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Abstract—In this paper, we propose a consensus protocol by
considering the ledger as Directed Acyclic Graph (DAG) called
blockDAG instead of chain of blocks. We propose a two-step
strategy for making the system robust to double-spend attacks.
The first step is the graph clustering algorithm based on spectral
graph theory for separating the blocks created by the non-
cooperating miners (attacker) in the blockchain network followed
by the second step-the ordering algorithm based on the topo-
logical ordering of the blockDAG using the references included
in block header. The first step is an unsupervised learning
classification of the vertices of a graph into two classes. The
simulation results show that the proposed clustering Algorithm
based consensus protocol counter-attack the attacker’s double-
spending strategy by eliminating the attacker blocks created
during attacking phase from the confirmed list of the blocks. In
bitcoin’s longest chain rule protocol, the ledger takes the chain of
blocks and it operates with the overestimation of the network’s
end-to-end propagation delay which results in a low transaction
throughput. Bitcoin protocol guarantees the security through
longest chain rule but it suffers from the limited transaction
scalability. The proposed consensus protocol works better for
higher block creation rates in turn improves the transaction
throughput without compromising the security of the blocks from
double-spending attack.

Keywords-Directed Acyclic Graph, blockDAG, Unsupervised
Learning, Graph Clustering, Transaction Throughput

I. INTRODUCTION

The bitcoin protocol in [1] consists of chain of blocks in

which each block header includes a reference to the previous

block in the form of block hash. While creating a new block,

this protocol restricts the miner to refer the tip of the longest

chain in the network to maintain consensus among all the

nodes in the network. This protocol also involves the Proof-

of-work (PoW) puzzle for creating a new block by the miners.

To make the blockchain system robust to double-spend attacks,

this PoW puzzle was made computationally hard by assigning

a block creation interval of 10 minutes by setting a very

difficult target value for solving PoW puzzle.

As per the measurement study conducted in [2], 10 minutes

block interval was very high compared to network’s end-to-

end propagation delay. Because of this overestimation of the

network’s propagation delay, bitcoin’s transaction throughput

This research was funded by 5G Research and Building Next Generation
Solutions for Indian Market Project, Department of Information Technology
(DIT), Government of India.

i.e. the number of transactions processed per second (TPS)

was highly restricted.

Due to the trade-off between the block-creation interval and

security against double-spend attacks accelerating the block

creation rate causes propagation of more number of blocks

in the network which causes some honest nodes do not have

all the blocks created in the network and does not extend the

longest chain. On the other hand, the miner who doesn’t follow

the bitcoin protocol will increase his chain and gain from the

double-spend attack with high probability [3].

In this paper, we propose a consensus protocol for

blockDAG structure of the ledger instead of chain of blocks.

Each miner, while creating a new block will include reference

to all it’s predecessor blocks which are not referenced previ-

ously results in a DAG structure similar to blockDAG structure

in SPECTURE [4] and PHANTOM [5]. The protocol consists

of two steps. In the first step, each client (node) applies Graph

clustering algorithm [6] for two clusters for seperating the

blocks with less inter-connectivity with other blocks in the

DAG. The blocks created by the attacker (miners who doesn’t

follow the protocol) do not have the well-connected blocks

and the client can easily identify those blocks by applying

the Graph clustering algorithms in [6]. In the second step,

the ordering algorithm exclude the attacker blocks which

include the double-spend transactions and order the honest

blocks such that making the system robust to double-spend

attacks. Our model ensures high transaction throughput as the

block creation rate can be increased without compromising the

security against double-spend attacks.

The simulation results show that, the attacker’s double-

spend strategy was counter-attack by the unsupervised learning

based clustering and also show that throughput has increased

drastically to thousands of transactions per second due to

blockDAG structure of the ledger without compromising the

fairness of the distributed system.

The rest of the paper is organized as follows. Section II

describes the related work. Section III gives the system model

and notations used in the protocol. Section IV describes the

preliminaries related to graph clustering algorithm. Section V

discuss the block partitioning algorithm followed by ordering

algorithm. In section VI, we present the simulation results and

discussion. In section VII, we conclude the paper and gave

future directions of research.
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II. RELATED WORK

A GHOST(Greedy Heaviest-Observed Sub-tree) protocol, a

variant of GHOST was used in Ethereum blockchain [7], was

proposed in [8], where, instead of longest chain consensus

rule, the path of heaviest subtree is chosen. However, the TPS

for this protocol is still quite less [9] and susceptible to attacks

as described in [10].

A mathematical model for optimal TPS in terms of block

creation rate is shown in [11]. While the TPS is 100× more

than in bitcoin and Ethereum, However, the TPS is constrained

by end-to-end propagation delay.

A SPECTRE protocol is proposed in [4] which builds with

the concept of the blockDAG structure of the ledger. This

protocol describes the ordering of the blocks in the DAG based

on the pair-wise voting procedure, where, it doesn’t give the

complete ordering of the blocks due to the Condorcet paradox

[12]. While the TPS is much higher compared to [1] and [8],

SPECTRE is not suitable for smart contract applications.

A PHANTOM protocol is proposed in [5] based on similar

lines of SPECTRE , where , instead of pairwise ordering in

SPECTRE, maximum k-cluster subDAG algorithm followed

by ordering algorithm were proposed in PHANTOM. While,

PHANTOM gives high transaction throughput and total or-

dering of the blocks, there is a trade-off between parameter k

and confirmation times and also susceptible to liveness attack

described in [13].

III. MODEL AND NOTATIONS

In this work, we stick to the Bitcoin’s model [1] in every

aspect - transactions, blocks, PoW, information propagation in

the P2P network [2]. The only difference is structure of the

ledger. Where, instead of reference to a single block in bitcoin,

newly created block references to more than one block in it’s

header and generates the DAG structure of the ledger.

We refer to the model specified in [4] and [5], where the

parameters used in our framework are given in Table I and

also we used the same DAG topology and mining protocol

described in [4] and [5], where, the miners are instructed as

follows

• Blocks created/recieved by the miners/nodes should be

broadcast to all its neighbouring peers.

• while creating a new block, the miner should include

references to all the leaf-blocks/tips (observed in it’s local

copy of the DAG) in it’s block header.

IV. PRELIMINARIES

The following definitions of spectral graph theory are used

in our work.

Let G = (C,E) be a directed graph with vertex set C and

edge set E. We assumed that graph is unweighted.

Definition 1. (Adjacency matrix). The adjacency matrix Ad

of a directed graph G is an | C | × | C | matrix such that

(Ad)ij =

{
1, if (i, j) εE

0, otherwise
(1)

TABLE I: Parameters used in UL-blockDAG protocol

Symbols Description

G Block DAG

GU Undirected version of G

C Set of the blocks in block DAG

E References to blocks in block DAG

C1 Blocks created by honest nodes (C1 ⊆ C)
C2 Blocks created by attacker (malicious) nodes (C2 ⊂ C)
Ad Adjacency matrix of block DAG

A Symmetrized Adjacency matrix for GU

D Degree matrix

di ith diagonal entry in D

L Laplacian matrix

x Cluster indicator vector for C1 and C2

λi ith eigen value of L

λ Block creation rate

D End-to-end delay in the network

b Block size in MB

c Client/Node in the network

Gc
t Locally bserved blockDAG at client c at time t

n Number of nodes in the network

q Fraction of the attacker’s hashrate

np NUmber of peers to each node

Tp Propagation delay

R Upload bandwidth

Tp Prpogation delay beteen peers

k Number of confirmations

Definition 2. (Symmetrization). The symmetric adjacency

matrix A from Ad without changing the number of edges [14]

is obtained as follows

A = Ad +A
T

d (2)

A represents the adjacency matrix of undirected graph (GU )

for the original directed graph G.

Definition 3. (Degree Matrix). The degree matrix D of the

graph (GU ) is obtained from A as follows

D = diag{d1, d2, . . . , d|C|} (3)

Where

di =

|C|∑
j=1

Aij (4)

Definition 4. (Laplacian Matrix). The graph Laplacian matrix

L is defined as

L = D−A (5)

Th important properties of L are defined in [6].

Definition 5. Rayleigh Ratio. The main tool in the opti-

mizaion problem for graph clustering is Rayleigh ratio [15]

defined as

R(L) =
x
T
Lx

xTx
(6)

and

λmin < R(L) < λmax (7)

Where

• xεR|C| is an orthonormal eigen vector of L also used as

cluster indicator vector in graph clustering problem.

• λmin and λmax are minimum and maximum eigen values

of L.
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Fig. 1: An example of a blockDAG attacker model. Block

15 created by an attacker has a conflicting transaction with a

transaction in block 3 shown by rounded text.The blocks from

0− 14 are generated by honest miners and an attacker keeps

the blocks from 15 − 17 in secret untill 3 attained sufficient

confirmations (In this case 3 confirmations) and broadcast all

the blocks created by the attacker. Observe that, there are no

references to attacker blocks 15− 17 from the blocks created

by honest blocks which indicates blocks 15−17 are in secret,

but both the honest block (14) and attacker block (19) has a

reference to block 18 which indicates the attacker broadcasted

the blocks after creation of block 18.

V. UL-BLOCKDAG CONSENSUS PROTOCOL

In this section, we discuss the operation of the consensus

protocol. The protocol consists of the following two steps-

• Seperating the blocks (with less inter-connectivity) cre-

ated by an attacker from the well-connected blocks in

the blockDAG using the spectral graph theory based

Unsupervised Learning algorithm.

• Topological ordering of the blocks based on the directed

edges in DAG structure.

A. Spectral graph clustering for DAG

The graph clustering is defined in two ways by maximizing

the intra-cluster edge connections and minimizing the inter-

cluster edge connections. The optimization problem for graph

clustring based on spectral graph theory [16] is

min
x∈R|C|

x
T
Lx

xTx
(8)

s.t x
T
1 = 0 (9)

x
T
x = 1 (10)

By the Rayleigh-Ritz theorem [15], the solution for the above

optimization problem is the eigen vector (x) corresponding to

the second smallest eigen value (λ2) of L. Finally, labelling

the positive and negative components of x to corresponding

vertices gives two clusters C1 and C2 of graph G . This entire

graph clustering procedure is shown in Algorithm 1 .

The intution for using Algorithm 1 for separating the

attacker blocks is explained through the following example.

Algorithm 1 Spectral graph clustering for DAG

Input: G - DAG

output: C1, C2

1: procedure FIND-CLUSTERS(G)

2: Construct Ad for G

3: Compute A = Ad + AT
d

4: Compute the Laplacian matrix L = D− A

5: Compute x � eigen vector corresponding to 2nd

smallest eigen value of L

6: if xi >= 0 then

7: add to C1

8: else

9: add to C2

10: end if

11: return C1, C2

12: end procedure

An attacker model of blockDAG structure is shown in Fig.

1. The attacker keeps the blocks having the conflicting trans-

actions with the original transactions in secret untill sufficient

number of confirmations to original transactions attained and

broadcast them all together.

Fig. 2 shows the output of the Algorithm 1 for the

blockDAG shown in Fig. 1. The elements of the eigen vector

corresponding to the second smallest eigen value of the

Laplacian matrix L for the blockDAG in Fig. 1 is mapped to

discrete values in the set {1,−1} which represents the clusters

C1 and C2. The blocks from 0 − 13 are added to cluster C1

and the attacker blocks 15 − 19 along with block 14 which

reference to 14 (an attacker block) are added to cluster C2.
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Fig. 2: Grouping the blocks in blockDAG shown Fig. 1 into

two clusters. Blocks represented above the green line are added

to C1 and blocks below the green line are added to C2.
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B. The client protocol

A client is a node in the network which is either a miner

having a high computional power to solve PoW mining

problem or a simple node with no mining power. The client

protocol is a two step consensus protocol described through

the following two algorithms.

1) Separating the attacker blocks and honest blocks: For

all c ∈ V , the input Gc
t to Algorithm 2 at each time instant t

are shown in Fig. 3. For simplicity, at each instant of time a

hypothetical block H added to blockDAG.

Algorithm 2 operates as follows :

• Given a blockDAG Gc
t observed locally at each client c

at a paricular time t , the algorithm recursively finds the

clusters C1 and C2 each time after adding new blocks at

each block height.

• Client should include all the blocks at each block height

as a part of the input DAG till those blocks meet the

required number of conformations.

• The confirmed blocks are added to blueList for arranging

them into topological order as described in Algorithm 3.

Algorithm 2 is illustrated with the following example shown

in Figs. 3 and 4.

In this example, We assumed the number of confirmations

(k = 4) is constant and We leave the analysis of required

number of confirmations (k) to the future version. The attacker

creates a conflicting transaction to a transaction in block 3 and

included in block 15 . The attacker keeps the blocks 15− 18

secret till the blocks at height = 1 (blocks 1− 3) confirmed

by the other clients in the network with the required number of

conformations and broadcast all the blocks from 15− 19 at

height = 6. Each client will confirm the blocks at a particular

height h to either of the clusters C1 or C2 when it noticed the

height increases to h+ k+1 in Gc
t . Here, at height = 6, the

blocks 1− 3 are confirmed to C1 (shown in blue) and block

15 is added to C2 (shown in red). Similarly, at height = 7.

Fig. 4 shows the spectral properties (The eigen vector

corresponding to 2nd smallest eigen value) of the blockDAG

structures shown in Fig. 3, which illustrates assigning the

blocks to clusters C1 (above the orange line) and C2 (below

the orange line). Fig. 4f and 4g shows the seperation of the

attacker blocks (15− 19) from the blocks created by the

honest nodes.

The algorithm 2 show that the symmetric matrix L is of the

order of number of blocks in the previous k+1 block-heights.

2) Ordering of confirmed blocks: Algorithm 3 operates as

follows :

• After finding the blueList from the given blockDAG Gc
t ,

each client should add the blocks in blueList to topo q

starting from genesis block.

• Arrange the children of a block in ascending order of

their hash indicates the block with smaller hash value

ordered first among all the confirmed blocks at same

block height.
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Fig. 3: An example to show the operation of Algorithm 2. As

time progresses, clustering and confirmation of blocks to C1

(blue) and C2 (red)

.

Algorithm 2 Finding the list of confirmed blocks

Input: Gc
t - A blockDAG at time t at client c, k - Number

of confirmations required

output: blueList - A set of confirmed blocks

1: i← 0, x← 0
2: procedure FIND-LIST(Gc

t , k)

3: i← i+ 1
4: if i > k then

5: x← x+ 1
6: end if

7: Gc
t ← Gc

t\ {All left most blocks till height = x}
8: C1, C2 ← FIND − CLUSTERS(Gc

t)
9: if x > 0 then

10: for all B ∈ C1 ∩Blocks at height x do

11: blueList.add(B)

12: end for

13: end if

14: return blueList

15: end procedure

VI. RESULTS AND DISCUSSION

Table II lists the values of the parameters used for generating

the results in this section. See Table II for a description.

We have conducted an event-driven simulation using python

by generating events for some duration ( 1

10

th
of a day ≈ 8640

sec) as per the blockDAG mining protocol in [4] and [5] with
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(a) At height = 1
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(b) At height = 2
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(c) At height = 3
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(d) At height = 4
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(e) At height = 5
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(f) At height = 6

0 5 10 15 20 25

Blocks

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

C
lu
s
te
r_
In
d
ic
a
to
r

(g) At height = 7

Fig. 4: Spectral properties for 2 − clusters of blockDAGs

shown in Fig. 3.

the proposed consensus protocol for a network with n = 100
nodes and 10 miners having the Hashrate distribution shown

in [17] and also added a miner with a computational power

of a fraction of ≈ 1

3
(and ≈ 1

2
) of the total hashrate. The

events are generated for creating a block, broadcasting the

block to neighbours and adding the block after verifying the

TABLE II: Parameter values used for blockDAG

Parameter value

n 100
np 8
Tp 30 msec

b 4 MB

R 10 Mbps

q 0.33 and 0.51
k 5

λ 1 blocks/sec

Algorithm 3 Ordering of blocks

Input: Gc
t - A blockDAG at time t at client c, blueList

output: ordList - an ordered list of blocks

1: procedure ORD(Gc
t ,blueList)

2: Intialize empty queue topo q

3: topo q.push(genesis)

4: blueList← FIND − LIST (Gc
t )

5: while topo q �= φ do

6: B ← topo q.pop()
7: ordList.add(B)
8: children(B)← {j : (j, B) ∈ E}
9: Sort children(B) in asceding order of their hash

value

10: for all C ∈ children(B) ∩ blueList do

11: topo q.push(C)
12: end for

13: end while

14: return ordList

15: end procedure

block height and references to the previous blocks. The blocks

are created with a rate (λ) of 1 block/sec (or block interval is

1 sec).

We have the events such that the attacker with 33.33% (and

51%) of hashrate follows his double-spending strategy similar

to an example shown in Fig. 3 from height = 3 to height = 7
by chosing k = 5. Fig. 5 show a part (for a duration of 86
sec) of total confirmed blocks (blueList) created by all miners

in the network, where the attcker blocks (red in colour) from

height 3− 7 are not included in the blueList and only honest

blocks are present from height 3 to 7 as per Algorithm 2.

Fig. 6 shows the proportion of the rewards (shown by red

dots and blue +) of each miner are nearly equal to their

proportion of the hash rates (shown by a line) in the network,

which indicates the fairness of the UL-blockDAG protocol.

And also, the simulation results created ≈ 11000 blocks

for a duration of 8640 sec ( 1

10

th
of the day) with size 4 Mb

each are included in the ordList after executing the ordering

Algorithm which proves the increase in TPS to thousands of

transactions per second.

VII. CONCLUSTIONS AND FUTURE RESEARCH

In this paper, we show the graph clustering based on

the spectral graph theory concepts for DAG to seperate the

blocks created by an attacker with double-spend strategy. The

simulation results show that Algorithms 2 and 3 for separating

the attacker blocks with different attacker hash rates (0.33 and

0.51) when attacker tries to attempt double-spend attack. We

also demonstrate the fairness of the system and the increase in

TPS to thousands of transactions per second as large number

of blocks created due to DAG structure of the ledger and

confirmed due to clustering and ordering algorithms. In future,

we will analyse the number of required confirmations at client

end in terms of the fraction of the attacker’s hash rate and end-

to-end propagation delay in the network. We also analyse the
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Fig. 5: Blocks created by all miners. Attacker blocks are shown

in red clour and blocks created by other miners are shown with

different colours. Blocks created by the attacker from height

3− 7 are not included in blueList. Coincidence of the blocks

created by different miners (with different coloured blocks) at

each block height represents multiple blocks at each height

due to blockDAG structure of the ledger.

different clustering algorithms for identifying blocks created

by an attacker with double-spend strategy.
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