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A B S T R A C T

This work considers a new generalized operator which is based on the application of Caputo-type fractional
derivative is applied to model a number of nonlinear chaotic phenomena, such as the Oiseau mythique
Bicéphale, Oiseau mythique and L’Oiseau du paradis maps. Numerical approximation of the generalized
Caputo-type fractional derivative using the novel predictor–corrector scheme, which indeed is regarded as
an extension of a well-known Adams–Bashforth–Moulton classical-order algorithm. A range of new strange
chaotic wave propagation was observed for various maps with varying fractional parameters.
Introduction

The application of fractional calculus to model real-life and physical
phenomena has been gaining a lot of momentum over the last three
decades [1–5]. Fractional calculus is an extension of standard calcu-
lus which comprises the derivatives and integrals of integer-order to
fractional cases. Much research attention has been paid to the study of
fractional differential equations in recent times due to the fact that the
fractional-order system response ultimately converges to the integer-
order case. The concept of fractional calculus has been used to model
various nonlinear dynamical systems, a good example is a chaotic
system which has rendered a new dimension to the existing problems.
Nowadays, fractional derivatives are used to describe many physical
phenomena for the purpose of reliability, better accuracy, and greater
flexibility in the model formulation.

A classical order differential operator is called a local operator,
while the fractional-order differential operator is referred to as nonlocal
derivative due to the fact that the future state not only depends upon
the present state but also upon all of the histories of its previous states.
For this memory property, the usage of fractional-order models are fast
becoming so popular. Fractional differential equations have gained a
lot of attention due to their ability to provide an exact description of
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different nonlinear scenarios. The main reason that fractional differen-
tial equations are being used to model real phenomena is that they are
nonlocal in nature, that is, a realistic model of a physical phenomenon
depends not only on the time instant but also on the previous time
history [6–9]. In addition, fractional derivative serves as a correct tool
when it is used to describe the memory and hereditary properties of
various materials and processes [1]. In recent years, fractional calculus
has been widely used in various applications in almost every field
of applied sciences, engineering, and mathematics, and it has gained
considerable importance due to its frequent applications in pattern
formation (chemical and biological models), fluid flow, polymer rhe-
ology, economics, finance, biophysics, control processes, psychology,
and chaos theory [10–16].

Over the past few decades, the analysis and application of chaotic
phenomena among nonlinear systems have been extensively studied
in various disciplines and fields, such as natural science, engineering,
social science including psychology and leadership as well as economics
and finance. The nonlinear dynamics system consists of three main sub-
groups, namely: chaos, bifurcation, and soliton. With the inception of
nonlinear systems, chaotic dynamics have generated significant atten-
tion. Many researchers in various fields, such as biology, chemistry,
vailable online 4 May 2022
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physics, mathematics, engineering, and social sciences are currently
studying chaotic dynamics [17–21].

In the theory of chaotic dynamics, in order to create chaotic be-
haviors in the dynamics, it is known and widely believed that the
dynamics have to have a third-order system and one nonlinear item at
least in a continuous system. For instance, the Lorenz system, Chua’s
circuit, Chen system, and Liu system have the third-order systems
and one nonlinear item [22–27]. These systems are known to have
generated chaotic behaviors with integer-order 3. In the early sixties,
attractors were known to represent simple geometric subsets of the
phase-space for instance, points, surfaces, lines, and simple regions
of three-dimensional space. Later, more studies revealed that com-
plex attractors cannot be classified with such attributes. A proof that
some of these physical problems cannot be captured using simple
mathematical operators like classical-order differential operator [28–
31]. Very strange attractors have been reported including mythical
birds, butterfly wings and paradise bird maps [18,32], however, such
attractors are still poor and have never been investigated under the
framework of the new generalized Caputo-type fractional differential
operators. In the present work, the aim is to show via numerical
computation that chaotic behaviors can be generated from fractional
two-dimensional generalized Oiseau mythique Bicéphale bird map,
Oiseau mythique map and L’Oiseau du paradis bird maps involving
the generalized Caputo-type fractional-order derivative. Numerical sim-
ulations including phase plots considering the predictor–corrector ap-
proximation technique. The remaining part of this work is organized
into sections. Some useful definitions, properties, and results of the
generalized Caputo-type fractional derivative operator are presented
in Section ‘‘Useful definitions and the new generalized Caputo- type
fractional derivative’’. Predictor–corrector algorithms are discussed in
Section ‘‘Predictor-corrector method’’. The applicability and suitability
of the proposed techniques are tested on some two-dimensional frac-
tional maps systems in Section ‘‘Application to chaotic maps problems’’.
The conclusion is made with the last part.

Useful definitions and the new generalized Caputo-type fractional
derivative

In this section, we give some useful definitions and present the new
version of the generalized Caputo-type fractional operator [33,34].

Let 𝜒 be a function depending on 𝑡, the Riemann–Liouville fractional
ntegral of order 𝜃 > 0 is mostly defined as

𝜃
𝑎+𝜒(𝑡) =

1
𝛤 (𝜃) ∫

𝑡

𝑎
(𝑡 − 𝜉)𝜃−1𝜒(𝜉)𝑑𝜉, 𝑡 > 𝑎. (2.1)

The corresponding Caputo and Riemann–Liouville fractional deriva-
tives of order 𝜃 > 0 are respectively defined as

𝐶𝒟 𝜃
𝑎+𝜒(𝑡) = ℐ 𝑚−𝜃

𝑎+ 𝒟𝑚𝜒(𝑡) = 1
𝛤 (𝑛 − 𝜃) ∫

𝑡

𝑎
(𝑡 − 𝜉)𝑚−𝜃−1𝜒 (𝑚)(𝜉)𝑑𝜉, 𝑡 > 𝑎,

(2.2)

and

𝑅𝒟 𝜃
𝑎+𝜒(𝑡) = ℐ 𝑚−𝜃

𝑎+ 𝒟𝑚𝜒(𝑡) = 1
𝛤 (𝑚 − 𝜃)

𝑑𝑚

𝑑𝑡𝑚 ∫

𝑡

𝑎
(𝑡 − 𝜉)𝑚−𝜃−1𝜒(𝜉)𝑑𝜉, 𝑡 > 𝑎,

(2.3)

where 𝑚 − 1 < 𝜃 ≤ 𝑚 and 𝑛 ∈ N. When 𝑚 − 1 < 𝜃 ≤ 𝑚, the Caputo
derivative satisfies the following rule

ℐ 𝜃
𝑎+

𝐶𝒟 𝜃
𝑎+𝜒(𝑡) = 𝜒(𝑡) −

𝑚−1
∑

𝑗=0

𝜒 (𝜎)(𝑎)
𝜎!

(𝑡 − 𝑎)𝜎 , 𝑡 > 𝑎. (2.4)

It should be mentioned that the Caputo fractional derivative is mostly
applied to model many real-life and practical phenomena due to the
fact that its most suitable for initial value problems and its very close
to classical order derivatives.
2

Definition 1. The generalized fractional integral of 𝜒 , ℐ 𝜃,𝜗
𝑎+ 𝜒(𝑡), of order

𝜃 > 0 and 𝜗 > 0 is given by [34]

ℐ 𝜃,𝜗
𝑎+ 𝜒(𝑡) = 𝜗1−𝜃

𝛤𝜃 ∫

𝑡

𝑎
𝜉𝜗−1(𝑡𝜗 − 𝜉𝜗)𝜃−1𝜒(𝜉)𝑑𝜉, 𝜃 > 0, 𝑡 > 0. (2.5)

efinition 2. The generalized Riemann-type fractional operator with
rder 𝜃 > 0 of the function 𝜒 , is defined as [34]

𝒟 𝜃,𝜗
𝑎+ 𝜒(𝑡) = 𝜗𝜃−𝑚+1

𝛤 (𝑚 − 𝜃)

(

𝑡1−𝜗 𝑑
𝑑𝑡

)𝑚

∫

𝑡

𝑎
𝜉𝜗−1(𝑡𝜗 − 𝜉𝜗)𝑚−𝜃−1𝜒(𝜉)𝑑𝜉,

𝑡 > 𝑎 ≥ 0.
(2.6)

efinition 3. The generalized Caputo-type fractional derivative of a
unction 𝜒 with order 𝜃 > 0, is defined as

𝒟 𝜃,𝜗
𝑎+ 𝜒(𝑡) =

[

𝑅𝒟 𝜃,𝜗
𝑎+

(

𝜒(𝑠) −
𝑚−1
∑

𝑛=0

𝜒 (𝑛)(𝑎)
𝑛!

(𝑠 − 𝑎)𝑛
)]

(𝑡), 𝑡 > 𝑎 ≥ 0, (2.7)

where 𝜃 > 0 and 𝑚 = ⌈𝜃⌉. If 0 < 𝜃 ≤ 1 and 𝜒 ∶ [𝑎, 𝑏] → R, where
s 𝜒 is continuous in the interval [𝑎, 𝑏], then the above generalized
aputo-type fractional derivative of 𝜒 reduces to

𝒟 𝜃,𝜗
𝑎+ 𝜒(𝑡) = 𝜗𝜃

𝛤 (1 − 𝜃) ∫

𝑡

𝑎
(𝑡𝜗 − 𝜉𝜗)−𝜃𝜒 ′(𝜉)𝑑𝜉, 0 < 𝜃 ≤ 1, 𝑡 > 𝑎 ≥ 0.

(2.8)

he concept of the generalized fractional calculus could be dated to the
arly 1970 [35]. Details of the existence and uniqueness results for the
eneralized Caputo-type and Riemann-type fractional derivatives can
e found in [33]. The new generalized Caputo-type fractional operator
iven in [34] is regarded as a modification to the one reported in (2.7).
n brief, some of the properties of this new operator will be highlighted
ere.

By using the generalized integral given in (2.5), the new gen-
ralized Caputo-type fractional derivative denoted a

(

𝒟 𝜃,𝜗
𝑎+ 𝜒

)

(𝑡) =

ℐ 𝑚−𝜃
𝑎𝜗∕𝜗

𝒟𝑚(𝜒◦(𝜗𝑡)1∕𝜗)
] (

𝑡𝜗

𝜗

)

, are given as follows. The new generalized
Caputo-type fractional derivative 𝒟 𝜃,𝜗

𝑎+ with order 𝜃 > 0 is defined
by [34]
(

𝒟 𝜃,𝜗
𝑎+ 𝜒

)

(𝑡) = 𝜗𝜃−𝑚+1

𝛤 (𝑚 − 𝜃) ∫

𝑡

𝑎
𝜏𝜗−1(𝑡𝜗 − 𝜏𝜗)𝑚−𝜃−1

(

𝜏1−𝜗 𝑑
𝑑𝜏

)𝑚
𝜒(𝜏)𝑑𝜏, (2.9)

where 𝜗 > 0, 𝑚 − 1 < 𝜃 < 𝑚 and 𝜃 ≥ 0. If in any case 𝜃 = 𝑚, then
(

𝒟 𝜃,𝜗
𝑎+ 𝜒

)

(𝑡) =
[

𝒟𝑚(𝜒◦(𝜗𝑡)1∕𝜗)
] 𝑡𝜗

𝜗
.

The new generalized Caputo-type fractional derivative above can be
applied to model a range of nonlinear phenomena. This new operator
is applied to model a range of mythical bird maps in this paper. This
new derivative has been proved to satisfy the following properties:

(a) Assume 𝑎 ≥ 0, 𝜗 > 0, 𝑚 − 1 < 𝜃 ≤ 𝑚 and 𝜒 is continuous in the
interval [𝑎, 𝑏]. Then, the relationship between the new general-
ized Caputo-type fractional derivative (2.9) and the generalized
Riemann-type operator (2.6) is expressed by the formula

(

𝒟 𝜃,𝜗
𝑎+ 𝜒

)

(𝑡) = 𝑅𝒟 𝜃,𝜗
𝑎+

(

𝜒(𝑡) −
𝑚−1
∑

𝑛=0

1
𝜗𝑛𝑛!

(𝑡𝜗 − 𝑎𝜗)𝑛
[

(

𝑥1−𝜗 𝑑
𝑑𝑠

)𝑛
𝜒(𝑠)

]

|

|

|

|

|𝑠=𝑎

)

.

(2.10)

(b) Assume 𝑎 ≥ 0, 𝜗 > 0, 𝑚 − 1 < 𝜃 ≤ 𝑚 and 𝜒 is continuous in the
interval [𝑎, 𝑏]. Then, for 𝑎 < 𝑡 ≤ 𝑏, the relationship between the
new generalized Caputo-type fractional derivative (2.9) and the
generalized integral operator (2.5) satisfies the formula

ℐ 𝜃,𝜗
𝑎+ 𝒟 𝜃,𝜗

𝑎+ 𝜒(𝑡) = 𝜒(𝑡) −
𝑚−1
∑

𝑛=0

1
𝜗𝑛𝑛!

(𝑡𝜗 − 𝑎𝜗)𝑛
[

(

𝑥1−𝜗 𝑑
𝑑𝑠

)𝑛
𝜒(𝑠)

]

|

|

|

|

|𝑠=𝑎
.

(2.11)
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Fig. 1. Numerical simulation for the Oiseau mythique system (4.19) for different values of 𝜃. Simulation runs for 𝑡 = 10 000.
(c) Let 𝑎 ≥ 0, 𝜗 > 0, 𝑚 − 1 < 𝜃 ≤ 𝑚 and 𝜒 ∈ 𝐶[𝑎, 𝑏]. Then, for
𝑎 < 𝑡 ≤ 𝑏 the generalized Caputo-type fractional derivative (2.9)
is the inverse of the generalized fractional integral operator (2.5)

ℐ 𝜃,𝜗
𝑎+ 𝒟 𝜃,𝜗

𝑎+ 𝜒(𝑡) = 𝜒(𝑡). (2.12)

As given in properties (𝑎−𝑐), it depicts that the new generalized Caputo-
type fractional operator has similar characteristics with the Caputo
derivative. Details of formulation and other useful results can be found
in [34].

Predictor–corrector method

In this segment, we present and adapt the predictor–corrector
method for the solution of general initial value problems which incor-
porate the generalized Caputo-type fractional derivative. To start with,
consider the multidimensional initial value problem written compactly
in the form
𝐶𝒟 𝜃,𝜗

𝑎+ 𝜔(𝑡) = 𝑔(𝑡, 𝜔(𝑡)), 𝑡 ∈ [0, 𝑇 ], (3.13)

subject to initial conditions

𝜔𝜎 (𝑎) = 𝜔𝜎
0 , 𝜎 = 0, 1, 2,… , ⌈𝜃⌉ (3.14)

where 𝐶𝒟 𝜃,𝜗
𝑎+ is the generalized Caputo-type fractional derivative op-

erator as earlier defined with 𝑎 > 0 and 𝜃 > 0, 𝑔(𝑡, 𝜔(𝑡)) is the linear
or nonlinear reaction kinetics. Under some weak conditions on the
function 𝑔, one can say that a solution exists and that this solution is
uniquely determined. The real numbers 𝜔(𝜎)

0 are assumed to be given.
By applying property (2.11), if 𝜗 > 0, 𝑚 − 1 < 𝜃 ≤ 𝑚 and 𝜔 ∈ 𝐶𝑚[𝑎, 𝑇 ],
the initial value problem (3.13) together with (3.14) can be written in
the integral form
3

𝜔(𝑡) = 𝜇(𝑡) + 𝜗1−𝜃

𝛤 (𝜃) ∫

𝑡

𝑎
𝜏𝜗−1(𝑡𝜗 − 𝜏𝜗)𝜃−1𝑔(𝜏, 𝜔(𝜏))𝑑𝜏, (3.15)

where

𝜇(𝑡) =
𝑚−1
∑

𝑛=0

1
𝜗𝑛𝑛!

(𝑡𝜗 − 𝑎𝜗)𝑛
[

(

𝑠1−𝜗 𝑑
𝑑𝑠

)𝑛
𝜔(𝑠)

]

|

|

|

|

|𝑠=𝑎
.

Next, we assume that the initial value problems (3.13) and (3.14)
has a unique solution in [𝑎, 𝑇 ], this interval is then partitioned into
sub-intervals {[𝑡𝜎 , 𝑡𝜎+1], 𝜎 = 0, 1, 2,… , 𝑁 − 1}, we adopt the grid points

𝑡𝜎+1 =
(

𝑡𝜗𝜎 + ℎ
)1∕𝜗 , 𝜎 = 0, 1, 2,… , 𝑁 − 1,

where 𝑡0 = 𝑎 and ℎ = (𝑇 𝜗−𝑎𝜗)∕𝑁 , n is the number of collocation points.
By following the procedures given in [34], we have the following
scheme

𝜔𝜎+1 = 𝜇(𝑡𝜎+1) +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

𝜎
∑

𝑗=0
𝑎𝑗,𝜎+1𝑔(𝑡𝑗 , 𝜔𝑗 ) +

𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)
𝑔
(

𝑡𝜎+1, 𝜔
𝑝
𝜎+1

)

,

(3.16)

where 𝜔𝑗 ≡ 𝜔(𝑡𝑗 ) for 𝑗 = 0, 1, 2,… , 𝜎, and 𝜔𝑝
𝜎+1 denotes the predictor

evaluated as

𝜔𝑝
𝜎+1 = 𝜇(𝑡𝜎+1) +

𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 1)

𝜎
∑

𝑗=0
𝑏𝑗,𝜎+1𝑔(𝑡𝑗 , 𝜔(𝑡𝑗 )), (3.17)

the weights are calculated as

𝑎𝑗,𝜎+1 =

⎧

⎪

⎪

⎨

⎪

⎪

𝜎𝜃+1 − (𝜎 − 𝜃)(𝜎 + 1)𝜃 𝑓𝑜𝑟 𝑗 = 0,

0(𝜎 − 𝑗 + 2)𝜃=1 + (𝜎 − 𝑗)𝜃+1

−2(𝜎 − 𝑗 + 1)𝜃+1 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝜎,

(3.18)
⎩
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Fig. 2. Numerical simulation for the Oiseau mythique system (4.19) with varying 𝜗 and fixed 𝜃 at 𝑡 = 10 000.
and

𝑏𝑗,𝜎+1 = (𝜎 + 1 − 𝑗)𝜃 − (𝜎 − 𝑗)𝜃 .

Applicability and suitability of the predictor–corrector methods (3.16)
and (3.17) will be tested on some generalized Caputo-type fractional
chaotic systems in the next section.

Application to chaotic maps problems

In this segment, we test the suitability of the proposed general-
ized Caputo-type fractional derivative operator to model the Oiseau
mythique Bicéphale, Oiseau mythique and L’Oiseau du paradis maps
which can be found as classical-order systems in [32], these chaotic
maps were presented in Paris in 1976 on international colloquium.
4

We adapt the predictor–corrector scheme and provide numerical re-
sults to those nonlinear chaotic models at specified values of 𝜃 and
𝜗. All numerical computations are performed with the Matlab 2019a
software.

Oiseau mythique map system

Consider the generalized Caputo-type fractional Oiseau mythique
system

𝐶𝒟 𝜃,𝜗
0+ 𝑥(𝑡) = 𝑦(𝑡) + 𝛼(1 − 0.05𝑦2(𝑡))𝑦(𝑡) + 𝜇𝑥(𝑡) +

2(1 − 𝜇)𝑥2(𝑡)
1 + 𝑥2(𝑡)

,

𝐶𝒟 𝜃,𝜗𝑦(𝑡) = −𝑥(𝑡) + 𝜇𝑥(𝑡) +
2(1 − 𝜇)𝑥2(𝑡)

,
(4.19)
0+ 1 + 𝑥2(𝑡)
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Fig. 3. Numerical simulation for the Oiseau mythique system (4.19) with varying 𝜃, 𝜗 = 0.99 and 𝛼 = 0.08 at 𝑡 = 10 000.
subject to initial conditions 𝑥(0) = 𝑥0 and 𝑦(0) = 𝑦0, where 𝐶𝒟 𝜃,𝜗
𝑎+

is the new generalized Caputo fractional derivative involving the pa-
rameters 𝜃 and 𝜗, such that 0 < 𝜃 ≤ 1 and 𝜗 > 0, 𝜇 and 𝛼 are
constants. By adapting the predictor–corrector algorithm as discussed
in Section ‘‘Predictor–corrector method’’ above, the approximations
𝑥𝜎+1 and 𝑦𝜎+1, the generalized Caputo-type fractional Oiseau mythique
system can be solve using the rules, for 𝑁 ∈ N and 𝑇 > 0,

𝑥𝜎+1 = 𝑥0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

𝜎
∑

𝑗=0
𝑎𝑗,𝜎+1

×

(

𝑦𝑗 + 𝛼(1 − 0.05𝑦2𝑗 )𝑦(𝑡) + 𝜇𝑥𝑗 +
2(1 − 𝜇)𝑥2𝑗
1 + 𝑥2𝑗

)

+ 𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

(

𝑦𝑝𝜎+1 + 𝛼(1 − 0.05(𝑦𝑝𝜎+1)
2)𝑦𝑝𝜎+1 + 𝜇𝑥𝑝𝜎+1

+
2(1 − 𝜇)(𝑥𝑝𝜎+1)

2

1 + (𝑥𝑝𝜎+1)
2

)

𝑦𝜎+1 = 𝑦0 −
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

𝜎
∑

𝑗=0
𝑎𝑗,𝜎+1

(

𝑥𝑗 + 𝜇𝑥𝑗 +
2(1 − 𝜇)𝑥2𝑗
1 + 𝑥2𝑗

)

,

− 𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

(

𝑥𝑝𝜎+1 + 𝜇𝑥𝑝𝜎+1 +
2(1 − 𝜇)(𝑥𝑝𝜎+1)

2

1 + (𝑥𝑝𝜎+1)
2

)

,

(4.20)

where ℎ = 𝑇 𝜗
and predictors are calculated as
5

𝑁

𝑥𝑝𝜎+1 = 𝑥0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 1)

𝜎
∑

𝑗=0
𝑏𝑗,𝜎+1

×

(

𝑦𝑗 + 𝛼(1 − 0.05𝑦2𝑗 )𝑦(𝑡) + 𝜇𝑥𝑗 +
2(1 − 𝜇)𝑥2𝑗
1 + 𝑥2𝑗

)

,

𝑦𝑝𝜎+1 = 𝑦0 −
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 1)

𝜎
∑

𝑗=0
𝑏𝑗,𝜎+1

(

𝑥𝑗 + 𝜇𝑥𝑗 +
2(1 − 𝜇)𝑥2𝑗
1 + 𝑥2𝑗

)

.

(4.21)

With 𝜇 = −0.496, 𝛼 = 0.008, 𝑥0 = 0.5 and 𝑦0 = 0.5, the generalized
Caputo-type fractional Oiseau mythique system (4.19) displays some
chaotic attractors in Figs. 1–3 for different values of 𝜃 and 𝜗, as shown
in the captions. Further, we slightly perturbed the parameters 𝜇 and 𝛼,
as 𝜇 = cos(4𝑝𝑖∕5) + 0.008 and 𝛼 = 0.009 to obtain chaotic phenomena as
displayed in Fig. 4 for some values of 𝜃 and 𝜗. Plots (𝑎− 𝑓 ) correspond
to 𝜗 = 𝜗 = 1.15 and 𝜃 = (0.41, 0.48, 0.53, 0.90, 0.74, 0.95), respectively. It
was observed in the simulation process that for system (4.19) to give
rise to chaotic behaviors, the sum of 𝜃 and 𝜗 must be greater than or
equal to one, if otherwise no attractor is achieved.

Oiseau mythique Bicéphale map system

For the second example, we consider the Oiseau mythique Bicéphale
system [32], which is modeled in this case with the generalized Caputo-
type fractional derivative in the form

𝐶𝒟 𝜃,𝜗
0+ 𝑥(𝑡) = 𝑦(𝑡) + 𝜇𝑥(𝑡) +

2(1 − 𝜇)𝑥2(𝑡)
1 + 𝑥4(𝑡)

+ 𝛼(1 − 𝛽(𝑦2(𝑡) + 3𝑥2(𝑡)))𝑦(𝑡),

𝐶𝒟 𝜃,𝜗𝑦(𝑡) = −𝑥(𝑡) + 𝜇𝑥(𝑡) +
2(1 − 𝜇)𝑥2(𝑡)

,
(4.22)
0+ 1 + 𝑥4(𝑡)
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Fig. 4. Numerical simulation for the Oiseau mythique system (4.19) with different values of 𝜗 and 𝜃 at 𝑡 = 150 000. Here, 𝜇 = cos(4𝑝𝑖∕5) + 0.008 and 𝛼 = 0.009.
where 𝜇, 𝛼 and 𝛽 are parameters to be given. By applying the predictor–
corrector scheme to (4.22), we have

𝑥𝜎+1 = 𝑥0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

𝜎
∑

𝑗=0
𝑎𝑗,𝜎+1

{

𝑦𝑗 + 𝜇𝑥𝑗 +
2(1 − 𝜇)𝑥2𝑗
1 + 𝑥4𝑗

+ 𝛼(1 − 𝛽(𝑦2𝑗 + 3𝑥2𝑗 ))𝑦𝑗

}

+ 𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

{

𝑦𝑝𝜎+1 + 𝜇𝑥𝑝𝜎+1 +
2(1 − 𝜇)(𝑥𝑝𝜎+1)

2

1 + (𝑥𝑝𝜎+1)
4

+𝛼(1 − 𝛽((𝑦𝑝𝜎+1)
2 + 3(𝑥𝑝𝜎+1)

2))𝑦𝑝𝜎+1
}

,

𝑦𝜎+1 = 𝑦0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

𝜎
∑

𝑗=0
𝑎𝑗,𝜎+1

{

−𝑥𝑗 + 𝜇𝑥𝑗 +
2(1 − 𝜇)𝑥2𝑗
1 + 𝑥4𝑗

}

+ 𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

{

−𝑥𝑝𝜎+1 + 𝜇𝑥𝑝𝜎+1 +
2(1 − 𝜇)(𝑥𝑝𝜎+1)

2

1 + (𝑥𝑝𝜎+1)
4

}

,

(4.23)
6

where ℎ remains as earlier defined, and

𝑥𝑝𝜎+1 = 𝑥0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 1)

𝜎
∑

𝑗=0
𝑏𝑗,𝜎+1

×

{

𝑦𝑗 + 𝜇𝑥𝑗 +
2(1 − 𝜇)𝑥2𝑗
1 + 𝑥4𝑗

+ 𝛼(1 − 𝛽(𝑦2𝑗 + 3𝑥2𝑗 ))𝑦𝑗

}

,

𝑦𝑝𝜎+1 = 𝑦0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 1)

𝜎
∑

𝑗=0
𝑏𝑗,𝜎+1

{

−𝑥𝑗 + 𝜇𝑥𝑗 +
2(1 − 𝜇)𝑥2𝑗
1 + 𝑥4𝑗

}

,

(4.24)

With 𝜇 = 0.325, 𝛽 = 0.01, and 𝛼 = 0.0025, system (4.22) gives chaotic
oscillations for various values of 𝜃 and 𝜗 as presented in Fig. 5. The
initial conditions are specified as 𝑥0 = 0.1 and 𝑦0 = 0.1. Also, with
𝛼 = 0.00025, 𝜗 = 1.25, chaotic phenomena in Fig. 6 is obtained.
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Fig. 5. Numerical simulation for the Oiseau mythique Bicéphale map system (4.22) for different values of 𝜃 and 𝜗 = 0.98. Simulation runs for 𝑡 = 500 000.

Fig. 6. Numerical results showing the attractors for system (4.22) at different instances of 𝜃. Simulation runs for 𝑡 = 500 000.
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Fig. 7. Numerical simulation showing chaotic evolution for the Oiseau du paradis system (4.25) for different parameter values with 𝜃 = 0.99 and 𝜗 = 0.99.
L’Oiseau du paradis system

The third example covers the generalized Caputo-type L’Oiseau du
paradis fractional system

𝐶𝒟 𝜃,𝜗
0+ 𝑥(𝑡) = 𝑦(𝑡) + 𝛼𝑦2(𝑡)(1 − 𝛽𝑦2(𝑡)) + 𝜇𝑥(𝑡) + (1 − 𝜇)𝑥2(𝑡)

× exp
(

1 − 𝑥2(𝑡)
4

)

𝐶𝒟 𝜃,𝜗
0+ 𝑦(𝑡) = −𝑥(𝑡) + 𝜇𝑥(𝑡) + (1 − 𝜇)𝑥2(𝑡) exp

(

1 − 𝑥2(𝑡)
4

)

,

(4.25)

which can be written in the predictor–corrector mode as

𝑥𝜎+1 = 𝑥0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

𝜎
∑

𝑗=0
𝑎𝑗,𝜎+1

×

[

𝑦𝑗 + 𝛼𝑦2𝑗 (1 − 𝛽𝑦2𝑗 ) + 𝜇𝑥𝑗 + (1 − 𝜇)𝑥2𝑗 exp

(

1 − 𝑥2𝑗
)]
8

4

+ 𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

{

𝑦𝑝𝜎+1 + 𝛼(𝑦𝑝𝜎+1)
2(1 − 𝛽(𝑦𝑝𝜎+1)

2) + 𝜇𝑥𝑝𝜎+1

+(1 − 𝜇)(𝑥𝑝𝜎+1)
2 exp

(

1 − (𝑥𝑝𝜎+1)
2

4

)}

,

𝑦𝜎+1 = 𝑦0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

𝜎
∑

𝑗=0
𝑎𝑗,𝜎+1

[

−𝑥𝑗 + 𝜇𝑥𝑗 + (1 − 𝜇)𝑥2𝑗 exp

(

1 − 𝑥2𝑗
4

)]

+ 𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

{

− 𝑥𝑝𝜎+1 + 𝜇𝑥𝑝𝜎+1 + (1 − 𝜇)(𝑥𝑝𝜎+1)
2

× exp

(

1 − (𝑥𝑝𝜎+1)
2

4

)}

,

(4.26)
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Fig. 8. Chaotic attractors for Oiseau du paradis system (4.25) for different values of 𝜃 and 𝜗, other parameters are: 𝜇 = −0.48, 𝛽 = 0.1, 𝛼 = 0.018. Simulation runs for 𝑡 = 100 000.
where

𝑥𝑝𝜎+1 = 𝑥0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 1)

𝜎
∑

𝑗=0
𝑏𝑗,𝜎+1

{

𝑦𝑗 + 𝛼𝑦2𝑗 (1 − 𝛽𝑦2𝑗 ) + 𝜇𝑥𝑗 + (1 − 𝜇)𝑥2𝑗

× exp

(

1 − 𝑥2𝑗
4

)}

,

𝑦𝑝𝜎+1 = 𝑦0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 1)

𝜎
∑

𝑗=0
𝑏𝑗,𝜎+1

{

−𝑥𝑗 + 𝜇𝑥𝑗 + (1 − 𝜇)𝑥2𝑗 exp

(

1 − 𝑥2𝑗
4

)}

.

(4.27)

With the initial conditions 𝑥0 = 0.1, 𝑦0 = 0 and specific parameter val-
ues as specified in Figs. 7 and 8, the generalized Caputo-type fractional
L’Oiseau du paradis model (4.25) displayed some chaotic behaviors. In
Fig. 7, the parameters correspond to (𝑎)𝜇 = −0.38, 𝛽 = 1, 𝛼 = 0.018,
(𝑏)𝜇 = −0.38, 𝛽 = 0.01, 𝛼 = 0.0018, (𝑐)𝜇 = −0.78, 𝛽 = 0.01, 𝛼 = 0.018,
(𝑑)𝜇 = −0.58, 𝛽 = 0.01, 𝛼 = 0.018, (𝑒)𝜇 = −0.40, 𝛽 = 0.1, 𝛼 = 0.0083,
(𝑓 )𝜇 = −0.58, 𝛽 = 0.1, 𝛼 = 0.0083, (𝑔)𝜇 = −0.68, 𝛽 = 0.1, 𝛼 = 0.0083
and (ℎ)𝜇 = −0.78, 𝛽 = 0.1, 𝛼 = 0.0083 with varying and 𝛼 = 0.08 at
𝑡 = 100 000, the values of 𝜃 and 𝜗 are given in the caption.

The Gumowski–Mira map

To extend the numerical examples in this work, we consider the
Gumowski–Mira chaotic system [36,37] written in the predictor–
corrector mode with the generalized Caputo-type operator as
9

𝑥𝜎+1 = 𝑥0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

𝜎
∑

𝑗=0
𝑎𝑗,𝜎+1

⎡

⎢

⎢

⎢

⎣

𝑦𝑗 + 𝛼
(

1 − 𝛾𝑦2𝑗
)

+ 𝛽𝑥𝑗 +
2𝑥2𝑗 (1 − 𝛽)
(

1 + 𝑥2𝑗
)

⎤

⎥

⎥

⎥

⎦

+ 𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

⎧

⎪

⎨

⎪

⎩

𝑦𝑝𝜎+1 + 𝛼
(

1 − 𝛾(𝑦𝑝𝜎+1)
2
)

+ 𝛽𝑥𝑝𝜎+1 +
2(𝑥𝑝𝜎+1)

2(1 − 𝛽)
(

1 + (𝑥𝑝𝜎+1)
2
)

⎫

⎪

⎬

⎪

⎭

,

𝑦𝜎+1 = 𝑦0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

𝜎
∑

𝑗=0
𝑎𝑗,𝜎+1

⎡

⎢

⎢

⎢

⎣

−𝑥𝑗 + 𝛽𝑥𝑗 +
2𝑥2𝑗 (1 − 𝛽)
(

1 + 𝑥2𝑗
)

⎤

⎥

⎥

⎥

⎦

+ 𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

⎧

⎪

⎨

⎪

⎩

−𝑥𝑝𝜎+1 + +𝛽𝑥𝑝𝜎+1 +
2(𝑥𝑝𝜎+1)

2(1 − 𝛽)
(

1 + (𝑥𝑝𝜎+1)
2
)

⎫

⎪

⎬

⎪

⎭

,

(4.28)

where

𝑥𝑝𝜎+1 = 𝑥0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 1)

𝜎
∑

𝑗=0
𝑏𝑗,𝜎+1

⎧

⎪

⎨

⎪

⎩

𝑦𝑗 + 𝛼
(

1 − 𝛾𝑦2𝑗
)

+ 𝛽𝑥𝑗 +
2𝑥2𝑗 (1 − 𝛽)
(

1 + 𝑥2𝑗
)

⎫

⎪

⎬

⎪

⎭

,

𝑦𝑝𝜎+1 = 𝑦0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 1)

𝜎
∑

𝑗=0
𝑏𝑗,𝜎+1

⎧

⎪

⎨

⎪

⎩

−𝑥𝑗 + 𝛽𝑥𝑗 +
2𝑥2𝑗 (1 − 𝛽)
(

1 + 𝑥2𝑗
)

⎫

⎪

⎬

⎪

⎭

.

(4.29)
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Fig. 9. Chaotic evolution fractional Gumowski-Mira map (4.28) for different values 𝜃 and 𝜗.
subject to initial conditions 𝑥0 = 5, 𝑦0 = 0, and parameters 𝛼 = 0.003,
𝛽 = 0.1 and 𝛾 = 0.005. Numerical experiments are repeated for different
values of 𝜗 and 𝜃 as shown in Fig. 9.

The multi-fold Henon map

Finally, we give an extension here by considering the generalized
Caputo-type Hellon map dynamics [37,38] via the predictor–corrector
schemes as

𝑥𝜎+1 = 𝑥0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

𝜎
∑

𝑗=0
𝑎𝑗,𝜎+1

[

1 − 𝛼 sin(𝑥𝑗 ) + 𝛽𝑦𝑗
]

,

+ 𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

{

1 − 𝛼 sin(𝑥𝑝𝜎+1) + 𝛽𝑦𝑝𝜎+1
}

,

𝑦𝜎+1 = 𝑦0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

𝜎
∑

𝑎𝑗,𝜎+1
[

𝑥𝑗
]

+ 𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 2)

{

𝑥𝑝𝜎+1
}

,

(4.30)
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𝑗=0
where

𝑥𝑝𝜎+1 = 𝑥0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 1)

𝜎
∑

𝑗=0
𝑏𝑗,𝜎+1

{

1 − 𝛼 sin(𝑥𝑗 ) + 𝛽𝑦𝑗
}

,

𝑦𝑝𝜎+1 = 𝑦0 +
𝜗−𝜃ℎ𝜃

𝛤 (𝜃 + 1)

𝜎
∑

𝑗=0
𝑏𝑗,𝜎+1

{

𝑥𝑗
}

.

(4.31)

We utilize the initial condition and parameters 𝑥0 = 5, 𝑦0 = 0, 𝛼 = 0.48
and 𝛽 = 0.9924 to obtain the dynamic behaviors in Fig. 10 for some
instances of 𝜃 and 𝜗

Conclusion

Application of the new generalized Caputo-type fractional deriva-
tive operator to model the two-dimensional form of the generalized
Oiseau mythique map, L’Oiseau du paradis and the Oiseau mythique
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Fig. 10. Chaotic dynamics of fractional Henon system (4.30) for different values 𝜃 and 𝜗.
Bicéphale map systems are considered in this paper. The new gener-
alized Caputo-type operator is approximated by the novel predictor–
corrector algorithm. The simulation results obtained for different in-
stances of 𝜃 and 𝜗 showed that the fractional maps displayed very
strange complex (chaotic) dynamical behaviors due to memory and the
order of the new operator. These features make the fractional-order
chaotic maps system to be distinctive from the known classical-order
maps. In addition, based on the dynamical behaviors that evolved
during the computational experiments, one could opined that the
fractional-order systems have higher complexity when compared to
the classical-order models, which implies that the two-dimensional
generalized Caputo-type fractional-order maps have better application
11
prospects than its corresponding standard order representations. Appli-
cation of the numerical techniques and the new fractional derivative
to models in engineering and sciences will be the future research
direction.
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