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Abstract—We consider the problem of recovering N length
vectors h that vanish on a given set of indices and satisfy h∗h = h.
We give some results on the structure of such h when N is a
product of two primes, and investigate some bounds and their
connections to certain graphs defined on ZN .
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I. INTRODUCTION

We say that an N length vector h is a convolution idempo-
tent if h∗h = h, where ∗ denotes discrete circular convolution.
We consider the problem of recovering h when some of its
entries are known to be zero. This problem has applications to
sampling analog signals, and is possibly a useful connection to
make progress on the Fuglede conjecture [1]. In this paper, we
briefly review the motivations for considering such a problem.
We then present some results when N is a product of two
primes. This is a followup to our work in [2] where we
characterized all possible idempotents with given zero sets,
in the case when N is a prime power.

Some preliminary notations and observations before we
proceed. We denote by ZN the set of integers modulo N , and
by FN the N × N Discrete Fourier transform (DFT) matrix
(we omit N if it is apparent from the context) [3], [4], so that
for any x ∈ CN , we have

Fx(n) =
∑
j∈ZN

x(j)e−2πinj/N , for n ∈ ZN .

The discrete (circular) convolution of two signals x, y ∈ CN
is

(x ∗ y)(n) =
∑
j∈ZN

x(j)y(n− j), for n ∈ ZN .

Recall that F(x ∗ y) = (Fx)(Fy), so that for a convolution
idempotent h we have (Fh)2 = Fh. Thus the entries of Fh
are either 0 or 1, and an idempotent h is equivalently defined
by the support of Fh. That is, for a (support) set J ⊆ ZN ,
with 1J ∈ CN denoting the indicator of J the idempotent
corresponding to J is hJ = F−11J .

Just as an idempotent is characterized by its support J ⊆
ZN , a foundational result is that the zero set of an idempotent
is characterized by a subset of divisors of N (stated as Lemma
1, below). For this, we introduce the following notation: For
a vector h ∈ CN , let Z(h) ⊆ ZN denote the indices where h
vanishes. Let DN be the set of all divisors of N in ZN (so

omitting N ), let (i,N) denote the greatest common divisor
(gcd) of i and N , and let

AN (k) = {i ∈ ZN : (i,N) = k}. (1)

Lemma 1: The zero-set Z(h) is the disjoint union

Z(h) = {i ∈ ZN : (i,N) ∈ D(h)} =
⋃

k∈D(h)

AN (k)

for some set of divisors D(h) ⊆ DN .
We call D(h) the zero-set divisors of h. The lemma appears

in many different forms and contexts, see [5], [6], [7] or [8,
Theorem 2.1] for example: the key ingredient in the proof is
the structure of cyclotomic polynomials.

For example if N = 8, J = {0, 1, 4, 5} then Z(hJ ) =
{1, 3, 4, 5, 7} = {1, 3, 5, 7} ∪ {4} = A8(1) ∪ A8(4); here
D(hJ ) = {1,4}.

We can ask if a converse of Lemma 1 holds; i.e. given a set
Z of the form in Lemma 1 (i.e. Z is a union of some AN (k)),
is there an idempotent h whose zero set is Z? We formulate
this as :

Problem iN (D): Given a positive integer N and a
set of divisors D ⊆ DN let

Z = {i ∈ ZN : (i,N) ∈ D} (2)

Find all index sets J such that the idempotent hJ =
F−11J vanishes on Z .

Note that this is slightly different from a converse of Lemma
1: For J to be a solution to i(D) we only ask if hJ vanishes
on Z . In particular, h may vanish outside Z (i.e. have a bigger
zero set) as well.

In our previous work [6], we motivated the zero set problem
i(D) in the context of sampling. We revisit and summarize this
in Section II. In [6], we also gave a complete characterization
of all solutions to i(D) when N = pM is a prime power,
using base−p expansions of elements of J . In this work, we
build a case for solving i(D) when N has more than one
prime factor, and generalize some of the results of [2]. The
main contribution here is to characterize all solutions to i(D)
when N = pq and D = {1}, {p, q}, {1, p} or {1, q} (Theorem
1, Corollary 1, 2). Theorem 1 seems connected to results on
vanishing sums of roots of unity [9], though the techniques we
employ are different. The proof of Theorem 1 uses properties
of Ramanujan sums [10], which were recently used for signal
processing [11], [12]. In section IV we investigate some
bounds on the smallest solution to i(D), and relate it to the
minrank [13] of certain graphs introduced in [6].
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II. MOTIVATION

A. Sampling
We describe a problem in the traditional multicoset sam-

pling setting [14], [15] in which the zero set problem naturally
arises. See [2] for details: here we will give a concise overview
of the key ideas.

We are interested in sampling signals that have a fragmented
spectrum: i.e. for any signal f in the space, the Fourier
transform Ff(s) is non zero only when the frequency s is
in ∪n∈F[n, n+ 1]. See Figure 1 for an example of a signal in
such a space, with F = {0, 2}.

Ff(s)

s0 1 32

Fig. 1: Example signal with two fragments, for F = {0, 2}.

If we sample the signal from Fig 1 at the Nyquist rate, we
need to take at least 3 samples per second. Instead, consider
sampling the signal with the sampling pattern shown in Fig 2:

t0 1 2

Fig. 2: Example sampling pattern in the case F = {0, 2}.
Samples are taken at every second, and at a 0.25 second offset

Note that with the sampling pattern of Figure 2, we take
on average 2 samples per second. With elementary Fourier
analysis, one can show that the sampled signal has a spectrum
shown in Fig 3 (see [2] for details, the main idea is from [14],
[15]).

|Ffsampled(s)|

s0 1 32

Fig. 3: Spectrum of signal in Fig 1 sampled with the spectrum
from Fig 2.

The crucial observation from Fig 3 is that the original signal
fragments are intact: aliasing primary occurs in the islands

where the signal was non-existent anyway. This idea can be
generalized to signal spaces with arbitrary locations of the
fragments F, by picking a sampling pattern of the form

pJ (t) =
∑
m∈J

δ(t−m/N), (3)

where J and N are parameters that need to be picked. For
example, for the sampling pattern in Fig 1, we have N =
4,J = {0, 1}. Now we let Z be the difference set of F, and
D the corresponding gcds, i.e.,

Z = {k1 − k2 : k1, k2 ∈ F},
D = {d : (k,N) = d for some k ∈ F.}

We can show ( [2, Proposition 2]) that any J providing a
solution to the zero set problem i(D) will ensure that the
signal can be recovered from the samples taken according
to (3). The average sampling rate would then be |J |, which
could potentially be much smaller than the Nyquist rate of
max |Z|. Thus finding a feasible sampling pattern for multi-
coset sampling is closely connected to solving i(D).

While the sampling pattern given in this section is motivated
from [14] and [15], follow up works for e.g. in [16], [17] build
on the techniques described here.

B. Fuglede conjecture

Another motivation is related to a conjecture of Fuglede [1].
We say that a set J ⊆ ZN tiles ZN if J together with its
translates forms a disjoint cover of ZN . More precisely, J
tiles ZN if there exists a set K ∈ ZN (representing the set of
translates) such that J +K = {j + k : j ∈ J , k ∈ K} = ZN .
We can write this as

1J ∗ 1K = 1ZN
, or hJ hK = δN , (4)

where δN is the canonical unit vector in CN with a 1 in the
leading position.

Next, J ⊆ ZN is called a spectral set if there exists a
square unitary submatrix of F with columns indexed by J
(when we say “unitary” we mean up to scaling).

A conjecture of Fuglede [1], for ZN , is:
Conjecture 1: (Spectral iff Tiling) A set J ⊆ ZN is spectral

if and only if J tiles ZN .
See [6], [7], [18]–[22] for some discussion on this conjecture.

Let us do a straightforward analysis of Conjecture 1: starting
with a spectral set J , to prove that J is a tiling set we need
to find the set of translates K such that (4) holds, thus hK
must vanish on ZN \{0} wherever hJ does not. In particular,
finding a K is equivalent to solving the zero set problem; and
finding such an idempotent – or the inability to find one –
would hopefully give insights into the validity of Conjecture
1, at least in the direction spectral =⇒ tiling.

C. A case for non prime powers

One particular solution of i(D) for N = pM can readily be
obtained with elementary means (proof is skipped for brevity).
The complete solution space for the prime power case can also
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be characterized as in [2]. What is the situation when N has
more than one prime factor?

In addition to natural interest, such a generalization is also
pertinent if we consider the motivating problems introduced
in Section II. Take the problem of sampling two- (or higher)
dimensional signals with a fragmented spectrum, where each
fragment occupies a single cell of an integer lattice. In the
notation of Section II

Ff(s1, s2) = 0

when (s1, s2) /∈
⋃

(m,n)∈F

[m,m+ 1]× [n, n+ 1].

Here F ⊆ ZN × ZM indicates the locations of the spectral
fragments (see Figure 4). An analysis similar to the prime
power case leads to two dimensional idempotents h ∈ CN×M .
When N and M are coprime, the entries in h can be re-
indexed to an NM− length vector that is an idempotent in
CNM . See the Prime Factor algorithm or Good’s algorithm (
[23], [24]) for details on using the Chinese remainder theorem
for the re-indexing. For such scenarios, the idempotent to be
reconstructed is associated with more than one prime factor.

0

1

2

0 1 2 3 s1

s2

Fig. 4: Example fragmented spectrum of a 2-D signal. The
Fourier transform Ff(s1, s2) is non zero only in the shaded
regions.

As for the sampling scenario, a solution of the zero set
problem when N has more than one prime factor is relevant
to Fuglede’s conjecture as well. Fuglede’s conjecture is known
to be true when N is a prime power, [21], and the challenge is
to make progress when N has more than a single prime factor.
See [6], [7] for some attempts to generalize the conjecture for
arbitrary N .

However, unlike the prime power case, there may not be any
nontrivial solution to iN (D) for an arbitrary N . For example,
let N = 6 and Z = {2, 3, 4}. An exhaustive search shows
that there is no idempotent h on Z6 that vanishes only on
Z: in fact the only solution to i(D) is Z6 (the corresponding
idempotent is δ, which vanishes on all non zero indices). This
can also be verified from Corollary 2.

III. EXTENSION TO NON PRIME POWER CASE

We note some simple properties of solutions to i(D) that
we will use later in the proofs.

Lemma 2: With i(D) as defined in the Introduction,

1) The set J = ZN is always a solution to i(D), for any D.
2) If J is a solution, so is any translate of J , mod N .
3) If J1 and J2 are two disjoint solutions, so is J1 ∪ J2.
4) Any solution to i(D) is also a solution to i(D′) for any
D′ ⊆ D.

5) If J and J ′ are solutions with J ′ ⊇ J , then J ′ \ J is
also a solution.

We omit the proof, which uses only the definition and basic
properties of the Fourier transform.

Assume, for simplicity, that N = pq, so only the two prime
factors p and q. Suppose that 1 ∈ D, first observe that any
solution h to i(D) satisfies

h · 1AN (1) = 0. (5)

Recall that Fh = 1J , and set c = F−11AN (1). Note that the
entries in c are, by definition of the inverse Fourier transform,

c(k) =
1

N

∑
n∈Zq

(n,N)=1

exp(2πink/q)

This is Ramanujan’s sum; see his original paper [10], for
example. As often presented, Ramanujan’s sum is

cN (k) =
∑
n∈Zq

(n,N)=1

cos(2πnk/N) =
∑
n∈Zq

(n,N)=1

exp(2πink/N),

(6)
where N and k are positive integers. Ramanujan’s sums have
also recently been used for signal processing, see [11], [12].
For k ∈ [0 : N − 1], we can also interpret cN as the inverse
Fourier transform of the N -length (scaled) indicator

1N (n) =

{
N, if (n,N) = 1

0, otherwise.

We shall need the following two properties:
(i) When N = pm is a prime power,

cpm(k) =


0 if pm−1 - k,
−pm−1 if pm−1 | k and pm - k,
φ(pm) if pm | k,

(7)

where φ is the Euler totient function [25].
(ii) For any divisor d of N ,∑

n∈Zq

(n,N)=d

exp(2πink/N) = cd′(k).

where d′ = N/d.
We also need the important multiplicative property:

cpq(n) = cp(n)cq(n), if p, q are co-prime.

Then for N = pq we have

cN (j) = cpq(j) =


−(p− 1) if j = p, 2p, . . . , (q − 1)p

−(q − 1) if j = q, 2q, . . . , (p− 1)q

(p− 1)(q − 1) if j = 0

1 otherwise

,

(8)
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for 0 ≤ j ≤ pq − 1.
Going back to (5) and taking Fourier transforms on both

sides of h · 1AN (1) = 0, we get for any n ∈ ZN ,∑
j∈J

c(n+ j) = 0 or
∑
j∈K

c(j) = 0, (9)

for any set K that is a translate of J .
We can now move to the main result of this section,

characterizing the solutions to ipq({1}):
Theorem 1: Suppose p and q are distinct primes, and let

Ap = {0, p, 2p, . . . , (q − 1)p} and Aq = {0, q, 2q, . . . , (p −
1)q} be subsets of Zpq containing multiples of p and multiples
of q, respectively. Then any solution to ipq({1}) is either a
(disjoint) union of translates of Ap or a (disjoint) union of
translates of Aq .

Proof: First, we note that both Ap and Aq are solutions to
i({1}): we can easily verify from the definition of the discrete
Fourier transform

hAp
= F−11Ap

=
1

p
1Aq

, and hAq
= F−11Aq

=
1

q
1Ap

,

and so both hAp and hAq vanish on indices coprime to pq.
Now we prove that any solution to i({1}) is a disjoint union

of translates of either Ap or Aq . Consider any solution J
to i({1}) in Zpq , and assume, by a suitable translation, that
0 ∈ J . The other elements of J are either multiples of p,
multiples of q, or coprime to pq. Let

α = |J ∩Ap\{0}|, β = |J ∩Aq\{0}|, γ = |J |−α−β−1.

Here α, β are the number of nonzero elements of J that are
multiples of p and q, respectively, and γ is is the number of
elements of J coprime to pq. Then we must have, by (8) and
(9) (with n = 0)

(p− 1)(q − 1)− α(p− 1)− β(q − 1) + γ = 0. (10)

Note that α ≤ |Ap \{0}| = q−1, β ≤ |Aq \{0}| = p−1, and
γ ≤ φ(pq) = (p − 1)(q − 1). We will next argue that either
α = q − 1 or β = p − 1 (i.e. either α or β take their largest
possible values); thus establishing that J contains either Ap
or Aq .

If α = q − 1, then Ap ⊆ J and we are done. So suppose
that α < q − 1. Then there exists a non zero multiple of p,
say ap, such that ap /∈ J . Now consider the set J ′ = τapJ
obtained by translating J by ap. We first make these simple
observations:

1) By construction, 0 /∈ J ′. The element 0 ∈ J translated
by ap results in a non zero multiple of p.

2) Translating non zero multiples of p in J by ap results in
indices that are non zero multiples of p.

3) Translating non zero multiples of q in J by ap results in
indices that are co-prime to pq.

4) Translating indices in J that are co-prime to pq by ap
could potentially result in indices that are multiples of q.
Let γ1 ≤ γ be the number of such indices.

Applying (9) with n = −ap, and using (8) results in

−(α+ 1)(p− 1)− γ1(q − 1) + β + (γ − γ1) = 0. (11)

Subtracting (11) from (10) results in

(p− 1− β + γ1)q = 0 or p− 1 + γ1 = β.

Since β ≤ p− 1, the above equality only possible when β =
p−1 and γ1 = 0. In particular β = p−1 implies that Aq ⊆ J .
Thus either Ap ⊆ J or Aq ⊆ J .

Now we argue as follows: isolate either Ap or Aq from J ,
as in

J1 =

{
Ap if Ap ⊆ J
Aq otherwise

We note, as before, that J \J1 is a solution to i({1}). Applying
the argument repeatedly, we can write

J = J1 ∪ J2 ∪ J3 . . .

where each Ji is a translate of Ap or Aq , and all the
Ji are disjoint. We will argue next that all of the Ji are
translates of the same set: either Ap or Aq . Suppose that
J1 = {0, p, 2p, . . . , (q−1)p} and Jk = {l, l+q, l+2q, . . . , l+
(p − 1)q} is a translate of Aq . Then there exists an element
of Jk that is a multiple of p: this is obtained by solving the
congruence

l + xq ≡ 0 mod p

in x. Thus J1 and Jk have a common element, contradicting
their disjointedness.

So J is a disjoint union of translates of Ap, or a disjoint
union of translates of Aq , proving the theorem.

Corollary 1: If p and q are distinct primes, any solution to
ipq({1}) is a solution to either ipq({1, p}) or ipq({1, q}). In
particular, there is no idempotent that vanishes only on Apq(1).

Proof: Recall that

hAp
= F−11Ap

=
1

p
1Aq

, and hAq
= F−11Aq

=
1

q
1Ap

.

Thus hAp is nonzero only on multiples of q, i.e. it vanishes
on A (1) ∪ A (p), and so Ap is a solution to i({1, p}) and
(similarly) Aq is a solution to i({1, q}). From Theorem 1, any
solution to i({1}) is a disjoint union of translates of Ap or
Aq . From this and Lemma 2 properties 2) and 3), it follows
that any solution to i({1}) is a solution to either i({1, p}) or
i({1, q}).

Corollary 2: If p and q are distinct primes, then the only
solution to ipq({p, q}) is ZN .

Proof: Let J be a solution to ipq({p, q}), and K any
solution to ipq({1}). Then hJ · hK must vanish at all indices
in Z \ {0}. Note that hJ (0) = |J |/N and hK(0) = |K|/N
(here N = pq). Then we must have hJ · hK = |J |K|δpq/N2.
Using that FhJ = 1J and FhK = 1K, we obtain

1J ∗ 1K = NF(hJ · hK) =
|J ||K|
N

1ZN
.

In particular, since 1J , 1K are indicators, the convolution 1J ∗
1K can only have integer entries; and so we must have that
N = pq divides |J ||K|. This must be true for any K that
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is solution to ipq({1}). In particular, we can use K = Ap
or K = Aq to conclude that |J | = pq, or in other words
J = ZN .

IV. A BOUND ON THE SMALLEST SOLUTION TO i(D)

Recall from our sampling based motivation for the zero set
problem in Section II that the average sampling rate of the
multi-coset scheme discussed is |J |, which we would like to
keep as small as possible. Naturally, instead of asking for all
possible idempotents with a given zero set (as in i(D)) we
can ask for the smallest solution to i(D). This leads to the
definition

Ξ(D) = arg min{|J | : J solves i(D)}.

This quantity, in some sense, characterizes the smallest possi-
ble sampling rate achievable by the multicoset scheme.

In this section, we derive some simple bounds on Ξ(D), and
look at some connections to difference graphs defined in an
earlier work [6]. To define the bound, given a set of divisors
D, recall that the corresponding zero set Z is defined as in
(2) by including all indices whose gcd with N is in D. In
the (inverse) DFT matrix, suppose we remove all rows except
those with indices in Z ∪ {0}, to obtain the matrix F−1Z∪{0}.

Note that if J is a solution to i(D), then F−11J vanishes
on Z by definition. In addition, we also have F−11J (0) =
|J |/N 6= 0, so that we may say

F−1Z∪{0} (1JN/|J |) = δ,

where, as usual, δ is standard unit vector with 1 in the
topmost position. Now we construct a lower-bound to Ξ(D)
by replacing 1JN/|J | with x in the above equation:

ξ(D) = min
x∈CN

{‖x‖0 : F−1Z∪{0}x = δ},

where ‖x‖0 is the number of non zero entries in x. The above
formulation asks us to find the sparsest solution to a system of
linear equations, for which we can potentially apply standard
algorithms like Orthogonal Matching Pursuit or Basis Pursuit
[26]–[28]. By construction, we have

ξ(D) ≤ Ξ(D). (12)

A. Difference graphs

Given a divisor set D and the corresponding zero set Z we
can define a graph G (D) with vertex set ZN and edge between
i, j if (i − j,N) ∈ Z . Such graphs were investigated in our
prior work [6], in the context of sampling discrete signals. We
explore some connections of the bound ξ(D) to certain graph
invariants.

We say that a matrix M fits a graph G if the diagonal entries
of M are 1, and ij entry Mij is zero if i, j are not adjacent in
G. Recall that the minrank of a graph (over C)) is the smallest
possible rank among all complex matrices that fit G [13], [29],
[30].

Start with a divisor set D and the corresponding zero set
Z . Let x ∈ CN satisfy F−1Z∪{0}x = δ. Construct an N × N

circulant matrix [31] M with first column F−1x. Note that
the eigen values of M are the entries of x, and consequently
the rank of M is ‖x‖0. Also note that the diagonal entries of
M are 1, and the ij entry is zero if i − j ∈ Z . Thus M fits
G c(D), and so

minrank(G c(D)) ≤ ξ(D).

The bound ξ(D) is similar to minimum circulant rank
defined in [32]. We can infact prove that the bound in (12)
is tight, suprisingly in the case when J is spectral.

Lemma 3: Suppose J is spectral, and h = F−11J , as be-
fore. Then the bound in (12) is tight, i.e. ξ(D(h)) = Ξ(D(h)).

Proof: From [6, Lemma 3], if J is spectral then there
exists an independent set in G c(D) of size |J |. Since minrank
is an upper bound on the independence number [13], it follows
that |J | ≤ minrank(G c(D)). Combining with (12) we have
that

|J | ≤ minrank(G c(D)) ≤ ξ(D) ≤ Ξ(D) ≤ |J |,

and so all the inequalities involved are tight.
Another lower bound can be defined using Linear programs
[7, Section IV.B]. Note that this bound is non integral, unlike
the bound ξ given in this section.

V. CONCLUSION

We introduced the zero set problem for convolution idem-
potents, briefly reviewed the motivations, and presented some
results when the ambient dimension is a product of two primes.
The connection to results on vanishing sums of roots of unity
[9] and tiling [21] need to be explored further. We also gave
some bounds on the smallest solution to the zero set problem
and explored its connection to minrank of certain graphs
defined on ZN . Of interest is to investigate generalizations
to arbitrary N . Of particular interest is to understand the
solution space of i(D) when D corresponds to spectral or
tiling sets [21], the conditions under which the bound Ξ(D)
can be efficiently computed, and provable algorithms to solve
(or approximate) the solutions to i(D).
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