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1.  INTRODUCTION

Wood is extensively used for furniture, building construction and 
paper production [1]. There are various types of wood and each of 
them has different attributes with regard to its formation, thick-
ness, color and texture [2]. These varying characteristics defines 
their ideal usages and economic values [3]. As the price and charac-
teristics of every wood species differs, misclassification may cause 
financial losses. Hence, there is a need to identify different wood 
species accurately.

Conventionally, the recognition of wood species is performed man-
ually by human subjects [4]. However, this practice is time and cost 
consuming to the lumber industry. Hence, several automatic wood 
species recognition systems have been developed [1,2,5,6]. The 
efficiency of automatic wood recognition systems can be improved 
by using superior quality microscopy images which are commonly 
enhanced to improve the rate of successful wood species recog-
nition. Nevertheless, the image enhancement processes consume 
extra computational time, and could cause a checkerboard artefact 
to the wood images [7]. In addition, the dusty and dark environ-
ment in timber factories could degrade the quality of the image 
acquired [8]. Thus, an appropriate Image Quality Assessment 
(IQA) algorithm is required to assess the acquired wood images 
prior to feeding it to any automatic wood recognition system.

Image quality assessment can be categorized into subjective and 
objective evaluations. Subjective evaluation is the scores given by 
human subjects based on their judgment on the image quality. 
While, objective evaluation is done based on numerical methods to 
determine the quality of the images. Even though, subjective eval-
uation is the benchmark of IQA, it is impracticable in an industrial 
environment as it is time and cost consuming. Therefore, it is nec-
essary to develop an objective evaluation procedures that is capable 
to imitate subjective IQA evaluation [9].

Objective evaluation can be categorized into Full-Reference-IQA 
(FR-IQA) [10–15], Reduced Reference-IQA (RR-IQA) [16,17] and 
No-Reference/Blind IQA (NR-IQA) [18–20]. FR-IQA uses the ref-
erence image fully to assess the images [10–15] whereas RR-IQA 
uses the reference images partially [16,17]. In contrast, NR-IQA 
assesses an image without using a reference image [18–21]. 
NR-IQA is the most appropriate algorithm to evaluate the quality 
of the wood images as it may be impossible to obtain high quality 
images in the dusty and dark setting of lumber factories. Therefore, 
we propose the Gray Level Co-Occurrence Matrix (GLCM) and 
Gabor features-based NR-IQA, GGNR-IQA algorithm to evaluate 
wood images.

The GLCM and Gabor features are widely used in wood species 
recognition system [5,22–24]. The proposed GGNR-IQA algo-
rithm is compared with a commonly utilized NR-IQA, Blind/
Referenceless Image Spatial Quality Evaluator (BRISQUE) [18], 
and FR-IQAs namely, Structural Similarity Index (SSIM) [10], 
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A B S T R AC T
Image Quality Assessment (IQA) is a vital element in improving the efficiency of an automatic recognition system of various wood 
species. There is a need to develop a No-Reference IQA (NR-IQA) system as a perfect and distortion free wood images may be 
impossible to be acquired in the dusty environment in timber factories. To the best of our knowledge, there is no NR-IQA developed  
for wood images specifically. Therefore, a Gray Level Co-Occurrence Matrix (GLCM) and Gabor features-based NR-IQA  
(GGNR-IQA) metric is proposed to assess the quality of wood images. The proposed metric is developed by training the support 
vector machine regression with GLCM and Gabor features calculated for wood images together with scores obtained from 
subjective evaluation. The proposed IQA metric is compared with a widely used NR-IQA metric, Blind/Referenceless Image 
Spatial Quality Evaluator (BRISQUE) and Full Reference-IQA (FR-IQA) metrics. Results shows that the proposed NR-IQA metric 
outperforms the BRISQUE and the FR-IQA metrics. Moreover, the proposed NR-IQA metric is beneficial in wood industry as a 
distortion free reference image is not needed to evaluate the wood images.
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Multiscale SSIM (MS-SSIM) [10], Feature Similarity (FSIM) 
[11], Information Weighted SSIM (IW-SSIM) [12] and Gradient 
Magnitude Similarity Deviation (GMSD) [13]. There is signifi-
cant difference between the proposed GGNR-IQA between the 
BRISQUE. Technically, BRISQUE is generalized to evaluate natu-
ral images and is not suitable to assess the wood images while the 
proposed GGNR-IQA is trained to assess the wood images. The 
performances of the GGNR-IQA, BRISQUE and FR-IQAs are eval-
uated by using the Pearson Linear Correlation Coefficient (PLCC) 
and Root Mean Squared Error (RMSE) computed between the 
human Mean Opinion Scores (MOS) and the algorithms.

2.  MATERIALS AND METHODS

2.1.  Training and Testing Database

An Support Vector Machine Regression (SVR) model is trained with 
the 44 features of GLCM and Gabor calculated for normalized wood 
images with the human MOS which are obtained from the subjective 
evaluation for wood images. The MOS, GLCM and Gabor features 
are utilized as the training and testing database to obtain an opti-
mized SVR model. The SVM model is used widely in modelling IQA 
metric as it is capable to handle high-dimensional data exist along 
with a corresponding lack of knowledge of the underlying distribu-
tion. Even with a relatively small sample size, SVMs have the benefit 
of not being constrained by distributional assumptions, other than 
that the data are independent and identically distributed [25].

2.1.1.  Wood images

Ten wood images from various wood genus, as shown in Figure 1 
were chosen. The images were acquired from a wood database: 
https://www.wood-database.com/ [26]. The images were converted 
to grayscale and the pixel values were normalized to the range 
0–255 for ease of applying the same levels of distortion across all 
the reference images. The images consisted of a matrix of 600 × 600 
pixels, corresponding to resolution of 360,000 and an image area 
of 9525 cm2. The 10 reference images were distorted by Gaussian 
white noise and motion blur. These two types of distortions usu-
ally occur in the industrial setting. Generally, the wood images are 
exposed to Gaussian white noise due to the poor illumination and 
heat in the lumber mill while acquiring the wood images [8,27]. 

On the other hand, wood images are exposed to motion blur when 
there is a relative motion between the wood slice and camera [6].

These distortions degrade the quality of the wood images where 
the features of the pores on the wood texture may not be discerned. 
Hence, this may lead to misclassification of the wood genus as the 
feature extractor may not obtain distinctive features from the wood 
images efficiently [28]. Nine modulations of Gaussian white noise 
with standard deviation, sGN and motion blur with standard devia-
tion, sMB were added to the reference images, i.e.: sGN = 10, 20, 30, 
40, 50, 60, 70, 80 and 90 for Gaussian white noise and sMB = 2, 4, 6, 
8, 10, 12, 14, 16 and 18 for motion blur.

2.1.2.  GLCM and gabor features

First, Mean Subtracted Contrast Normalized (MSCN), I m n�( , ) is 
calculated from the wood image, I(m,n) using Equation (1) [18]:
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where m(m,n) and s (m,n) denote the mean and variance of wood 
image, I(m,n), respectively, m ¨ 1, 2, ..., M, n ¨ 1, 2, ..., N are spatial 
indices while M represents the height and N represents width of 
image, I(m,n).

The mean, m(m,n) and variance, s (m,n) of the wood image are 
computed using Equations (2) and (3), respectively [18]:
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Where w w k K K l L Lk l= = − … = − …{ | , , , , , },  is a 2-dimensional 
(2D) circularly-symmetric Gaussian weighting function that 
is sampled out to three standard deviations and rescaled to unit 
volume, and K and L represent the window sizes.

The MSCN coefficients, I m n�( , ) highlights the main features of the 
wood images such as pores and grains, with few low-energy resid-
ual object boundaries [21]. Therefore, the MSCN is used to com-
pute the GLCM and Gabor features instead of the image, I(m,n). 
Next, two types of features namely, GLCM and Gabor features were 
incorporated in this study.

2.1.2.1.  GLCM features

The GLCM depicts second order statistical analysis of an image by 
analyzing how often the pairs of pixels which consist of specific 
values and spatial relationship take place in an image. The proba-
bility, p(m, n) is computed using Equation (4) [29]:

		  p m n C m n d( , ) { ( , ) | ( , )}= q �  (4)

where d is the inter-pixels displacement distance, θ denotes orien-
tation and C(m,n) denotes the frequency of gray level occurrence 
in MSCN of the image, I m n�( , ). Four statistical textures such as  

Figure 1 | Ten wood images used as reference images (a) Turraeanthus 
africanus, (b) Ochroma pyramidale, (c) Tilia americana, (d) Cordia spp., 
(e) Juglans cinerea, (f) Vouacapoua americana, (g) Dipterocarpus spp.,  
(h) Swartzia cubensis, (i) Cordia spp., (j) Cornus florida.
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contrast, correlation, energy, and homogeneity were extracted 
from the GLCM matrix.

Contrast calculates the local variations in the GLCM and is defined 
as Equation (5) [29]:

		  Contrast = −∑
m n

m n p m n
,

( , )2
�  (5)

Correlation computes the joint probability occurrence of the spec-
ified pixel pairs and is defined as Equation (6) [29]:
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Energy calculates the sum of squared components in the GLCM. 
It is also known as uniformity or the angular second moment. The 
energy parameter is computed as Equation (7) [29]:
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Homogeneity calculates the closeness of the distribution of ele-
ments in the GLCM to the GLCM diagonal and is computed as 
Equation (8) [29]:
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These four parameters were computed at four directions, 0°, 45°, 
90° and 135° and this form 16 GLCM features.

2.1.2.2. � Gabor features

The 2D Gabor function which represents the spatial summation 
properties of simple cells in the visual cortex and it is defined as 
Equation (9) [30]:
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where

		  ′ = +x x ycos sinq q �  (10)

		  ′ = − +y x ysin cosq q �  (11)

l denotes the wavelength of the sinusoidal factor, q denotes the 
orientation of the normal to the parallel stripes of a Gabor func-
tion, y represents the phase offset, s represents the standard 
deviation of the Gaussian envelope and g represents the spatial 
aspect ratio.

The computational models of 2D Gabor filters are defined in 
Equations (12) and (13) [30]:

	 h g x y f x ye = +( , ) ( ( cos sin ))cos 2p q q �  (12)
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where he and ho represents the even symmetric and odd symmet-
ric Gabor filters, respectively and g(x,y) represents the isotropic 
Gaussian function and is computed as Equation (14) [30]:
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And the spatial frequency response of the Gabor functions, f is as 
shown in Equation (15) [30]:

			   f N P= / �  (15)

where N denotes the size of the kernel and P denotes period in 
pixel.

In this study, wavelength, l is in increasing powers of two starting 
from 4 2/  up to the hypotenuse length of the input image [31] and 
this produces seven Gabor features. The seven Gabor features were 
then computed in four orientations, 0°, 45°, 90° and 135°, similar 
to the GLCM computations. This forms 28 features Gabor features. 
In total, the 16 GLCM and 28 Gabor features were combined and 
this forms 44 features. These 44 features were calculated using the 
MSCN coefficients, I m n�( , ) and are used to train SVR.

2.1.3.  MOS

The MOS values were obtained from subjective evaluation partic-
ipated by 10 students aged between 20 and 25 years from Manipal 
International University (MIU), Malaysia. The evaluation was car-
ried out as per the procedures suggested in Rec. ITU-R BT.500-11  
[32] where it was performed in an office environment using a 
21-inch LED computer screen.

Simultaneous double stimulus for continuous evaluation approach 
was used in this evaluation [32,33] where the reference and dis-
torted images are shown side-by-side on the computer screen and 
each subject compares the quality of the images displayed on the 
right side with its reference image (left side) to evaluate the dis-
played image.

The score given by the human subjects are either Excellent (5), 
Good (4), Fair (3), Poor (2) or Bad (1) for each image displayed. 
The evaluation process takes 15–20 min for each subject. The 
scores obtained from the subjects were averaged to convert them to 
the MOS [34]. These MOS values are also used to train SVR.

2.1.4.  Support vector machine regression

¨-Support Vector Machine Regression (SVR) [35] is trained using 
MOS and 44 GLCM and Gabor features of wood images in this 
study. The 44 image features (GLCM and Gabor features) calcu-
lated for the wood images are mapped to the MOS values of the 
corresponding wood images. The 44 GLCM and Gabor features 
and MOS of wood images were randomly split into training and 
testing sets where 80% of the 44 features and MOS values were used 
to train the SVR model to obtain an SVR model with optimized 
parameters and 20% were utilized to evaluate the optimized SVR 
model. There was no overlap between the training and testing data 
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to ensure a fair prediction of quality scores. Several experiments 
were performed on the training and testing data split (70% for 
training and 30% for testing, 80% for training and 20% for testing 
and 90% for training and 10% for testing). When a higher percent-
age of data (90%) for training procedure was tested, the model per-
formance only increased slightly. However, the computation time 
is longer. A lower percentage of data (70%) for training procedure 
was tested but the performance of the model decreased. Hence, 
80% of data was used for training and 20% of data was used for 
testing the model.

The flow diagram of the proposed GGNR-IQA is shown in 
Figure 2. The performance of GGNR-IQA was evaluated using 
PLCC [36] and RMSE [37] calculated between 1000 iterations 
were performed on the training and testing of the SVR model 
to obtain an optimized SVR model. The cost parameter, C, and 
width parameter, g, of the optimized SVR model are 32,768 and 
0.125, respectively.

2.2.  Performance Evaluation

The proposed GGNR-IQA is compared with a well-known NR-IQA 
algorithm, BRISQUE and five FR-IQAs [28]: SSIM [10], MS-SSIM 
[10], FSIM [11], IW-SSIM [12] and GMSD [13].

The performance of the GGNR-IQA, BRISQUE and FR-IQAs is 
assessed using PLCC and RMSE [33] values calculated between 
these algorithms and MOS.

3.  RESULTS AND DISCUSSION

The efficiency of the GGNR-IQA was further assessed using a 
second dataset which was generated from the same wood image 
database [26]. This second dataset was produced using 10 refer-
ence images acquired from 10 various wood genus as shown in 
Figure 3.

These reference images were added with the similar distortion type 
(Gaussian white noise and motion blur) and modulations as the 
training and testing database. This means that the second dataset 
includes 10 reference images and 180 distorted images.

Figure 2 | Flow diagram of the proposed GGNR-IQA.

3.1. � Relationship between MOS and  
Quality of Image with Different  
Distortion Modulations

Figure 4a and 4b shows the correlation between MOS and nine 
distortion modulations of Gaussian white noise and motion blur. 
Lower MOS values show lower image quality which is caused by 
higher distortion modulation. On the other hand, higher MOS 
values represent higher image quality which is generated by lower 
distortion modulation. Based on Figure 4a and 4b, the MOS 
decreases as the distortion modulation increases. This means that 
all the human subjects could discern the images distorted with the 
various modulations of Gaussian white noise and motion blur.

Figure 3 | Reference wood images in the second dataset (a) Julbernardia 
pellegriniana, (b) Dalbergia cultrate, (c) Dalbergia retusa, (d) Dalbergia 
cearensis, (e) Guaiacum officinale, (f) Swartzia spp., (g) Dalbergia 
spruceana, (h) Dalbergia sissoo, (i) Swartzia benthamiana and  
(j) Euxylophora paraensis.

a

f

b

g

c

h

d

i

e

j

Figure 4 | Scatter Plot of MOS versus nine distortion modulations of (a) 
Gaussian white noise and (b) motion blur.
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3.2. � Correlation between GGNR-IQA, 
BRISQUE and FR-IQAs Algorithms  
and MOS

The PLCC and RMSE values calculated between MOS and the pro-
posed GGNR-IQA metric, BRISQUE and the five FR-IQA metrics 
are shown in Figures 5 and 6, respectively. The most suitable IQA 
for wood images is expected to have the highest PLCC and lowest 
RMSE values. Figure 5 shows that the PLCC values obtained for the 
GGNR-IQA for Gaussian white noise, motion blur and the overall 
database are the highest compared to the BRISQUE and FR-IQAs. 
This shows that the GGNR-IQA algorithm outperforms BRISQUE 
and all the five FR-IQAs. This is further proved with the lowest 
RMSE values for the proposed metric compared to BRISQUE and 
all the five FR-IQAs as shown in Figure 6.

4.  CONCLUSION

A NR-IQA algorithm, GGNR-IQA was proposed to assess wood 
images prior to feeding the image to wood species classification 
and recognition system. The proposed GGNR-IQA algorithm was 
trained using GLCM, Gabor features and MOS obtained from 
wood images. The performance of the GGNR-IQA algorithm 
was assessed by comparing the PLCC and RMSE values calcu-
lated between GGNR-IQA, BRISQUE, five FR-IQA algorithms 
and MOS. PLCC and RMSE values showed that the GGNR-IQA 
algorithm outperforms BRISQUE and all the five FR-IQAs. This 

Figure 5 | PLCC values between GGNR-IQA, BRISQUE, FR-IQAs  
and MOS.

Figure 6 | RMSE values between GGNR-IQA, BRISQUE, FR-IQAs  
and MOS.

shows that the GGNR-IQA algorithm could assess the quality of 
wood images accurately. In addition, the proposed GGNR-IQA 
algorithm would not require a distortion free reference image to 
determine the quality of the wood images. This is beneficial espe-
cially when it is impossible to obtain a distortion free reference 
image in the dusty environment of lumber mill.
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