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Abstract— The real-time detection of traffic rule violators
in a city-wide surveillance network is a highly desirable but
challenging task because it needs to perform computationally
complex analytics on the live video streams from large number
of cameras, simultaneously. In this paper, we propose an
efficient framework using edge computing to deploy a system
for automatic detection of bike-riders without helmet. First, we
propose a novel robust and compact method for the detection
of the motorcyclists without helmet using convolutional neural
networks (CNNs). Then, we scale it for the real-time perfor-
mance on an edge-device by dropping redundant filters and
quantizing the model weights. To reduce the network latency,
we place the detector module on edge-devices in the cameras.
The edge-nodes send their detected alerts to a central alert
database where the end users access these alerts through a
web interface. To evaluate the proposed method, we collected
two datasets of real traffic videos, namely, IITH Helmet 1 which
contains sparse traffic and IITH Helmet 2 which contains dense
traffic. The experimental results show that our method achieves
a high detection accuracy of ≈ 95% while maintaining the real-
time processing speed of ≈ 22fps on Nvidia-TX1.

I. INTRODUCTION
In recent years, the computer vision techniques have

become an important component for the automatic traffic
management using video surveillance to obviate traffic con-
gestion, advancement of transportation safety, and improve-
ment of traffic flow [1]–[4]. An intelligent transportation
system is the integration of various advanced technologies
such as intelligent computing, network communications,
visual representation, visual-based analysis, efficient sensor
electronics, etc [5]–[7]. Since, motorcycles are an affordable
and daily mode of transport, there has been a rapid increase
in motorcycle casualties due to the fact that most of the
motorcyclists do not wear the helmet which makes it an
ever-present danger every day to travel by motorcycle [8]–
[10]. In the last couple of years alone, most of the deaths
in accidents are due to damage in the head [11]. Because
of this fact, wearing a helmet is mandatory according to the
traffic rules, violation of which attracts hefty fines in India.
Inspite of this fact, a large number of motorcyclists do not
follow the traffic rules. The manual strategies to catch these
violators have several drawbacks such as interrupted traffic
flow, unpleasant weather conditions for police personnel,
etc. Existing video surveillance based methods are passive
and require significant human assistance. In general, such
systems are infeasible due to the involvement of humans,
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whose efficiency decrease over long duration. Automation
of this process is highly desirable for reliable and robust
monitoring of these violations as well as reduce the amount
of human resources needed significantly. Presently, all major
cities across the world already deployed extensive video
surveillance network at public places to keep a vigil on a
wide variety of threats. Thus the solution for detecting vio-
lators using the existing infrastructure is also cost-effective.

To date, several researchers [8]–[10], [12]–[16] have tried
to tackle the problem of detection of motorcyclists without
helmet by using different methods in computer vision. But
they have not been able to accurately identify motorcyclists
without helmets under challenging conditions such as oc-
clusion, illumination, poor quality of video, varying weather
conditions, etc. Some of the reasons for the poor performance
of existing approaches are: (i) the use of not so efficient
handcrafted features for object classification, (ii) the consid-
eration of irrelevant objects for the detection of motorcyclists
without helmet, and (iii) most of the existing methods are
computationally complex and thus not suitable to be used in
real-time. The performance of a recognition system depends,
to a large extent, on whether it can extract and utilize relevant
information. However, extraction of relevant information for
the detection of such violators is non-trivial due to a variety
of reasons such as scale variations, viewpoint changes,
camera quality, change in illumination, etc. Thus it becomes
crucial to design efficient representation that can deal with
these challenges while preserving categorical information
of violator and non-violator classes. Deep networks have
gained much attention with state-of-the-art results in complex
recognition tasks such as image classification [17], accident
detection [18], object recognition [19], [20], tracking [21],
[22], detection, and segmentation [23], [24] due to their
ability to learn discriminatory features directly from raw
data without resorting to manual tweaking. The challenges in
the existing recognition systems and the recent advances in
deep learning motivate us to design an efficient framework
for the detection of motorcyclists driving without helmet
in real-time that can handle wide variations in viewpoints
and environmental conditions. The main contributions of this
paper are as follows:

• Design of a robust and reliable method for detection of
moving motorcyclists in real-time using convolutional
neural network (CNN) under the various challeng-
ing conditions, such as viewpoint, illumination effects,
weather change, etc.

• Acceleration of the CNN model used to detect motor-
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cyclists in real-time on the limited-resource embedded
device.

• Develop light weight but powerful CNN model for
efficient classification of head (i.e. violator) and helmet,
with very limited set of training samples.

• Use of an Edge-computing framework to overcome the
communication overhead and network latency.

II. RELATED WORK

To date, many researchers have proposed several meth-
ods [8], [10], [12]–[16] to solve the problem of real-time
helmet detection in traffic. Chiu et al. [12] proposed a system
for the detection of motorcyclists in surveillance videos.
This system segments the moving object and then tracks
motorcycles and their head regions using a probability-based
algorithm to handle the occlusion problem, but it can not
handle small variations due to noise and illumination effects.
Also, it uses Canny edge detection with a search window of
a certain size to detect head. Chiverton et al. [13] used edge
histogram based features intending to detect motorcyclists.
The strength of this method is that it performs well even
if there is low-intensity light or low illumination in videos
due to the use of edge histograms near the head instead of
detecting the features in the head region. Since the edge
histograms used circular Hough transforms to compare and
classify helmets, it leads to a lot of misclassifications among
motorcyclists with a helmet because the objects look like
helmet can be categorized as a helmet. Also, helmets of
different types may not be classified as helmets. Silva et
al. [14], [16] proposed a system to cope with the misclassi-
fication problem in which vehicles are tracked using Kalman
filter. A significant advantage of the Kalman tracking system
is the ability to continue to track objects even if they are
slightly occluded. But when there are more than two or
three motorcyclists appear in the same frame, Kalman filter
fails because Kalman filter mostly works well for linear state
transitions. But to track multiple objects, we need non-linear
functions.

Recently, Dahiya et al. [8] proposed a system which
first uses the Gaussian mixture model to detect moving
objects. This model is robust to slight variations in the
background. It uses two classifiers in serial, one for the
separating motorcyclist from moving objects and another for
separating without-helmet riders from the with-helmet riders.
However, it uses only hand engineered features such as
SIFT [25], HOG [26], LBP [27] along with kernel SVM [28]
in both classifications. Their approach was promising as
it performs well for the classification of motorcyclists and
non-motorcyclists but results in a low performance for the
classification of the helmet and non-helmet riders under
harsh conditions. Singh et al. [9] proposed a visual big data
framework which scales the method in [8] to a city scale
surveillance network. Experimental results show that the
framework can detect a violator in less than 10 milliseconds.
The existing methods suffer from several challenges such as
(i) occlusion of objects, (ii) illumination effects, (iii) use of
ill-posed traditional representation, and (iv) the use of not

so efficient methods for the recognition of motorcyclists
and classification of violators (riders without helmet) vs.
followers (riders with helmet). For efficient detection of
motorcyclists without a helmet, we also need to have good
feature representation of the motorcyclists to classify them
accurately which is not possible using HOG [26] or LBP [27]
or SIFT [25] on images with fewer pixels. Above mentioned
issues inspired us to propose a novel method entirely based
on deep learning, which uses a CNN based object detector for
the detection of motorcyclists and a CNN classifier to extract
discriminatory features for further detection of motorcycle
rider driving without a helmet.

Since the problem of helmetless motorcyclists detection
falls into the category of object recognition, Dhaiya el al. [8]
and Vishnu et al. [10] use the Gaussian mixture model
(GMM) for object detection which is computationally fast,
but it is not able to detect many moving objects in dense
traffic scenarios. Several other methods for object detection
such as deformable part models (DPM) [29], R-CNN [30],
Fast R-CNN [31], and Faster R-CNN [32] are showing much-
improved performance concerning detection accuracy but
have significant computational overhead. In this work, we
use you only look once (YOLO) [33] to detect the motor-
cyclists in the incoming live video frames from a CCTV
camera. In YOLO, a single convolutional neural network
(CNN) predicts multiple bounding boxes simultaneously, in a
given image with their class probabilities. The full network
architecture of YOLO consists of 24 convolutional layers
and 2 fully connected layers where it formulates the task
of object detector as a single regression problem to avoid a
complex pipeline and make it incredibly fast on the modern
GPUs like Titan-X, P100, etc. However, it is not suitable for
the real-time detection on the limited-resource edge-devices
like Nvidia TX1/TX2, etc. which we are targeting for the
deployment of such a system. Hence, we design two CNN
models, namely, M-Net for the fast and efficient detection
of the motorcyclists on the Nvidia-TX1 and H-Net for the
efficient classification of the head and helmet.

III. DETECTION OF HELMETLESS MOTORCYCLISTS

The proposed framework for automatic detection of
motorcyclists driving without a helmet is given in the block
diagram as shown in Fig. 1. The entire framework consists of
four steps: (i) detection of motorcycles using a CNN based
object detector, (ii) localization of the upper body part of the
person riding the motorcycle, (iii) prediction using H-Net a
CNN classifier trained for binary classification of head and
helmets, and finally (iv) temporal consolidation of the alert to
generate more reliable alerts. The details of the methods used
in these steps are discussed in the following subsections.

A. M-Net: An efficient CNN model for motorcyclist detection

The first step of the proposed framework is the detection
of motorcyclists in the incoming live video stream. This
problem falls into the category of object detection. Exist-
ing methods for object detection such as YOLO [33] and
SSD [34] are showing much improved detection accuracy but
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Fig. 1: Block diagram of proposed framework for the detection of motorcyclists without Helmet. [Best viewed in color]

have significant computational overhead. Here, we present
M-Net, an efficient CNN based model for the detection of
the motorcyclists suitable for the real-time performance on
the resource-limited devices. The architecture of the M-Net
is derived from tiny-YOLO architecture. Since tiny-YOLO
requires a significant computational time and not as powerful
as full YOLO, a series of changes are made to improve the
accuracy and the speed of the M-Net. As our objective is to
detect motorcyclist only, we restrict M-Net to two classes,
namely, motorcyclist (i.e. motorcycle with person riding) and
others (i.e. cars, person, cycle, motorcycle with a person)
which resulted into less parameters in the last softmax layer
as well as bounding box regression. To increase the accuracy
of this network for motorcyclist detection, we re-trained it
from a large number of images from our dataset where the
ground trouth is generated from a full YOLO network. We
label a motorcyclist when scores for both the classes (i.e.
motorcycle and person) are above a threshold. After success-
ful training of the M-Net, we eliminate substantially similar
convolutional filters by using k-means clustering on convolu-
tional filters which results into reduced processing time. Let
W l = {w1,w2, ...,wm},wi ∈ Rd be the set of weights for
original convolutional filters in the lth convolutional layer.
During the filter elimination, the goal is to construct a new
set of k < m weights W̄ l = {w̄1, w̄2, ..., w̄k}, w̄i ∈ Rd with
a small discrepancy with W l i.e for most w ∈ W l, there is
a representative w̄ ∈ W̄ l such that the Euclidean distance
between w and w̄ is small. The average discrepancy loss of
W̄ l with respect to W l is defined as

L(W̄ l,W l) = E
[

min
1≤j≤k

‖W − w̄j‖2
]

=
1

m

m∑
i=1

min
1≤j≤k

‖wi − w̄j‖2, (1)

where ‖ · ‖ denotes Euclidean norm and the expectation is
over W drawn uniformly at random from W l.

In order to further accelerate the convolutional operations,
we ternarize the weights in the convolutional layers of the
finally trained network to ω ∈ {−1, 0,+1} as follows:

ω =


+1, if w̄i > Tmax,

−1, if w̄i < Tmin,

0, otherwise.

(2)

The parameters Tmax and Tmin along with a scaling factor
µ are determined using genetic algorithm by minimizing
the following objective function on a validation set X =

{x1, x1, · · ·, xn}:

min
ω

1

n

n∑
j=1

‖w̄T xj − µωT xj‖2. (3)

The ternarization of the weights accelerates the detection
because it reduces the number of multiplication operations
in convolutional layers. Also, the ternarization of the weights
results into the loss of accuracy in comparison to the original
network. However, we recover this loss by again fine-tuning
the last fully connected layer and the softmax layer.

In this way, we get the bounding boxes of all the bikes
present in the current frame. It can also detect multiple
motorcyclists in a video frame as shown in Figure 2.

Fig. 2: The multiple motorcycle detection in dense traffic.

B. Localization of the Rider’s Head

The output of the previous step is a set of bounding
boxes m-bbox for the motorcyclists. For each detection of
a motorcyclist, we again search for its rider (i.e., a person)
and if detected then extend its height slightly up words
to guarantee the complete coverage of the rider’s head.
The upper one-third part of this extended bounding box is
the final location for the rider’s head and the output will
be a bounding box bbox(x, y, w, h), where (x, y) are the
coordinates of the center of the bounding box and (w, h)
are the width and the height of the bounding box, where
all values are the ratio with respect to the size of full input
image.

C. Classification of Head and Helmet using CNN

The output of the previous step is a bbox(x, y, w, h)
locating the region of image consisting of the motorcyclist’s
upper body part as shown in Figure 3. The next task
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is to ensure whether the detected motorcyclist is wearing
a helmet or not. If the resulted faces are clearly visible
then one can easily detect violators by applying methods
such as Viola–Jones [35], HoG [26], SIFT [25], LBP [27],
DeepFace [36], VGG face CNN descriptor [37], Deep Head
Pose [38], etc. to classify them into face vs. non-face
categories. However, in spite of a good resolution camera,
the faces are not clearly visible due to the size of their
appearance while covering the entire road. This makes the
task of detection of violators non-trivial and thus all the
techniques as mentioned earlier fail to address this task. The
deep learning model like the convolutional neural network
can be applied to extract hidden information relevant for
discriminating the heads from the helmets. As mentioned
earlier, most relevant pre-trained deep model VGG16 is also
not able to solve this task due to unclear face appearance
and tiny images of the head/helmet. The other models have
a large number of parameters and thus unable to give a
real-time performance and require a significant number of
training samples. Also, the two large CNNs in Vishnu et
al. [10] increased their prediction time and may lead to
overfitting as they are trained from the scratch. To address
above mentioned issues, we design a simple, fast, and robust
convolutional neural network classifier which can be trained
from relatively small number of training examples. As we
know that the first few layers of the large CNNs extract
generic features and can be used for learning variety of
tasks thereafter. Thus, we leverage this fact and design a
tiny network on top of the activation filters received from
the output of an intermediate layer of the detector network.
Fig. 4 shows the architecture of the proposed CNN model
called H-Net used for the classification of motorcyclist with
helmet and without a helmet.

The input to H-Net is a tensor of size 28×28×192 which
is croped from the output of the second covolutional layer of
the detector network. Let bbox(x, y, w, h) be the bounding
box locating the head of a motorcyclist as computed in the
previous step and Ol(W ×H × C) is the output of the lth

convolutional layer, whereW,H, and C are the width, height,
and number of channels, respectively. Then the input I to the

Fig. 3: The sample images of the located motorcycle riders
with and without a Helmet of various shape and viewpoints.

CONV-ReLU
3x3x32
3x3x64
3x3x128

MAX_POOL
2x2-s2

128

FC SoftMax

22x22x128 11x11x128

28x28x192

Output:

Helmet

Head

Fig. 4: Architecture of the proposed network H-Net for head
vs. helmet classification. (s→stride)

H-Net is determined as

I = Ol

(
W · (x− w

2
) :W · (x+

w

2
),

H · (y − h

2
) : H · (y +

h

2
), 1 : C

)
,

I = resize(I, [28× 28× C]). (4)

H-Net consists of three convolutional layers with rectified
linear unit (ReLU) as activation, followed by one 2×2 max-
pooling layer, and one fully connected layer of 128 neurons.
Finally, the network uses a softmax layer with two classes.
The resulting activation of each layer is shown in Fig. 5.
It can be observed from the figure that the model gives
high activation values corresponds to the helmet while low
activation values corresponds to the head. Also, there is an
increase in the intensities of the activation values for the
deeper layers.

Fig. 5: The activations produced by the various layers of the
proposed CNN classifier after training. The top row shows
the activation for a rider with a helmet while the bottom row
indicates the activation for a rider without a helmet. [Best
viewed in color]

D. Temporal Consolidation of the Alerts:

From the previous phase, we obtain decision on each
individual frame whether it contains the violator(s) (motor-
cyclists without helmet) or not. As the proposed approach is
applied on continuous video stream, there are multiple alarms
raised for a single violator in multiple frames. However,
the correlation between continuous frames is completely
neglected in the detector module. Thus, we consolidated
the alerts generated from the detector module over the
continuous frames in order to generate less number of alerts
with increased reliability i.e. reducing the number of false
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Fig. 6: The architecture and user interface of the proposed edge computing-based framework for the detection of violators.

alerts. Let yi be the label for ith frame which is either +1
(i.e. at-least one violator is detected) or 0 (i.e. no violator
detected). Then for the n frames, the violation alarm is
triggered as

Alarm =

{
True, if 1

n

∑n
i=1 yi > Tf ,

False, otherwise,
(5)

where the threshold Tf is determined empirically. In our
case, the value of Tf = 0.6 and n = 5 are used.

IV. EDGE COMPUTING FRAMEWORK FOR TRAFFIC
MONITORING

In a city-scale surveillance scenario, the central computing
infrastructures are unable to perform in real-time due to large
network delay from video sensor to the central computing
server. For accurate and real-time detection of traffic viola-
tions and incidents in such a scenario, we propose an efficient
framework using edge computing for deploying large-scale
visual computing applications which reduces the latency and
the communication overhead in the camera network as shown
in Fig. 6a. The entire system architecture consists of three
parts, namely, compute node, central servers, and client in-
terface. The compute nodes are the embedded devices placed
in the close vicinity of the cameras at the sites. The detector
modules are placed on the computing nodes where they
process the live video footage from the cameras in real-time
without any delay and send their detected alerts to a central
alert database at the central server. As the central servers
have better computational resources, we further evaluate the
received alerts using a more reliable model. For example, in
helmetless motorcyclists detection, the tiny-YOLO is used
in the detector module at compute nodes with a relatively
low confidence score for the detection of violators and full
YOLO with a high confidence score is used at the server
for re-evaluation. This re-evaluation helps in the reduction
of false alarms. The end users can access the detected alerts
from the central alert database through a user interface as
shown in Fig. 6b.

V. EXPERIMENTS

The experiments are conducted on a machine run-
ning Ubuntu 16.04 Xenial Xerus having specifications In-
tel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz×48 processor,
128GB RAM with NVIDIA Corporation GK110GL [Tesla
K40c]×2 GPUs as central server and Nvidia Jetson TX1
as the compute node. The programs for helmet detection
are written in C & CUDA with the help of the various
libraries such as opencv for image processing and vision
tasks. For training deep models, we use darknet [39], an
open source neural network framework written in C and
CUDA. Darknet is fast, easy to install, and supports CPU
and GPU computation. The original camera images has
resolution 1920× 1080 pixels.

A. Datasets Used

The performance of the proposed approach is evaluated
on two video datasets IITH Helmet 1 and IITH Helmet 2
containing sparse traffic and dense traffic, respectively. Both
the datasets are collected by us because there is no public
dataset available till the date to the best of our knowledge.
The datasets are made public for future use by the research
community at https://www.iith.ac.in/vigil/resources.html. The
brief descriptions for both the datasets are as follows.

IITH Helmet 1: This dataset is collected from the surveil-
lance network at Indian Institute of Technology Hyderabad,
India (IITH) campus. It is a two-hour surveillance video data
collected at 30 frames per second. Fig. 7a presents sample
frames from the collected dataset. We have used the first
one hour of the video for training and the remaining for
testing purpose. The training video contains 42 motorcycles,
13 cars, and 40 humans. Whereas, the testing video contains
63 motorcycles, 25 cars, and 66 humans.

IITH Helmet 2: This second dataset is acquired from the
CCTV surveillance network of Hyderabad city in India. It
is a 1.5 hour video collected at 25 frames per second. The
sample frames from this dataset are presented in Fig. 7b. The
first half an hour of the video is used for training the model
and the remaining for testing purpose. The training video
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(a) IITH Helmet 1

(b) IITH Helmet 2

Fig. 7: Sample frames from datasets showing the various
difficulties like congestion, direction of motion, variety of
violations, occlusion, etc.

contains 1261 motorcyclists and 4960 non-motorcyclists.
Whereas, the testing video contains 2312 motorcycles, and
9112 non-motorcyclists.

B. Evaluation of Classification Accuracy

As explained in the section III-A, the M-Net is more robust
and reliable for accurate detection of the motorcyclists irre-
spective of variations in their appearance and environmental
condition as shown in Fig. 2. Also, it can detect multiple
motorcyclists in a single frame accurately even in dense
traffic. Additionally, these resulted detections correspond to
a higher confidence score of 0.75. Reducing the threshold
on confidence score would lead to more detections but may
increase the false detection. The proposed model successfully
detects all the motorcyclists in the case of sparse traffic as the
case in IITH Helmet 1 dataset while using a low threshold of
0.3 on the confidence score without a single false detection.
While the performance of motorcycle detection using GMM
as used in [8], [10] is ≈ 98% on IITH Helmet 1 dataset. Sim-
ilarly, on the dense traffic also like the case of IITH Helmet 2
dataset, it did not raise any false alarms even on a very low
threshold of 0.2. However, due to high occlusion of various
vehicles as well as the size of their appearance, it missed
certain motorcyclist. This problem occurs since the videos
collected in the dataset are unconstrained and the cameras
are not placed explicitly for such a task and thus can be
solved easily by putting the camera in an appropriate place.

However, the classification of the head vs. helmet is
challenging as shown in Fig. 10. Fig. 10a and Fig. 10c

depict the 2D visualization of the spread of the extracted train
and test samples from IITH Helmet 1 dataset, respectively.
Here, the pattern of the two classes, namely, head and
helmet are overlapping each other showing that the patterns
share high inter-class similarity along with intra-class dis-
similarities which makes the classification task more com-
plex. Thus, the performance of the previously used methods
GMM +HoG [8] achieved only 93.80% on IITH Helmet 1
dataset and while score a low performance of 57.78% on
IITH Helmet 2 dataset as shown in Table I. However, the
performance is improved slightly using CNN [10] which
achieved 98.63% on IITH Helmet 1 dataset and 87.11% on
IITH Helmet 2 dataset. However, the proposed deep CNN
model as explained in section III-C addresses this problem
more precisely in comparison to previously used methods.
Here, we present an extensive evaluation of the proposed
approach. In literature, the performance of the deep models
is justified from three observations, namely, 1) the value of
the loss function for train and validation sets during training
and their convergence, 2) the visualization of the feature
maps of intermediate layers, 3) the scatter plots of the final
representations.

The training behaviors on both IITH Helmet 1 and
IITH Helmet 2 datasets are shown in Fig. 8a and Fig. 8b,
respectively. Both the figures show the epoch-wise change
in the value of the loss function and the corresponding
classification accuracy of training and test sets. The loss
function used is categorical cross-entropy and the optimizer
used is adadelta. Due to the limited number of samples for
the training in the IITH Helmet 1 dataset, there are small
changes in the first few epochs though we applied regular-
ization and dropout to address this issue. After 15 epochs, it
rapidly optimizes the loss function, and the resulted training
reached close to zero, while corresponding classification
accuracy almost touched to 1 in less than 50 epochs.
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(b) IITH Helmet 2

Fig. 8: Classification accuracy and values of loss function at
each epoch for train and test sets while training H-Net.

It can be observed that the test set also follows the
structure learned by the model for the discrimination of the
two classes from training samples which also presented in
the test set. A classification accuracy of 98.70% is achieved
on test set. However, after 28 epochs, it starts deviating from
this behavior which we considered as the convergence point.
The lowest value of loss function and highest accuracy is
observed at 36th epoch. While the training on IITH Helmet 2
dataset starts optimizing the loss function from first epoch
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Fig. 9: Sample images and their respective activation maps
for the two classes, namely, helmet and head.

onwards and quickly converged within 7 epochs due to
the availability of relatively more number of samples than
IITH Helmet 1 dataset. In spite of substantial variation in
and across the two classes, the model is able to learn the
discriminate representation.

Additionally, the filters for various samples of both the
classes as shown in the Fig. 9 for IITH Helmet 1 dataset
reveal the success of the proposed model. The learned hidden
deep structures are of discriminating in nature as well as self-
explanatory. The feature maps across the various samples
of class helmet contain a consistently high activation values
for the pixels correspond to a helmet in the input images.
However, for the another class (i.e. head), this structure is
clearly different. As can be clearly shown from the two
figures that instead of the head region, it produces high
activation for the region corresponds to the shoulder.

The final observation is the transformation in the distri-
bution of the train and test datasets from the first input
image to the final deep representation (i.e. the output of
the last fully-connected layer of the trained CNN model).
Fig. 10 shows the scatter plots of the IITH Helmet 1 dataset
for top two principal components. The sub-figures (a) & (c)
show the original (input raw pixels) distributions for train
and test sets, respectively. Similarly, sub-figures (b) & (d)
show the distributions of the final deep representation for
train and test sets, respectively. It can be observed from the
scatter plots that the proposed model learns the distribution of
the two classes and transforms them into space where they
are easy to classify, and the learned weight of the model
also follows the same kind of distribution. Thus it can be
concluded that the model transforms a complicated and hard
to classify distribution of the two classes into a distribution
where the points from two categories are easy to identify.
This transformation results in a high classification accuracy
in comparisons to other approaches.

The comparison with the various recently proposed ap-
proaches on both the datasets are presented in the Table I.
The proposed system outperforms the existing methods
with a margin of 4.90%, 0.07% on IITH Helmet 1 and
36.38, 6.95% on IITH Helmet 2 datasets, respectively.

C. Evaluation of Space & Time Requirement

The proposed approach for the detection of the motor-
cyclist without a helmet can process a real-time stream at

(a) Original train dataset. (b) Final train dataset.

(c) Original test dataset. (d) Final test dataset.

Fig. 10: Scatter plots of IITH Helmet 1 dataset showing
distributions of the two classes, namely, helmet (green dots)
and head (red dots) in train and test datasets.

TABLE I: Performance (%) of the classification of ‘Helmet’
vs. ‘Without helmet’ using CNN

Method IITH Helmet 1 IITH Helmet 2
GMM+HOG+SVM [8] 93.80 57.78
GMM+CNN+CNN [10] 98.63 87.11
Proposed Approach: 98.70 94.16

a speed of 22 fps on Nvidia-TX1 and takes a total of
943MB space in device memory. The space requirement on
the device for weights of detector CNN model is 889MB
and an additional memory requirement of 54MB for in-
put, intermediate, and output variables. Similarly, the space
requirement on the device for weights of H-Net classifier
model is 8MB and an additional memory requirement of
1MB for input, intermediate, and output variables. Thus
the proposed framework is highly scalable for processing
multiple real-time cameras streams. Table II shows the space
and processing speed when processing multiple streams on
a single GPU card.

TABLE II: Space & Time requirements of the proposed
models.

Stream
Model Size Processing Speed

Detector Classifier Detector Classifier Joint
(MB) (MB) (ms) (ms) (fps)

1 943 9 40 5 22
2 997 10 59 7 15
3 1051 11 81 10 11
4 1105 12 148 18 6

VI. CONCLUSION

The proposed framework for real-time detection of mo-
torcyclists driving without helmets is able to perform in
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diverse surveillance conditions. The proposed framework
recognizes violators accurately as compared to the exist-
ing methods. Also, there is a significant reduction in the
number of false alarms because of the use of cascaded
CNNs. Even with such a high detection rate, our approach
processes incoming video stream in real-time because of the
elimination of the redundant filters from the convolutional
layers and ternarization of the weights which ultimately
reduces the number of floating point operation needed. The
placement of the detector modules in the vicinity of the
capturing devices in a edge-computing framework reduces
the communication overhead and solves the issue of network
latency. The experimental results show the efficacy of the
proposed approach.
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