plots that all showed a uniform performance.

Interestingly, A2C again has a variant with extreme variance, as has been evidenced

50 Diploma Thesis



A2C A3C IMPALA PPO SAC
algorithm

0

50

100

150

200

re
w

a
rd

s

baseline
independent
shared

Figure 4.12. Cooperative Pong scores vs baseline

several times already, predominantly in MPE environments: Its independent learner has

much larger variance in its mean rewards received during training, with the only com-

parable other algorithm being IMPALA. This does however mean that it also managed to

score some pretty high scores, compared to most other competitors, though apparently

it was not robust enough to retain them and instead kept swerving up and down. Its

shared variant is indifferent, on the other hand, with small variance and about average

performance.

A3C also seems markedly indifferent, though with stronger variance on its shared

variant, where it did however manage to outperform slightly for almost the entire duration

of the training its A2C cousin. Other than that, in both instances its performance remains

stagnant, never showing any signs of receiving any better rewards than apparently only

the lowest ones possible, in spite of it running a large number of trials too.

IMPALA initially shows some promise, particularly with its independent variant, but

it quickly levels up after a brief period of high returns, comparable with those of A2C,

Diploma Thesis 51



Chapter 4. Experiments

and then stays low for the rest of its training. Its shared variant never even experiences

an initial boost, which could mean that the good initial performance of the former is

again due to lucky initial conditions rather than anything else and learning did not grow

afterwards.

PPO is again irrelevant, being both extremely slow in its execution and very mediocre

when it does actually run, although it shows a bit of promise in its shared learning

configuration, again implying that with a very large budget it could be effective, though

that buget was not available to us for this project.

Finally, SAC seems to be by far the most promising algorithm in this apparently

extremely challenging environment, an insight we also got a hint of from our violin plots.

It seems to learn the fastest in both its iterations, with its independent variant rapidly

closing the gap with A2C and quite possibly only limited by run-time to achieve the best

performance, and is already clearly the winner in its shared setting, having one of the few

clear instances we have seen so far of an upwards trending line, indicating that it was in

fact learning the environment.

52 Diploma Thesis



10

0

10

20

30

40

M
e
a
n
 r

e
w

a
rd

Independent
A2C
A3C
IMPALA
PPO
SAC

0 50 100 150 200 250 300 350 400
no_trial

10

5

0

5

10

M
e
a
n
 r

e
w

a
rd

Shared
A2C
A3C
IMPALA
PPO
SAC

Figure 4.13. Cooperative Pong scores average reward over time

Diploma Thesis 53





Chapter 5

Conclusion

In this work we took a tour around the field of Multi-Agent Deep Reinforcement Learn-

ing and the main challenges inevitably arising in real situations, making MADRL espe-

cially challenging. We then looked into algorithms and methodologies proposed to mitigate

some of the issues in multi-agent settings and recapped the formulation of Markov games

upon which most of these algorithms are built on. We then chose several cutting edge

algorithms to run several experiments with on a variety of challenging environments us-

ing both Independent and Shared architectures, as despite their simplicity in concept

and theoretical weaknesses do in fact often achieve state-of-the-art performance in both

benchmark studies as well as application-wise, and compared their performances after

running them through extensive hyperparameter tuning processes, to varying degrees of

success.

We discovered that generally our relatively simple architectures could do a good job

dealing with even complex environments, like Space Invaders, and that often both ap-

proaches were viable with some configurations. Still, we encountered several instances,

most notably the Cooperative Pong environment, where both approaches were incapable

of making any significant process, highlighting the need for more advanced, dedicated ar-

chitectures that were designed explicitly for encouraging agent-to-agent interaction, like

QMIX, to solve them.

There are several future research directions that are, or could be, extremely promising

for MARL. One potentially excellent idea would be to imbue these algorithms with causal

inference abilities, that would enable them to more skillfully understand their environ-

ment by building causal models instead of purely associative ones. While the intersection

of Machine learning and Causal inference is still a nascent and under-explored field,

there has been growing interest in this area, even by deep learning champions, as in [46].

Building causal models will also significantly aid in the generalisation abilities of these

algorithms, often a very significant problem in RL research.

Another interesting approach taken from single agent settings would be to adopt

procedural generation for environments as in ProgGen, that would more effectively test

the generalisation abilities of the algorithms. This is especially important in RL where the

more traditional train-test splits and cross-validation schemes are not applicable, and it

can be hard to evaluate an algorithm in truly unseen situations.

Furthermore, a common problem of many modern MARL algorithms is their difficulty

Diploma Thesis 55

https://github.com/openai/procgen


Chapter 5. Conclusion

in effectively dealing with incomplete and uncertain observations, partly because of is-

sues with their scalability. Incorporating domain knowledge to agents can greatly aid in

their developing effective solutions in realistic tasks, for example via informative reward

functions which also reward promising behaviors and not just achievements, imitation

or curriculum learning and hierarchical approaches, that as mentioned earlier, can effec-

tively be formulated as a kind of multi-agent learning.

Another necessary component of work required for more effective MARL is the devel-

opment of rigorous formulations for dynamic tasks with dynamic, adaptive agents, that

provides for more formal guarantees about performance and stability. Generally, a good

MARL objective should worry about both convergence and about effective coordination

between agents.

Lastly, the application of game-theoretic approaches to consider the dynamics of the

environment, besides only that of agents, could also provide important insight in the

analysis of the learning process in its entirety, and allow for easier incorporation of prior

knowledge for imperfect observations.

56 Diploma Thesis



A

Appendix

In the appendix, we will detail the optimal values found per algorithm and per game,

following the intensive hyperparameter tuning process undertaken with the help of RL-

Lib’s HEBO algorithm. We will also briefly discuss what a few of these hyperparameters

do since there are several parameters unique to each algorithm, and it may not always

be clear what their functionality is. It should be noted that only a small subset of the

available options were searched for computational efficiency reasons, as searching a very

large number of hyperparameters would require many more iterations to converge to local

optima.

Param/Env Ref Spread S-L Entombed Space.Inv Coop.Pong

N1 0.001 0.0044 0.0012 0.0025 0.0049 0.0043

N2 0.0996 0.0996 0.2747 0.0996 0.0996 0.1872

N3 25 75 25 50 25 100

N4 512 512 128 256 512 256

N5 T F F F F F

N6 0.0099 0.0107 0.0225 0.0104 0.0116 0.004

N7 0.0232 0.0003 0.0225 0.0171 0.003 0.011

Table A.1. Hyperparameter optimal values - SAC Independent

Param/Env Ref Spread S-L Entombed Space.Inv Coop.Pong

N1 0.0008 0.0042 0.0026 0.0012 0.0037 0.0007

N2 0.0996 0.0996 0.0996 0.2747 0.6249 0.0996

N3 75 10 100 25 75 10

N4 64 512 128 128 256 256

N5 T F F F T F

N6 0.0173 0.0077 0.0243 0.0225 0.0077 0.0104

N7 0.0260 0.0042 0.0258 0.0225 0.0077 0.0050

Table A.2. Hyperparameter optimal values - SAC Shared

Where, in A.3

• "Gamma" is the discount factor of the MDP.

• "Target networks update frequency" is at how many steps we update the target

network.

Diploma Thesis 57



A. Appendix

Parameter Explanation

N1 Learning Rate

N2 Gamma (discount rate)

N3 Target networks update frequency

N4 Batch Size

N5 Use prioritized replay? (T/F)

N6 Actor leaning rate

N7 Critic learning rate

Table A.3. Hyperparameters - SAC

• "Use prioritized replay?" is a Boolean value indicating whether or not to use priori-

tized experience replay buffer.

Param/Env Ref Spread S-L Entombed Space.Inv Coop.Pong

N1 0.0071 0.0068 0.0042 0.0083 0.0061 0.0075

N2 0.7634 0.0996 0.0996 0.5405 0.0996 0.6249

N3 10 21 18 12 6 10

N4 0.9067 0.9848 0.9719 0.9014 0.9227 0.9249

N5 0.9319 0.5257 0.5288 0.7247 0.7483 0.8249

N6 0.3132 0.4392 0.5480 0.9076 0.4522 0.8249

N7 0.0097 0.0088 0.0016 0.0011 0.0005 0.0025

Table A.4. Hyperparameter optimal values - PPO Independent

Param/Env Ref Spread S-L Entombed Space.Inv Coop.Pong

N1 0.0020 0.0025 0.0074 0.0061 0.0006 0.0024

N2 0.0996 0.2747 0.0996 0.6084 0.0996 0.0996

N3 29 22 9 4 20 11

N4 0.9727 0.9750 0.9721 0.9772 0.9367 0.9375

N5 0.9866 0.4750 0.7479 0.9938 0.3996 0.4225

N6 0.4549 0.4750 0.8714 0.4082 0.9779 0.5061

N7 0.0059 0.0075 0.0004 0.0064 0.0013 0.0043

Table A.5. Hyperparameter optimal values - PPO Shared

Parameter Explanation

N1 Learning Rate

N2 Gamma (discount rate)

N3 SGD Iterations

N4 Lambda (GAE parameter)

N5 KL-Coefficient

N6 KL-Target

N7 Entropy Coefficient

Table A.6. Hyperparameters - PPO

58 Diploma Thesis



Where, in A.6

• "Lambda" is the GAE parameter, that together with "Gamma" control the Bias-

Variance trade off of the trajectories and can be viewed as a form of reward shaping.

• "Entropy Coefficient" is the coefficient of the entropy regularizer, which is multiplied

by the maximum possible entropy and added to the loss, helping prevent prema-

ture convergence of one action probability dominating the policy and preventing

exploration.

• "KL-Coefficient" is the initial coefficient for KL-Divergence.

• "KL-Target" is the target value for KL-Divergence. The last two parameters are

useful for the KL-Penalty implementation that prevents the policy from updating

too abruptly and leading to an unrecoverable performance collapse.

Param/Env Ref Spread S-L Entombed Space.Inv Coop.Pong

N1 0.0027 0.0021 0.0024 0.0080 0.0003 0.0071

N2 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996

N3 0.999 0.9046 0.9818 0.9733 0.9192 0.9818

N4 0.8278 0.7952 0.8115 0.3586 0.9164 0.8442

N5 0.0035 0.0195 0.0089 0.0995 0.0025 0.0708

Table A.7. Hyperparameter optimal values - A2C Independent

Param/Env Ref Spread S-L Entombed Space.Inv Coop.Pong

N1 0.0083 0.0009 0.0080 0.0066 0.0050 0.0050

N2 0.0996 0.0996 0.0996 0.0996 0.0996 0.4498

N3 0.9275 0.9768 0.9304 0.9822 0.9561 0.9499

N4 0.9148 0.9853 0.4750 0.3582 0.3197 0.6499

N5 0.0192 0.0578 0.0744 0.0204 0.0099 0.0500

Table A.8. Hyperparameter optimal values - A2C Shared

Parameter Explanation

N1 Learning Rate

N2 Gamma

N3 Lambda

N4 Value function Loss coeff

N5 Entropy Coefficient

Table A.9. Hyperparameters - A2C

Where, in A.15

• "Replay proportion fraction" is the fraction of the samples that will be replayed with

respect to the new data samples.

• "Replay buffer slots" is the number of sample batches to store for replay.

Diploma Thesis 59



A. Appendix

Param/Env Ref Spread S-L Entombed Space.Inv Coop.Pong

N1 1.2E−5
1E−5

6.6E−5
0.0010 0.0085 0.0050

N2 0.0996 0.8000 0.0996 0.0996 0.1896 0.0996

N3 0.9049 0.8999 0.9080 0.9011 0.9203 0.9509

N4 0.6131 0.3000 0.8349 0.3029 0.3855 0.6499

N5 0.0514 0.0001 0.0723 0.0963 0.0256 0.0487

Table A.10. Hyperparameter optimal values - A3C Independent

Param/Env Ref Spread S-L Entombed Space.Inv Coop.Pong

N1 0.0006 8.31E−5
0.0002 0.0004 2.48E−5

0.0037

N2 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996

N3 0.9664 0.9121 0.900 0.9045 0.9303 0.9003

N4 0.3000 0.6500 0.9644 0.3222 0.3397 0.9970

N5 0.0732 0.0002 0.0001 0.0198 0.0040 0.0948

Table A.11. Hyperparameter optimal values - A3C Shared

Parameter Explanation

N1 Learning Rate

N2 Gamma

N3 Lambda

N4 Value function Loss coeff

N5 Entropy Coefficient

Table A.12. Hyperparameters - A3C

Param/Env Ref Spread S-L Entombed Space.Inv Coop.Pong

N1 0.0003 0.0001 0.0003 1
−6

0.0003 0.0004

N2 0.5373 0.0996 0.5373 0.8000 0.0996 0.0996

N3 0.5500 0.6611 0.5500 0.3000 0.33886 0.3516

N4 0.0876 0.0305 0.8762 0.001 0.0015 0.0262

N5 0.1125 0.0287 0.1125 0 0.2700 0.0045

N6 1 1 1 1 4 3

Table A.13. Hyperparameter optimal values - IMPALA Independent

Param/Env Ref Spread S-L Entombed Space.Inv Coop.Pong

N1 0.0007 0.0001 0.0003 7.33
−6

0.0007 0.0010

N2 0.6249 0.0996 0.0996 0.0996 0.6249 0.0996

N3 0.4000 0.6268 0.5231 0.6625 0.4000 0.4736

N4 0.0257 0.0925 0.0468 0.0831 0.0257 0.0126

N5 0.2250 0.2946 0.0634 0.0016 0.2250 0.0177

N6 3 3 4 4 3 3

Table A.14. Hyperparameter optimal values - IMPALA Shared

60 Diploma Thesis



Parameter (SAC) Explanation

N1 Learning Rate

N2 Gamma (discount rate)

N3 Value function Loss coeff

N4 Entropy coeff

N5 Replay proportion fraction

N6 Replay buffer slots

Table A.15. Hyperparameters - IMPALA

Diploma Thesis 61





Bibliography

[1] Abadi, M., Isard, M., and Murray, D. G. A computational model for tensorflow:

An introduction. In Proceedings of the 1st ACM SIGPLAN International Workshop on

Machine Learning and Programming Languages (New York, NY, USA, 2017), MAPL

2017, Association for Computing Machinery, p. 1–7.

[2] Architectures, A.-l., Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V.,

Ward, T., and Jun, L. G. IMPALA: Scalable Distributed Deep-RL with Importance

Weighted Actor-Learner Architectures.

[3] Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The arcade learning envi-

ronment: An evaluation platform for general agents. Journal of Artificial Intelligence

Research 47 (jun 2013), 253–279.

[4] Box, G. E. P., and Cox, D. R. An analysis of transformations. Journal of the Royal

Statistical Society. Series B (Methodological (1964), 211–252.

[5] Brittain, M., and Wei, P. Autonomous Air Traffic Controller: A Deep Multi-Agent

Reinforcement Learning Approach.

[6] Buşoniu, L., Babuška, R., and De Schutter, B. A comprehensive survey of multiagent

reinforcement learning. IEEE Transactions on Systems, Man and Cybernetics Part C:

Applications and Reviews 38, 2 (2008), 156–172.

[7] Canese, L., Cardarilli, G. C., Di Nunzio, L., Fazzolari, R., Giardino, D., Re, M., and

Spanò, S. Multi-agent reinforcement learning: A review of challenges and applica-

tions, 2021.

[8] Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. On the properties of

neural machine translation: Encoder-decoder approaches, 2014.

[9] Christodoulou, P. Soft Actor-Critic for Discrete Action Settings. 1–7.

[10] Claus, C., and Boutilier, C. The Dynamics of Reinforcement Learning in Cooperative

Multiagent Systems.

[11] Cohen, A., Teng, E., Berges, V.-P., Dong, R.-P., Henry, H., Mattar, M., Zook, A., and

Ganguly, S. On the Use and Misuse of Absorbing States in Multi-agent Reinforcement

Learning.

[12] Cowen-rivers, A. I., Wang, Z., and Maravel, A. M. An Empirical Study of Assump-

tions in Bayesian Optimisation. 1–15.

Diploma Thesis 63



BIBLIOGRAPHY

[13] Dayan, P. Feudal Reinforcement Learning. 271–278.

[14] Fernández, F., and Parker, L. E. Learning in large cooperative multi-robot domains.

International Journal of Robotics Research 16, 4 (1997), 217–226.

[15] Foerster, J., Nardell, N., Farquhar, G., Afouras, T., Torr, P. H., Kohli, P., and

Whiteson, S. Stabilising experience replay for deep multi-agent reinforcement learn-

ing. 34th International Conference on Machine Learning, ICML 2017 3 (2017), 1879–

1888.

[16] Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N., and Whiteson, S. Counter-

factual multi-agent policy gradients. 32nd AAAI Conference on Artificial Intelligence,

AAAI 2018 (2018), 2974–2982.

[17] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-critic: Off-policy maxi-

mum entropy deep reinforcement learning with a stochastic actor. 35th International

Conference on Machine Learning, ICML 2018 5 (2018), 2976–2989.

[18] Hsu, C. C.-y., and Mendler-dünner, C. Revisiting Design Choices in Proximal Policy

Optimization.

[19] Hu, J., and Wellman, M. P. Nash Q-Learning for General-Sum Stochastic Games.

1039–1069.

[20] Iqbal, S., and Sha, F. Actor-attention-critic for multi-agent reinforcement learning.

36th International Conference on Machine Learning, ICML 2019 2019-June (2019),

5261–5270.

[21] Ishiwaka, Y., Sato, T., and Kakazu, Y. An approach to the pursuit problem on a

heterogeneous multiagent system using reinforcement learning. 245–256.

[22] Kok, J. R. Utile Coordination : Learning interdependencies among cooperative agents

1.

[23] Leibo, J. Z., and Lanctot, M. Multi-agent Reinforcement Learning in Sequential

Social Dilemmas.

[24] Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Hardt, M., Recht, B., and Tal-

walkar, A. A System for Massively Parallel Hyperparameter Tuning.

[25] Liang, E., Liaw, R., Moritz, P., Nishihara, R., Fox, R., Goldberg, K., Gonzalez,

J. E., Jordan, M. I., and Stoica, I. RLlib: Abstractions for distributed reinforcement

learning. In 35th International Conference on Machine Learning, ICML 2018 (2018),

vol. 7, pp. 4768–4780.

[26] Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E., and Stoica, I. Tune: A

Research Platform for Distributed Model Selection and Training.

[27] Littman, M. L. Markov games as a framework for multi-agent reinforcement learning.

Machine Learning Proceedings 1994 (1994), 157–163.

64 Diploma Thesis



BIBLIOGRAPHY

[28] Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., and Mordatch, I. Multi-agent

actor-critic for mixed cooperative-competitive environments. Advances in Neural In-

formation Processing Systems 2017-Decem (2017), 6380–6391.

[29] Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M. J., and

Bowling, M. H. Revisiting the arcade learning environment: Evaluation protocols

and open problems for general agents. ArXiv abs/1709.06009 (2018).

[30] Mataric, M. J. Reward functions for accelerated learning. In Machine Learning Pro-

ceedings 1994, W. W. Cohen and H. Hirsh, Eds. Morgan Kaufmann, San Francisco

(CA), 1994, pp. 181–189.

[31] Matignon, L., Laurent, G. J., Fort-piat, N. L., Matignon, L., Laurent, G. J., Le,

N., Independent, F.-p., Matignon, L., Laurent, G. J., and Fort-piat, N. L. E. Inde-

pendent reinforcement learners in cooperative Markov games : a survey regarding

coordination problems . To cite this version : HAL Id : hal-00720669 Independent re-

inforcement learners in cooperative Markov games : a survey regarding coordination

prob- lems.

[32] Mesnard, T., Weber, T., Viola, F., Thakoor, S., Saade, A., Harutyunyan, A., Dabney,

W., Stepleton, T., Heess, N., Guez, A., Moulines, É., Hutter, M., Buesing, L., and

Munos, R. Counterfactual Credit Assignment in Model-Free Reinforcement Learning.

[33] Minsky, M. Steps toward artificial intelligence. Proceedings of the IRE 49, 1 (1961),

8–30.

[34] Mnih, V., Badia, A. P., Mirza, L., Graves, A., Harley, T., Lillicrap, T. P., Silver, D.,

and Kavukcuoglu, K. Asynchronous methods for deep reinforcement learning. 33rd

International Conference on Machine Learning, ICML 2016 4 (2016), 2850–2869.

[35] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,

C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and

Hassabis, D. Human-level control through deep reinforcement learning. Nature 518,

7540 (2015), 529–533.

[36] Monahan, G. E. State of the Art — A Survey of Partially Observable Markov Decision

Processes : Theory , Models , and Algorithms.

[37] Mordatch, I., and Abbeel, P. Emergence of grounded compositional language in

multi-agent populations. arXiv preprint arXiv:1703.04908 (2017).

[38] Oliehoek, F. A., and Amato, C. A Concise Introduction to Decentralized POMDPs.

2015.

[39] Panait, L., and Luke, S. Cooperative Multi-Agent Learning: The State of the Art.

1–39.

Diploma Thesis 65



BIBLIOGRAPHY

[40] Parisotto, E., Song, H. F., Rae, J. W., Pascanu, R., Gulcehre, C., Jayakumar, S. M.,

Jaderberg, M., Kaufman, R. L., Clark, A., Noury, S., Botvinick, M. M., Heess, N., and

Hadsell, R. Stabilizing transformers for reinforcement learning. 37th International

Conference on Machine Learning, ICML 2020 PartF168147-10 (2020), 7443–7454.

[41] Pham, H. X., La, H. M., Feil-seifer, D., and Nefian, A. Cooperative and Distributed

Reinforcement Learning of Drones for Field Coverage.

[42] Prasad, A. Multi-agent Deep Reinforcement Learning for Zero Energy Communities.

[43] Qie, H. A. N., Shi, D., Shen, T., Xu, X., Li, Y., and Wang, L. Joint Optimization of

Multi-UAV Target Assignment and Path Planning Based on Multi-Agent Reinforce-

ment Learning. IEEE Access 7 (2019), 146264–146272.

[44] Rashid, T., Samvelyan, M., and Schroeder, C. QMIX: Monotonic Value Function

Factorisation for Deep Multi-Agent Reinforcement Learning.

[45] Roesch, M., Linder, C., Zimmermann, R., Rudolf, A., Hohmann, A., and Reinhart, G.

Smart grid for industry using multi-agent reinforcement learning. Applied Sciences

(Switzerland) 10, 19 (2020), 1–20.

[46] Scholkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., and

Bengio, Y. Toward Causal Representation Learning. Proceedings of the IEEE 109, 5

(2021), 612–634.

[47] Schulman, J., Levine, S., Moritz, P., Jordan, M., and Abbeel, P. Trust region pol-

icy optimization. 32nd International Conference on Machine Learning, ICML 2015 3

(2015), 1889–1897.

[48] Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and Abbeel, P. High-dimensional

continuous control using generalized advantage estimation. In 4th International

Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings

(2016), pp. 1–14.

[49] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal Policy

Optimization Algorithms. 1–12.

[50] Snoek, B. J., Larochelle, H., and Adams, R. P. PRACTICAL BAYESIAN OPTIMIZATION

OF MACHINE LEARNING. 1–12.

[51] Stanley, H. E. Introduction to phase transitions and critical phenomena. American

Journal of Physics 40 (1971), 927–928.

[52] Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jaderberg,

M., Lanctot, M., Sonnerat, N., Leibo, J. Z., Tuyls, K., and Graepel, T. Value-

decomposition networks for cooperative multi-agent learning based on team reward.

In Proceedings of the International Joint Conference on Autonomous Agents and Mul-

tiagent Systems, AAMAS (2018), vol. 3, pp. 2085–2087.

66 Diploma Thesis



BIBLIOGRAPHY

[53] Terry, J. K., and Black, B. Multiplayer support for the arcade learning environment.

arXiv preprint arXiv:2009.09341 (2020).

[54] Terry, J. K., Black, B., Grammel, N., Jayakumar, M., Hari, A., Sullivan, R., Santos,

L., Perez, R., Horsch, C., Dieffendahl, C., Williams, N. L., Lokesh, Y., and Ravi, P.

PettingZoo: Gym for Multi-Agent Reinforcement Learning.

[55] Terry, J. K., Grammel, N., Son, S., and Black, B. Parameter Sharing For Heteroge-

neous Agents in Multi-Agent Reinforcement Learning.

[56] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. Domain ran-

domization for transferring deep neural networks from simulation to the real world.

IEEE International Conference on Intelligent Robots and Systems 2017-September

(2017), 23–30.

[57] Touzet, C. F. Robot Awareness in Cooperative Mobile Robot Learning. 87–97.

[58] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

Ł., and Polosukhin, I. Attention is all you need. In Advances in Neural Information

Processing Systems (2017), vol. 2017-Decem, pp. 5999–6009.

[59] Weng, L. Policy gradient algorithms. lilianweng.github.io (2018).

[60] Wu, Y., Mansimov, E., Liao, S., Grosse, R., and Ba, J. Scalable trust-region method

for deep reinforcement learning using Kronecker-factored approximation. In Ad-

vances in Neural Information Processing Systems (2017), vol. 2017-Decem, pp. 5280–

5289.

[61] Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., and Wang, J. Mean field multi-agent

reinforcement learning. 35th International Conference on Machine Learning, ICML

2018 12 (2018), 8869–8886.

[62] Yeo, I.-K., and Johnson, R. A new family of power transformations to improve nor-

mality or symmetry. Biometrika 87 (12 2000).

[63] Yu, C., Velu, A., Vinitsky, E., Wang, Y., Bayen, A., and Wu, Y. The Surprising

Effectiveness of PPO in Cooperative, Multi-Agent Games.

Diploma Thesis 67





List of Abbreviations

MARL Multi-Agent Reinforcement Learning

MADRL Multi-Agent Deep Reinforcement Learning

MADDPG Multi-Agent Deep Deterministic Policy Gradients

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

SAC Soft Actor-Critic

IMPALA Importance Weighted Actor-Learner Architecture

PPO Proximal Policy Optimization

COMA Counterfactual Multi-Agent

VDN Value-Decomposition Networks

MAPPO Multi-Agent Proximal Policy Optimization

ACKTR Actor Critic using Kronecker-Factored Trust Region

MA-POCA Multi-Agent Posthumous Credit Assignment

CTDE Centralized Training and Decentralized Execution

VD Value Decomposition

MPE Multi Particle Environment

GAE Generalized Advantage Estimation

MDP Markov Decision Process

POMDP Partially Observable Markov Decision Process

Dec-POMDP Decentralized Partially Observable Markov Decision Process

POSG Partially Observable Stochastic Game

SGD Stochastic Gradient Descent

LSTM Long Short-Term Memory

RNN Recurrent Neural Network

EFG Extensive Form Games

ALE Arcade Learning Environment

Diploma Thesis 69


	Abstract
	Introduction
	Related Work
	Background
	Experiments
	Conclusion
	Appendix
	Bibliography
	List of Abbreviations

