
Recent Advances in Reinforcement Learning

M. Vidyasagar

Abstract— In this paper, we give a brief review of Markov
Decision Processes (MDPs), and how Reinforcement Learning
(RL) can be viewed as MDP where the parameters are un-
known. Specific topics discussed include the Bellman equation
and the Bellman operator, and value and policy iterations for
MDPs, together with recent “empirical” approaches to solving
the Bellman equation and applying the Bellman iteration. In
addition to the well-established method of Q-learning, we also
discuss the more recent approach known as Zap Q-learning.

I. INTRODUCTION

Reinforcement learning (RL) is a rather vague phrase that
is supposed to capture the human mode of learning in an
uncertain environment. Commonly used phrases in RL are
exploration and exploitation. Exploration refers to the learner
exploring previously unseen situations to see what happens,
while exploitation refers to the learner taking advantage of
knowledge already gained. An early and common mathe-
matical model for this flavor of RL is the multi-arm bandit
problem, whereby a user attempts to choose between several
options (often thought of as “slot machines” which explains
the nomenclature “bandits”), which have unknown payoffs,
so as to maximize the expected reward. An early paper that
clearly lays out the tradeoffs between these two facets of
exploration and exploitation can be found in [1].

A more general class of learning problems are Markov
Decision Processes (MDPs). It is possible to think of a multi-
arm bandit problem as a MDP; see [2, Section 3.6]. Over the
years there has been a lot of interest in formulating RL as
a MDP where the underlying parameters are unknown, and
must somehow be “inferred” on the fly. In this paper, we
begin by reviewing MDPs, and then RL viewed as a MDP
with unknown parameters. The reader is directed to [2], [3],
[4] for background material and additional details.

II. REVIEW OF MARKOV DECISION PROCESSES

In this section we will briefly review Markov decision
processes, often abbreviated as MDP. The emphasis is on
the case where the parameters of the MDP are completely
known. As shown in the next section, one approach to RL
is to view it as a MDP where the underlying parameters
are unknown. In the interests of simplicity, the discussion is
limited to the situation where the state space underlying the
MDP is a finite set. However, MDPs where the underlying
state space is a subset of Rd for some d are also sometimes
of interest. Two recent papers [5], [6] present some new

M. Vidyasagar is a National Science Chair, and is with the Indian Institute
of Technology Hyderabad, India, This research is supported by the Science
and Engineering Research Board (SERB), Government of India. Email:
m.vidyasagar@iith.ac.in.

techniques for addressing such problems. The latter paper
also contains an extensive and relevant bibliography.

A. Review of Markov Processes

Though much of the material in this section is standard, it
serves to introduce the notation used in the paper. Relevant
facts about Markov processes can be found in [7]. Suppose
X is a finite set of cardinality n, written as {x1, . . . , xn}.
Strictly speaking, the order in which the elements of X
are arranged does not matter, but it is assumed that some
order is specified and is used throughout. If {Xt}t≥0 is a
stationary Markov process assuming values in X , then the
corresponding state transition matrix A is defined by

aij = Pr{Xt+1 = xj |Xt = xi}. (1)

Thus the i-th row of A is the conditional probability vector
of Xt+1 when Xt = xi. Clearly the row sums of the
matrix A are all equal to one. Therefore the induced norm
‖A‖∞→∞ also equals one. Now suppose that there is a
“reward” function R : X → R associated with each state.
Choose a “discount factor” γ ∈ (0, 1). Then, along a sample
path {Xt}t≥0, the total discounted reward is just the sum of
γtR(Xt). Now, for each state xi ∈ X , define the expected
discounted future reward V (xi) as

V (xi) = E

[∞∑
t=0

γtR(Xt)|X0 = xi

]
. (2)

Define the vectors

v = [V (x1) · · · V (xn)]>, (3)

r = [R(x1) · · · R(xn)]>. (4)

Then it is easy to show that v satisfies the recursive rela-
tionship

v = r + γAv. (5)

Since the induced matrix norm ‖A‖∞→∞ ≤ 1 and γ < 1,
it follows that if we equip Rn with the norm ‖ · ‖∞, the
map z 7→ r + γAz is a contraction. Therefore, for every
fixed assignment of rewards to states, there is a unique v
that satisfies (5). In principle one could solve (5) by repeated
application of the contraction map. Note that the faster future
rewards are discounted (i.e., the smaller γ is), the faster the
iterations will converge.

2020 American Control Conference
Denver, CO, USA, July 1-3, 2020

978-1-5386-8266-1/$31.00 ©2020 AACC 4751

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 16,2022 at 07:29:00 UTC from IEEE Xplore. Restrictions apply.

B. Markov Decision Processes: Formulation

In a Markov process, the state Xt evolves on its own. In
contrast, in a MDP, there is also another variable called the
“action” which affects the dynamics. Specifically, in addition
to the state space X , there is also a finite set of actions U .
At time t, when the state is Xt, an action Ut ∈ U is applied.
The state transition matrix of a MDP is defined via

auij = Pr{Xt+1 = xj |Xt = xi, Ut = u}. (6)

Obviously, for each fixed u ∈ U , the corresponding state
transition matrix Au is column-stochastic. There is also a
“reward” function R : X × U → R.

The most important aspect of a MDP is the concept of
a “policy,” which is just a systematic way of choosing Ut
given Xt. One can make a distinction between deterministic
and probabilistic policies. A deterministic policy is just a
map from X to U . A probabilistic policy is a map from X
from the set of probability distributions on U . Let Πd, Πp

denote respectively the set of deterministic, and the set of
probabilistic, policies. If π ∈ Πd, then for each xi ∈ X , we
have that π(xi) ∈ U . If π ∈ Πp, then for each xi ∈ X ,
π(xi) belongs to the |U|-dimensional simplex (consisting
of probability distributions on U). Clearly the number of
deterministic policies is |U||X |, while Πp is uncountable.

Whether a policy π is deterministic or probabilistic, the
resulting stochastic process {Xt} is Markov with the state
transition matrix determined as follows: If π ∈ Πd, then

Pr{Xt+1 = xj |Xt = xi, π} = a
π(xi)
ij . (7)

If π ∈ Πs and

π(xi) = [(π(xi))1 · · · (π(xi))m], (8)

where m = |U|, then

Pr{Xt+1 = xj |Xt = xi, π} =
∑
u∈U

(π(xi))ua
u
ij . (9)

(Note that the notation in (9) is a little imprecise.) In either
case, we can define Aπ to be the state transition matrix that
results from applying the policy π. In a similar manner, for
every policy π, the reward function R : X × U → R can be
converted into a reward map Rπ : X → R, as follows: If
π ∈ Πd, then

Rπ(xi) = R(xi, π(xi)), (10)

whereas if π ∈ Πs, then

Rπ(xi) =
∑
u∈U

(π(xi))uR(xi, u). (11)

For a MDP, one can pose three questions of increasing
difficulty:

1) Policy evaluation: For a given policy π, define the
“value” associated with the policy π and initial state
xi as the expected discounted future reward with X0 =
xi, and denote it by Vπ(xi). How can Vπ(xi) be
computed for each xi ∈ X ?

2) Optimal Value Determination: For a specified initial
state xi, define

V ∗(xi) := max
π∈Πd

Vπ(xi), (12)

to be the optimal value over all policies. How can
V ∗(xi) be computed? Note that in (12), the optimum
is taken over all deterministic policies. In principle one
could also seek the optimum value over all probabilis-
tic policies; but this case does not seem to have been
studied very much.

3) Optimal Policy Determination: Define the optimal
policy map X → Πd via

π∗(xi) := arg max
π∈Πd

Vπ(xi). (13)

How can the optimal policy map π∗ be determined?

C. Markov Decision Processes: Solution

In this subsection we present answers to the three ques-
tions above.
Policy Evaluation:

Suppose a policy π ∈ Πd is specified. Then the corre-
sponding state transition matrix and reward are given by (7)
and (10) respectively. Now suppose we define the vector vπ
by

vπ = [Vπ(x1) . . . Vπ(xn)], (14)

and the reward vector rπ by

rπ = [Rπ(x1) . . . Rπ(xn)]. (15)

Then it is easy to see that vπ satisfies an equation analogous
to (5), namely

vπ = rπ + γAπvπ. (16)

Optimal Value Determination:
Let V ∗(xi) denote the maximum value of the discounted

future reward, over all policies π ∈ Πd. The key to comput-
ing V ∗(xi) is provided by the Bellman equation, namely

V ∗(xi) = max
u∈U

R(xi, u) + γ
∑
j∈[n]

auijV
∗(xj)

 . (17)

Note that the above equation is also referred by other names
such as the renewal equation, or the principle of optimality.
A derivation of (17) can be found in [4, (3.19)]. Note that
(17) is recursive in that the unknown function V ∗ occurs on
both sides of the equation. Therefore (17) can be thought of
as a characteriation of V ∗, and some iterative procedure is
needed to solve the equation.

A common approach to solving (17) is known as “value
iteration.” To present it, let us define the vector v∗ in a
manner analogous to earlier notation , namely

v∗ = [V ∗(x1) · · · V ∗(xn)]. (18)

4752

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 16,2022 at 07:29:00 UTC from IEEE Xplore. Restrictions apply.

Next, we define a “value update” map T : Rn → Rn, as
follows:

(Tv)i := max
u∈U

R(xi, u) + γ
∑
j∈[n]

auijvj

 . (19)

One can think of v as the current guess for the vector v∗,
and of Tv as an updated guess. Indeed, the next theorem
shows that this intuition is valid.

Theorem 1: For all v0 ∈ Rn, the sequence of iterations
{T kv0} approaches v∗ as k →∞.

As before, the proof consists of showing that the map
T is a contraction with constant γ. Hence, the more future
rewards are discounted, the faster the iterations converge.
Optimal Policy Determination:

Suppose that the optimal value vector v∗ has been de-
termined, either through Theorem 1 of some other means.
How can this information be used to determine the optimal
policy?

Theorem 2: Suppose the optimal value vector v∗ is
known, and define, for each xi ∈ X , the policy π∗ : X → U
via

π∗(xi) = arg min
u∈U

R(xi, u) + γ
∑
j∈[n]

auijv
∗
j

 . (20)

Then π∗ is an optimal policy.
Therefore, in principle one could use Theorem 1 to

compute the optimal value v∗, and then use Theorem 2 to
determine the optimal policy. Note that the determination of
the optimal value using Theorem 1 requires an iteration on
the guessed value function. The next approach combines this
with finding the optimal π and is known as “policy iteration.”

Let π ∈ Πd be a (deterministic) policy, and define an
associated map Tπ : Rn → Rn by

(Tπv)i := Rπ(xi) + γ
∑
j∈[n]

aπijvj , (21)

or more compactly

Tπv := rπ + γAπv. (22)

So, if we start with any initial guess v0, the sequence {T kπv0}
converges to vπ , the unique solution of

vπ = rπ + γAπvπ. (23)

In order to find the optimal policy π∗, we apply the
following iterative procedure: Start by setting the iteration
counter to zero, and choose some arbitrary initial policy π0.
Then at iteration k,

1) Compute the value vector vπk
such that vπk

=
Tπk

vπk
. Note that computing vπk

using Theorem 1
would require infinitely many applications of the map
Tπk

to some arbitrary initial vector.

2) Use this value vector vπk
to compute an updated policy

πk+1, via

πk+1(xi) = arg min
u∈U

R(xi, u) + γ
∑
j∈[n]

auij(vπk
)j

 .
(24)

Note that (24) implies that

Tπk+1
vπk

= Tπk
vπk

. (25)

Theorem 3: We have that

vπk
≤ vπk+1

, (26)

where the dominance is componentwise. Consequently, there
exists a finite iteger k0 such that vπk

= v∗ for all k ≥ k0.

III. REINFORCEMENT LEARNING AS A MDP WITH
UNKNOWN PARAMETERS

The results of the previous section are applicable to the
case where the transition probabilities Au and the reward
function : R : X × U → R are all known. Reinforcement
learning can be thought of as the problem of determining the
optimal policy π∗ when these parameters are unknown.

A. Monte Carlo Methods

The phrase “Monte Carlo” methods is used nowadays to
refer to almost any technique wherein an expected value of
a random variable is approximated by its empirical average,
that is, an average of its observed values. In this subsection,
we introduce one approach to approximating the value of
a policy for a MDP where the underlying parameters are
unknown.

All of the discussion here assumes that some policy π has
been chosen and implemented, and that we observe a time
series of triplets {(Xt, Ut,Wt}t≥0 where Ut = π(Xt) for the
known policy π, Wt = Rπ(Xt) where the policy reward Rπ
is unknown, and the state transtion matrix Aπ resulting from
the policy is also unknown. Because π is fixed throughout,
we drop the subscript and superscript π.

The discussion in this subsection applies to the case
where the underlying Markov process contains one or more
absorbing, or terminal, states. Recall that a state xi is said
to be “absorbing” if

Pr{Xt+1 = xi|Xt = xi} = 1,

or equivalently, the row of the state transition matrix cor-
responding to the state xi consists of a 1 in column i and
zeros in other columns. The Markov process can have more
than one absorbing state. While the dynamics of the MDP
are otherwise assumed to be unknown, it is assumed that
the learner knows which states are absorbing. By tradition,
it is assued that the reward R(xi) = 0 whenever xi is an
absorbing state.

In this setting, an episode refers to any sample path
{(Xt, Ut,Wt}t≥0. Since the policy π is presumably chosen
by the learner, it is always the case that Ut = π(Xt).
Therefore Ut does not add any new information. Once

4753

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 16,2022 at 07:29:00 UTC from IEEE Xplore. Restrictions apply.

Xt reaches an absorbing state, the episode terminates. The
underlying assumption is that, once the Markov process
reaches an absorbing state, it can be restarted with the
initial state distributed according to its stationary (or some
other) distribution. This assumption may not always hold in
practice.

Define

Gt =

∞∑
i=0

γiWt+i. (27)

If an absorbing state is reached after a finite time, say T , then
the summation can be truncated at time T , because Wt = 0
for t ≥ T . Now it is known that, for a state xi ∈ X , we have

Vπ(xi) = E[Gt|Xt = xi].

Accordingly, suppose that an episode contains the state of
interest xi at time τ , that is, Xτ = xi. Let us also suppose
that the episode terminates at time T . Then the quantity

T−τ∑
i=0

γiWτ+i

provides one approximation to Vπ(xi). Now suppose we have
L episodes, call them E1, · · · , EL. Let k the number of these
episodes in which the state of interest xi occurs. Without
loss of generality, renumber the episodes so that these are
E1 through Ek. For each such episode, let τ denote the first
time at which xi appears in the state sequence, and T the
time at which the episode terminates.1 Further, define

Hl :=

T−τ∑
i=0

γiWτ+i.

Then
1

k

k∑
l=1

Hl (28)

provides an estimate for Vπ(xi), known as the first-time
estimate. It is possible that the state of interest xi occurs
multiple times within the same episode. In such a case, one
can form multiple estimates Hl and then average them. This
called the everytime estimate.

Example 1: Suppose n = 3, and for convenience label the
states as A,B,C. Suppose further that R(A) = 3, R(B) =
2 and C is an absorbing state for the policy under study.
Suppose L = 3 and that the three episodes (all terminating
at C) are:

E1 = ABABBC, E2 = BBC, E3 = BAABC.

Now suppose we wish to estimate the value V (A). Then E2
does not interest us because A does not occur in it. If the
discount factor γ equals 0.9, then we can form the following
quantities:

H11 = 3 + 2 · (0.9) + 3 · (0.9)2 + 2 · (0.9)3 + 2 · (0.9)4,

1Strictly speaking we should use the notation τ1, T1 etc., but we do not
do this in the interests of clarity.

H12 = 3 + 2 · (0.9) + 2 · (0.9)2,

H31 = 3 + 3 · (0.9) + 2 · (0.9)2, H32 = 3 + 2 · (0.9).

Then (H11 + H31)/2 is the first-time estimate for V (A),
while (H11 +H12 +H31 +H32)/4 is the everytime estimate
for V (A).

B. Temporal Difference Methods

Unlike Monte Carlo methods that make use of episodes,
Temporal Difference (TD) methods update various estimates
at each time step. As before it is assumed that a particular
policy π has been chosen and implemented, and that a sample
path {(Xt, Ut,Wt}t≥0 is observed. Let v̂t ∈ Rn denote the
estimated value vector at time t. For convenience, for xi ∈
X , we write v̂(xi) to denote the i-th component of v̂. The
iterative process commences by setting v̂0 = 0. A sequence
of step sizes {αt} is selected beforehand. At time t, the
following computations and updates are carried out.

δt+1 = Wt+1 + γv̂t(Xt+1)− v̂t(Xt), (29)

v̂t+1(Xt+1) = v̂t(Xt+1) + αtδt+1, (30)

v̂t+1(xj) = v̂t(xj) for xj 6= Xt+1. (31)

In other words, at time t + 1, if Xt+1 = xi, then the i-th
component of the estimated value vector v̂ is updated by
adding αtδt+1, while all other components remain the same.

C. Q-Iteration Methods

One of the significant advances in RL is that, instead of
learning the value function, one learns the “Q” function,
defined next. Note that this technique is introduced in [8].

Qπ(xi, u) = R(xi, u) + γ
∑
j∈[n]

auijVπ(xj). (32)

The optimal function Q∗ is given by

Q∗(xi, u) := R(xi, u) + γ
∑
j∈[n]

auijV
∗(xj). (33)

Recall that the optimal value function V ∗ satisfies the
Bellman equation (17), recalled here for the reader’s con-
venience:

V ∗(xi) = max
u∈U

R(xi, u) + γ
∑
j∈[n]

auijV
∗(xj)

 .
Therefore it is clear that

V (xi) = max
u∈U

Q∗(xi, u).

In view of this, (33) can be rewritten as follows, which can
be thought of as the Bellman equation for Q∗.

Q∗(xi, u) := R(xi, u) + γ
∑
j∈[n]

auij max
w∈U

Q∗(xj , w). (34)

Similarly, once we know Q∗, it is easy to determine the
optimal policy, via

π∗(xi) = arg max
u∈U

Q∗(xi, u). (35)

4754

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 16,2022 at 07:29:00 UTC from IEEE Xplore. Restrictions apply.

Recall the “value iteration” map T defined in (19) for
computing the optimal value function recursively, namely

(Tv)i := max
u∈U

R(xi, u) + γ
∑
j∈[n]

auijvj

 .
Not surprisingly, there is an analous iterative map for com-
puting Q as well. Define F : X × U → R by

(FQ)(xi, u) := R(xi, u) + γ
∑
j∈[n]

auij max
w∈U

Q(xj , w). (36)

With this definition, we can state several useful results.
Theorem 4: The map F is monotone and is a contraction.

Therefore, for any initial guess Q0, the sequence {F kQ0}
converges to Q∗.

Now let us turn to the question of estimating FQ. As
before, suppose that a sample path {(Xt, Ut,Wt}t≥0 is
observed. Then the quantity

R(Xt, Ut) + γmax
w∈U

Q(Xt+1, w)

is an unbiased sample of FQ(Xt, Ut). In contrast,

max
u∈U

[R(Xt, u) + γV (Xt+1)]

is not an unbiased sample of TV (Xt). On the basis of this
reasoning, it is possible to propose an updating rule for
learning Q. Choose a sequence of “step sizes” {αt}t≥0. Start
with some initial guess Q0(·, ·) on X × U . Then, at time t,
if Xt = xi, then update Qt+1(xi, Ut) via

Qt+1(xi, Ut) := (1− αt)Qt(xi, Ut)

+ αt

[
Wt + γmax

w∈U
Qt(Xt+1, w)

]
,(37)

and do not update any other Qt+1(xj , u) for (xj , u) 6=
(xi, Ut).

For this updating rule, it is possible to prove the following
convergence result, which is a type of stochastic approxima-
tion. introduced in [9]. See [10] for a survey of stochastic
approximation.

Theorem 5: Suppose that each pair in X × U is samples
infinitely often, and that for each (xi, u) ∈ X × U , the
following conditions hold:∑

t:(Xt,Ut)=(xi,u)

αt =∞, (38)

∑
t:(Xt,Ut)=(xi,u)

α2
t <∞. (39)

Then Qt → Q∗ almost surely.

IV. SOME RECENT ADVANCES AND FUTURE AREAS

In this section, we briefly discuss two of the many ad-
vances that have been made in recent years.

A. Empirical Dynamic Programming

Note that it is possible to rewrite the Bellman equation
(17) as

V ∗(xi) = max
u∈U
{R(xi, u) + γE[V ∗(Xt+1)|xi, u]} . (40)

Similarly, it is possible to rewrite the Bellman (contraction)
operator as

(Tv)i = max
u∈U
{R(xi, u) + γE[V ∗(Xt+1)|xi, u]} . (41)

Here and below, we use the shorthand

E[·|xi, u] = E[·|Xt = xi, Ut = u].

The advantage of these reformulations is that they apply even
when X ,U are infinite sets. However, computing the ex-
pected value, even when X is finite, can be time-consuming.
Instead, one can approximate the expected value with an
empirical average, where, starting with Xt = xi, Ut = u,
some samples for Xt+1 are generated, and the value of V
over these samples is taken as an approximation for the
expected value. This is the approach adopted in [5], [6].

B. Zap Q-Learning

A recent set of papers proposes a new variant of Q-
learning called “Zap” Q-learning. In addition to guaranteeing
the asymptotic almost sure convergence of an estimated Q-
function to Q∗, this variant also leads to the asymptotic
covariance being optimal.

To begin, recall that the Bellman equation for the Q-
function is given in (34), as follows:

Q∗(xi, u) := R(xi, u) + γ
∑
j∈[n]

auij max
w∈U

Q∗(xj , w). (42)

Observe that Q∗ is a function mapping X ×U into R. There-
fore it is possible to think of Q∗ as a |X | · |U|-dimensional
vector. However, it is more economical to choose a set of
basis functions ψl, l ∈ [d] where each ψl : X ×U → R, and
to approximate Q∗ as a linear combination, in the form

Qθ(xi, u) =
∑
l∈[d]

θlψ(xi, u) = θ>ψ(xi, u). (43)

Obviously this approach makes sense only if d� |X | · |U|.
Having indicated that both θ and π are d-dimensional
vectors, we now dispense with the bold-face, and use just
θ and ψ. Define the Bellman error as

Bθ(xi, u) := −Qθ(xi, u) +R(xi, u)

+ γE

[
max
w∈U

Qθ(Xt+1, w)|xi, u
]
, (44)

where, as before, we use the shorthand

E[·|xi, u] = E[·|Xt = xi, Ut = u].

Clearly Qθ is optimal if and only its associated Bellman error
is the zero function. The original stochastic approximation
approach [9], [10] addresses the problem of finding the zeros
of a function with noisy measurements. This suggests that an

4755

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 16,2022 at 07:29:00 UTC from IEEE Xplore. Restrictions apply.

approach similar to stochastic approximation may be used to
find Qθ so as to make the Bellman error equal to zero.

Now we present the Zap Q-learning algorithm. The orig-
inal paper is [11], while a nice survey is presented in [12].
Define

B̃θt+1 := −Qθ(Xt, Ut) +R(Xt, Ut)

+ γE

[
max
w∈U

Qθ(Xt+1, w), h

]
, (45)

where h is the stationary distribution of the Markov chain.
Choose a constant λ ∈ (0, 1), and define sequences

αt =
1

t+ 1
, βt =

1

(t+ 1)ρ
, ρ ∈ (0.5, 1).

Note that more general choices for these sequences are
possible; see [12]. Next, define

θt+1 = θt − αtM̂−1
t+1dt+1zt,

dt+1 = B̃θtt+1,

zt+1 = λγzt + ψ(Xt, Ut),

M̂t+1 = M̂t + βt(Mt+1 − M̂t),

Mt+1 = zt[γψ(Xt+1, φt(Xt+1))− ψ(Xt, Ut)]
>,

where
φt(xi) = arg max

w∈U
Qθt(xi, w).

With the above definitions, it is shown in, for example,
[12, Theorem 2.2], that the sequence {Qθt} converges amost
surely to Q∗. Moreover, the resulting asymptotic covariance
is optimal.

C. Some Areas for Future Research

Given a sample path of a Markov Decision Process with
unknown parameters, in principle it is possible to learn these
parameters on the basis of observations. Therefore a promis-
ing area for future research is to explore the connections
between Reinforcement Learning, and statistical learning
theory as studied in, for example, [13], [14]. This approach is
also reminiscent of what used to be called “Direct Adaptive
Control” during the 1960s. It is however too early to say
whether this approach offers any advantages over existing
methods.

REFERENCES

[1] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[2] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley, 2005.

[3] C. Szepesvári, Algorithms for Reinforcement Learning. Morgan and
Claypool, 2010.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction
(Second Edition). MIT Press, 2018.

[5] W. B. Haskell, R. Jain, and D. Kalathil, “Empirical dynamic pro-
gramming,” Mathematics of Operations Research, vol. 41, no. 2, pp.
402–429, 2016.

[6] W. B. Haskell, R. Jain, H. Sharma, and P. Yu, “A universal empirical
dynamic programming algorithm for continuous state MDPs,” IEEE
Trans. Autom. Control, vol. 65, no. 1, pp. 115–129, January 2020.

[7] M. Vidyasagar, Hidden Markov Processes: Theory and Applications
to Biology. Princeton University Press, 2014.

[8] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[9] H. Robbins and S. Monro, “A stochastic approximation method,”
Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951.

[10] T. L. Lai, “Stochastic pproximation (invited paper),” The Annals of
Statistics, vol. 31, no. 2, pp. 391–406, 2003.

[11] A. M. Devraj and S. Meyn, “Zap Q-learning,” in 31st Conference on
Neural Information Processing Systems (NIPS 2017), 2017, pp. 2235–
2244.

[12] A. M. Devraj, A. Busić, and S. Meyn, “Zap Q-learning– a users guide,”
in Proceedings of the 2019 Fifth Indian Control Conference (ICC),
2019, pp. 10–15.

[13] V. N. Vapnik, Statistical Learning Theory. John Wiley, 1998.
[14] M. Vidyasagar, Learning and Generalization: With Applications to

Neural Networks and Control Systems. Springer-Verlag, 2002.

4756

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 16,2022 at 07:29:00 UTC from IEEE Xplore. Restrictions apply.

