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Local Decode and Update for Big
Data Compression

Shashank Vatedka , Member, IEEE, and Aslan Tchamkerten , Senior Member, IEEE

Abstract— This paper investigates data compression that simul-
taneously allows local decoding and local update. The main result
is a universal compression scheme for memoryless sources with
the following features. The rate can be made arbitrarily close to
the entropy of the underlying source, contiguous fragments of
the source can be recovered or updated by probing or modifying
a number of codeword bits that is on average linear in the
size of the fragment, and the overall encoding and decoding
complexity is quasilinear in the blocklength of the source.
In particular, the local decoding or update of a single message
symbol can be performed by probing or modifying on average
a constant number of codeword bits. This latter part improves
over previous best known results for which local decodability or
update efficiency grows logarithmically with blocklength.

Index Terms— Data compression, source coding, compression
algorithms, big data applications.

I. INTRODUCTION

RECENT articles [2]–[4] point to the mismatch between
the amount of generated data, notably genomic

data [5]–[7], and hardware and software solutions for cloud
storage. There is a growing need for space-optimal cloud
storage solutions that allow efficient remote interaction, as fre-
quent remote access and manipulation of a large dataset can
generate a large volume of internet traffic [8]–[10].

Consider for instance compressing and storing DNA
sequences in the cloud. If compression is handled via tra-
ditional methods, such as Ziv and Lempel [11], [12], then
to retrieve say a particular gene, typically a few tens of
thousands of base pairs, we need to decompress the entire
DNA sequence, about three billion base pairs. Similarly, the
update of a small fraction of the DNA sequence requires
to update the compressed data entirely. Solutions have been
proposed, typically using modifications of Lempel-Ziv and
variants, to address some of these issues (see e.g., [13]–[17]
and the references therein).
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In this paper we investigate lossless data compression with
both local decoding and local update properties. Accordingly,
consider a rate R compression of an i.i.d. ∼ pX sequence Xn.
Let d(s) denote the average (over the randomness in the source
Xn) number of bits of the codeword sequence that need to
be probed, possibly adaptively, to decode an arbitrary length
s contiguous substring of Xn. Similarly, let u(s) denote the
average number of codeword bits that need to be read and
written, possibly adaptively, in order to update an arbitrary
length s contiguous substring of Xn. Let dwc(s) denote the
number of codeword bits that need to be probed in the worst
case to recover an arbitrary length-s substring of the message,
and uwc(s) be the number of codeword bits that need to
be read and written in the worst case to update a length-s
message substring. The basic question addressed in this paper
is whether it is possible to design a compression scheme such
that the operations of local decoding and local update involve
a number of bits that is linear in the number of bits to be
retrieved or updated. Specifically, is it possible to design a
coding scheme such that, for any R larger than the entropy
H(pX),

(d(s), u(s)) = (O(s), O(s)) for every 1 ≤ s ≤ n ?

Surprisingly perhaps, the answer is positive. Given ε > 0,
we exhibit a compressor, a local decoder and a local updater
with the following properties:

1) The compressor achieves rate R = H(pX) + ε univer-
sally.

2) The local decoder achieves constant decodability

d(1) = α1

(
1
ε2

log
1
ε

)
for some constant α1 <∞ that only depends on pX .

3) The local updater achieves constant update efficiency

u(1) = α2

(
1
ε2

log
1
ε

)
for some constant α2 <∞ that only depends on pX .

4) For all s ≥ 3

d(s) < s · d(1)

and

u(s) < s · u(1).

0018-9448 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 10,2022 at 09:50:02 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2384-9392
https://orcid.org/0000-0001-5752-943X


VATEDKA AND TCHAMKERTEN: LOCAL DECODE AND UPDATE FOR BIG DATA COMPRESSION 5791

Moreover, if the source is non-dyadic then there exists
0 < α3 < ∞ independent of n, ε such that for all s >
α3/ε

2, we have

d(s) < s · d∗wc(1)

where d∗wc(1) denotes the minimum worst-case local
decodability that can be achieved by any compression
scheme having rate R ≤ H(pX) + ε.1

5) The compression scheme has an overall encoding and
decoding computational complexity that is quasilinear
in n.

While it still remains an open question as to whether even

(dwc(1), uwc(1)) = (Θ(1),Θ(1))

is achievable, we give a separate scheme that achieves
(O(log logn), O(log logn)) worst-case local decodability and
average update efficiency for any R larger than the entropy
H(pX) of the underlying source.

Related Works: Word-RAM, Cell-Probe and Bitprobe Models

There has been a lot of work related to local decoding of
compressed data structures; see, e.g., [18]–[23] and the refer-
ences therein. Most of these results hold under the word-RAM
model which assumes that operations (memory access, arith-
metic operations) on w-bit words take constant time. The word
size w is typically chosen to be equal to Θ(logn) bits. This
is motivated in part by on-chip type of applications where
data transfer happens through a common memory bus for
both data and addressing (hence w = Θ(logn) bits), and
partly by the fact that certain proof techniques work only when
w = Ω(log n).

In the word-RAM model it is possible to compress any
sequence to its empirical entropy and still be able to locally
decode any message symbol in constant time [18], [19].
In particular, [18] gives a multilevel encoding procedure which
inspired our first scheme—the difference will be discussed
later in Section IV-E. Another compression scheme is due to
Dutta et al. [24] which achieves compression lengths within
a (1 + ε) multiplicative factor of that of LZ78 while allowing
local decoding of individual symbols in O(log n+1/ε2) time
on average. Bille et al. [25] gave a scheme that allows one to
modify any grammar-based compressor (such as Lempel-Ziv)
to provide efficient local decodability under the word-RAM
model. Viola et al. [26] recently gave a scheme that achieves
near-optimal compression lengths for storing correlated data
while being able to locally decode any data symbol in constant
time. There is a long line of work, e.g., [27]–[30], on com-
pression schemes that allow efficient local recovery of length
m > 1 substrings of the message.

Concerning local update, Mäkinen and Navarro [31]
designed an entropy-achieving compression scheme that sup-
ports insertion and deletion of symbols in O(log n) time.
Successive works [32]–[34] gave improved compressors that

1That is, the local decompression of contiguous substrings of the message
can be performed more efficiently than repeated local decompression of the
individual bits.

support local decoding, updates, insertion and deletion of
individual symbols in O(log n/ log logn) time.

The word-RAM model takes into account both the
communication complexity (number of bits that need to
be probed/modified) and the computational complexity for
processing compressed strings. In certain applications (partic-
ularly when deriving lower bounds), it is common to consider
the cell-probe model where only the number of words that
need to be probed/modified is counted. The special case of
the cell-probe model with w = 1 refers to the so-called
bitprobe model [35]; complexity is measured by the number
of compressed bits that need to be read or written.

Under the bitprobe model, it is known that a single bit of
an n-length source sequence can be recovered by accessing
only a constant (in n) number of bits of the codeword
sequence [36]–[39]. Hence, manipulation at the bit level can
yield considerable savings in terms of the number of bits
exchanged (constant, as opposed to Θ(logn)) for local decode
and update.

However, the above mentioned works on the bitprobe model
typically assume that the source sequence is deterministic and
chosen from a set of allowed sequences, and the complexity
of local decoding or update is measured for the worst-case
allowed sequence.

The problem of locally decodable source coding of
random sequences has received attention very recently.
Makhdoumi et al. [40], [41] showed that any compressor with
dwc(1) = 2 cannot achieve a rate below the trivial rate
log |X |. Moreover, any linear source code that achieves
dwc(1) = Θ(1) necessarily operates at a trivial compression
rate (R = 1 for binary sources). Mazumdar et al. [42] gave a
fixed-blocklength entropy-achieving compression scheme that
permits local decoding of a single bit efficiently. For a target
rate of H(pX) + ε the decoding of a single bit requires to
probe dwc(1) = Θ(1

ε log 1
ε ) bits on the compressed codeword.

They also provided a converse result for non-dyadic sources:
dwc(1) = Ω(log(1/ε)) for any compression scheme that
achieves rate H(pX) + ε. Tatwawadi et al. [43] extended the
achievability result to Markov sources and provided a universal
scheme that achieves dwc(1) = Θ( 1

ε2 log 1
ε ). It should perhaps

be stressed that the papers [42], [43] only investigate local
decoding of a single bit and, in particular, they leave open
the question whether we can achieve d(s) < sd∗(1) for
s > 1. It should also be noted that the construction in these
papers make use of the bitvector compressor of Buhrman et
al. [36] which in turn is a nonexplicit construction based on
expander graphs. It is also unclear whether their encoding and
decoding procedures can be peformed with low (polynomial-
time) computational complexity.

All the above papers on the bit-probe model consider
fixed-length block coding. Variable-length source coding was
investigated by Pananjady and Courtade [44] who gave upper
and lower bounds on the achievable rate for the compression
of sparse sequences under local decodability constraints.

Update efficiency was studied in [45], which used
sparse-graph codes to design an entropy-achieving compres-
sion scheme for which an update to any single message bit
can be performed by modifying at most uwc(1) = Θ(1)

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 10,2022 at 09:50:02 UTC from IEEE Xplore.  Restrictions apply. 



5792 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 9, SEPTEMBER 2020

codeword bits. The authors remarked that their scheme cannot
simultaneously achieve dwc(1) = Θ(1) and uwc(1) = Θ(1).
Related to update efficiency is the notion of malleability [46],
[47], defined as the average fraction of codeword bits that
need to be modified when the message is updated by passing
through a discrete memoryless channel.

Also related is the notion of local encodability, defined to
be the maximum number of message symbols that influence
any codeword symbol. Note that this is different from update
efficiency, which is the number of codeword symbols that are
influenced by any message symbol. Mazumdar and Pal [48]
observed the equivalence of locally encodable source coding
with a problem of semisupervised clustering, and derived
upper and lower bounds on the local encodability.

Finally, locality has been well studied in the context of chan-
nel coding—see, e.g., [49]–[54] and the references therein.

An outline of this paper is as follows. In Section II,
we describe the model. In Section III, we present our
results which are based on two schemes. The first achieves
(d(1), u(1)) = (Θ(1),Θ(1)) and the second (dwc(1), u(1)) =
(O(log logn), O(log logn)). The description of these schemes
as well as the proof of the main results appear in Sections IV
and V. In Section VI, we provide a few concluding remarks.
Commonly used notation are listed in Table I (Appendices)
for easy reference. We end this section with notational con-
ventions.

Notation: We use the standard big-O notation (O(·), o(·),
Ω(·), ω(·), Θ(·)) for asymptotic growth [55]. All logarithms
are to the base 2. Curly braces denote sets, e.g., {a, b, c},
whereas parentheses are used to denote ordered lists, e.g.,
(a, b, c). The set {1, 2, . . . , n} is denoted by [n], whereas
for any positive integers i,m, we define i : i + m to be
{i, i+1, . . . , i+m}. The set of all finite-length binary strings
is denoted by {0, 1}∗.

Random variables are denoted by uppercase letters, e.g.,
X,Y . Vectors of length n are indicated by a superscript n,
e.g., xn, yn. The ith element of a vector xn is xi. Uppercase
letters with a superscript n indicate n-length random vectors,
e.g., Xn, Y n. A substring of a vector xn is represented as
xi+m

i
def= (xi, xi+1, . . . , xi+m).

Let X be a finite set. For any xn ∈ Xn, let p̂xn be the
empirical type of xn, i.e., p̂xn(a) def=

�n
i=1 1{xi=a}

n . We say
that xn is ε-typical with respect to a distribution pX if for all
a ∈ X , we have |p̂xn(a) − pX(a)| ≤ εpX(a). Let T n

ε denote
the set of all n-length sequences that are ε-typical with respect
to pX . We impose an ordering (which may be arbitrary) on
T n

ε . If xn ∈ T n
ε is the ith sequence in T n

ε according to the
order, then we say that the index of xn in T n

ε (denoted by
index(xn; T n

ε )) is i.

II. QUERYING AND UPDATING COMPRESSED DATA

The source is specified by a distribution pX over a finite
alphabet X . Unless otherwise mentioned, a source sequence
or a message refers to n i.i.d. realizations Xn of the source.

Definition II.1 (Compression Scheme): A rate R length n
compression scheme, denoted as (n,R) fixed-length compres-
sion scheme, is a pair of maps (ENC,DEC) consisting of

• an encoder ENC : Xn → {0, 1}nR, and
• a decoder DEC : {0, 1}nR → Xn.

The probability of error is the probability that codeword
ENC(Xn) is wrongly decoded, that is

Pe
def= Pr[DEC(ENC(Xn)) �= Xn].

The above DEC decoder is what we call the global decoder,
as opposed to a local decoder which we describe next.

A. Queries

Given a compression scheme, a local decoder is an algo-
rithm which takes (i, s) ∈ [n]2 as input, adaptively queries (a
small number of) bits of the compressed sequence CnR and
outputs X i+s−1

i .
Given s ∈ [n] and codeword cnR corresponding to source

sequence xn, let d(s)(i, xn) denote the number of symbols of
cnR that need to be queried by the local decoder in order to
decode xi+s−1

i without error. The average local decodability
of the code is defined as

d(s) def= max
i∈[n−s+1]

E[d(s)(i,Xn)],

where the average is taken over Xn and possibly any random-
ness in the query algorithm. Hence, if say d(3) = 20 then the
local decoder can recover any length 3 contiguous substring
of the source by probing on average 20 symbols from the
codeword sequence.

The worst-case local decodability is defined as

dwc(s)
def= max

i,xn
d(s)(i, xn).

B. Updates

Given i, s ∈ [n], suppose a subsequence xi+s−1
i of the

original sequence xn is updated to x̃i+s−1
i so that xn becomes

xi−1x̃i+s−1
i xn

i+s. A local updater is an algorithm which takes
(i, x̃i+s−1

i ) as input, probes (a small number of) bits of the
compressed sequence cnR, and modifies a small number of
bits of cnR such that the new codeword c̃nR corresponds to
the message xi−1x̃i+s−1

i xn
i+s. We assume here that the update

algorithm probes and modifies cnR given (i, x̃i+s−1
i ) only,

without prior knowledge of (xn, cnR).
Accordingly, let u(s)

rd (i, xn, x̃i+s−1
i ) and u(s)

wr (i, xn, x̃i+s−1
i )

denote the number of symbols of cnR that need to be read and
modified, respectively, and let

u
(s)
tot(i, x

n, x̃i+s−1
i )def= u

(s)
rd (i, xn, x̃i+s−1

i )+u(s)
wr (i, x

n, x̃i+s−1
i ).

The average update efficiency of the code is defined as

u(s) def= max
i∈[n−s+1]

E

[
u

(s)
tot(i,X

n, X̃ i+s−1
i )

]
where the update X̃ i+s−1

i is supposed to be independent of
the original sequence Xn but drawn from the same i.i.d.∼
pX distribution. Hence, updates do not modify the distribution
of the original message. The worst-case update efficiency is
defined as

uwc(s)
def= max

i,xn,x̃i+s−1
i

u
(s)
tot(i, x

n, x̃i+s−1
i ).
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This paper is concerned about the design of (n,H(pX)+ε)
compression schemes with vanishingly small probability of
error that allows the recovery and update of short fragments
(contiguous symbols) of the message using a small number of
bit reads/modifications of the compressed sequence.

III. MAIN RESULTS

A naive approach to achieve compression with locality is
to partition the message symbols into nonoverlapping blocks
of equal size b and compress each block separately with a
(b,H(pX) + ε) fixed-length compression scheme. The prob-
ability of error for each block can be made to go to zero as
2−Θ(b) (see, e.g., [56]). From the union bound, the overall
probability of error is at most (n/b)2−Θ(b). Hence, as long
as b = Ω(log n) we have Pe = o(1). Since the blocks are
encoded and decoded independently,

dwc(1) = uwc(1) = O(b) = O(log n)

where the constant in the order term does not depend on ε.
The overall computational complexity is at most (n/b)2Θ(b),
which is polynomial in n. Noticing that every subsequence
of length s > 1 is contained in at most 	s/b
 + 1 blocks,
we have:2

Theorem III.1 (Fixed-Length Neighborhood and Compres-
sion): For every ε > 0, the naive scheme achieves a
rate-locality triple of

(R, dwc(1), uwc(1)) = (H(pX) + ε,O(logn), O(log n)) .

Moreover, there exists β > 0 depending on pX and � such
that for all b ≥ β logn,

dwc(s) =

{
Θ(logn), if s ≤ b

Θ(s), if s > b

uwc(s) =

{
Θ(logn), if s ≤ b

Θ(s), if s > b

where all the order terms are independent of ε. The
overall computational complexity required for compres-
sion/decompression is polynomial in n.

It is easy to see that the above analysis is essentially
tight as the naive scheme achieves vanishingly small error
probabilities for overall compression and decompression only
if b = Ω(logn).

In the naive scheme, the recovery or update of a particular
symbol Xi involves an O(log n)-size neighborhood of that
symbol which is compressed by means of a fixed-length
compression scheme. We improve upon the locality of the
naive scheme through two compression schemes. In the first
scheme, the above neighborhood is of variable length and is
compressed using a fixed length block code. In the second

2In case b does not divide n, we can compress the last block of size
b + n − �n/b�b separately using a (b + n − �n/b�b, H(pX) + ε)-fixed
length compression scheme. The local decodability and update efficiency
would increase by a factor of less than 2, and therefore remain O(log n).
A similar argument can be made for all the multilevel schemes in the rest of
this paper and overall will only introduce an additional constant multiplicative
factor. For ease of exposition, we will conveniently assume in all our proofs
that the size of each block divides n.

scheme, the neighborhood is of fixed length as in the naive
scheme but is compressed using a variable length decoder.

In the first scheme the neighborhood of a particular symbol
Xi is defined essentially as the smallest contiguous subse-
quence of Xn, containing Xi, which is typical. To find this
smallest neighborhood, the algorithm proceeds iteratively by
considering larger and larger neighborhoods of Xi until it
finds a neighborhood that is typical. Local decoding and
local recovery of Xi are performed by decompressing and
recompressing this neighborhood. This scheme is formally
described in Section IV where we prove the following result:

Theorem III.2 (Variable-Length Neighborhood and Fixed
Length Compression): Fix ε > 0. There exists a scheme
which universally over i.i.d. sources with common known
finite alphabet achieves rate R = H(pX) + ε, and probability
of error Pe = 2−2Ω(

√
log n)

. The average local decodability and
update efficiency is

d(s) ≤
{
α1

1
ε2 log 1

ε if s ≤ α′′
1

(
1
ε2 log 1

ε

)
α′

1s if s > α′′
1

(
1
ε2 log 1

ε

) ,
u(s) ≤

{
α2

1
ε2 log 1

ε if s ≤ α′′
2

(
1
ε2 log 1

ε

)
α′

2s if s > α′′
2

(
1
ε2 log 1

ε

) ,
where the constants αi, α

′
i, α

′′
i , i = 1, 2, are always finite

and independent of n, ε but dependent on pX . Moreover, the
overall computational complexity of encoding and decoding
Xn is O(n log n). For 1 ≤ s ≤ n, the expected computational
complexity for local decoding or updating a fragment of size
s is Θ(s), where the proportionality constant depends only on
ε and pX .3

In the naive scheme, the local decodability dwc(s) is
Ω(logn) irrespectively of how small s is. Hence, the interest-
ing regime of Theorem III.2 is when s = o(logn) since local
decodability remains proportional to s (albeit with respect to
average local decodability).

Mazumdar et al. [42] proved that d∗wc(1) = Ω(log(1/ε)) for
non-dyadic sources.4 Hence, from Theorem III.2 we deduce a
regime where decoding a length s string bit-by-bit might be
suboptimal:

Corollary III.1: Suppose the source is non-dyadic. Then,
there exists a universal constant α < ∞ independent of
n, s, ε, pX such that the scheme of Theorem III.2 achieves
d(s) < sd∗wc(1) whenever s ≥ α/ε2.

Locality in Theorem III.2 is in the average case. A natural
question is whether the same performance can be achieved for
worst-case locality, i.e., whether we can obtain

(dwc(s), uwc(s)) = (O(s), O(s))

for s = o(log n).
While this question remains open we show that it is possible

to achieve

(dwc(s), u(s)) = (O(s), O(s))

3In comparison, the naive scheme requires computational complexity
Ω(log n) to locally decode or update even a single symbol.

4Recall that d∗wc(1) denotes the minimum worse-case local decodability that
can be achieved by any compression scheme having rate R ≤ H(pX) + ε.
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whenever s = Ω(log log(n)). This result is obtained by
means of our second scheme where we partition the message
symbols into nonoverlapping blocks and use a variable-length
compressor to encode each block. Using such a code raises
the problem of efficiently encoding the start and end locations
of each subcodeword. Indeed, were we to store an index
of the locations of each subcodeword, the index would take
approximately (n logn)/b additional bits of space since there
are n/b subcodewords. Hence, only to ensure that the rate
remains bounded would require b = Ω(logn), which would
further imply that dwc(1) and uwc(1) are Ω(log n). It turns
out that the location of individual subcodewords can be done
much more efficiently by means of a particular data structure
for subcodeword location as we show in Section V. The
performance of this second scheme is given in the following
theorem:

Theorem III.3 (Fixed-Length Neighborhood and
Variable-Length Compression): Fix ε > 0. There exists
a scheme which universally over i.i.d. sources with common
known finite alphabet achieves a rate-locality triple of

(R, dwc(1), u(1)) = (H(pX) + ε,O(log logn), O(log logn))

where order terms are independent of ε.
Moreover, for any s > 1,

dwc(s) ≤
{

2dwc(1) if s ≤ b1

s(H(pX) + ε) + 2dwc(1) otherwise,

and

u(s) ≤
{

2u(1) if s ≤ b1

2s(H(pX) + ε) + 2u(1) otherwise,

where b1 = O(log logn). The overall computational complex-
ity of encoding and decoding is polynomial in n.

Analogously to the derivation of Corollary III.1 we deduce
a regime where the bit-per-bit decoding of a string is less
efficient that its joint decoding:

Corollary III.2: Suppose the source is non-dyadic. Then,
there exists finite constant γ > 0 independent of n, s, ε, pX

such that the scheme of Theorem III.3 achieves dwc(s) <
sd∗wc(1) whenever s ≥ γ log logn.

Remark III.1: All our results extend to variable-length
codes with zero error with a small caveat. The update algo-
rithm needs to have access to the entire message and the update
efficiency must be redefined as the number of bits that need
to be written only—not counting the number of bits that need
to be read. See Appendix C-1 for details.

Discussion

Mazumdar et al. [42] gave a compression scheme that
achieves R = H(pX) + ε and dwc(1) = Θ(1

ε log 1
ε ). The

probability of error decays as 2−Θ(n). This scheme can be
slightly modified to also achieve uwc(1) = O(log n). Split
the message into blocks of O(log n) symbols each, and use
the scheme of Mazumdar et al. in each block. We can
choose the size of each block so that the overall probability
of error decays polynomially in n. Since each block of size
O(log n) is processed independently of the others, the overall

computational complexity (which may be exponential in the
size of each block) is only polynomial in n. This gives us the
following result:

Lemma III.1 (Corollary to [42]): For every ε > 0, a rate-
locality triple of

(R, dwc(1), uwc(1))=
(
H(pX) + ε,Θ

(
1
ε

log
1
ε

)
, O(log n)

)
is achievable with poly(n) overall encoding and decoding
complexity.

Although the above scheme has poly(n) computational
complexity, this could potentially be a high-degree polynomial.
Moreover, we do not know if it can achieve dwc(s) < sdwc(1)
for 1 < s = o(log n).

Montanari and Mossel [45] gave a compressor that achieves
update efficiency uwc(1) = Θ(1). The construction is based
on syndrome decoding using low-density parity-check codes.
Arguing as above we deduce the following lemma:

Lemma III.2 (Corollary to [45]): For every ε > 0, a rate-
locality triple of

(R, dwc(1), uwc(1)) = (H(pX) + ε,O(log n),Θ(1))

is achievable with poly(n) overall encoding and decoding
complexity.

The local decodability of the compressor in [45] cannot be
improved as it uses a linear encoder for the compression of
each block, and Makhdoumi et al. [41] showed that such a
compression scheme must satisfy dwc(1) = Ω(log(1/Pe)),
where Pe is the probability of decompression error of the
message. This implies that dwc(1) = Ω(log n) even if we want
a polynomially decaying probability of error. Hence, linearity
in the encoding impacts local decodability. Interestingly, they
also noted that no compression scheme with a linear decoder
can achieve nontrivial compression rates (R < log2 |X |)
irrespectively of dwc(1).

IV. PROOF OF THEOREM III.2

We now present our compression scheme which achieves
constant d(1) and constant u(1). We assume first that the
source distribution pX is known, as it is conceptually simpler.
The universal scenario is handled separately in Section IV-I.

A. Intuition

The main idea is to analyze the message sequence at
multiple levels, see Fig. 1. At the finest level (level-0), the
message is viewed as a concatenation of blocks of size
b0 = Θ(1). At any level � ≥ 1, the message is viewed as a
concatenation of n�-sized blocks, or “neighborhoods”, where
b0 < n1 < n2 < . . . < n. At the highest level, the message is
coarsely viewed as a single block of size n.

To each b0-sized block, we associate the smallest typical
neighborhood that contains it. For instance, in Fig. 1, the
smallest typical neighborhood of xb0(1) is xn1(1, 1) at level
1, while that of xb0 (2) is xb0(2) itself.

The scheme efficiently encodes the b0-sized neighborhoods
in an iterative fashion, starting from level 0, and then moving
to higher levels. At level �, we only encode the residual
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Fig. 1. Intution for the multilevel compression scheme in Section IV-B. We group together symbols to form larger neighborhoods. If we have an efficient
means to compress these neighborhoods, then we can locally decode a block by decompressing the smallest typical neighborhood of that block. Blocks colored
blue are typical, while the red (striped) blocks are atypical.

information of each neighborhood, i.e., that which is not
recoverable from the first �− 1 levels.

Local decoding/update of a symbol is performed by decom-
pressing/recompressing only the smallest typical neighborhood
that contains it. In particular, the local decoding of a symbol
is performed by successively answering the question “Is the
level-� neighborhood typical?” for � = 0, 1, . . . till we get a
positive answer.

At level �, we analyze neighborhoods of 2O(�2) symbols
each, and use a different ε� for typicality at each level (this
decays as 2−Θ(�)). This careful choice of parameters yields
constant expected local decodability and update efficiency.

The formal description of our scheme follows.

B. Iterative Residual Compression

Fix ε0 > 0. Choose5

n0 = b0 = 3(8 + log |X |)
(

max
a∈X

1
pX(a)

)(
1
ε20

log
1
ε0

)
,

and let

k0
def= 	(H(pX) + ε0)b0
.

For � ≥ 1, let

ε� = ε�−1/2,
b� = 4b�−1,

n� = b�n�−1,

and let �max be the largest � such that n� ≤ n.
Notice that �max = Θ(

√
logn).

The overall encoding/decoding involves a multilevel proce-
dure over �max levels. At each level, we generate a part of the
codeword and modify the input string in an entropy decreasing
manner until the string becomes a constant. The scheme uses
a special marker symbol, referred to as �, that is not in X .
This symbol will be used to denote that we have been able
to successfully compress a part of the message at an earlier
stage.

Definition IV.1 (� Blocks and Non-� Blocks): A vector vm

is said to be a �-block if vi = � for all i. It is called a non-�
block if there exists an i such that vi �= �.

5In fact, any choice of b0 greater than this will suffice to drive the probability
of error down to zero. However, a larger b0 will result in higher d, u.

Fig. 2. Illustrating the compression scheme for levels � ≥ 1 as described in
Definition IV.2. In this example, we have used b = 6 and ε = 1/2.

1) Level � = 0: partition xn into n/b0 blocks of length
b0 = n0 each. Let xn0(j) def= xjn0

(j−1)n0+1 denote the jth block
of the message symbols. Blocks at level � = 0 are processed
independently of each other. For each xn0(j), we generate a
codeword block ck0(j, 0) and possibly modify xn0(j):

• If xn0(j) is typical, then ck0(j, 0) is assigned the index
of xn0(j) in T n0

ε0
, else ck0(j, 0) = 0k0 .

• If xn0(j) is typical, then xn0(j, 0) is modified to a
diamond block �n0 and if xn0 (j) is not typical then
xn0(j, 0) is kept unchanged. The message sequence after
possible modifications of each block xn0(j, � = 0),
j = 1, 2, . . . is denoted by xn(� = 0).

For compression at higher levels, we make use of the
following code

Definition IV.2 (Code for Levels � ≥ 1): Fix any positive
integers b,m. Let X be a finite alphabet, and � be a symbol
such that � /∈ X . Let S ⊂ (X ∪ {�})mb be the set of all
sequences of the form ymb = (ym(1), ym(2), . . . , ym(b)) such
that ym(j) ∈ (X ∪{�})m and at least (1− ε)b fraction of the
ym(j)’s are � blocks.

For any sequence ymb ∈ S, let j1, j2, . . . , jk denote the
locations of the non-� blocks. Let eb = φ(ymb; b,m) be the
b-length indicator vector for the non-� blocks, i.e., the jth
element of φ(ymb; b,m) is 1 iff ymb(j) is a non-� block. Let

ψ(ymb; b,m, ε) def= (eb, ymb(j1), , . . . , ymb(jk), �m(εb−k)).

In other words, ψ consists of a header eb to locate the non-�
blocks, followed by a concatenation of all the non-� blocks.
The binary representation of ψ requires b+ εmb log(|X |+ 1)
bits. The mapping ψ is one-to-one on S. Both ψ and ψ−1 (for
any element in the range of ψ) can be computed using Θ(mb)
operations. An example is illustrated in Figure 2.
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Fig. 3. Illustrating the multilevel compression scheme. Red (striped) and blue blocks denote atypical and typical blocks respectively, while green blocks
denote nonzero codewords. For ease of illustration, we have used b� = 2b�−1.

2) Levels � ≥ 1: having generated codewords up to level
�− 1 and having modified the message if necessary, we form
groups of b� consecutive blocks from xn(� − 1) to obtain
blocks of size n� = b�n�−1. The jth block at level �, denoted
xn�(j, �), is therefore

(xn�−1((j − 1)b� + 1, �− 1), . . . , xn�−1(jb� + 1, �− 1)).

Similarly to level � = 0, for each of these blocks of size n�,
we generate a codeword and modify it if necessary:

• If xn�(j, �) is “typical,” i.e., has at least (1 − ε�)b�
�-blocks (of size n�−1), then we set the subcodeword
ck�(j, �) of length k� = b� + ε�n� log(|X | + 1) using
the scheme described in Definition IV.2.6 If this block is
“atypical,” i.e., has fewer than (1− ε�)b� many � blocks,
then ck�(j, �) = 0k� .

• If xn�(j, �) has at most ε�b� many non-�-blocks, then we
modify xn�(j, �) to a diamond block �n� . Otherwise, the
group is left untouched.

Hence, at each level the input sequence gets updated with more
and more �’s as larger and larger subsequences become typical.
As we show in Section IV-F, the entropy of the message keeps
decreasing till it becomes zero, once it becomes the all-�
sequence. Finally, the stored codeword is the concatenation
of codewords of all levels:

cnR = (ck0(1 : n/n0, 0), . . . , ck�max (1 : n/n�max, �max)).

Example IV.1 (Figure 3): An example of the encoding
process is illustrated in Figure 3 where the blue blocks refer
to typical blocks whereas the red blocks (with stripes) refer to
atypical blocks.

6One could use a more sophisticated scheme to get better performance.
However, we can get order-optimal (d, u) even with this very simple scheme.

At level 0, the subcodewords ck0(i, 0) are obtained using
typical set compression. The subcodeword ck0(i, 0) is zero if
the block is atypical, and nonzero (depicted in green in the
figure) if it is typical. We then modify the message, replacing
each typical level-0 block with �b0 .

For ease of illustration, we select b1 = 2 and ε1 = 1/2.
Hence the blocks are grouped in pairs to obtain xn1(i, 1),
1 ≤ i ≤ 8. A block xn1(i, 1) is typical if it contains at most
one non-� block of length n0. Therefore, only xn1(2, 1) and
xn1(7, 1) are atypical. These blocks are compressed to get the
level-1 codewords ck1(i, 1) for 1 ≤ i ≤ 8. As earlier, typical
blocks are encoded to nonzero codewords, while atypical
blocks are compressed to the zero codeword. Post compres-
sion, we again modify the message by replacing typical blocks
with �n1 .

The encoding process proceeds in an identical fashion for
level 2, where we have selected b2 = 4 and ε2 = 1/4.

C. Local Decoding

Suppose that we are interested in recovering the mth mes-
sage symbol xm, where m ∈ (j − 1)n0 : jn0.

• We probe ck0(j, 0). If the block xn0(j) is typical, then
we can directly recover xn0(j) from ck0(j, 0).

• If xn0(j) is not typical, we probe higher levels suc-
cessively till we reach the smallest level � for which
the block that includes xn0(j), which we denote as
xn�(q�(j), �), is a diamond �n�- block. This can be
determined by reading the first bi bits of cki(qi(j), i),
i = 1, 2, . . . , � since this corresponds to the indicator
vector of the non-� blocks at each level i ≤ �. If we can
recover xb0 (j) by probing up to the first � levels, then
we say that the jth block is encoded at the �th level.
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• Using this approach, we automatically recover the entire
block xb0(j)—not only an individual message symbol.
If we want to recover multiple message blocks, we repeat-
edly employ the same algorithm on each block.7

We revisit our earlier example to illustrate the local decoder.
Example IV.2 (Figure 3): Suppose that we are interested in

recovering xb0(2). The local decoder first probes ck0(2, 0).
Since this is a nonzero codeword, xb0 (2) can be obtained
by decompressing ck0(2, 0). In this process, the local decoder
probes k0 bits.

Suppose that we are instead interested in recovering xb0(3).
On probing ck0(3, 0), the local decoder obtains a zero code-
word. Next, it probes ck1(2, 1). This is also zero. Finally, the
local decoder probes ck2(1, 2) which is nonzero, and xb0(3)
can be obtained by decompressing this codeword. In this case,
the local decoder probes k0 + k1 + k2 bits.

D. Local Updating

The local updating rule is a little more involved. Assume
that the jth block xn0(j) is to be updated with x̃n0(j).

• If both xn0 (j) and x̃n0(j) are typical, only cn0(j, 0)
needs to be updated. Whether xn0(j) is typical or not
can be determined by reading ck0(j, 0).

• If both xn0(j) and x̃n0(j) are atypical, then we probe
higher levels till we reach the level � where xn0(j) is
encoded, and update ck0(q�(j), �).

• If xb0(j) is typical and x̃b0(j) is atypical, then we need
to update cb0(j, 0) and the blocks at higher levels. Due
to the atypicality, the number of non-� blocks for level 1
increases by 1, and hence c�1(q1(j), 1) must be updated.
If the number of non-� blocks now exceeds ε1b1, then
we would also need to update the codeword at level 2,
and so forth.

• If xb0(j) is atypical and x̃b0(j) is typical, then the number
of non-� blocks at each level might decrease by 1 (or 0).
If xb0(j) were encoded at level i, then we might need to
update the codeword blocks up to level i.

Let us illustrate the local updater in the context of our earlier
example.

Example IV.3 (Figure 3): Suppose that we want to replace
xb0(5) with x̃b0(5). The local updater first probes ck0(5, 0) to
conclude that xb0 (5) is encoded at level 0.

If x̃b0(5) is also typical, then only ck0(5, 0) needs to be
updated, and the rest of the codeword remains untouched. The
updater probes k0 bits and modifies k0 bits.

In case x̃b0(5) is atypical, then the local updater first sets
ck0(5, 0) to 0k0 . It then probes ck1(3, 1) and decompresses this
to recover xn1(3, 1). This block is updated with x̃b0(5), and
the new level 1 block x̃n1(3, 1) is typical. Therefore, ck1(3, 1)
is updated with the codeword corresponding to x̃n1(3, 1), and
the update process is terminated. In this scenario, the updater
probes k0 + k1 bits and modifies k0 + k1 bits.

7We can actually do much better than naively repeating the algorithm for
multiple blocks. However, for ease of exposition and proofs, we use the naive
algorithm.

E. Connections With Pătraşcu’s Compressed Data
Structure [18]

The above scheme is related to the earlier work of
Pătraşcu [18] where the author proposed an entropy-achieving
scheme that yields constant-time local decoding in the
word-RAM model.

The basic idea in [18] is the following. At level 0, split
the message into blocks of b0 symbols each, compress each
block using an entropy-achieving variable-length compression
scheme, and store a fixed number of the compressed bits of
each block. The remainder is called the “spill,” and is encoded
in higher levels. At level i ≥ 1, the spills from each block of
level i − 1 are grouped together to form larger blocks, and
compressed in a fashion similar to level 0. Reconstruction of
any block necessarily requires both the codeword at level-0 and
the spill. As a result, the local decoder of [18] must always
probe subcodewords of all levels, and the number of bitprobes
required to recover even one symbol is Ω(logn).

In our scheme on the other hand encoding is such that
the number of levels that the local decoder needs to probe
to retrieve one block depends on the realization of the source
message. In particular, the local decoder need not always probe
all levels—and indeed, probes only a small number of levels
with high probability.

Hence, in Pătraşcu’s scheme the information about a par-
ticular block is spread across multiple levels whereas in our
scheme this information is stored at a particular level that
depends on the realization of the message.

In the next section we establish Theorem III.2 assuming
the underlying source pX is known. Universality is handled
separately in Section IV-I.

F. Bounds on d(1) and u(1)

We now derive bounds on the average local decodability
and update efficiency. In the following, we will make use of
some preliminary results that are derived in Appendix A.

Lemma IV.1: If ε0 < 1/2, then

d(1) ≤ 2b0.

Proof: We can assume without loss of generality that we
want to recover X1.

If X1 is encoded at level i, then the local decoder probes∑i
i1=0 ki1 bits. Therefore,

E[d(1)(Xn, b0)]

≤ b0 +
�max∑
i=1

(
Pr[X1 is encoded at level i]

i∑
i1=0

ki1

)

≤ b0 +
�max∑
i=1

(
Pr[X1 is encoded at level i]

i∑
i1=0

ni1

)

≤ b0 +
�max∑
i=1

(
(i+ 1)niPr[X1 is encoded at level i]

)
.

(1)

Let δ(1)i→i+1 denote the conditional probability that xni(1, i) is
not the all-� block given that xni−1(1, i− 1) is not a �-block.
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Then,

Pr[X1 is encoded at level i] ≤ δ0→1

i−1∏
i1=1

δ
(1)
i1→i1+1

From Lemma A.3, specifically (9), we know that δ(1)i→i+1 ≤
εβ2i−1

i for i ≥ 1. The quantity β is defined in (5). Therefore,

Pr[X1 is encoded at level i] ≤ εβ2i−1

i . (2)

Since ni1 = bi1+1
0 2i1(i1+1), we have

(i+ 1)ni ≤ (i+ 1)bi+1
0 2i(i+1).

Using this and (2) in (1), we have

E[d(1)(Xn, b0)] ≤ b0 +
�max∑
i=1

(i+ 1)bi+1
0 2i(i+1)εβ2i−1

i . (3)

It is easy to show that (i + 1)bi+1
0 2i(i+1)εβ2i−1

i ≤ εi
0 for all

i ≥ 1 (see Lemma A.4 for a proof). Therefore,

d(1) = E[d(1)(Xn, b0)] ≤ b0 + ε0b0

dmax∑
i=1

εi
0 < 2b0

if ε0 < 1/2. This completes the proof.
Lemma IV.2: If ε0 < 1/2, then

u(1) ≤ 8b0.

Proof: The calculations are identical to those in
Lemma IV.1, so we will only highlight the main differences.
Again, we can assume that the first symbol needs to be
updated.

Suppose U b0(1) is the new realization of the message block
that needs to be updated. Let iold denote the level at which
Xb0(1) is encoded in the codeword for Xn, and let inew

be the level at which U b0(1) is encoded in the codeword
for U b0(1), X(b0)(2), . . . , Xb0(n/b0). The number of bits that
need to be read is upper bounded by

urd ≤ max{(iold + 1)niold , (inew + 1)ninew}
≤ (iold + 1)niold + (inew + 1)ninew .

Likewise, the number of bits that need to be written is

uwr ≤ max{(iold + 1)niold , (inew + 1)ninew}
≤ (iold + 1)niold + (inew + 1)ninew .

Since the U b0(i) is independent of everything else and does
not change the message distribution, uwc(1) is at most 4 times
the upper bound in (1). Using the calculations in the proof
of Lemma IV.1, the expected number of bits to be read and
written is at most 8b0.

G. Proof of Theorem III.2 Assuming That pX Is Known

1) Rate of the Code: Recall that ki is the length of a
subcodeword in the ith level. The achievable rate is given by

R =
1
n

�max∑
i=0

ki
n

ni
=

�max∑
i=0

ki

ni
.

We have k0 ≤ (H(pX)+ε0)b0. From Definition IV.2, we have

ki = bi + εini log(|X | + 1)

= ni

(
1

ni−1
+ εi log(|X | + 1)

)
≤ ni

( ε0
2i(i−1)

+
ε0
2i

log(|X | + 1)
)

≤ ni(1 + log(|X | + 1))
ε0
2i
.

Therefore,

R ≤ H(pX) + ε0 + (1 + log(|X | + 1))
dmax∑
i=1

ε0
2i

≤ H(pX) + ε0(2 + log(|X | + 1)).

Hence, the rate is H(pX) + Θ(ε0).
We show in Corollary A (See Appendix A) that the proba-

bility of error is upper bounded by 2−2O(
√

log n)
.

2) Average Local Decodability and Update Efficiency: In
Lemmas IV.1 and IV.2, we have established that d(1) and u(1)
are both Θ( 1

ε2
0

log 1
ε0

).
Any sequence of s consecutive message symbols is spread

over at most 	m/b0
+ 1 level-0 blocks. For any s ≤ b0, it is
clear that d(s) ≤ 2d(1). For s > b0,

d(s) ≤ (	s/b0
 + 1) 2b0 = α1s,

for some absolute constant α1 independent of ε0 and n.
Likewise,

u(s) = α2s.

for some α2 independent of n, ε0.
3) Computational Complexity: Since b0 is a constant inde-

pendent of n, the total complexity for encoding/decoding all
the codewords at level zero is Θ(n). From Definition IV.2,
the computational complexity of decoding a block at level i is
linear in ni, and there are n/ni blocks at level i. Since the total
number of levels �max is O(log n), the overall computational
complexity is O(n log n). A similar argument can be made
to show that the expected computational complexity for local
decoding/updating of a fragment of length s is Θ(s).

This completes the proof.

H. Variable-Length Source Code With Zero Error

Note that Theorem III.2 guarantees the existence of a
fixed-length source code with a vanishing probability of error.
However, in most applications, we want zero error source
codes. The scheme of Appendix C-1 allows us to modify
our code to give a locally decodable and update efficient
variable-length compressor.

After the modification in Appendix C-1, d(1) can increase
by no more than 1. If the probability of error Pe is o(1/n),
then the expected update efficiency also remains Θ

(
1
ε2 log 1

ε

)
.

If the original fixed-length code has rate H(pX)+ε and proba-
bility of error Pe, then the new code has rate (1−Pe)(H(pX)+
ε) + Pe, which asymptotically approaches H(pX) + ε if
Pe = o(1).
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I. Universal Compression Using Lempel-Ziv as a Subcode

We show that the performance by the coding scheme
described above can be achieved even if the source pX is
unknown to the encoder and local decoder/updater.

Let Ci denote the (ni, ki/ni) fixed-length compression
scheme at level i in Section IV-B. In Section IV-B, we chose C0

to be the typical set compressor. In this section, we will replace
this with a fixed-length compressor based on LZ78 [12].

We first redefine what it means for a sequence to be typical.
Definition IV.3: For any δ > 0 and b ∈ Z+, we say that

xb ∈ X b is δ-LZ typical with respect to pX if the length of the
LZ78 codeword corresponding to xb, denoted �LZ(xb), is less
than b(H(pX) + δ).

The above notion of typicality leads to a natural
computationally-efficent fixed-length compression scheme.

Definition IV.4 (Fixed-Length Compression Scheme Derived
From LZ78): Let T b

δ,LZ denote the set of all sequences that
are δ-LZ typical with respect to pX . Associated with this is
a natural (b,H(pX) + δ) fixed-length compression scheme
which we denote CLZ(b,H(pX), δ): For any xb ∈ X b, the
corresponding codeword in CLZ(b,H(pX), δ) is given by

yb(H(pX )+δ) ={
[1,ENCLZ(xb), 0b′ ] if �LZ(xb) < b(H(pX) + δ)
0b(H(pX )+δ) otherwise,

where b′ = b(H(pX)+ δ)− �LZ(xb), and ENCLZ denotes the
LZ78 encoder.

We can now describe the modifications required in the
scheme of Section IV-B in order to achieve universal com-
pression.

The Universal Compressor With Locality: The global
encoder uses the empirical estimate of pX to choose b0 and
k0, which are encoded in the first Θ(1) bits (the preamble)
of the compressed sequence8. The parameter ε0 can be fixed
beforehand, or otherwise stored in the preamble. The rest of
the codeword is generated as in Section IV-B but with C0 being
CLZ .

The following theorem summarizes the main result of this
section, and completes the proof of Theorem III.2. The proof
uses some technical lemmas that are formally proved in
Appendix B.

Theorem IV.1: Fix a small ε > 0. The coding scheme in
Section IV-B with C0 chosen to be CLZ achieves rate

R = H(pX) + ε,

probability of error

Pr[DEC(ENC(Xn)) �= Xn] = 2−2Ω(
√

log n)
,

and average local decodability and update efficiency

d(s) ≤
{
α1

1
ε2 log 1

ε if s = O
(

1
ε2 log 1

ε

)
α′

1s if s = Ω
(

1
ε2 log 1

ε

) ,
u(s) ≤

{
α2

1
ε2 log 1

ε if s = O
(

1
ε2 log 1

ε

)
α′

2s if s = Ω
(

1
ε2 log 1

ε

) ,
8One way to store b0 (resp. k0) is by 1b00kb−b0 (resp. 1k00kb−k0 ) for a

large enough predetermined value of kb = o(n).

where α1, α
′
1, α2, α

′
2 are finite constants independent of n, ε

but dependent on pX .
The overall computational complexity of encoding and

decoding Xn is O(n log n).
Proof: We set k0 = b0(H(pX) + ξ(ε0, b0)), where

ξ(ε0, b0) :=
(

2 + max
a∈X

log
1

pX(a)

)
ε0 +

c log log b0
log b0

.

In the above, c denotes the constant that appears in
Lemma B.1. Clearly, k0 = b0(H(pX) − Θ(ε0)). At level
0, we use C0 = CLZ(b0, H(pX), ξ(ε0, b0)). The rest of the
compression scheme is exactly as in Section IV. From our
choice of parameters and Lemma B.1, it is easy to see that
�LZ(xb0 (j)) ≤ k0−1 as long as xb0(j) ∈ T b0

ε0
. Therefore, the

calculations in the proof of Theorem III.2 can be invoked to
complete the proof.

The rate is H(pX)+Θ(ε0), while d(s) and u(s) are (up to
constants depending only on pX ) the same as in Theorem III.2.

V. PROOF OF THEOREM III.3

We now describe our algorithm which achieves worst-
case local decodability and average update efficiency of
O(log logn). The basic idea is the following: We partition
the message symbols into blocks of O(log log n) symbols
each, and compress each block using a simple variable-length
compression scheme. To locate the codeword corresponding
to each block, we separately store a data structure that takes
o(n) space. This data structure allows us to efficiently query
certain functions of the message.

For ease of exposition, we assume that pX is known.
Universality can be achieved by replacing the typical set
compressor in our scheme with a universal compressor such
as LZ78 (as we did in Section IV-I).

Definition V.1 (Rank): Let zm denote an m-length binary
sequence. For any i ∈ [m], the rank, RNKi(zm) denotes the
number of 1’s in (or the Hamming weight of) zi

1.
Our construction for efficient local decoding and updates

is based on the existence of compressed data structures that
allow query-efficient computation of rank. Let h(·) denote the
binary entropy function.

Lemma V.1 ([33]): Let m be a sufficiently large integer,
and fix 0 < α < 1/2. Then, there exists a mapping f

(α)
sc :

{0, 1}m → {0, 1}m(h(α)+o(1)) such that for every xm ∈
{0, 1}m with Hamming weight at most αm,

• xm can be recovered uniquely from f
(α)
sc (xm)

• For every 1 ≤ i ≤ m, the rank RNKi(xm) can be
computed by probing at most O(logm) bits of f (α)

sc (xm)
in the worst case.

The above scheme works by partitioning the the sparse
vector into chunks of size O(log2 n) each, and using a
two-level data structure. Level 1 stores the cumulative number
of occurrences of 1’s in each chunk, while Level 2 can be a
simple data structure that allows efficient computation of rank
locally within the chunk. We would like to point out that for
the data structure in [33], the amortized number of bits of
fsc that need to be modified for updating a single symbol
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is O(log2m/ log logm). To simplify exposition, we do not
make use of this property in the proof of Theorem III.3, and
using this seems to merely improve uwc(s) by a constant
multiplicative factor.

1) Encoding: We partition the source sequence xn

into blocks of b0 = O(log n) symbols each: xn =
(xb0(1), . . . , xb0(n/b0)). We further subdivide each block into
subblocks of b1 symbols each, i.e., xb0(i) is partitioned
into (xb1(i, 1), . . . , xb1(i, b0/b1)). The symbols xb0(i)’s are
encoded independently of each other using a fixed length
code which has a vanishingly small probability of error. The
codeword for each block consists of two parts:

• A concatenation of b0/b1 variable-length subcodewords,
one for each subblock, and

• A data structure for a sequence of b0/b1 indicator bits,
one for each subblock. This data structure can answer
rank queries using O(log b1) bitprobes, and helps in
locating the starting point of the subcodeword for each
subblock.

Let us elaborate further.

• Corresponding to every xb1(i, j), we generate subcode-
words ylij (i, j), where lij is the length of the subcode-
word for the (i, j)th subblock. The encoding is as follows

ylij (i, j) =

{
index(xb1(i, j); T b1

ε0
) if xb1(i, j) ∈ T b1

ε0

xb1(i, j) otherwise.

Observe that the above is not a fixed-length code. The
length of the (i, j)th codeword lij is equal to log |T b1

ε0
| if

xb1(i, j) is typical and b1 otherwise. Additionally, let

ξ(i, j) =

{
0 if xb1(i, j) ∈ T b1

ε0

1 otherwise.

be an indicator of whether the (i, j)th block xb1(i, j)
is atypical. Let ξb0/b1(i) = (ξ(i, 1), . . . ξ(i, b0/b1)) and
define

z�z(i) def={
f

(ε1)
sc (ξb0/b1(i)) if ξb0/b1 has Hamming wt at most ε0b0

b1

0� otherwise,

where fsc is the compressed data structure in Lemma V.1.
Let �y

def= (1 − 2ε0)(H(pX) + ε)b0 + 2ε0b0 log |X | and
l′i = �y −

∑
j lij

y�y(i) def={
(yli1(i, 1), . . . , ylib0/b1 (i, b0

b1
), 0l′i) if

∑
j lij ≤ �y

0�y otherwise.

The second case would correspond to an error.
• The codeword c�c(i) corresponding to xb0 (i) is a

sequence of length �c = �y + �z , and is equal to the
concatenation of z�z(i) and y�y(i).

Example V.1 (Figure 4): Consider the encoding of each
b0-length block as illustrated in Figure 4. In this exam-
ple, b0/b1 = 7. Subblocks 4, 5, 7 are atypical. Therefore,
ylij (i, j) = xb1(i, j) and lij = n1 for j = 4, 5, 7.

The remaining subblocks are compressed using the typical set
compressor. The indicator vector ξ6(i) = [0001101], and is
compressed to get z�z(i) using the scheme in Lemma V.1. The
overall codeword for block i is the concatenation of z�z(i) and
ylij (i, j), 1 ≤ j ≤ 7.

2) Local Decoding of a Subblock: Our scheme allows us to
locally decode an entire b1-length subblock and local recovery
of a single symbol is performed by locally decoding the
subblock containing it.

Suppose that we want to locally decode xb1(i, j). Our local
decoder works as follows:

• Compute natyp, the number of atypical subblocks in
the first j subblocks of the ith block. This is equal
to RNKj(ξb0/b1(i)) and can be obtained by probing
O(log(b0/b1)) bits of z�z(i).

• Compute ξ(i, j) from z�z(i). This could be recov-
ered by first decoding RNKj+1(ξb0/b1(i)) and subtracting
RNKj(ξb0/b1(i)) from this. This tells us whether the block
we we want to decode is atypical.

• Given the above information, it is easy to decode
the (i, j)th block. Let k1 = natypb1 + (j − 1 −
natyp)b1(H(pX + ε0)).

ŷ�ij (i, j) =

{
y

k1+b1(H(pX+ε0)
k1

if ξ(i, j) = 0
yk1+b1

k1
otherwise.

The estimate of the message block xb1(i, j) is obtained
by decompressing ŷ�ij (i, j).

Let us revisit the previous example.
Example V.2 (Figure 4): Figure 4. Suppose that we are

interested in recovering xn1(i, 5).
The local decoder first finds RNK4(z�z(i)) = 1 and

RNK5(z�z(i)) = 2 using the probing scheme in Lemma V.1.
This reveals that xn1 (i, 5) is atypical, and one out of four
subblocks prior to xn1(i, 5) is atypical. The starting location
of xn1(i, 5) in y�i(i) is m

def= 3n1(H(pX) + ε) + n1 + 1. The
desired block is recoverable from ym+n1−1

m (i).
3) Update Algorithm: We consider update of xb1(i, j) with

a new symbol denoted x̃b1 . Let

ỹ� =

{
(index(x̃b1); T b1

ε0
) if x̃b1 ∈ T b1

ε0

x̃b1 otherwise.

The update algorithm works as follows:
• Compute natyp and xb1 (i, j) by running the local decod-

ing algorithm above.
• If both x̃b1 and xb1(i, j) are typical (or both atypical),

then updating the codeword is trivial as it only requires
replacing y�ij (i, j) with ỹ�. In this case, only O(log b0)
bits need to be read and written in order to update the
codeword.

• If only one of x̃b1 and xb1(i, j) is typical, then the entire
code block c�c(i) is rewritten with the encoding of

x̃b0 def= (xb1 (i, 1), . . . , x̃b1 , . . . , xb1(i, b0/b1)).

In this case, a total of O(b0) bits need to be read and
modified to effect the update.
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Fig. 4. Compression of each block as described in Section V-1. Typical subblocks are compressed to ≈ b1H(pX) bits, while atypical subblocks are stored
without compression. The address of yli (i) on disk can be easily computed using rank and select operations on ξb0/b1(i).

A. Proof of Theorem III.3

We choose b0 = c0 logn and b1 = c1 log logn, where c0
and c1 are constants that need to be chosen appropriately.
The probability that a subblock is atypical is p0 = 2−Θ(ε2

0b1).
We choose c1 so that this probability is at most 1/ log2 n.
Recall that a b0-block is in error if more than 2ε0 fraction of
the subblocks are atypical. Using Chernoff bound, this is at
most p1 = 2−Ω(b0/b1). We can choose c0 so as to ensure that
p1 is at most n−2. The probability that the overall codeword
is in error is at most np1 = o(1).

We therefore have a fixed-length compression scheme with
a vanishingly small probability of error. The worst-case local
decodability is dwc(1) = Θ(b1). Updating a subblock might
lead to a typical block becoming atypical (or vice versa).
Therefore, the average update efficiency is

u(1) = (1 − p1)Θ(b1) + p1Θ(b0) = O(log log n).

This gives the first part of the theorem.
Any s-length substring is contained in at most 	s/b1
 + 1

subblocks of size b1. We can therefore locally decode/update
any m-length substring by separately running the local decod-
ing/update algorithm for each of the 	s/b1
 + 1 subblocks.
Therefore,

dwc(s) ≤
(⌈

s

b1

⌉
+ 1
)
dwc(1)

≤
{

2dwc(1) if s ≤ b1

s(H(pX) + ε) + 2dwc(1) otherwise.

The calculation of uwc(s) proceeds identically. This completes
the proof of the second part of Theorem III.3.

VI. CONCLUDING REMARKS

In this paper, we gave an explicit, computationally efficient
entropy-achieving scheme that achieves constant average local
decodability and update efficiency. Our scheme also allows

efficient local decoding and update of contiguous substrings.
For s = Ω(1/ε2), both d(s) and u(s) grow as Θ(s), where
the implied constant is independent of n and ε.

It still remains an open problem as to whether
(dwc(1), uwc(1)) = (Θ(1),Θ(1)) is achievable. We described
a scheme with (dwc(1), u(1)) = (O(log logn), O(log logn)).
In a recent work [57], we show that (dwc(1), uwc(1)) =
(O(log logn), O(log logn)) is achievable. Further improve-
ments to this result would be interesting.

The careful reader might have noticed that the probability
of local decoding is nonzero, but less than or equal to the
probability of global decoding, i.e., Pr[X̂i �= Xi] ≤ Pr[X̂n �=
Xn]. This is because the local decoder outputs the correct
value of Xi if Xn can be recovered from CnR. While [42],
[43] achieve dwc(1) = Θ(1), the probability of local decoding
is nonzero but vanishing in n. Indeed, if we have a compressor
that achieves zero error probability of local decoding of any
single symbol, then this implies that the probability of error
of global decoding is also zero (since we can run the local
decoder to recover each of the n symbols).

It is worth pointing out that the probability of error of
local decoding can influence dwc(s) significantly. While our
scheme achieves d(1) = u(1) = Θ(1), we can only guarantee
dwc(1) = uwc(1) = O(n). However, if we can tolerate a
higher probability of error of local decoding (without com-
promising on the probability of error of global decoding),
then we can achieve a smaller dwc(1), as it suffices to have
the local decoder only probe the first few levels. Specifically,
if we desire Pr[X̂i �= Xi] ≤ ρ for all 1 ≤ i ≤ n and
some ρ > 0, then using Lemma A.2, we can guarantee9

dwc(1) = 2O(log2(1/ρ)). In particular, if ρ = Θ(1), then we
can achieve (dwc(1), u(1)) = (Θ(1),Θ(1)).

Although we did not optimize the hidden constants in
Theorem III.2, the dependence of d(s), u(s) on ε cannot
be significantly improved by using tighter bounds. This is

9We do not explicitly mention the dependency on ε0 here.
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because we used a lossless compression scheme at level 0,
and we require b0 = Ω( 1

ε2 log 1
ε ) to guarantee concentration.

Mazumdar et al. [42] used a slightly different approach, and
gave a two-level construction with a lossy source code at
the zeroth level. This allowed them to achieve dwc(1) =
Θ(1

ε log 1
ε ). Finding the right dependence of (dwc(1), uwc(1))

or (d(1), u(1)) on ε is an interesting open question.
A closely related form of message update is symbol inser-

tion/deletion. This appears harder than our model for updates
since inserting/deleting symbols changes the length of the
message. This has been solved in the word-RAM model, for
e.g., [58] gives an entropy-achieving compressor that handles
local decoding, rank, select, insert and delete in O(log n) time.
Obtaining a similar result in the bitprobe model seems to be
an interesting open question.
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APPENDIX A
PRELIMINARY LEMMAS FOR THE PROOF OF THEOREM

III.2

Lemma A.1: Let Xb be a b-length i.i.d. sequence where the
components are drawn according to pX . For any positive α,
and 0 < ε < 1/2, if

b ≥ 3(α+ log |X |)
(

max
a∈X

1
pX(a)

)(
1
ε2

log
1
ε

)
,

then
Pr[Xb /∈ T b

ε ] ≤ εα.

Moreover,
|T b

ε | ≤ 2b(H(pX )+ε).

Proof: The first part can be easily derived using Chernoff
and union bounds. The second part is a standard property of
typical sets. See, e.g., the book by El Gamal and Kim [59] for
a proof.

Lemma A.2: Let δi−1→i denote the probability that the
message block from level i−1, say xni−1(j, i−1), is not the
all-� block. If ε0 < 1/2 and

b0 ≥ 3(8 + log |X |)
(

max
a∈X

1
pX(a)

)(
1
ε20

log
1
ε0

)
,

Then for all i ≥ 0,
δi→i+1 ≤ εβ2i

i , (4)

where

β = 3(8 + log |X |)
(

max
a∈X

1
pX(a)

)(
1
ε0

log
1
ε0

)
(5)

This implies that
δi→i+1 ≤ ε4i+1. (6)

Proof: Recall that a message block from level i is not a
�-block only if there are more than εibi non-�-blocks from
level i − 1. We can use Lemma A.1 to deduce that the

probability of a block at level 0 being atypical is at most ε80.
Therefore,

δ0→1 ≤
(
b0
ε0b0

)
ε8ε0b0
0

≤
(
eε70
)ε0b0

< εβ
0 ,

as we claimed. For i ≥ 1, we have

δi→i+1 ≤
(
bi
εibi

)
δεibi

i−1→i

≤
(
e
δi−1→i

εi

)εibi

. (7)

If δi−1→i ≤ εβ2i−1

i−1 , then

δi→i+1 ≤ εεibi

i (8)

However,

εibi = ε02−ib022i ≤ β2i.

Using the lower bound for b0 in the above equation and
substituting in (8) gives us (4). Inequality (6) follows from (4)
by observing that ε0 < 1/2.

The probability of error therefore decays quasiexponentially
in n as described by the following corollary.

Corollary A.1: Suppose we use the parameters as defined in
Lemma A.2, and choose bi = 22ib0 and εi = ε0/2i. Then, the
probability that the encoder makes an error, i.e., that the mes-
sage is not compressed within �max levels, is 2−Ω(�max2�max ).
If the number of levels is Θ(

√
logn), then this is 2−2Ω(

√
log n)

.
The following lemma will be used to compute the average

local decodability and update efficiency.
Lemma A.3: Let δ(1)i→i+1 be the conditional probability that

the message block from level i, say xni(1, i) is not the
all-� block given that a fixed block from level i − 1, say
xni−1(1, i− 1), is not a �-block. If ε0 < 1/2 and

b0 ≥ 3(8 + log |X |)
(

max
a∈X

1
pX(a)

)(
1
ε20

log
1
ε0

)
.

Then,
δ
(1)
i→i+1 ≤ εβ2i−1

i , (9)

where β = 3(8+ log |X |)
(
maxa∈X 1

pX(a)

)(
1
ε0

log 1
ε0

)
. This

implies that
δ
(1)
i→i+1 ≤ ε4i+1. (10)

Proof: The proof is almost identical to that of
Lemma A.2, so we only sketch the details. Since

δ
(1)
0→1 ≤

(
b0 − 1
ε0b0 − 1

)
ε8ε0b0−1
0 ,

we can obtain the following

δ
(1)
0→1 ≤

(
b0 − 1
ε0b0 − 1

eε80

)ε0b0−1

≤
(
2eε70

)ε0b0−1

≤ ε
β/2
0 ,
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TABLE I

COMMONLY USED NOTATION

where in the last step, we have used the fact that ε0 < 1/2.
For i ≥ 1, we have

δ
(1)
i→i+1 ≤

(
bi − 1
εibi − 1

)(
δ
(1)
i−1→i

)εibi−1

≤
(

2e
δ
(1)
i−1→i

εi

)εibi−1

. (11)

If δ(1)i−1→i ≤ εβ2i−2

i−1 , then

δ
(1)
i→i+1 ≤ εεibi−1

i (12)

However,

εibi − 1 = ε02−ib022i − 1 ≤ β2i−1.

Using this in the above gives our result.
The following result will be useful when bounding the

average local decodability in Lemma IV.1.
Lemma A.4: For all i ≥ 1 and b0 ≥ 3, we have

(i+ 1)bi+1
0 2i(i+1)εβ2i−1

i ≤ εi
0.

Proof: Let χ(i) def= (i+ 1)bi+1
0 2i(i+1)εβ2i−1

i for i ≥ 1.
Note that β, defined in (5), is equal to b0. Therefore,

χ(1) = 8b20
(ε0

2

)b0
< ε0,

where the last step holds for all b0 ≥ 10. For any i ≥ 2,

χ(i)
χ(i− 1)

=
(
i+ 1
i

)
b022i

(ε0
2i

)b0(2
i−1−2i−2)

≤
(
i+ 1
i

)
b022i

(ε0
2i

)2b0

≤ 2b0
(ε0

2i

)2b0

≤ ε0.

Therefore, ξ(i) ≤ εi
0.

APPENDIX B
PRELIMINARY LEMMAS FOR THE PROOF OF THEOREM IV.1

In order to compute bounds on the rate and expected
local decodability and update efficiency, we must find the
probability that the length of an LZ78 codeword exceeds a
certain amount. To help us with that, we have the following
lemma:

Lemma B.1 ([56]): Let X be a finite alphabet and b be a
positive integer. For any xb ∈ X b, let �LZ(xb) denote the
length of the LZ78 codeword for xb. For every k ∈ Z+,
we have

�LZ(xb) ≤ bHk(xb) +
ckb log log b

log b
,

where Hk(xb) denotes the kth order empirical entropy of the
sequence xb, and c is an absolute constant.

The above lemma says that the length of the LZ78 codeword
is close to the empirical entropy of the string. The following
lemma lets us conclude that if a sequence is typical, then the
empirical entropy is close to the true entropy.

Lemma B.2: Fix any two probability mass functions p, q on
X , and 0 < ε < 1/2. If |p(a) − q(a)| ≤ εp(a) for all a ∈ X ,
then

|H(p) −H(q)| ≤
(

2 + max
a∈X

log
1
p(a)

)
ε.

Proof: Consider

Δa := p(a) log p(a) − q(a) log q(a)
= p(a) log p(a) − q(a) log p(a) + q(a) log p(a)

− q(a) log q(a)

= (p(a) − q(a)) log p(a) − q(a) log
q(a)
p(a)
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However,

|H(p)−H(q)|≤
∑

a

|Δa|

≤
∑

a

(
|p(a)−q(a)| log

1
p(a)

+q(a)
∣∣∣∣log

q(a)
p(a)

∣∣∣∣)
≤εmax

a
log

1
p(a)

+ log
1

1 − ε
.

For ε < 1/2, we have log 1
1−ε ≤ 2ε. Using this in the above

completes the proof.

APPENDIX C
FIXED V/S VARIABLE-LENGTH COMPRESSION

We briefly show how to achieve zero-error data compression
and still achieve the performance stated in Theorems III.2
and III.3. This is obtained by using a variable length code
instead of a fixed-length code.

Definition C.1 (Variable-Length Compression): An (n,R)
variable-length compression scheme is a pair of maps
(ENC,DEC) consisting of

• an encoder ENC : Xn → {0, 1}∗, and
• a decoder DEC : {0, 1}∗ → Xn satisfying

DEC(ENC(Xn)) = Xn, ∀Xn ∈ Xn

For any Y l ∈ {0, 1}∗, let �(Y l) denote the length of the
sequence Y l. The quantity R is the rate of the code, and is
defined to be

R
def=

1
n

E[�(ENC(Xn))]

where the averaging is over the randomness in the source.
It is generally desired for a variable-length source code be

prefix free: For every distinct pair of inputs Xn, Y n ∈ Xn,
the codeword ENC(Xn) must not be a prefix of ENC(Y n).

1) Converting a Fixed-Length Compressor to a Prefix-Free
Variable-Length Compressor: Given any (n,R) fixed-length
compression scheme (ENCfix,DECfix) with a probability
of error Pe = o(1), it is easy to construct a prefix-free
(n,R+ o(1)) variable-length compressor (ENCvar,DECvar).
The following is one-such construction:

ENCvar(Xn) def={
(0,ENCfix(Xn)) if DECfix(ENCfix(Xn)) = Xn

(1, Xn) otherwise.

Clearly, the compressor is prefix free. The rate of
(ENCvar,DECvar) is equal to

Rvar = 1/n+R× (1 − Pe) + log |X | × Pe

= R+ o(1).

For all s ≥ 1, the local decodability of the new variable-length
scheme d(s), dwc(s) is at most 1 more than that of the original
fixed-length scheme, and the number of codeword bits that
need to be modified to update any message symbol can
increase by at most 2. Unlike the fixed-length scheme however,
the variable-length compressor requires the update algorithm
to have access to Xn entirely. Otherwise, there is no way to
know whether Xn is typical or not.
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