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Abstract— Which neural network architecture should be used
for my problem? This is a common question that is encountered
nowadays. Having searched a slew of papers that have been
published over the last few years in the cross domain of ma-
chine learning and wireless communications, the authors found
that several researchers working in this multi-disciplinary field
continue to have the same question. In this regard, we make an
attempt to provide a guide for choosing neural networks using an
example application from the field of wireless communications,
specifically we consider modulation classification. While deep
learning was used to address modulation classification quite
extensively using real world data, none of these papers give
intuition about the neural network architectures that must be
chosen to get good classification performance. During our study
and experiments, we realized that this simple example with
simple wireless channel models can be used as a reference to
understand how to choose the appropriate deep learning models,
specifically neural network models, based on the system model
for the problem under consideration. In this paper, we provide
numerical results to support the intuition that arises for various
cases.

Index Terms—Modulation, Classification, Deep Learning, Neu-
ral Networks, DNN, CNN, RNN, LSTM, Wireless, Communica-
tions, AWGN, Fading, ARMA

I. INTRODUCTION

Machine learning, especially deep learning, has now made
in-roads to many fields of engineering, economics, healthcare
etc [1]. Likewise, it is now being explored aggressively for a
variety of problems in wireless communications [2], [3]. The
field of wireless communications was traditionally addressed
using a model-based approach as the models of wireless
channels, transmission signals, etc. were well studied for a
long time using physical experiments and measurements. The
big question was whether machine learning and in particular
deep learning can add any value to this knowledge.

Some initial studies in the 2016-2017 time frame showed
that deep learning could indeed provide significant gains for
some problems in wireless communications such as modu-
lation classification [4], end-to-end transmitter-receiver design
[5], low complexity channel decoders [6], among others. Some
of the initial studies in this field borrowed ideas from the deep
learning advancements in the computer vision and natural lan-
guage/speech processing domains and directly applied some of
the well known architectures (such as ResNet [7], Imagenet

[8], Densenet [9]) to problems in wireless communications
[10]. Owing to this blind hit-and-trial method of application
of neural network architectures, there was not much intuition
as to why deep learning worked for these wireless communi-
cations problems and what kind of deep learning architectures
are most suitable for a specific system model. This remains
to be a question that is commonly asked even to date despite
a slew of works starting from 2016 [4], up until recently in
2020 [11].

In this paper, we address this basic question by consid-
ering a case study of modulation classification. Modulation
classification is defined as the process of determining the
modulation scheme of a noisy signal from a given set of
possible schemes. This belongs to a broader set of problems
normally termed as signal identification. This classification
process has many applications in wireless communications,
including in autonomous multi-mode and software-defined
radios. Blind modulation classification, i.e., without estimating
any parameters for the wireless channel or the underlying sig-
nal, has become quite popular especially with the advancement
of a variety of classification techniques, especially machine
learning techniques [12]. Note that in this paper, we focus on
deep learning techniques as they can be used to classify a large
set of modulation schemes as discussed in [4], as opposed to
simple feature-based traditional modulation classifiers.

While the modulation classification work has been studied
using advanced machine learning techniques, especially via
deep learning techniques in [4] and [13], there is no intuition
provided about the steps and directions to take for choosing a
specific deep learning model. We try to address this problem
using modulation classification as an example. Note that this
paper mainly focuses on the neutral network architectures and
not necessarily the hyperparameters that go with each of these
models. For this paper, we generated the datasets using Matlab.
We can extend this work using the intuitions gained from this
paper to any similar datasets available.

A. Experiment setup

The following is the setup for the experiments presented in
this paper. We generate several data vectors of in-phase and
quadrature component samples (i.e., baseband IQ samples) of
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length 100 for each modulation class, in this case QPSK, 16-
QAM, and 64-QAM. Channel and noise effects are added
appropriately to these data vectors to create the received
signal vectors of appropriate length (taking the channel length
into consideration). We pose this problem as a supervised
learning classification task, and therefore we label each of
these vectors with the appropriate label corresponding to its
modulation class. The training was done at 30dB SNR and
testing was done at various SNR values. In all experiments,
we started with basic architectures, such as single layer, with
10 nodes, and then started adding more layers and nodes until
the training accuracy reached 100%. These architectures will
be shown later in Tables I and II. The resulting architectures
are used for testing at various other SNR values. For all the
results in the paper, we used Keras libraries to implement
the various architectures, and Adam algorithm was used for
gradient descent optimization.

In what follows, we will use x to represent the transmit sig-
nal which has symbols from a specific modulation class such
as QPSK, 16-QAM, 64-QAM; n represents the additive zero
mean-unit variance-complex white Gaussian noise samples; h
is used to represent the complex fading channel coefficients
(such as Rayleigh fading) and finally y is used to represent
the received signal. The neural network classifier operates on
the received signal y to identify the modulation scheme. Each
sample x; € x belongs to the same modulation class and the
classifier must identify the modulation scheme of x given y.
In all this work, we assume perfect synchronization at the
baseband level and that the effects of pulse shaping have been
removed.

The rest of the paper is organized as follows. In Section II,
we first give some intuition about the neural network archi-
tectures from a signal processing perspective. Then, in Sec-
tions III-V, we discuss the modulation classification problem
in 3 different channel models, namely AWGN channel, multi-
path fading channel, and ARMA-based channel model. In each
section, we present the intuitively what networks must be
chosen based on the system model and then show numerical
results to support these observations. Finally, we conclude the
paper in Section VI.

II. INTUITION ABOUT NEURAL NETWORK
ARCHITECTURES

In most machine learning works, three architectures are
used, fully connected neural network (FCNN) or deep neu-
ral network (DNN) or multi-layer perceptron, convolutional
neural network (CNN), and recurrent neural network (RNN).

DNN is a feed-forward multi-layer neural network [14] with
full connections in all layers. In a DNN, all inputs are treated
to be independent of each other. Therefore, DNN architectures
are deemed to suit well for the cases when the input data is
independent and identically distributed.

CNN is a neural network with convolutional, pooling and
fully connected layers [14]. The convolutional and pooling
layers act as filters that give a representative feature from the
input samples. The operation can be understood as performing
an finite-impulse response filtering (FIR) filtering on the input
to the neural network where the filter is designed such that
the most striking parts of the data can be extracted. For the
case of the modulation classification, recollect that we need to
recover the input data in its true form to be able to classify.
Hence, if a CNN must be used for modulation classification,
it must be able to learn an FIR filter that operates on y to
recover X. The activation functions add non-linearity to the
system, therefore a CNN can be understood as an FIR filter
with some non-linearity.

The recurrent neural network architectures are ones where
connections between nodes form a directed graph. This allows
them to exhibit a temporal mapping over the inputs. This
is especially useful when past information can be used to
get a better understanding of the current information. These
networks can be understood as implementation of an infinite
impulse response filter (IIR) wherein the output of an IIR filter
depends not only on the inputs, but also on past outputs. The
activation functions at various stages in the network add non-
linearity to the system. Therefore, a RNN can be understood
as an IIR filter with some non-linearity. In this paper, we
implement the RNN using a popular architecture, namely
“Long short-term memory” network aka LSTM [14].

III. AWGN CHANNEL

In this section, we will discuss how to choose a neural
network for modulation classification when the following
system model is used

1

SR M
where SNR is the signal-to-noise-ratio in linear scale. In this
model, each sample y; € y,i = 1,2,...,length(y) is
independent and identically distributed (i.i.d.) as each sample
n; is ii.d. complex Gaussian distributed. Therefore, there is
no dependency among the samples of y;. In this case, as per
intuition, we can use every sample as a feature point and be
able to identify the modulation scheme of the incoming signal.
Based on this reasoning, a DNN-based architecture seems to
be enough for classifying the modulations. We now have to see
if this intuition indeed translates to performance. In this paper,
when we employ a DNN, the input dimension is 2 wherein
a single real value and the corresponding imaginary value is
fed as input to the network. DNNs consider the input nodes
independently. So, we split each 100 x 2 samples to 100 data
points of pairs of real and imaginary samples. For finding the
modulation scheme, the DNN gives us a modulation scheme
for each (I,Q) sample. We use the majority rule to decide the
modulation scheme of the entire 100 x 2 sample.

y=x+
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[ Architecture | Layers Nodes per Layer [ Input Dimensions | Output Dimensions
MLP 4 layers 128,64,32,3 2 3
CNN 2 convolution layers, 1 flattening, 2 dense | 64 filters (3*1), 16 filters (3%2),128,3 100%*2 3
LSTM 2 LSTM layers, 2 fully connected 128,128,32,3 100%*2 3

TABLE I: Various neural network architectures used for modulation classification in AWGN channel and multi-path fading
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Fig. 1: Modulation classification performance of architectures
in Table I in AWGN channel.

Apart from DNN, the various architectures we used for the
training and testing over the given dataset for understanding
the network architectures necessary for this system model,
are shown in Table 1. The performance is shown in Fig. 1.
From these results, it is seen that all architectures more or
less perform the same. We observed that as we increase the
hyperparameters (such as number of filters in case of CNN, or
number of layers) in each architecture, they will all perform
the same. This is because the data is quite benign and i.i.d.
Based on the intuition given earlier, it is clear that a DNN
is sufficient for good modulation classification performance
in the AWGN channel owing to the fact that there is no
correlation among the various samples in the input data vector.
Therefore a complicated convolution architecture, or recurrent
neural network architecture is not required for problems when
it is known that the samples are i.i.d.

IV. MULTI-PATH FADING CHANNEL

In this section, we will discuss how to choose a neural
network for modulation classification when the system model

is
1
= h —
y = conv(h,x) + 4/ SR ™

wherein conv(h,x) indicates the convolution operation be-
tween h and x. h is Rayleigh fading channel with L-taps
where L is unknown and E (|h|?) = 1. The classification is
done without the knowledge of the wireless channel which
is where the training procedure is useful. We assume for this
work that the channel remains the same across the training and

2

Test results after training at SNR=30dB (Channel length=3)
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Fig. 2: Modulation classification performance of architectures
in Table I for system model (2) with L = 3, as a function of
SNR.

testing datasets as the goal is to identify the type of neural-
networks that must be used with system model as (2).

Consider an example noiseless case with L = 2. Then we
have,

[yl,yz,...] = [hlxl,hlfﬂz"‘hgxh...], (3)
_ v 2 pihe
[.131,.2?2,...]— |:h17h1 h% :| (4)

The convolution operation is similar to performing a FIR-
filtering operation on the data x using the filter h. In order to
perform modulation classification, we need to recover the true
data x. From the above equations, it is obvious that to get x,
we need to perform an IIR-filtering type operation using the
base channel coefficients h = [hy, ha, .. .]. So, intuitively, we
need to perform the inverse operation of FIR filtering i.e.,
IIR filtering to recover x from y (of course the effect of
noise still remains). For this operation, looking at the available
neural network architectures, as per discussion in Section II
the recurrent neural network architecture fits well.

The details of the neural networks used for this system
model are shown in Table. L.

The performance of the various neural networks architec-
tures as a function of SNR and channel length L is shown in
Figs. 2, 3. From these results, it is clearly seen that LSTM-
based RNN architectures performed well for the considered
multi-path fading channel models. In our experiments, we
observed that DNN architecture performed well only when
L = 2 and for cases with L > 2, the DNN architecture
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[ Architecture | Layers Nodes per Layer [ Input Dimensions | Output Dimensions
MLP 4 layers 128,64,32,3 2 3
CNN 2 convolution layers, 1 flattening, 3 dense 64 filters (3*1), 16 filters (3*2),128,64,3 100%2 3
LSTM 2 LSTM layers, 2 fully connected 128,128,32,3 100%2 3
CLDNN 1 1D convolutional layer, 1 LSTM layer, 4 dense 64 filters (filter size=3),128,64,32,3 100%2 3

TABLE II: Various neural network architectures used for modulation classification in ARMA channel.

Test results after training at SNR=30dB (Channel length=4)
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Fig. 3: Modulation classification performance of architectures
in Table I for system model (2) with L = 4, as a function of
SNR.

did not perform well as they cannot capture the correlation
in the data vector y induced by the channel. Similarly, CNN-
based architectures which are similar to an FIR filter could not
remove the correlation (created by the FIR filtering operation
of the wireless channel) among the various samples to recover
x which explains their poor performance. We also found that
CNN architectures were sensitive to the channel length and
their architecture had to be changed according to the channel
length as the filters and the number of layers in the network
must be capable of learning the correlation in the dataset.
However, the LSTM architecture worked irrespective of the
channel length as it can very well utilize its reverse side con-
nections, clearly indicating that LSTM (RNN) must be used
for this problem. The LSTM-based RNN networks performed
an IIR-filter type operation (as explained in Section II) which
removed the FIR filtering operation of the wireless channel
and therefore performed quite well. Note that as part of the
LSTM network implementations, we ensured that the gradients
did not explode by saturating the gradients [14].

V. ARMA CHANNEL

In this section, we will discuss how to choose a neural
network architecture when the following system model is used-

L—1 K-1 7
i= ) iz i—k-1 T\ o 5
Y ZZ; 1 l+kz—0gky k—1+ SR ™ &)

where h = [ho, hi,..., thl] and g = [90791, e agKfl]
are L-length and K-length complex vectors that represent
the moving average (MA) and auto-regressive (AR) process

parameters respectively. ARMA models are typically used to
model non-linearity introduced by amplifiers present in the
transmit-receive chain or by the wireless channel itself [15].
See that when K = 0, then the model degenerates to the one
studied in Section IV. So from now, in this section we assume
that K > 1. The architectures used for the training and testing
over the given dataset are shown in Table II. For this section,
we studied a new architecture termed as CLDNN and will be
explained shortly why this new architecture is used.

From (5), it is seen that two operations contribute to (5);
(a) an FIR filtering operation of the input signal x and an IIR
filtering operation on the past data samples of y. If only the
FIR filtering operation is present, then as done in previous
section only LSTM-based network would have been sufficient
to recover the data x. And if only IIR filtering operation is
performed, then a CNN-based network would have worked
well. However, in this case, both the operations contribute to
(5). Hence, for this problem we used a new architecture termed
as CLDNN, which has a combination of convolutional, LSTM
and dense layers to account for both the operations performed
in (5). The Table II shows the various architectures tried for
this model.

The performance of the various architectures is shown in
Fig. 4, 5. The results clearly show that CLDNN architecture
significantly performs well compared to the architectures used
earlier. And as per the intuition given earlier, the mixture of
convolutional layers and LSTM layers together helped for the
improved performance. It is observed that for the case when
L =1,K = 3, the CLDNN architecture performs quite well,
but the performance of the same architecture drops to 67%
when L = 2 and K = 3. These experiments inform us that
a neural network architecture must be carefully chosen based
on the system model under consideration.

VI. CONCLUSION

In this paper, we considered the example of modulation
classification in the field of wireless communications and
studied in detail how a machine learning model must be
chosen, specifically we studied the case of choosing the most
appropriate neural network architectures based on the system
model. We used the example of modulation classification
for the same and make a claim that similiar findings can
be useful for other problems as well. We showed that in
AWGN-type channels, DNN-based architectures perform well.
For the case of multi-path fading channels i.e., for channels
modeled as a convolution of a fading channel and the transmit
signal (akin to moving-average-type MA model), RNN-based
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Test results after training at SNR=30dB
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Fig. 4: Modulation classification performance of architectures
in Table II for system model (5) with L = 1, K = 3, as a
function of SNR.
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Fig. 5: Modulation classification performance of architectures
in Table II for system model (5) with L = 2, K = 3, as a
function of SNR.

architectures performed well as they performed an inverse
operation of the channel convolution with the data signal. For
the case of ARMA-type fading channels, depending on the
length of the AR and MA processes (or filters), the required
architecture changed. Since these models have impact of both
the AR and MA models, we used a mixture of CNN and
RNN networks to create a new architecture called as CLDNN
which performed quite well. We conclude that there is no
single architecture that works across various wireless channel
models. In future, we will explore the validity of these findings
in the context of practical datasets and other problems in
wireless communications.
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