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ABSTRACT Oscillation-based testing of analogue electronic filters removes the need for test signal
synthesis. Parametric faults in the presence of normal component tolerance variation are challenging to detect
and diagnose. This study demonstrates the suitability of statistical learning and deep learning techniques
for parametric fault diagnosis and detection by investigating several time-series classification techniques.
Traditional harmonic analysis is used as a baseline for an in-depth comparison. Eight standard classification
techniques are applied and compared. Deep learning approaches, which classify the time-series signals
directly, are shown to benefit from the oscillator start-up region for feature extraction. Global average
pooling in the convolutional neural networks (CNN) allows for Class Activation Maps (CAM). This enables
interpreting the time-series signal’s discriminative regions and confirming the importance of the start-up
oscillation signal. The deep learning approach outperforms the harmonic analysis approach on simulated
data by an average of 11.77% in classification accuracy for the three parametric fault magnitudes considered
in this work.

INDEX TERMS Artificial intelligence, deep learning, fault diagnosis, machine learning, oscillation-based

diagnosis, statistical learning.

I. INTRODUCTION

A significant proportion of faults in microelectronic circuits
(around 80%) occur in the analogue parts of the circuit [1],
necessitating extensive production testing. Circuit testing can
be broadly generalised into specification-driven tests and
fault-driven tests, of which the latter is more common in
integrated circuit (IC) testing [2]. Fault detection may be
extended to fault diagnosis, where the specific fault locations
are identified, but this is complicated in analog circuits by
non-linear behaviour, acceptable tolerances in components
values, inefficient fault models, inaccessible nodes and mea-
surement uncertainty [1].

In oscillation-based testing (OBT) [3]-[7], the circuit
under test (CUT) is reconfigured (either using electronic
switches [8], or by an external tester [5]) into an oscillator by
connecting the circuit’s input and output through an appro-
priate feedback network to create an astable feedback loop
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and monitoring the resulting oscillation data. This approach
removes the need for a reliable or calibrated test signal, reduc-
ing test duration, complexity and cost [1]. By comparing the
oscillation signal of the circuit under test to that of a fault-free
circuit and various predetermined faulty circuits stored in
a fault dictionary (usually generated by circuit simulation
a priori), the faulty circuits can be identified [1].

OBT may be used to detect both catastrophic (e.g. broken
bond-wires) and parametric (e.g. non-uniform oxide thick-
ness) faults, though parametric faults are far more challenging
to detect [8].

By extending the OBT procedure to diagnosing the
location and extent of the fault, oscillation-based diagno-
sis (OBD) is possible, as first described in [9], where a
simulation-generated fault dictionary approach is applied
using the frequency of the first harmonic and the total har-
monic distortion of the oscillating signal as features. In [10],
a feed-forward artificial neural network (ANN), with the
basic multi-layer perceptron (MLP) structure, is used to diag-
nose faults. A supervised learning procedure for capturing
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FIGURE 1. General procedure diagram.

the fault dictionary is first applied to OBD in [11], with 1) To verify the efficacy of ANN-based OBD under more
the feature extraction extended to the first four harmonics realistic circumstances, all non-faulty passive compo-
in [2]. White noise, with an amplitude of 1% of the output nent tolerances are included in the simulation for the
signals, was added to the simulated signals to verify robust- first time in this work, by means of a generalised Monte
ness, though the link between this introduction and probabil- Carlo sampling. This stands in contrast to current tech-
ity component value variation is not presented. Other prior niques that use ANN’s to diagnose faults [2], [11],
literature on OBD includes membership function diagnosis where the assumption is that all non-faulty passive
in [12], with the state-of-the-art work in [13] incorporating components are fixed at their nominal value. This is a
simultaneous Monte Carlo statistical variation for non-faulty far more accurate representation of real-world test con-
component values. ditions [14], [15] than has been considered previously.

This study advances the state-of-the-art in OBD of para- 2) Component faults are, for the first time, diag-
metric faults in three ways: nosed directly from time-series data. This time-series
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diagnosis is performed both with a statistical learning
approach [16], and a deep learning approach [17]. Both
approaches are compared to the harmonics analysis
currently used in OBD [2], [11], [12] and class acti-
vation maps (CAMs) used to highlight which data are
more crucial in correct classification. This is a signif-
icant finding in selecting of suitable data, potentially
reducing the resources required in collecting data that
does not contribute to classification accuracy.

3) The time-series data is applied to evaluate the start-up
region of the oscillation signal as a classification fea-
ture for the first time, which is impossible with the
current state-of-the-art harmonics approach.

This paper is organised as follows:

In Section II, the general procedure of simulating the CUT,
training the classifiers and classifying the parametric faults
is presented. Section III outlines the training and evaluation
methodology for the harmonics approach while the train-
ing and evaluation methodology for the statistical learning
approach is presented in Section IV. Section V provides a
brief literature review of time-series deep learning, then
presents the training and evaluation methodology for the deep
learning approach. Section VI summarises the results and
presents a comparison of all three approaches. Conclusions
are offered in Section VII.

Il. PROCEDURE

The general procedure, showing the simulation, training,
and classification steps, is presented in Fig. 1. This figure
has three phases, namely the simulation phase (described in
Sections II.A and II.B), training phase (described in Sec-
tions II.C and II.D) and CUT testing phase (described in
Section I1.D). The process starts with SPICE netlists of the
CUT in OBT mode (i.e. feedback applied), with parametric
variations defined for both nominal variation and injected
faults. As the generality of the trained model is significant
in practical engineering [18], this work relies on Monte Carlo
analysis in circuit simulation to estimate measurement data in
volume production. This approach has been proven reliable
and is widely used in OBT [14] and elsewhere in semicon-
ductor engineering [15].

A. CIRCUIT UNDER TEST

This work could be applied to various fields in semiconductor
manufacturing. High-Pass filters commonly used in baseband
circuits are used for communications [19] and at the input
of digital-to-analog converters for spectrum shaping [20].
Active filters are also commonly selected as circuits under
test in other OBT and OBD research [2], [11], and are once
again selected here to make the work better comparable to
prior works.

The simulation procedure requires a schematic of the CUT,
along with the component tolerances and fault values. The
CUT is a second-order high-pass Butterworth filter with
—3 dB cut-off at 1 kHz and high-frequency gain of 1.075.
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FIGURE 3. Device under test in oscillation mode.

The CUT is shown in normal operation in Fig. 2. The CUT
is reconfigured, either using electronic switches [8], or by
an external tester [5], into an oscillator by connecting the
circuit’s input and output thereby creating a redundant pos-
itive feedback loop as shown in oscillation setup in Fig. 3.
All components have tolerances of 5%, which marks the 3¢
standard deviation. The Op-Amp used for the simulation is
the LT1013, and the nominal values used for each component
are shown in Table 1.

B. SIMULATION PROCEDURE

The filter is simulated in Micro-Cap 12 [21] in both the nor-
mal (to verify the performance characteristics) and oscillation
configurations. The components are allocated the specified
tolerances. For each class (fault), the Monte Carlo simulations
produce 200 oscillation time-series datasets. For example,
when fault D1A is simulated, the R1 component value is
changed to 12 k€2 and all non-faulty components are assigned
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TABLE 1. General parametric fault setup.

Defect label Component Nominal value Fault value

BASE - - -

DI1A R1 10k$2 10k + (@ x 10k€2)
DIB R1 10k$2 10kS2 - (o x 10k€2)
D2A R2 10k2 10k + (a0 x 10k€2)
D2B R2 10k$2 10kS2 - (a0 X 10k€2)
D3A R3 10k2 10k2 + (@ x 10kS2)
D3B R3 10k2 10k - (o x 10k€2)
D4A R4 75082 75082 + (a x 750€2)
D4B R4 75092 75092 - (v x 75092)
D5A Cl 22nF 22nF + (v X 22nF)
D5B Cl 22nF 22nF - (a0 x 22nF)
D6A Cc2 22nF 22nF + (v X 22nF)
D6B Cc2 22nF 22nF - (a x 22nF)

*The « indicates the fault size (0.2, 0.5, or 0.9)

random values according to the Gaussian distributions of
5% (30) to account for component tolerances. The general
parametric fault setup is shown in Table 1. The first 5 ms
of the signal is recorded at a 0.5 us timestep, producing
10 000 datapoints for each Monte Carlo dataset. The result-
ing 2 MHz sample rate is significantly higher than the Nyquist
rate of the 5th harmonic of the fundamental oscillating tone,
which is usually around 100 kHz.

C. FEATURE EXTRACTION

The classification performance when using the start-up oscil-
lating signal is compared to the steady-state of the signal
for non-harmonic approaches. For the start-up case, the first
100 us of the signal is used for classification. When con-
sidering the steady-state case, a peak-finding algorithm is
used to determine the amplitude of each oscillation. When
the difference in amplitude between two consecutive peaks
is less than 1%, the signal is considered steady-state. Three
consecutive peaks are then used for the steady-state time-
series. Different feature extraction and pre-processing meth-
ods are used for each approach (harmonic, statistical or deep
learning). In harmonic analysis the magnitudes of the spectral
components of the harmonic oscillator are used. Statisti-
cal learning uses principal component analysis (PCA) while
for the deep learning, the time-series data is used directly.
These pre-processing steps are discussed in Section IIL.A,
Section IV.A and Section V.A.

D. TRAINING AND DIAGNOSIS
The data is randomly split into training, validation, and test
sets, with ratios as described in Sections III, IV and V. After
this, the required pre-processing and regularisation steps are
performed on set. In OBD, the primary interest is in having a
model (e.g. statistical or deep learning) or strategy (e.g. signal
processing) that outputs classes or labels (e.g. parametric
fault labels) when fed time-series data or harmonic data. The
following three definitions are applied in this process:
Definition 1 Formally, let (X, y) be a training instance
given T observations X = [X(1), X(2), X(3) . . ., X(1)], which is
the time-series of features extracted of each parametric fault.
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Definition 2 In addition, a discrete class variable y which
takes k possible values y = [y(1), ¥(2), y(3) ..., y(k)], are the
parametric fault labels.

Definition 3 The task of classifying time-series data con-
sists of learning a classifier on training dataset. A train-
ing dataset S is a set of n training instances: S =
[Xy, 1)), X2y ¥2))s - - - » Xy, Yy)] such that n < T. The
classifier maps from the space of possible inputs X to
a probability distribution over the classes / labels P =
[y, ¥2), Y3y - - -, Yyl. The fault with the maximum prob-
ability is the diagnosed fault. This result is recorded and by
comparing the recorded result to the simulated fault, accuracy
is determined as a percentage of correctly diagnosed faults.

E. LEARNING METHODOLOGIES

Before presenting the details each approach in this work, it is
prudent to briefly review prior approaches. Previous OBD
studies [2], [11], [12] all fall within the supervised category
because labelled data can be generated during the simulation
and is used to explicitly create a classification model by using
the known input and output of each sample. This model can
then be used to classify new unseen and unlabeled samples to
perform OBD.

These classification approaches all require different levels
of feature engineering. Signal processing requires the analyst
to conduct all preprocessing and feature engineering. This
is, the most traditional and prevalent fault testing approach.
Statistical learning, on the other hand, only requires the ana-
lyst to control preprocessing and hyper-parameters of the
feature engineered linear models and remains unexplored in
OBD. Machine learning requires the analyst to control the
pre-processing and hyper-parameters of feature engineered
non-linear models. The OBD work in [2], [11] falls in this
class.

The structure of the deep learning models [2], [17],
[22], used in this study, are shown in Table 2, with filter
length is indicated in brackets. All models use categorical
cross-entropy as a loss function. The structure of the Incep-
tion model shown in Table 2 is extended as seen in [22]. The
various other hyperparameters, such as learning rate, learning
rate reduction parameters, the use of dropout, softmax layers
at the end of the network, input and output layer size, etc. are
adjusted between datasets, but otherwise follow the state-of-
the-art as outlined in the source references above.

TABLE 2. General structure of deep learning models.

Model Module 1 | Module 2 | Module 3 | Activation | Optimzer
MLP 500 500 500 ReLU Adamax
FCN 128 (8) 256 (5) 128 (3) ReLU Adamax
ResNet | 64 (8,5,3) | 128 (8,5,3) | 128 (8,5,3) | ReLU Adamax
Inception | 64 (1,3,5) |96 (1,3,5) | 128 (1,3,5) | ReLU Adamax

Ill. HARMONIC ANALYSIS
This section aims to reproduce the harmonic analysis of
[2], [11]. In the first rounds of analysis, static idealised values
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of non-faulty components are maintained, with Monte Carlo
variation (200 samples) applied only to the faulty component.
Non-faulty component value variations are then introduced
to demonstrate the shortcomings of using threshold detection
techniques, used for parametric faults in [8], and the need to
explore new techniques.
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FIGURE 5. Probability density distribution when tolerances are applied to
all components.

A. TRAINING METHODOLOGY

The simulation and training are performed according to the
general procedure shown in Fig. 1. The data is mean-centered
and then randomly split in training, validation and testing
sets in a ratio of % : % % During pre-processing a
Fourier transform is performed on the time-series of the
steady-state oscillating signal. The amplitude and frequency
of 5 harmonic components [2] are collected, reducing the
number of dimensions significantly. An MLP with the same
hyper-parameters and structure as seen in [2] is trained on the
training and validation datasets.

B. EVALUATION METHODOLOGY

The difference in approaches is illustrated in Figs. 4 and 5
for a DIA injected fault. In Fig. 4, the approach in [2], [11],
with the addition of component tolerances for only the faulty
component, clearly separates the distributions in oscillating
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signal amplitude between faulty and non-faulty circuits. This
enables simple threshold detection as a classifier. In the more
realistic scenario followed in this work (Fig. 5), the faulty and
non-faulty conditions are more challenging to distinguish.
These overlapping probability density distributions, similar
to those seen in [8], show the limitations of linear threshold
techniques for parametric faults. The overall classification
results when using the Harmonics approach is compared to
the overall results when using the statistical learning and deep
learning approaches in Section VI and V.

IV. STATISTICAL LEARNING

PCA is investigated as a preprocessing technique, instead
of harmonic analysis, to explore its efficacy in classifying
parametric faults when non-faulty component tolerances are
included. PCA is a widely used dimensionality reduction
technique used in machine learning, that creates an orthog-
onal projection of the dataset onto a lower dimensional linear
space (principal subspace), in a manner that maximises the
variance of the projected data [23]. This application of PCA
falls under the class of latent variable models [24].

A. TRAINING METHODOLOGY

Both the start-up and steady-state data is mean-centered and
then randomly split in training and testing sets in a ratio
of % : % Fig. 7 shows the variance explained by each
principal component for the three datasets. It is clear that
most of the variance can be explained by the first two prin-
cipal components for all the datasets. Therefore, the first
two principal components are selected as features for the
latent space. The PCA latent space for each fault dataset is
shown in Fig. 6. These three figures clearly show how the
latent space becomes less entangled as the size of the faults
increase. The two-dimensional latent space allows the use
statistical learning classifiers to segment the 2D feature space
which allows classification of new test data. This study con-
siders 8 established statistical classification algorithms [25],
namely, K-Nearest Neighbours (KNN), Radial Basis Func-
tion Support Vector Machines (RBF-SVM), Decision Trees,
Random Forest, Adaboost with Random Forest as the base,
Extremely Randomised Trees (ExtraTrees) [26], Naive Bayes
and Quadratic Discriminant Analysis (QDA).

B. EVALUATION METHODOLOGY

The testing dataset is used to evaluate the performance of each
classifier. As an example, the latent space representation of
the best performing statistical learning algorithm, ExtraTrees,
is presented in Fig. 8. In Fig. 8 (a) the principal components
of the training data is shown. Fig. 8 (b) depicts the noise-
less segmented latent space after training. In Fig. 8 (c) and
Fig. 8 (d), noise is introduced as a class, to remove data points
that would have a reconstruction loss larger than the loss
required for the point to belong to a certain class, within the
PCA latent space. In Fig. 8 (c), this noise class is introduced
with a threshold by combining all the latent space regions
with a class probability that is less than 0.95. In Fig. 8 (d)
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the noise class is introduced by adding uniform random data
points into the latent space and labelling these data points as
noise. When using the threshold noise class, the results for
all the classifiers are presented with a box-and-whisker plot
in Figs. 9 and 10. The classifiers have a mean testing accuracy
that is around 10% higher on the steady-state data when com-
pared to the start-up data. The KNN, SVM, Decision Tree,
Random Forest, Adaboost, and ExtraTrees classifiers have
higher average accuracies than the Naive Bayes and QDA
classifiers. However, all of these classifiers are outperformed
by the best deep learning models.

V. DEEP LEARNING

Deep learning extends machine learning by not requiring
any pre-processing or feature engineering. This would enable
a fully automated strategy and would be the first of its
kind for classification in OBD using the time-series sig-
nal directly, subsequently allowing the use of start-up of
the oscillation signal for the first time. The application
of deep learning to time-series classification (TSC) [17]
was driven by the successes of deep learning [27] in gen-
eral and lately, detection, diagnostics and prognostics in
physical asset management [16]. Deep Convolutional Neu-
ral Networks (CNNs) have achieved superior performance
in supervised machine learning [28]. They have non-linear
transformations that involve convolutions and max pooling
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which reduces computation time and complexity without
losing the essence of the data. CNNs’ performance depends
on the size and quality of the training data. Nonetheless, state-
of-the-art performance for TSC with the use of end-to-end
CNN architecture has been demonstrated in [17] with the
Fully Convolutional Network (FCN) and Residual Network
(ResNet). The recent success of Inception-based networks
[22] prompted their adaptation to TSC in [29]. The incom-
prehensible internal logic of the hidden layers in a deep
neural network leads to uninterpretable black-box models.
This can be mitigated with the use of a Class Activation
Map (CAM) [30]. The second to last layer for all three
convolutional networks is replaced with a Global Average
Pooling, which drastically reduces the number of parameters
and allows for using a CAM for these TSC networks [17],
[31]. The CAM highlights the data points in the time-series
data that contribute most to the classification, known as the
discriminative regions.

The deep learning approach does not require any fea-
ture extraction and classifies the time-series data directly
using three convolutional networks, namely a Fully Con-
volutional Network (FCN) and Residual Network (ResNet)
with the architecture outlined in [17], and an Inception-based
network for time-series data, with the architecture outlined
in [22]. The MLP [2] used in the harmonic analysis section
is also used for comparison. The MLP network is adapted by
increasing the input size to match that of the time-series data.
Dropout is selected as a regularisation strategy, where some
randomly selected neurons are deactivated in each training
epoch [32].

A. TRAINING METHODOLOGY

The data is mean-centered and then randomly split in training,
validation and testing sets in a ratio of % : % : % The training
set is used exclusively for training a neural network, through
back-propagation, that can predict the output class. After each
epoch, the validation set is used to ensure that the model is
not over-fitting on the training data. The validation data is
generally used to assess the performance of a model, as seen
in Figs. 11 and 12. One of the advantages specific to the CNNs
over the MLP is that they are spatially invariant. This allows
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FIGURE 9. Box-and-whisker diagram showing the accuracy of all
statistical learning algorithms using start-up data.

for the detection of discriminative features in a manner that
is independent of the position of these features [17].

B. EVALUATION METHODOLOGY

In Fig. 11, four models are compared in terms of validation
accuracy using the £50% dataset, while in Fig. 12, they are
compared using the £20% dataset. In both figures the vali-
dation accuracy is shown with a rolling average of 20 epochs
and with a shaded region indicating two standard deviations
of this rolling average (20). The Inception network in both
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FIGURE 10. Box-and-whisker diagram showing the accuracy of all
statistical learning algorithms using steady-state data.

cases initially converges to a higher validation accuracy than
the FCN. Still, the FCN converges to a higher validation accu-
racy by the end of the training epochs. The Residual network
achieves a maximum validation accuracy higher than all the
other models, but this does not correspond to similar accuracy
on the testing data. This could be because the network is
over-fitting on the validation data due to validation bias or
high variance in the testing data [33] due to the multi-modal
nature of the deep learning models. These models are con-
strained significantly by the training and validations times
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to produce superior results. When considering both training
time and performance, the MLP presents a good trade-off.

C. NETWORK INTERPRETABILITY

The Inception network is interpreted with the use of a
CAM on the global average pooling layer. The discriminative
regions of the time-series are highlighted in a darker shade
than the non-discriminative regions. The model uses various
regions in the time-series to classify the data. Two common

TABLE 3. YL and TE for the steady-state data.

Harmonics Statistical learning | Deep learning
Fault set | YL TE YL TE YL TE
a=0.2 [2256% |3.96% 53.6% 4.18% 55.20% |3.11%
a=05 |151% |1.50% |33.59% |2.31% 7.63% 2.04%
a=0.9 [075% |0.82% 7.26% 0.40% 6.45% 0.0%

TABLE 4. Yield loss and test escapes for the start-up data.

Statistical learning | Deep learning
Fault set | YL TE YL TE
a=0.2(3448% |1.94% 56.55% | 1.66%
a=051224% |0.14% 5.97% 0.0%
a=0.9 |0.78% 0.0% 0.0% 0.7%

fault cases from the same dataset, namely start-up data for
the +50% set for faults D4B and D2A, are shown in Figs. 13
and 14. Fig. 13 shows how the model uses the start-up region
of the signal as the discriminative region. Fig. 14 shows
how the model uses the peaks of the oscillating signal as
the discriminative region. The discriminative regions have an
increased percentage contribution under extensive training.

Vi. SUMMARY OF RESULTS

To enable comparison to prior work, the fault diagnosis pre-
sented previously may be aggregated to binary fault detection,
common in conventional OBT. In this context, the false detec-
tion of any fault in a working circuit may be considered yield
loss (YL). In contrast, the false classification of any faulty
circuit as a working circuit may be considered a test escape
(TE). The results as a percentage error for all three parametric
fault testing points, namely « = 02,0 = 05,0 = 0.9
(corresponding with 20%, £50% and +90% respectively),
is shown for the steady-state data in Table 3 and the start-up
data in Table 4. The best classifier fault group with the lowest
percentage error for TE and YL is shown in bold for both
result sets.
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FIGURE 13. Class activation map showing start-up discriminative region.
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FIGURE 14. Class activation map showing steady-state discriminative region.

TABLE 5. Overall results.

Harmonics Statistical learning | Deep learning
Fault set | Start-up | Steady Start-up | Steady Start-up | Steady
a=02]- 65.4% 71.2% 72.5% 44.3% 76.8%
a=0.5 |- 82.9% 83.1% 87.6% 69.7% 98.2%
a=0.9 |- 90.1% 90.3% 95.8% 86.8% 98.7%

The classification accuracy for each fault group on both
the start-up and steady-state data is shown in Table 5, with
the highest accuracy for steady-state and start-up shown in
bold.

Tables 3-5 show that the statistical and deep learning
approaches can be used to detect faults with accuracy compa-
rable to the harmonic analysis approach when considering the
YL and TE metrics. The deep learning and statistical learning
approaches outperform the harmonic analysis approach when
performing diagnosis, as seen in Table 5. The single paramet-
ric defects seen in [2] would correspond to the o« = 0.2 using
harmonic analysis in this work, as seen with the accuracy
of 65.4%. This accuracy is lower than the accuracy seen
in the prior work, which diagnoses all the faults correctly.
However, these faults do not consider component tolerances
of non-faulty components when performing diagnosis, fur-
ther highlighting the impact of our approach to modeling the
circuit. When considering the non-faulty component toler-
ances, the deep learning approach outperforms the harmonic
analysis approach by an average of 11.77% for the three
parametric fault sizes (o) considered in this work.

VIi. CONCLUSION

This study demonstrated the use of time-series classification
techniques for OBD, which subsequently enabled the clas-
sification of OBD signals within the start-up region. Class
Activation Maps were used to interpret the deep learning net-
works showing how the discriminative regions vary between
start-up or steady-state features. The statistical learning and
deep learning networks outperformed the harmonic analysis
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approaches when using simulation data for diagnosis. This
advances the state-of-the-art by introducing new methods
for fault diagnosis and using the start-up region for fault
diagnosis.

This work paves the way for several avenues of future
inquiry. From a circuit perspective, the effect of the process,
supply voltage and temperature variation may be considered
(as is done to some extent in [4]) and variation in the active
circuit elements. The probabilistic result outputs of all the
classifiers may be amended to functional or performance
testing, rather than structural testing, where key performance
parameters are the classification output rather than the diag-
nosis of a specific fault [34]. Finally, the techniques may
be evaluated at RF frequencies or combined with built-in
self-testing [8], generating a time-series from an oscillator
envelope rather than the Nyquist-rate sampled output.
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