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Preface
Parts of this thesis have already been published in the references [W1–W4], including
most of the results and in part the corresponding theory. The content of these references
might appear verbatim or adjusted for this thesis.1 I indicate such content by adding the
reference in the headings. The figure on the title page is adapted from the key image
used for reference [W2].
Most results of this thesis are of numerical nature. They were generated applying

existing impurity solvers. For finite temperatures, I used a (slightly adjusted) continuous-
time quantum Monte Carlo code in hybridization expansion (CT-HYB) written by Junya
Otsuki (unpublished), as well as the ‘w2dynamics’ code [C1]. The analytic continuation
was mostly performed applying self-written Padé algorithms [C2], further the sparse
modeling tool ‘SpM’ [C3] was employed. The analytic continuation was also compared
to the ‘ΩMaxent’ maximum entropy code [C4] and a stochastic optimization code [C5].
For zero-temperature real-frequency results, I used the ‘ForkTPS’ code (unpublished)
largely written by Daniel Bauernfeind, which is based on ‘ITensor’ [C6] and integrated in
‘TRIQS’ [C7]. I packaged most of the additional algorithms and post-processing algorithms,
which I wrote in the course of this thesis, as the ‘GfTool’ code [C2].

1Reprinted content of reference [W3] with permission from Weh et al., Phys. Rev. B 104, 045127 (2021).
Copyright c© 2021 by the American Physical Society.
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1. Introduction

1.1. Modeling correlated electrons
If two objects or events cannot be described independently, we call them correlated.
Mathematically, the expectation value of correlated quantities A and B does not factorize:

〈AB〉 6= 〈A〉 〈B〉 .
Physically, correlations are caused by interactions between objects. We experience
correlation effects in our everyday life. Driving on a crowded street, the cars cannot be
described independently. As the cars get closer, they (or rather their drivers) start to
interact, and traffic jams can emerge. While an independent car could drive as fast as
the speed limit allows, many interacting cars might come to a complete standstill.

In condensed matter physics, correlated electron systems show many fascinating features.
A prime example is the metal-to-Mott-insulator transition [1–3], which cannot be described
by the single-particle picture employed in band theory. Other exciting phenomena include
heavy fermions, colossal magnetoresistance, and Fermi liquid instabilities. Correlated
electron systems exhibiting such properties are also very interesting for applications in
electronic devices, as these properties are tunable. The phase diagrams are typically
complex, showing many different phases.
While many-body systems of correlated electrons are exciting and show promising

physical properties, they are difficult to treat theoretically. While density functional
theory [4–7] is extremely successful for weakly correlated systems, it fails for strongly
correlated systems like Mott insulators, which are incorrectly predicted to be metallic. But
even abandoning first-principles methods for realistic materials, treating seemingly simple
models instead, the many-body problem remains hard. Analytical solutions are typically
only available for one-dimensional systems (and sometimes in the opposite limit of infinite
dimensions). Likewise, numerical solutions are often very limited due to the exponential
growth of the Hilbert space with the system size. The complexity of the many-body
problem of correlated electrons necessitates the study of simplified models. With the
progress of non-perturbative treatment and numerical methods, models are nowadays
routinely used to supplement first-principles calculations based on density functional
theory with correlations. This is termed density functional theory + dynamical mean-field
theory, or, if the local density approximation is used as exchange-correlation functional,
LDA+DMFT. Such first-principles calculations can predict material properties, which
can save time compared to synthesizing materials.
Additionally, modeling can provide further insight into correlation effects. While

real materials exhibit an intricate interplay of many different constituents and their
interactions, models allow reducing the problem of identifying the essential physics. This
is crucial to our understanding of the physical origin. Besides the academic interest, this,
in turn, helps to improve methods to describe real materials and is significant to designing
new materials with favorable properties, like room temperature superconductors.
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1. Introduction

1.2. Numerical techniques
As mentioned above, solving the many-body problem is a formidable task. Already the
quantum three-body problem cannot be solved analytically; thus, solving the problem of
many interacting electrons in solids seems like a futile endeavor. Therefore, we turn to
powerful computers and employ numerical techniques.
We focus on solving the Hubbard model. In principle, the task is clear: We write

the Hubbard Hamiltonian in a many-particle basis and diagonalize the matrix; this is
termed exact diagonalization [8]. Due to the exponential growth of the Hilbert space and,
therefore, the matrix dimensions with system size, this approach is limited to extremely
small systems. Using iterative diagonalization procedures like Lanczos [9] allows treating
larger matrices; due to the exponential scaling, the treatable system size remains however
small. Instead of directly solving the lattice problem, the dynamical mean-field theory
can be employed. This amounts to solving a simpler, effective impurity problem that is
determined self-consistently.
The impurity problem can be directly solved using quantum Monte Carlo (QMC)

algorithms, which are based on sampling contributions to the partition function formulated
in the action formalism [10, 11]. The early Hirsch–Fye [12] algorithm is based on a
discretization in imaginary time. Nowadays, more accurate continuous-time quantum
Monte Carlo algorithms without a time discretization are employed [13]. While Monte
Carlo algorithms avoid the exponential scaling with system size and can treat infinitely
large baths, they are plagued by the so-called fermionic sign problem and restricted to
imaginary times. Real-time versions exist also [14, 15], but they face a dynamical sign
problem [16].

Alternatively, Hamiltonian-based methods can be applied by discretizing the bath of the
effective impurity model. For small numbers of bath sites, the impurity problem can be
solved by employing exact diagonalization [8, 9]. The numerical renormalization group [17,
18] is tailored to impurity models and does not suffer from restricted numbers of bath
sites. It employs a logarithmic discretization, providing accurate results around the Fermi
level. However, the resolution at higher energies is poor. Tensor network methods [19,
20] based on the density matrix renormalization group by White [21, 22] can treat large
numbers of bath sites. The discretization is arbitrary, allowing for good resolution also at
higher energies. Typically, these methods are limited to zero temperature.

1.3. Application to half-metals
The term half-metal refers to materials that exhibit a metallic spin channel while the
other spin channel is insulating. In a one-particle band picture, this corresponds to a
finite value of the spectral function at the Fermi level for the metallic spin channel, while
the other spin channel shows a band gap. In half-metallic electrodes, a fully spin-polarized
current can be produced, and fascinating effects arise, such as giant magnetoresistance
in tunnel magnetoresistance devices [23]. Thus, half-metals have a high potential for
spintronic applications [23, 24].
First-principles calculations using density-functional theory [4–7] identified a number

of bulk half-metals, including Heusler alloys [25] (e.g., NiMnSb, FeMnSb, Mn2VAl),
double perovskites, transition-metal oxides (e.g., CrO2), chalcogenides, and pnictides

2



1.3. Application to half-metals

(e.g., CrAs, VAs). Some of these materials could be experimentally realized. Spin
fluctuations are crucial to metallic ferromagnets [26]. In half-metallic ferromagnets,
incoherent nonquasiparticle states were found in the vicinity of the Fermi level [23, 27, 28].
Their tails depolarize the spectral function as they cross the Fermi level. For applications,
not only the bulk but in particular interfaces are of interest, as giant magnetoresistance
in the current perpendicular to the planes can be produced for interfaces of ferromagnetic
and nonmagnetic metals [29–31].

3



1. Introduction

Outline
Chapter 2 introduces the Hubbard model and the single-impurity Anderson model to
describe interacting electrons; the Hamiltonians and their parameters are presented.

Chapter 3 discusses the dynamical mean-field theory algorithm, which is used to treat
local electronic interactions. The derivation based on the cavity construction is given.
Chapters 4 and 5 describe two complementary numerical methods to solve the single-
impurity Anderson model necessary for the dynamical mean-field theory. Chapter 4
outlines the action based continuous-time quantum Monte Carlo algorithm, presenting the
hybridization expansion. Quantum Monte Carlo uses an imaginary time representation,
thus an analytic continuation is necessary to obtain the spectra. This chapter focuses on
the Padé algorithm; a variant of the algorithm is given, which calculates the position of
the poles instead of the polynomial coefficients. Chapter 5 gives a schematic introduction
into tensor networks algorithms, emphasizing the diagrammatic representation. The
density matrix renormalization group algorithm to obtain the ground state, as well as the
time-dependent variational principle to perform the time evolution are presented.

Chapter 6 introduces the formalism for substitutional disorder in non-interacting model
systems. First, the local coherent potential approximation is derived, which treats diagonal
disorder, that is disorder in the on-site energies. Next, the approximation is extended
to the Blackman–Esterling–Berk formulation, which provides the generalization to off-
diagonal disorder, that is disorder affecting the hopping amplitudes. Chapter 7 combines
the dynamical mean-field theory algorithm introduced in chapter 3 with the Blackman–
Esterling–Berk formulation introduced in chapter 6 to treat electronic correlation and
disorder on the same level within a single-site approximation. Numerical examples for
paramagnetic systems are provided.
Chapter 8 discusses model half-metallic ferromagnets considering a Bethe lattice as

well as layered square-lattice structures. Chapter 9 models the transport through a
barrier made of a single interacting half-metallic ferromagnet layer. The transmission is
calculated using the Meir–Wingreen formalism, and its spin-polarization is analyzed.

Appendices A and B describe the numerical treatment of the transformation between
time and frequency, necessary for the dynamical mean-field theory algorithm. Appendix A
discusses the Fourier transform on the imaginary axis for finite temperatures, while
appendix B explains the Laplace transform from real times to real frequencies.

4



2. Lattice and impurity models

2.1. Hubbard model
The Hubbard model [32], also introduced by Gutzwiller [33] and Kanamori [34], was
proposed to describe transition-metal monoxides with partially filled d-bands, which are
anti-ferromagnetic insulators. It is also appropriate for f -electrons in rare earth metals,
with even narrower bands. The Hubbard model describes the competition between
itinerant band and localized atomic character of electrons. Despite its formal simplicity,
it shows a rich phase diagram. The Jülich book series on correlated electrons provides an
excellent overview of the Hubbard model [35–37].

The Hubbard model is described by a lattice Hamiltonian, which considers the part of
the Coulomb interaction local in Wannier space. While the bare Coulomb interaction
is long ranged, the screened effective interaction is short ranged and the local term
dominates [32]. Considering only the local interaction can be interpreted as ‘perfect
screening’ or be considered simply as an approximation taking only the most dominant
terms into account. In Wannier space, the Hamiltonian reads

Ĥ =
∑
iσ

(εiσ − µ)n̂iσ −
∑
ijσ

tij ĉ
†
iσ ĉjσ +

∑
i

Uin̂i↑n̂i↓, (2.1)

where εiσ is the on-site energy, µ the chemical potential, tij the hopping amplitude, and
Ui the local Hubbard interaction. The fermionic creation and annihilating operators at
site i for spin σ are ĉ†iσ and ĉiσ respectively; the number operator is denoted n̂iσ = ĉ†iσ ĉiσ.
The hopping amplitudes are purely off-diagonal tii = 0, and Hermitian tij = t∗ji. Often,
the hopping of electrons is restricted to nearest neighbors only, as the hopping amplitudes
decay rapidly. For the spatially homogeneous system, the parameters εiσ and Ui are
independent of the site i and tij depends only on the distance tij = t(|ri − rj|). In this
case, the non-interacting part can be diagonalized by a lattice Fourier transform. The
hopping term yields the dispersion εk:∑

k

εkn̂kσ =
∑
ij

tij ĉ
†
iσ ĉjσ; (2.2)

in the following we omit the boldface notation for the vector k. In k-space, the Hubbard
Hamiltonian for a homogeneous system reads

Ĥ =
∑
kσ

(εk + εσ − µ)n̂kσ + U
1
N

∑
kk′q

ĉ†k+q↑ĉk↑ĉ
†
k′−q↓ĉk′↓, (2.3)

the interaction is a spin- and k-conserving scattering term.
In the non-interacting limit Ui = 0, the Hamiltonian is diagonal in the basis of k-states

[Ĥ, n̂kσ] = 0. In the localized atomic limit tij = 0, on the other hand, the sites are
independent, and the Hamiltonian is diagonal in the particle number basis [Ĥ, n̂iσ] = 0.

5



2. Lattice and impurity models

The kinetic term and the interaction term do not commute, reflecting the competition
between the itinerant band and the localized atomic character of the electrons. An exact
solution has only been obtained for the one-dimensional case by Lieb and Wu [38], and
Essler et al. [39]. In the opposite limit of infinite coordination, significant simplifications
arise. These simplifications yield the dynamical mean-field theory (DMFT) discussed in
chapter 3.

The Hubbard model succeeds in explaining the Mott transition at half-filling [40]. Band
theory incorrectly predicts a conducting metal, but for strong interaction the system is
(Mott) insulating. Furthermore, the Hubbard model can also explain ferromagnetism of
itinerant electrons [41].

The prototypical realization of the Hubbard model is SrVO3, with its 3d1 configuration
of one vanadium per unit cell [42–44]. The Hubbard model has gained further experimental
relevance, as it can be realized in form of optical lattices [45, 46].

2.1.1. Particle-hole symmetry
We consider the effect of interchanging particles and holes in the Hubbard Hamiltonian,
compare [36]. We define a particle-hole transformation T ′ph as interchanging all creation
and annihilating operators

T ′phĉ
†
iσ = ĉiσ. (2.4)

Thus, the particle-hole transformation changes the number operator to T ′phn̂iσ = 1− n̂iσ;
this corresponds to replacing occupied sites by empty ones, and empty sites by filled ones.
Applying this particle-hole transformation to the Hamiltonian yields

T ′phĤ = −
∑
iσ

(εiσ +Ui− µ)n̂iσ +
∑
ijσ

tij ĉ
†
iσ ĉjσ +

∑
i

Uin̂i↑n̂i↓ +
∑
iσ

(εiσ + Ui
2 − µ). (2.5)

The last summand can be neglected, as constant terms have no physical relevance. The
particle-hole transformed Hubbard Hamiltonian has the same structure as the original
Hamiltonian eq. (2.1), only the sign of the hopping amplitudes, tij, and the on-site
energies, εiσ, changes, and the on-site energies are shifted by the interaction Ui. This
means, the particle-hole transformation amounts to replacing the parameters

(εiσ − µ)→ −(εiσ + Ui − µ) tij → −tij Ui → Ui, (2.6)

or equivalently, writing the Hamiltonian in a parametrized form

T ′phĤ(εiσ − µ, tij, Ui) = Ĥ(−εiσ − Ui + µ,−tij, Ui) +
∑
iσ

(εiσ + Ui
2 − µ). (2.7)

We focus on the specific case of a bipartite lattice with nearest-neighbor hopping only.
In this case, the hopping term always connects sites from the two different sublattices A
and B. To compensate the minus sign appearing for the hopping amplitudes, we define a
slightly different particle-hole transformation. We use a staggering function, adding a
sign for one sublattice, say A:

Tphĉ
†
iσ = (−1)1A(i)ĉiσ, (2.8)

6



2.1. Hubbard model

where 1A(i) is the indicator function 1A(i) = 1 if i ∈ A and 1A(i) = 0 else. Local quantities
are not affected by this sign-change, but the hopping terms pick up an additional minus
sign. Thus, the Hamiltonian transforms as follows:

TphĤ(εiσ − µ, tij, Ui) = Ĥ(−εiσ − Ui + µ, tij, Ui) +
∑
iσ

(εiσ + Ui
2 − µ); (2.9)

only the on-site energy is modified. We identify the choice of parameters εiσ+Ui/2−µ = 0
as particle-hole symmetry:

TphĤ(−Ui/2, tij, Ui) = Ĥ(−Ui/2, tij, Ui); (2.10)

such a Hamiltonian is invariant under the particle-hole transformation. This implies that
the system is half-filled niσ = 1/2. Often, such a Hubbard Hamiltonian is written in the
form

Ĥ =
∑
iσ

(εiσ − µ)n̂iσ −
∑
〈i,j〉σ

tij ĉ
†
iσ ĉjσ +

∑
i

Ui(n̂i↑ −
1
2)(n̂i↓ −

1
2)

=
∑
iσ

(εiσ − µ− Ui/2)n̂iσ −
∑
〈i,j〉σ

tij ĉ
†
iσ ĉjσ +

∑
i

Uin̂i↑n̂i↓ + 1
4
∑
i

Ui

(2.11)

as in this case the particle-hole symmetry is fulfilled for the condition εiσ − µ = 0, that
is for a vanishing on-site term, independent of the interaction strength Ui. The bracket
〈i, j〉 denotes that the sum is only over nearest-neighbors sites.
This discussion applies only to bipartite lattices with nearest-neighbor hopping only,

which have a symmetric density of states (DOS). In such a case the sign change tij → −tij
mentioned for the particle-hole transform T ′ph does not affect densities. The occupation is
the expectation value

〈n̂iσ〉 = 1
Z Tr n̂iσe−βĤ . (2.12)

Only terms with an equal number of creation and annihilating operators at every site
contribute to the trace. Thus, if we expand the exponential in eq. (2.12), we only have
to consider closed loops of hopping terms, as the hopping tij is the only non-local term.
For an even number of hopping terms, evidently the change of sign has no effect. For
the bipartite lattice with nearest-neighbor hopping only, all loops have even numbers
of hopping terms. Including next-nearest-neighbor hopping, or consider different lattice
structures like the triangular lattice, this is not the case anymore.

2.1.2. Limit of strong interaction: t-J model
In the limit of strong interaction, the double occupation 〈ni↑ni↓〉 is suppressed. The
Schrieffer–Wolff transformation provides a systematic way to eliminate terms in orders
of t/U and project the Hamiltonian onto a low-energy subspace without double occupa-
tions [47–49]. We consider the case of less than or equal half filling, nearest-neighbor

7



2. Lattice and impurity models

hopping, and, to simplify formulas, vanishing on-site energy εi = 0. The unitary transfor-
mation yields up to order O

(
t/U2

)
the effective Hamiltonian [49]

Ĥeff =− t
∑
〈ij〉σ

(1− n̂iσ)ĉ†iσ ĉjσ(1− n̂jσ) +
(

2t2
U

)∑
〈i,j〉

[Ŝi · Ŝj −
1
4(1− n̂i↓)n̂i↑n̂j↓(1− n̂j↑)]

+ t2

U

∑
〈i,j,l〉σ

(1− n̂i−σ)ĉ†iσ(1− n̂jσ)ĉ†j−σ ĉjσ(1− n̂j−σ)ĉl−σ(1− n̂lσ)

+ t2

U

∑
〈i,j,l〉σ

(1− n̂i−σ)ĉ†iσ(1− n̂jσ)n̂j−σ ĉlσ(1− n̂l−σ),

(2.13)

where Ŝi is the vector of spin operators Ŝi = ∑
νµ ĉ

†
iνσνµĉiµ, with the vector of Pauli

matrices σ. The coefficient of the second term is denoted J := 2t2/U . The second line
corresponds to a pair hopping, the third to a hopping over a site occupied by an electron
of opposite spin-flip.

Exactly at half filling, hopping is not possible anymore, as there are no empty sites in
the subspace without double occupations; all sites are singly occupied 〈n̂i〉 = 1. Thus,
the t-J model reduces to the anti-ferromagnetic Heisenberg model

Ĥeff = J
∑
〈i,j〉

[
Ŝi · Ŝj −

1
4

]
. (2.14)

This effective model describes to the Mott insulating state.

2.1.3. Extensions of the single-band Hubbard model
For the description of most realistic materials, multiple orbitals are essential. Thus, it is
necessary to extend the Hubbard Hamiltonian accordingly from a single band to multiple
orbitals.
A different extension of the Hubbard model is to allow for random on-site energies

or hopping amplitudes; this is referred to as Anderson-Hubbard model [50, 51]. Also,
short-ranged interaction can be added, this is called the extended Hubbard model [52–54].

2.2. Single impurity Anderson model
The single-impurity Anderson model (SIAM) was proposed by Anderson [55] to describe
the occurrence of localized magnetic moments for iron-group ions in a nonmagnetic host
metal. The model assumes a single local impurity, embedded into a bath of conduction
electrons. The Hamiltonian reads

Ĥ =
∑
σ

εσd̂
†
σd̂σ + Ud̂†↑d̂↑d̂

†
↓d̂↓ +

∑
kσ

εkσ ĉ
†
kσ ĉkσ +

∑
kσ

[Vkσ ĉ†kσd̂σ + V ∗kσd̂
†
σ ĉkσ], (2.15)

where d̂†σ and d̂σ are the creation and annihilation operators for the impurity site, which
was assumed to be a d-orbital; ĉ†kσ and ĉkσ are the creation and annihilation operators for
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2.2. Single impurity Anderson model

the free conduction electrons of the host metal, the bath, which were assumed to be s-
orbitals. The on-site energy of the impurity is εσ, the (Hubbard) U is the local interaction
for the impurity site, εkσ is the dispersion of the bath, and Vkσ is the hybridization
strength between bath and impurity.
The bath in the SIAM is non-interacting, thus the bath degrees of freedom can be

integrated out yielding an effective model for the impurity. This can conveniently be done
using the action formalism [10, 11]. We split the action of the SIAM into the local, the
bath, and the hybridization action

Simp = Sloc + Sbath + Shyb, (2.16)

Sloc =
∫ β

0
dτ
∑
σ

[
d+
σ (τ)(∂τ + εσ)dσ(τ) + Ud+

↑ (τ)d↑(τ)d+
↓ (τ)d↓(τ)

]
, (2.17)

Sbath =
∫ β

0
dτ
∑
kσ

c+
kσ(τ)(∂τ + εkσ)ckσ(τ), (2.18)

Shyb =
∫ β

0
dτ
∑
kσ

[
c+
kσ(τ)Vkσdσ(τ) + d+

σ (τ)V ∗kσckσ(τ)
]
, (2.19)

where d+
σ (τ) and dσ(τ) are the Grassmann fields of the impurity site, and c+

kσ(τ) and
ckσ(τ) are the Grassmann fields of the bath sites. The partition function reads

Zimp =
∫∏
σ

D [d+
σ , dσ]e−Sloc

∫∏
kσ

D [c+
kσ, ckσ]e−Sbath−Shyb (2.20)

The action is quadratic in the non-interacting bath degrees. The Fourier transform from
imaginary-time to Matsubara frequencies replaces the differentiation ∂τ → −iωn, intro-
ducing the frequency dependent Grassmann fields c+

kσn, where n indicates the fermionic
Matsubara frequency. The Gaussian Grassmann integral [11] for the bath degrees yields

∫∏
kσn

D [c+
kσn, ckσn] exp

(∑
kσn

c+
kσn[iωn − εkσ]ckσn −

∑
kσn

[c+
kσnVkσdσn + d+

σnV
∗
kσckσn]

)

= Zbath exp
(∑
kσn

d+
σnV

∗
kσ[iωn − εkσ]−1Vkσdσn

)
. (2.21)

The bath partition function Zbath is of no physical relevance as it only affects the
absolute magnitude of the partition function but not physical observables. It only acts as
normalization factor. Formally, it can be expressed as the determinant of the diagonal
matrix h:

Zbath =
∏
kσn

[iωn + εkσ] = deth, with (h)kσn;k′σ′n′ = δkσn;k′σ′n′(iωn + εkσ) (2.22)

The Grassmann integral eq. (2.21) defines the hybridization function ∆σ(iωn), which
encapsulates the effect of the bath sites on the impurity

∆σ(iωn) =
∑
k

|Vkσ|2
iωn − εkσ

, (2.23)

∆σ(τ) =
∑
k

|Vkσ|2 ×
f(εkσ)e−εkστ if τ ∈ (−β, 0),
−[1− f(εkσ)]e−εkστ if τ ∈ (0, β).

(2.24)
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2. Lattice and impurity models

The hybridization function can also be expressed as sum over the Green’s functions
gkσ(iωn) for an isolated bath site (locators)

∆σ(iωn) =
∑
k

|Vkσ|2gkσ(iωn) with gkσ(iωn) = 1
iωn − εkσ

. (2.25)

Its high-frequency asymptote is ∆σ(iωn) ∼ 1
iωn

∑
k |Vkσ|2. The impurity sites can therefore

be described by the effective action

Seff [d+,d] =
∫ β

0
dτ
[∑
σ

d+
σ (τ)(∂τ + εσ)dσ(τ) + Ud+

↑ (τ)d↑(τ)d+
↓ (τ)d↓(τ)

]

+
∫ β

0
dτ
∫ β

0
dτ ′

∑
σ

d+
σ (τ)∆σ(τ − τ ′)dσ(τ ′), (2.26)

where the vectorial notation d+ and d denotes the dependence of the action on the set of
Grassman fields d+ = {d+

σ (τ)} and d = {dσ(τ)} respectively. We identify the quadratic
term as the inverse of the non-interacting impurity Green’s function

G−1
0σ(iωn) = iωn − εσ −∆σ(iωn), (2.27)

such that the effective action can be written

Seff [d+,d] =
∑
n

d+
σnG

−1
0σ (iωn)dσn + SU (2.28)

where SU is the interaction part of the local action.

2.2.1. Limit of strong interaction: Kondo model
Like for the Hubbard model, we consider the limit of strong interaction by projecting
onto the low-energy subspace without double occupation on the impurity site. The
transformation is named after Schrieffer and Wolff [56], who projected the Anderson
model onto the Kondo model [57]. The unitary transformation yields the effective
Hamiltonian [11]

Ĥeff =
∑
kσ

εkĉ
†
kσ ĉkσ +

∑
kk′

[2Jkk′ ŝkk′ · Ŝd + ĉ†kσKkk′ ĉk′σ] (2.29)

where ŝkk′ = 1
2
∑
µν ĉ

†
kµσµν ĉk′ν is the bath spin and Ŝd = 1

2
∑
µν d̂

†
µσµν d̂ν is the spin of the

impurity. The exchange interaction Jkk′ and scattering term Kkk′ read

Jkk′ = V ∗k Vk′
[ 1
U + ε− εk′

+ 1
εk − ε

]
, (2.30)

Kkk′ = −1
2V
∗
k Vk′

[ 1
U + ε− εk′

− 1
εk − ε

]
. (2.31)

Neglecting the k-dependence of Jkk′ and Kkk′ , the effective Hamiltonian can be approxi-
mated as

Ĥeff ≈
∑
kσ

ε̃kĉ
†
kσ ĉkσ + 2JŜd · ŝ, (2.32)

where ŝ = 1
2
∑
kk′
∑
νµ ĉ

†
kνσνµĉk′µ represents the bath spin at the impurity site. The

scattering term K as been absorbed in the bath, yielding different bath parameters. This
effective Hamiltonian is known as the Kondo [57] or sd-Hamiltonian.
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3. Local electronic interaction
As discussed in the previous chapter, the Hubbard model eq. (2.1) is a minimal model for
electronic correlation. In this chapter, we will discuss the non-perturbative treatment of
this Hamiltonian using the DMFT, which maps the Hubbard model to an effective SIAM.
For the SIAM numerically exact methods are available; we discuss the continuous-time
quantum Monte Carlo (CT-QMC) algorithm and the complementary tensor network
approach.

3.1. Dynamical mean-field theory
The typical starting point to treat interacting systems are mean-field theories. A static
mean-field theory replaces the lattice problem by an effective single-site problem. A site
couples only to an effective parameter, which has to be determined self-consistently. The
typical example is the Weiss mean field for the Ising model [58], which we won’t elaborate
here; we stick to the Hubbard model. The quartic interaction term can be decoupled by
neglecting terms quadratic in the fluctuations δn̂iσ = n̂iσ − 〈n̂iσ〉 around the expectation
value, that is δn̂i↑δn̂i↓ != 0. This approximation replaces the quartic interaction term by
an effective quadratic term containing the averages

Uin̂i↑n̂i↓ ≈ Ui[n̂i↑ 〈n̂i↓〉+ 〈n̂i↑〉 n̂i↓ − 〈n̂i↑〉 〈n̂i↓〉]; (3.1)

the expectation values are evaluated using the decoupled quadratic interaction term. This
is the Hartree approximation, in which sites couple to the effective parameter Ui 〈n̂iσ〉,
that is determined self-consistently. Electrons feel the repulsion of the average density of
the opposite spin.
DMFT [59–63], on the other hand, self-consistently maps the lattice problem onto an

impurity problem. An impurity model couples, in our case, a single site to a reservoir
of non-interacting electrons. Thus, it couples a site to a time or frequency dependent
effective bath, instead of a static parameter. This allows for local but time-dependent
fluctuations. In the limit of infinite coordination number the mapping is exact; it yields
valuable insight into the Mott transition of the Hubbard model [62].

The DMFT self-consistency equations can be derived employing the so-called cavity
method [62], an alternative approach is based on the exact grand potential for infinite
coordination number [64, 65]. Here, we employ the cavity method following [62, 66]; this is
the same derivation I presented in an extended version in my Master thesis [67] with slight
variations. The general idea of the cavity method is the following: One interacting lattice
site, i = ◦, is selected, the remaining sites are integrated out determining a non-interacting
bath. The selected site, i = ◦, is thus mapped onto an interacting impurity embedded in
this bath. We solve the impurity problem and use its self-energy for the lattice site. This
mapping procedure is repeated until self-consistency of the one-particle Green’s function
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3. Local electronic interaction

is achieved, that is the local lattice Green’s function and the impurity Green’s function
agree.

The cavity method is conveniently expressed using the field integral representation [10,
11]. The grand canonical partition function of the lattice Hamiltonian eq. (2.1) reads

Z =
∫∏
i,σ

D [c+
iσ(τ), ciσ(τ)]e−Slat[c+(τ),c(τ)], (3.2)

with the lattice action

Slat[c+(τ), c(τ)] =
∫ β

0
dτ
∑
ijσ

c+
iσ(τ)

[
(∂τ + εi − µ)δij + tij

]
cjσ(τ) +

∑
i

Uini↑(τ)ni↓(τ)
 ,

(3.3)

where ciσ(τ) and c+
iσ(τ) are Grassmann fields, and niσ(τ) := c+

iσ(τ)ciσ(τ). The vectorial
notation c(τ) and c+(τ) denotes the set of all Grassmann fields c(τ) = {ciσ(τ)} and
c+(τ) = {c+

iσ(τ)}. The Grassmann fields are always functions of the imaginary time τ ,
unless frequencies are specified. If all fields depend on the same τ ,1 we omit it to shorten
the notation.
We select a specific site i = ◦ and single it out by tracing out all other sites

1
Zeff

e−Seff [c+
◦ ,c◦] := 1

Z
∫ ∏
i 6=◦,σ

D [c+
iσ, ciσ]e−Slat[c+,c]. (3.4)

The action Seff [c+
◦ , c◦] defines the effective single-site problem, which needs to be solved.

By definition (3.4), the expectation value with respect to the effective action of local
quantities O[c+

◦ , c◦] is the same as the expectation value in the lattice system 〈O〉Seff
≡

〈O〉Slat
. Thus, within DMFT we can calculate all local quantities of the lattice system,

by solving the impurity system.

Effective action. To derive an explicit expression for the effective action eq. (3.4), we
split the lattice action eq. (3.3) into three parts:

Slat = S(◦) + S◦ + ∆S (3.5)

S(◦) =
∫ β

0
dτ
 ∑
ij 6=◦,σ

c+
iσ[(∂τ + εi − µ)δij + tij]cjσ +

∑
i 6=◦

Uini↑nj↓

 (3.6)

S◦ =
∫ β

0
dτ
(∑

σ

c+
◦σ(∂τ + ε◦ − µ)c◦σ + U◦n◦↑n◦↓

)
(3.7)

1In fact, there is an infinitesimal time difference to correctly order the fields. This is, however, not of
relevance for the derivation, and will therefore be omitted.
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3.1. Dynamical mean-field theory

∆S =
∫ β

0
dτ

∑
i 6=◦,σ

(c+
iσti◦c◦σ + c+

◦σt◦iciσ), (3.8)

where S(◦) is the action of the lattice with a cavity at site i = ◦, S◦ is the local action of
the isolated site i = ◦, and ∆S is the action of the hopping between site i = ◦ and the
cavity lattice. We call S(◦) cavity action, and expectation values 〈·〉S(◦) cavity quantities.
The local action S◦ is independent of all other sites, it can be pulled out of the integration
for the effective action

1
Zeff

e−Seff [c+
◦ ,c◦] = 1

Z e−S◦
∫ ∏
i 6=◦,σ

D [c+
iσ, ciσ]e−S(◦)e−∆S = Z

(◦)

Z e−S◦
〈
e−∆S

〉
S(◦) , (3.9)

we identify the integral as average over the cavity system. The cavity action S(◦) is not
quadratic in the Grassmann fields, therefore the cavity average cannot in general be
evaluated.
The cavity average 〈exp(−∆S)〉S(◦) is the generating functional [10, 68] of the cavity

Green’s functions, allowing us to express the average in terms of the interacting cavity
Green’s functions. We identify the source terms ηiσ(τ) := ti◦c◦σ(τ) and η+

iσ(τ) := c+
◦σ(τ)t◦i

for the generating functional

e−Seff [η ,η+] = ZeffZ(◦)

Z e−S◦
〈

exp
− ∫ β

0
dτ

∑
i 6=◦σ

[c+
iσηiσ + η+

iσciσ]
〉

S(◦)

. (3.10)

For a more compact notation, we introduce the multi-indices 1 = (i, σ, τ); overlined
indices 1̄ are summed over, where the site i = ◦ is excluded, that is ∑i 6=◦σ

∫
dτ . In this

compact notation, the generating functional reads

e−Seff [η ,η+] = ZeffZ(◦)

Z e−S◦
〈
exp

(
c+(1̄)η(1̄) + η+(1̄)c(1̄)

)〉
. (3.11)

Differentiation with respect to the sources η(1′) and η+(1) generates the Grassmann
fields c+(1′) and c(1) inside the cavity average 〈·〉S(◦) . Consequently, the n-particle cavity
Green’s functions is proportional to the derivative [10]

(−1)n+1G(◦)(1 . . . n; 1′ . . . n′) ∝ δ2n

δη+(1) . . . δη+(n)δη(1′) . . . δη(n′)e−Seff [η ,η+]
∣∣∣∣∣
η,η+=0

, (3.12)

where G(◦)(1 . . . n; 1′ . . . n′) = −〈c(1) . . . c(n)c+(1′) . . . c+(n′)〉S(◦) denotes the n-particle
cavity Green’s function, and the upright n is the nth multi-index n = (i, σ, τ). Grassmann
numbers and derivatives anticommute, thus the factor (−1)n arises as we need to move
the derivative δ

δη
past c+ to act on the source η. We can eliminate the sign by changing

the order of the derivatives, first differentiating with respect to η+ and then with respect
to η. The effective action Seff is the logarithm of the generating functional eq. (3.10).
Thus, we identify

−Seff [η,η+] ∝ ln
(〈

e−∆S
〉
S(◦)

)
(3.13)
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3. Local electronic interaction

as the generating functional for connected Green’s functions [10]

G(◦)
c (1 . . . n; 1′ . . . n′) = δ2n

δη(1) . . . δη(n)δη+(1′) . . . δη+(n′)Seff [η,η+]
∣∣∣∣∣
η,η+=0

. (3.14)

Averages with an unbalanced number of c and c+ vanish for the action eq. (3.3), thus we
can expand the effective action in terms of connected Green’s functions

Seff =− ln
(
ZeffZ(◦)

Z

)
+ S◦

+
∞∑
n=1

1
(n!)2η

+(1̄) . . . η+(n̄)η(1̄′) . . . η(n̄′)G(◦)
c (1̄ . . . n̄; 1̄′ . . . n̄′),

(3.15)

where the factor 1/(n!)2 accounts for permutations of the operators. The formula can be
verified by comparing the derivatives of both sides. In the non-interacting case, U = 0,
all but the n = 1 particle connected Green’s function vanish, as non-interacting Green’s
functions factorize for a quadratic action.
In the limit of infinite coordination number Z → ∞ this expression simplifies con-

siderably. To arrive at a non-trivial limit the hopping elements tij need to be scaled
tij → tij/Z

‖i−j‖/2 [59], where ‖i− j‖ is the 1-norm or Manhattan distance. Only the
one-particle connected Green’s G(◦)

c (1, 1′) function survives, which is identical to the one-
particle Green’s function G(◦)(1, 1′), all connected Green’s functions for n > 1 particles
vanish in the limit Z →∞ [62, 69]. Using the separate indices (i, σ, τ) again, the effective
action reads in imaginary time

Seff [c◦, c
+
◦ ] =

∫ β

0
dτ
(∑

σ

c+
◦σ(τ)(∂τ + ε◦ − µ)c◦σ(τ) + U◦n◦↑(τ)n◦↓(τ)

)

+
∫ β

0
dτ
∫ β

0
dτ ′

∑
ij 6=◦σ

t◦ic
+
◦σ(τ)G(◦)

σ ij(τ − τ ′)ti◦c◦σ(τ ′). (3.16)

In the following, we omit the spin index σ of the Green’s functions for a more concise
notation.

Equivalence with the action of an interacting SIAM. We compare the effective action
eq. (3.16) with the action of the SIAM, eq. (2.26), which we treat as a functional of the
hybridization function Simp[d+,d; ∆]. For a bath chosen such that

∆(iωn) =
∑
ij

t◦iG
(◦)
ij (iωn)tj◦ (3.17)

and matching on-site energies, we identify that the effective action and the impurity
action are identical Seff [c+

◦ , c◦]=̂Simp[d+,d; ∆]. In the literature, often the non-interacting
impurity Green’s function is compared instead, yielding the condition

G−1
0 imp(iωn) = iωn + µ− ε◦ −

∑
ij

t◦iG
(◦)
ij (iωn)tj◦ =: G −1

0 (iωn). (3.18)

Here, we stick to the formulation of the impurity action Simp[d+,d; ∆] in terms of the
hybridization function ∆(iωn).
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3.1. Dynamical mean-field theory

The next step is to establish a connection between the cavity Green’s G(◦)
ij function and

the Green’s function of the full lattice Gij. In the limit of infinite coordination number,
the self-energy is local Σij(iωn) = Σi(iωn)δij [70], the relation

G
(◦)
ij (iωn) = Gij(iωn)− Gi◦(iωn)G◦j(iωn)

G◦◦(iωn) , (3.19)

is obtained. This relation can be motivated using the interpretation of the Green’s function
as a propagator: The lattice Green’s functionsGij contains all possible paths going through
the site ◦ in addition to the paths contained in the cavity Green’s function G(◦)

ij . For the
non-interacting case, a derivation is provided in my master thesis [67]. We substitute this
relation into the effective bath and the hybridization function eqs. (3.17) and (3.18). For
a homogeneous system all lattice sites are equivalent and thus Σi(iωn) = Σ(iωn). After
further simplifications [67], the hybridization function reads

∆(iωn) = iωn + µ− ε◦ − Σ(iωn)−G−1
◦◦ (iωn). (3.20)

We note, that the hybridization function should not have any constant contributions and
asymptotically decay like ∆(iωn) ∼ c/iωn. If the DOS ρ(ε) := 1

N

∑
k δ(ε− εk) has a finite

first moment

ε(1) :=
∫

dερ(ε)ε = 1
N

∑
k

εk, (3.21)

it has to be absorbed into the on-site energy. In the limit of infinite coordination number
the self-energy is k-independent, and the k-dependency is absorbed into the DOS; the
local lattice Green’s function writes

G◦◦(iωn) =
∫

dε ρ(ε)
iωn + µ− ε◦ − Σ(iωn)− ε = G0 ◦◦

(
iωn − Σ(iωn)

)
, (3.22)

where G0 ◦◦ is the non-interacting Green’s function.
Equation (3.20) provides a way to self-consistently calculate the local Green’s function

G◦◦ = Gimp[∆] by solving the SIAM Simp[d+,d; ∆]. In this case solving means to obtain
the self-energy Σimp[∆] of the impurity model. The DMFT self-consistency equations
read:
Provide initial self-energy Σ(iωn);
repeat

local Green’s function G◦◦(iωn) :=
∫

dε ρ(ε)
iωn + µ− ε◦ − Σ(iωn)− ε ;

hybridization function ∆(iωn) := iωn + µ− ε◦ − Σ(iωn)−G−1
◦◦ (iωn);

solve impurity problem Σimp[∆];
set lattice self-energy to impurity self-energy Σ(iωn) = Σimp(iωn);

until self-consistency G◦◦(iωn) = Gimp(iωn);

Exact non-interacting and atomic limits. We discuss two special cases for finite
coordination number. DMFT also yields the exact result for the non-interacting limit U =
0 and the atomic limit tij = 0. For U = 0, the self-energy of the impurity model vanishes
Σimp[∆] = 0, and we correctly recover G−1

imp(iωn) = [iωn − ε−∆(iωn)]−1 = G◦◦(iωn).
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3. Local electronic interaction

From the cavity construction it is apparent, that the non-interacting limit is exact. The
simplification in the limit of infinite coordination is that connected n-particle Green’s
functions in eq. (3.15) vanish for n>1, this is also the case for non-interacting systems.
For tij = 0 the DOS reduces to a delta function ρ(ε) = δ(ε). Thus, the hybridization
function vanishes ∆(iωn) = 0, the effective action is the action of a single site of the
atomic Hubbard model. The problem is no longer k-dependent, the impurity model yields
the exact local Green’s function G◦◦(iωn) = [iωn + µ− ε◦ − Σ(iωn)]−1 = G◦◦(iωn) [60].

3.1.1. Self-energy of the impurity model
The standard approach to get the self-energy of the impurity model is calculating the
Green’s function Gσ(z), and using the Dyson equations

Σσ(z) = G−1
0σ(z)−G−1

σ (z). (3.23)

Bulla et al. [71] found this approach not to be particularly accurate for the numerical
renormalization group. They proposed to use the equation of motion instead. The
equation of motion for the one-particle Green’s Gαβ(z) =

〈〈
ĉα
∣∣∣ĉ†β〉〉 (z) function reads

z
〈〈
ĉα
∣∣∣ĉ†β〉〉 (z)−

〈{
ĉα, ĉ

†
β

}〉
=
〈〈[
ĉα, Ĥ

]∣∣∣ĉ†β〉〉 (z) =
〈〈
ĉα
∣∣∣[Ĥ, ĉ†β]〉〉 (z). (3.24)

For the SIAM eq. (2.15) the commutators read[
d̂σ, Ĥ

]
=
∑
k

V ∗k ĉkσ + εσd̂σ + Ud̂σd̂
†
−σd̂−σ (3.25)[

ĉkσ, Ĥ
]

=
∑
k

Vkd̂kσ + εkσ ĉkσ. (3.26)

Thus, the equation of motion for the off-diagonal Green’s function yields
〈〈
ĉkσ

∣∣∣d̂†σ〉〉 (z) = Vk
z − εk

〈〈
d̂σ
∣∣∣d̂†σ〉〉 (z). (3.27)

Inserting this equation into the equation of motion for the diagonal impurity Green’s
function yields〈〈

d̂σ
∣∣∣d̂†σ〉〉−1

U=0
(z)

〈〈
d̂σ
∣∣∣d̂†σ〉〉 (z)− 1 = U

〈〈
d̂σd̂

†
−σd̂−σ

∣∣∣d̂†σ〉〉 (z), (3.28)

where the subscript U = 0 indicates the non-interacting Green’s function. Naming the
Green’s functions Gσ(z) =

〈〈
d̂σ
∣∣∣d̂†σ〉〉 (z) and Fσ(z) =

〈〈
d̂σd̂

†
−σd̂−σ

∣∣∣d̂†σ〉〉 (z), and eliminating
the non-interacting Green’s function using the Dyson equation (3.23), we get the self-
energy

Σσ(z) = UFσ(z)G−1
σ (z). (3.29)

Hafermann et al. [72] found that this formula significantly reduces the high-frequency
noise for the continuous-time quantum Monte Carlo in hybridization expansion (CT-
HYB) algorithm; they labeled this formula as improved estimate. For calculations using
time-dependent variational principle (TDVP), we found the improved estimate to be less
significant, though in some cases the accuracy could be improved.
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3.1. Dynamical mean-field theory

3.1.2. Beyond the single-site approximation
Several approaches exist to extend DMFT to include correlation effects beyond the
single-site approximation. They can be roughly grouped into two categories: cluster and
field-theoretical extensions. Cluster extensions [73] embed a cluster of sites instead of a
single site into the bath, thereby including short-ranged nonlocal correlations contained
within the cluster. The dynamical cluster approximation [74] does this in k-space, while
cellular DMFT [75, 76] works in Wannier space. In principle, the exact result is recovered
in the limit of infinite cluster size. The other approach, is to consider field-theoretical
extensions [77]. The dynamical vertex approximation (DΓA) [78] generates nonlocal
correlation by considering the local two-particle vertex instead of a local self-energy. The
dual fermion [79] approach performs the perturbation theory around the local reference
system in terms of a Hubbard–Stratonovich transformation.
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4. Continuous-time quantum Monte
Carlo

CT-QMC algorithms are a suitable tool to solve impurity models with correlated elec-
trons [13]. As an action-based method, CT-QMC allows simulating effective models.
Therefore, it can treat an infinite number of bath sites by integrating them out, whereas
Hamiltonian-based methods are limited by the exponential growth of the Hilbert space
with the number of bath sites. Further applications of the CT-QMC include, e.g., the
cluster extensions of DMFT to incorporate spatial fluctuations [73], the dual fermion
approach [79], or the dynamical vertex approximation [78]. Versions of CT-QMC along
the Keldysh contour [14, 80] also exist. There are three main formulations of the
CT-QMC algorithm: the interaction expansion CT-INT [81], the hybridization expansion
CT-HYB [82, 83], and the auxiliary-field formulation CT-AUX [84].
In this chapter, we explain the basics of the CT-HYB. We restrict the discussion to

density-density interactions (as is the case with single-band problems), which can be
efficiently treated using the segment picture [13]. Generalizations to generic interactions
are rather straightforward, though implementation details might be more complex. Imple-
mentations of the CT-HYB are available, e.g. [C1, C8]. The review [13] provides detailed
information. We follow the more accessible references [85–87], and give a rather schematic
outline of the algorithm.

The basic idea for CT-QMC algorithm is to divide the action S into a solvable S0 part
and the rest ∆S:

Zimp =
∫∏
σ

D [d̂†σ(τ), d̂σ(τ)]e−S0−∆S = Z0
〈
e−∆S

〉
S0
, (4.1)

where the field integral is rewritten as an average with respect to the solvable action S0.
Constant factors like Z0 do not affect observables and accordingly drop out of the Monte
Carlo algorithm. The exponential in eq. (4.1) is expanded into its series representation

Zimp = Z0

∞∑
k=0

(−1)k

k!
〈
(∆S)k

〉
S0
. (4.2)

The Monte Carlo algorithm samples over different contributions of any order k, the weight
is determined by evaluating the field integral. The average expansion order 〈k〉 of such
an expansion reads

〈k〉 = 1
Zimp

Z0
∑
k

(−1)k

k!
〈
(∆S)k

〉
S0
k = −〈∆S〉S , (4.3)

where we shifted the summation variable k to obtain the second equality. The CT-HYB
algorithm expands the partition function in the hybridization, as the name indicates.
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4. Continuous-time quantum Monte Carlo

4.1. Hybridization expansion of the partition function
Using the effective action eq. (2.26) with the hybridization function ∆σ(τ), we write the
partition function

Zimp/Zbath =∫∏
σ

D [d+
σ (τ), d+

σ (τ)]exp
(
−
∫ β

0
dτ
[∑
σ

d+
σ (τ)(∂τ + εσ)dσ(τ) + Ud+

↑ (τ)d↑(τ)d+
↓ (τ)d↓(τ)

]

−
∫ β

0
dτ
∫ β

0
dτ ′

∑
σ

d+
σ (τ)∆σ(τ − τ ′)dσ(τ ′)

)
.

(4.4)

For the hybridization function, we use the local action Sloc = S0 eq. (2.17) as solvable
part

Zimp = ZbathZloc

〈
exp

(
−
∫ β

0
dτ
∫ β

0
dτ ′

∑
σ

d+
σ (τ)∆σ(τ − τ ′)dσ(τ ′)

)〉
Sloc

, (4.5)

and expand in the hybridization function. The average expansion order eq. (4.3) reads

〈k〉 =
∫ β

0
dτ
∫ β

0
dτ ′

∑
σ

∆σ(τ − τ ′)
〈
dσ(τ ′)d+

σ (τ)
〉
S

=
∑
σn

∆σ(iωn)Gσ(iωn); (4.6)

this is the kinetic energy 〈k〉 = βEkin [13, 88]. We note that the partition function
eq. (4.5) is a generating function for n-particle Green’s functions, functional derivatives
with respect to the hybridization function ∆σ(τ − τ ′) generate Green’s functions up to
the normalization by the partition function. Thus, the Green’s function is the functional
derivative of the logarithm

Gσ(τ ′ − τ) = − δ logZimp

δ∆σ(τ − τ ′) . (4.7)

We abbreviate the notation by introducing compound indices 1 = (σ, τ), e.g. ∆(1, 2) =
∆σ(τ − τ ′)δσσ′ , overlined indices are summed over σ and integrated over τ , that is∑

σ

∫
dτ . Using this abbreviated form, we express the exponential function by its series

representation

Zimp = ZbathZloc
〈
exp

[
−d+(1̄)∆(1̄, 2̄)d(2̄)

]〉
Sloc

= ZbathZloc
∑
k

(−1)k

k!
〈
d+(1̄)d(1̄′) . . . d+(k̄)d(k̄′)

〉
Sloc

∆(1̄, 1̄′) . . .∆(k̄, k̄′).
(4.8)

Note that k is a number denoting the expansion order, the upright k, on the other hand,
is the kth multi-index k = (σ, τ).
This expansion is not yet suitable for sampling via a Monte Carlo algorithm, due to

the anti-commutativity of the Grassmann algebra. The second order term k = 2 contains,
e.g., the two terms [87]〈

d+(1)d(1′)d+(2)d(2′)
〉
Sloc

∆(1, 1′)∆(2, 2′) (4.9a)〈
d+(1)d(2′)d+(2)d(1′)

〉
Sloc

∆(1, 2′)∆(2, 1′) = −
〈
d+(1)d(1′)d+(2)d(2′)

〉
Sloc

∆(1, 2′)∆(2, 1′).
(4.9b)
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4.1. Hybridization expansion of the partition function

These two terms involve the same operators and therefore the same local Green’s function,
but it is weighted by different hybridization functions, and more importantly, with a
different sign. The hybridization function is antisymmetric with ∆σ(τ) < 0 for τ ∈ (0, β),
see eq. (2.24). The permutation does not change the sign of the product of hybridization
functions sign[∆(1, 1′)∆(2, 2′)] = sign[∆(1, 2′)∆(2, 1′)]. Monte Carlo sampling of sums
with terms of different signs is inaccurate. Werner et al. [82] found that it is essential to
collect all such combinations, and sample them simultaneously. We permute all primed
indices, obtaining a minus sign for odd permutations due to the Grassmann algebra. This
is the definition of the determinant

det(A) =
∑
σεSk

sign(σ)
k∏
i=1

aiσi with (A)ij = aij, (4.10)

where Sk is the symmetric group with permutations σ. The sign is sign(σ) = +1 for a
permutation achieved by an even number of exchanges of two entries, and sign(σ) = −1
for an odd number. The Grassmann algebra yields the identical sign, as between two
operators d(1′) and d(2′), there is always an odd number of d+ and an even number of
d. There are |Sk| = k! permutations for the order k, thus we can rewrite the expanded
partition function

Zimp = ZbathZloc
∑
k

(−1)k

(k!)2

〈
d+(1̄)d(1̄′) . . . d+(k̄)d(k̄′)

〉
Sloc

det ∆k (4.11)

with the matrix elements (∆k)ij = ∆(i, j); the matrix is of size k×k and implicitly carries
the same indices as the Grassmann fields in the average. The prefactor 1/(k!)2 can be
compensated by restricting sums to ordered sums.
It remains to calculate the local expectation values. The local Hilbert space is of size

4m, where m is the number of orbitals (or impurity sites). One option is to diagonalize
the local Hamiltonian and evaluate the expectation value in its eigenbasis. To treat
large numbers of local degrees of freedom, that is large numbers of orbitals or cluster
sites, it is essential to exploit symmetries of the local Hamiltonian [88, 89]. Alternatives
are Krylov-based methods in the particle-number basis [90], or more recently tensor-
network-based methods [91]. Here, we only discuss the simplest case: density-density
type interaction. For this case, the interaction is diagonal in the particle number basis;
the so-called segment picture can be employed.

4.1.1. Segment picture of the local Hamiltonian
While the segment picture is valid for multiple local degrees of freedom (as long as the
interaction is approximated by density-density interaction), we restrict the discussion to
the single-band model for clarity. A term of order k consists of k↑ ≤ k pairs of creation
and annihilation operators for spin σ = ↑ and k↓ = k − k↑ pairs for spin σ = ↓. The
segment picture is a mean to visualize such a configuration. We draw the impurity time
axis on the interval τ ∈ [0, β], plotting the time from right to left to match the chronology
of the time ordering. From a creation d+

σ (τ) at time τ to the next annihilation dσ(τ ′) at
a later time τ ′ a spin-σ electron occupies the impurity. This time interval is denoted a
segment; we represent it by a line. The impurity can be already occupied at time τ = 0,
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4. Continuous-time quantum Monte Carlo

which can be annihilated by dσ(τ) and created again d+
σ (τ ′) at a later time τ ′, resulting

in an open line wrapping around the boundaries. Figure 4.1 shows an example of order
k = 3 for the spin-up channel only.

β 0

d+
↑ (τ ′3) d↑(τ3) d+

↑ (τ ′2) d↑(τ2) d+
↑ (τ ′1) d↑(τ1)

Figure 4.1.: Example of a segment picture of order k↑ = 3 for the σ = ↑ channel.

To calculate the contribution of the local action Sloc, it is suitable to change to the
Hamiltonian formalism. The expectation value is the trace over the local basis states; a
single one-band impurity has the four basis states |0〉, |↑〉, |↓〉, and |↑↓〉. For k↓ > 0 and
k↑ > 0, only a single state of the trace contributes, determined by the first segment. For
density-density interaction, the Hamiltonian is diagonal in the occupation number basis
with the elements

〈0|Ĥloc|0〉 = 0, 〈↑|Ĥloc|↑〉 = ε↑, 〈↓|Ĥloc|↓〉 = ε↓, 〈↑↓|Ĥloc|↑↓〉 = ε↑+ε↓+U. (4.12)

Segments only contribute if there is an equal number of creation and annihilation operators
for each spin; we only need to consider contributions where the spin indices of the
annihilation operators are a permutation of the spin indices of the creation operators.
Thus, the local weight

W k
loc := Trloc

[
e−βĤlocT d̂†σ1(τ1)d̂σ1(τ1′) . . . d̂†σk(τk)d̂σ′k(τk′)

]
, (4.13)

can be read directly from the segment picture; here T is the time ordering symbol
necessary in the Hamiltonian formalism. If there are operators for all spin channels, only
a single state contributes to the trace. The total lengths of the segments of spin σ, Lσ,
determine the contribution of the on-site energy εσ, and the overlap O↑↓ determines the
contribution of the interaction; the weight reads

W k
loc = s exp(−ε↑L↑ − ε↓L↓ − UO↑↓), (4.14)

where s is the sign from time ordering. The weights agree with the physical intuition, U
suppresses the double occupation related to O↑↓, εσ > 0 suppresses occupation related to
Lσ, while εσ < 0 increases it. Figure 4.2 shows such an example segment. After explaining
how to calculate all terms, it remains to sample the configurations using a Monte Carlo
algorithm.

β 0

σ = ↑

σ = ↓

d+
↑ (τ ′3) d↑(τ3) d+

↑ (τ ′2) d↑(τ2) d+
↑ (τ ′1) d↑(τ1)

d+
↓ (τ1)d↓(τ ′1)d+

↓ (τ2)d↓(τ ′2)d+
↓ (τ3)d↓(τ ′3)d+

↓ (τ4)d↓(τ ′4)

Figure 4.2.: Segment picture of order k↑ = 3, k↓ = 4 for the impurity state. L↑ is the total
length of the segments with σ = ↑ and L↓ of those with σ = ↓. O↑↓ is the length of the overlap
which is colored green.
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4.1. Hybridization expansion of the partition function

4.1.2. Monte Carlo sampling of segment configurations
Assuming the local weights and determinants are positive we can perform the regular
Monte Carlo sampling. The partition function is the high-dimensional sum-integral

Zloc = ZbathZimp
∑
k

∑
σ1σ1′
· · ·

∑
σkσk′

∫ β

0
dτ1

∫ β

0
dτ1′· · ·

∫ β

0
dτk

∫ β

0
dτk′

1
(k!)2W

(k)
loc det ∆k

=: ZbathZimp
∑
k

∫
dζk

1
(k!)2W

ζk
loc det ∆ζk =:

∑
k

∫
dζkW ζk

MC;

(4.15)

we write it as sum over all possible configurations ζk, where one configuration is represented
by the segment picture introduced previously. Mathematically, every configuration ζk is a
tuple

ζk = ([σ1τ1, σ1′τ1′ ], . . . [σkτk, σk′τk′ ]). (4.16)

The weight W ζk
loc, the matrix ∆ζk , and W ζk

MC depend on all indices of the corresponding
configuration. Monte Carlo is the method of choice for such high-dimensional integrals,
as its rate of convergence is independent of the dimension. We employ a standard Markov
chain Monte Carlo with importance sampling. The importance sampling is constructed
from a set of updates.
These updates have to fulfill ergodicity, that is any configuration ζk can be generated

from any other configuration ζ ′k′ by a finite number of updates. To fulfill ergodicity, it is
sufficient to define an insertion update and a removal update. The insertion update adds
a pair of creation and annihilation operators, that is a segment, to the configurations,
thereby increasing the expansion order k by one. The removal update removes such a pair,
thereby decreasing the expansion order k by one. Evidently, starting from a configuration
ζ ′k′ , any configuration ζk can be reached by first removing all 2k′ operators of ζ ′k′ , and
then inserting the 2k desired operators of ζk. In practice, additional updates are necessary
depending on the physical problem, as such transitions might be very unlikely, which can
trap the algorithm in certain regions of the phase space.
The second property that has to be fulfilled is that the generated distribution is

stationary. As usual, we demand detailed balance

p(ζk)Tζk→ζ′k′ = p(ζ ′k′)Tζ′k′→ζk , (4.17)

where p(ζk) is the probability of a configuration ζk, and Tζk→ζ′k′ is the transition probability.
Detailed balance is a sufficient condition to guarantee a stationary distribution∫

dζkp(ζ ′k′)Tζ′k′→ζk = p(ζk)
∫

dζkTζk→ζ′k′ = p(ζk); (4.18)

it reflects reversibility. We use the Metropolis choice [92, 93] to determine the transition
probabilities. The transition probabilities are split into a proposal probability P and an
acceptance probability A:

Tζk→ζ′k′ = Pζk→ζ′k′Aζk→ζ
′
k′

(4.19)
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4. Continuous-time quantum Monte Carlo

β 0

d+
↑ (τ ′3) d↑(τ3) d+

↑ (τ ′2) d↑(τ2) d+
↑ (τ ′1) d↑(τ1)

τ

l l′

β 0

d+
↑ (τ ′3) d↑(τ3) d+

↑ (τ ′2) d↑(τ2) d+
↑ (τ ′1) d↑(τ1)

τ ′

(a) Insertion of a segment

β 0

d+
↑ (τ ′3) d↑(τ3) d+

↑ (τ ′2) d↑(τ2) d+
↑ (τ ′1) d↑(τ1)

τ

l l′

β 0

τ ′

d+
↑ (τ ′3) d↑(τ3) d+

↑ (τ ′2) d↑(τ2) d+
↑ (τ ′1) d↑(τ1)

(b) Insertion of an anti-segment

Figure 4.3.: Example of insertion update for the σ = ↑ channel, the inserted operators are
drawn in red. A configuration of order k↑ = 3 is shown. (a) Insertion of a segment d↑(τ ′)d

+
↑ (τ)

if at time τ the σ = ↑ channel is empty; (b) insertion of an anti-segment d+
↑ (τ ′)d↑(τ) if at time

τ the σ = ↑ channel is occupied.

The Metropolis choice for an acceptance probability A, to fulfill the detailed balance
condition, is

Aζk→ζ′k′ = min
1,

p(ζ ′k′)Pζ′k′→ζk
p(ζk)Pζk→ζ′k′

 . (4.20)

Let’s consider the basic updates. First we consider the probability of inserting an (anti-)
segment, i.e., a pair of operators d̂†σ(τ) and d̂σ(τ ′), increasing the expansion order by one,
k → k + 1. The insertion probability decomposes into choosing the quantum number,
here the spin σ, yielding a factor 1/2, and choosing the two times τ and τ ′. Figure 4.3
shows an example for an insertion in the σ = ↑ spin channel. First, we choose a time τ
with the probability dτ /β. If the impurity is empty for spin σ at that time, an electron
is added d̂†σ(τ) (segment); if it is filled, an electron is removed d̂σ(τ) (anti-segment). Next,
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4.1. Hybridization expansion of the partition function

we choose a time τ ′ between τ and the next operator (wrapping around the time β in
the absence of operators in the interval (τ, β]). We call the length of this interval l, the
probability is dτ ′ /l. Thus, the proposal probability of an insertion is

Pζk→ζk+1 = dτ dτ ′
2βl . (4.21)

An alternative choice for the update is

P ′ζk→ζk+1
= dτ dτ ′

2β2 , (4.22)

choosing two arbitrary times. Proposals with times τ ′ > τ + l are always rejected, because
such a configuration is invalid, i.e., it has probability p(ζk+1) = 0, as the local expectation
value W ζk

loc vanishes. A third choice would be τ ′ ∈ (τ − l′, τ + l), where l′ is the time
distance to the previous operator. The probability of removing a segment, i.e. a pair of
operators, is simply

Pζk→ζk−1 = 1
2k . (4.23)

The probability of the configuration ζk can be read off the partition function eq. (4.15):

p(ζk) ∝ dτ1 dτ1′ . . . dτk dτk′
1

(k!)2W
ζk
loc det ∆ζk . (4.24)

Thus, the acceptance ratio according to the Metropolis choice eq. (4.20) for an insertion
is

Aζk→ζk+1 = min
(

1, p(ζk+1)
p(ζk)

Pζk+1→ζk
P ′ζk→ζk+1

)
= min

1, W
ζk+1
loc det ∆ζk+1

(k + 1)2W ζk
loc det ∆ζk

β2

k + 1

 , (4.25)

for a removal it is

Aζk+1→ζk = min
(

1, p(ζk)
p(ζk+1)

P ′ζk→ζk+1

Pζk+1→ζk

)
= min

(
1, (k + 1)2W ζk

loc det ∆ζk

W
ζk+1
loc det ∆ζk+1

k + 1
β2

)
. (4.26)

Only the ratios of weights are relevant, constants in the partition function correctly drop
out. It is essential to efficiently calculated the ratio of the determinants.

4.1.3. Evaluation of determinants
We consider an insertion increasing the order from k − 1 to k. The matrices ∆ζk−1 and
∆ζk are closely related, as the insertion is a local update. We simplify the notation by
omitting the specific configuration ζk and write ∆k instead; its matrix elements read
(∆k)ij = ∆(i, j). If the order k of the matrix ∆ is clear from its elements, we omit the
superscript k. The matrix after an insertion can be expressed as the block matrix

∆k =
(

∆k−1 ∆k
[:,k]

∆k
[k,:] ∆k(k, k)

)
=
(

∆k−1 ∆[:,k]
∆[k,:] ∆(k, k)

)
; (4.27)

25



4. Continuous-time quantum Monte Carlo

appending a row and column to the matrix ∆k−1 yields the matrix ∆k after the insertion.
The ratio of determinants can be efficiently calculated using the determinant formula for
partitioned matrices [94]

det
(
T U
V W

)
= det(T ) det

(
W − V T−1U

)
, (4.28)

thus, we can replace the ratio of determinants by

det
(
∆k

)
det

(
∆k−1

) = ∆(k, k)−∆[k,:](∆k−1)−1∆[:,k], (4.29)

expressing the ratio in terms of the matrix inverse (∆k−1)−1 =: M k−1. Likewise, we can
keep track of the inverse M k, using the Woodbury matrix identity [95]

(A+UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1
V A−1. (4.30)

The matrix after an insertion ∆k can be expressed in terms of the previous matrix ∆k−1

by adding a column and a row

∆k =
(

∆k−1 0
0T 1

)
+
(

∆[:,k]
∆(k, k)− 1

)
êT
k + êk

(
∆[k,:] 0

)
=
(

∆k−1 0
0T 1

)
︸ ︷︷ ︸

A

+
(

∆[:,k] 0
∆(k, k)− 1 1

)
︸ ︷︷ ︸

U

(
0T 1

∆[k,:] 0

)
︸ ︷︷ ︸

V

,
(4.31)

where 0 is the (column) vector of zeros (0)i = 0, êk is the unit vector (êk)i = δik. The
reader might wonder about the 1 in the bottom right element of the first summand, which
is subtracted by the second summand. This one is needed, for the first summand to be
invertible. Thus, ∆k can be calculated as a rank-two update of the block-structure of
∆k−1. Evaluating the matrix-products and the 2× 2 matrix inverse, we get the formula
for the inverse

M k =
(
M 0
0T 1

)
− 1

∆(k,k)−∆[k,:]M∆[:,k]

(
−M∆[:,k]∆[k,:]M M∆[:,k]

∆[k,:]M ∆(k, k)−∆[k,:]M∆[:,k] − 1

)

=
(
M 0
0T 0

)
− 1

∆(k,k)−∆[k,:]M∆[:,k]

(
−M∆[:,k]∆[k,:]M M∆[:,k]

∆[k,:]M −1

)
,

(4.32)

where we dropped the superscript k − 1 of the matrix M k−1 =: M ; in the second line
we canceled the factor 1 in the lower right element, which was introduced to make the
summand invertible. The second addend is a rank-1 matrix, evidently it is separable

M k =
(
M k−1 0

0T 0

)
+ 1

∆(k,k)−∆[k,:]M
k−1∆[:,k]

(
M k−1∆[:,k]
−1

)(
∆[k,:]M

k−1 −1
)
, (4.33)

which allows to efficiently update the matrix M k = (∆k)−1. Moreover, we need the
inverse operation for the removal. The calculation for the update of the matrix inverse is
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4.1. Hybridization expansion of the partition function

analogue to the relation of the cavity Green’s function to the lattice Green’s function
eq. (3.19). It can easily be shown using the matrix inverse for partitioned matrices [96].
We partition the matrix M k = (∆k)−1

M k =
(
M k

[:k,:k] M k
[:k,k]

M k
[k,:k] Mk

kk

)
. (4.34)

Then the block in first row and column of its inverse yields the matrix ∆k−1:

∆k−1 =
[
M k

[:k,:k] −M k
[:k,k](Mk

kk)
−1
M k

[k,:k]

]−1
. (4.35)

The new matrixM k−1 = (∆k−1)−1 is readily obtained by inverting this equation. Blocking
the matrix ∆k instead

∆k =
(

∆[:k,:k] ∆[:k,k]
∆[k,:k] ∆(k, k)

)
, (4.36)

we analogously obtain the equation

M k
kk =

[
∆(k, k)−∆[k,:k](∆[:k,:k])−1∆[:k,k]

]−1
, (4.37)

which is exactly the determinant ratio eq. (4.29), thus

det
(
∆k−1

)
det

(
∆k

) = Mk
kk. (4.38)

4.1.4. Sampling of Green’s function
Partition function sampling. The quantity we are actually interested in is not the
partition function but the Green’s function (and other observables). One way to obtain
the one-particle Green’s function is the logarithmic derivative

G(1, 2) = −δ lnZimp

δ∆(2, 1) = − 1
Zimp

δZimp

δ∆(2, 1) = ZbathZloc

Zimp

∑
k

(−1)k

(k!)2 W
ζk
loc
δ det ∆k

δ∆(2, 1) . (4.39)

The derivative of the determinant amounts to removing the row and column containing
∆(2, 1), if no such element exits the derivative is zero. This can be seen from the definition
of the determinant eq. (4.10), or even simpler by remembering the definition eq. (4.8).
This also coincides with the definition of the Green’s function

G(1∗, 2∗) = −
〈
d(1∗)d+(2∗)

〉
Simp

= − 1
Zimp

ZbathZloc
∑
k

(−1)k

k!
〈
d(1∗)d+(2∗)(∆S)k

〉
Sloc

= −ZbathZloc

Zimp

∑
k

(−1)k

k!
〈
d(1∗)d+(2∗)d+(1̄)d(1̄′) . . . d(k̄)d+(k̄′)

〉
Sloc

∆(1̄, 1̄′) . . .∆(k̄, k̄′),

(4.40)
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4. Continuous-time quantum Monte Carlo

the average contains one ‘free’ pair of Grassmann fields d(1∗)d+(2∗), all others are
connected by hybridization lines. Thus, we can write the Green’s function in the form

G(1, 2) = −ZbathZloc

Zimp

∑
k

∫
dζk

(−1)k

(k!)2 W
ζk
loc det ∆ζk

det ∆ζk−1

det ∆ζk
, (4.41)

where ∆ζk−1 is the matrix with the column and row corresponding to the derivative δ∆(2, 1)
removed. Such a ratio of determinants was calculated for the removal update eq. (4.26);
it is simply the aforementioned matrix element M(1, 2), see eq. (4.38). This result can be
derived much more elegantly using Gaussian integration [97]. The determinant can be
written as a Gaussian Berezin integral

det(∆) =
∫∏

D [η+,η] exp
(
η+∆η

)
=
∫∏

1
D [η+(1), η(1)] exp

(
η+(1̄)∆(1̄, 2̄)η(2̄)

)
. (4.42)

This way derivatives are readily available, e.g. the first derivative

δ det(∆)
δ∆(2, 1) = det(∆)∆−1(1, 2) = det(∆)M(1, 2), (4.43)

higher order derivatives for n-particle Green’s functions are straightforward [11]. The rest
of the factors in eq. (4.41) is simple the Monte Carlo weight WMC which appears in the
calculation for the partition function Zimp. Therefore, the Green’s function is sampled as

G(1, 2) = − 1
Zimp

∑
k

∫
dζkW ζk

MCM(1, 2) =: −E(M(1, 2)), (4.44)

where we introduce the symbol E for the Monte Carlo average. While sampling the
partition function, we remove the hybridization line connecting a pair of operators for a
given configuration to obtain a Green’s function sample. To save the Green’s function in
imaginary time, it has to be binned in time. Alternatively, it can be Fourier transformed to
Matsubara frequencies using a nonuniform fast Fourier transform (NUFFT) to avoid the
binning error, see [87, 98]. In practice, the binning error of Green’s functions depending
only on one time difference is not problematic. A sufficient fine time-mesh can be chosen
to keep it small; the error is dominated by the stochastic Monte Carlo error.
The static quantity occupation n̂σ = d̂†σd̂σ and double occupations n̂↑n̂↓ can be ac-

curately measured in the segment picture. They commute with the local Hamiltonian[
n̂σ, Ĥloc

]
and can be directly evaluated from the lengths of the segments

〈n̂σ〉 = E(Lσ) 〈n̂↑n̂↓〉 = E(O↑↓). (4.45)

Likewise, the two particle Green’s function

Fσ(τ − τ ′) =
〈
d+
−σ(τ)d−σ(τ)dσ(τ)d+

σ (τ ′)
〉
S

(4.46)

which is needed for the improved estimate of the self-energy Σσ(iωn) = UFσ(iωn)/Gσ(iωn),
can be sampled just as the Green’s function Gσ(τ) of spin σ with hardly any additional
effort. It is enough to check whether the segment of the opposite spin is occupied
[d+
−σ(τ)d−σ(τ)].
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4.1. Hybridization expansion of the partition function

General two particle Green’s functions can be calculated analogously as the second
derivative. However, to sample the Green’s function this way requires suitable hybridiza-
tion lines to appear in the expansion of the partition function Zimp. The partition
function sampling fails, e.g., in the atomic case ∆ = 0. The number of Green’s function
samples strongly depends on the expansion order. In general this technique fails to sample
off-diagonal observables like the spin-flip susceptibility

χ+−(τ − τ ′) =
〈
d+
↑ (τ)d↓(τ)d+

↓ (τ ′)d↑(τ ′)
〉
S
. (4.47)

In this case, samples would only be obtained for configurations with segments where
operators of opposite spin coincide in time. Statistically, such configurations appear
almost never.

Worm sampling. The aforementioned problems can be amended using worm sam-
pling [99]; we give a short summary of the algorithm as presented in [87, 99]. The worm
algorithm extends the configuration space by not only expanding the partition function,
but also the Green’s function. We denote the corresponding parts of the extended config-
uration space as partition function space and Green’s function space. Green’s function
configurations are generated by inserting a worm, that is the operators of the Green’s
function without attached hybridization lines. We define the phase-space volume in the
n-particle Green’s function space

ZG(n) = G(n)(1̄, . . . , n̄, 1̄′, . . . , n̄′), (4.48)

where G(n)(1, . . . , n, 1′, . . . , n′) = −〈d(1) . . . d(n)d+(1′) . . . d+(n′)〉S denotes the n-particle
Green’s function, and we switch back to the multi-index notation 1 = (σ, τ). The Green’s
function phase-space expands analogous to eq. (4.15)

ZG(n)/ZbathZloc
Zimp

= −
∑
k

(−1)k

(k!)2

〈
d(1̄∗) . . . d(n̄∗)d+(1̄′∗) . . . d+(n̄′∗)︸ ︷︷ ︸

worm

d+(1̄)d(1̄′) . . . d+(k̄)d(k̄′)
〉
Sloc

det ∆k

= −
∑
k

∫
dγk

1
(k!)2W

γk
loc det ∆γk ,

(4.49)

where the starred numbers indicate the worm Grassmann fields without hybridization
lines. The Green’s function configuration is a tuple

γk = ([σ∗1τ ∗1 , σ∗1′τ ∗1′ ], . . . [σ∗nτ ∗n, σ∗n′τ ∗n′ ], [σ1τ1σ1′τ1′ ], . . . [σnτnσn′τn′ ])
= ([σ∗1τ ∗1 , σ∗1′τ ∗1′ ], . . . [σ∗nτ ∗n, σ∗n′τ ∗n′ ])⊕ ζk,

(4.50)

it consists of the worm and a partition function configuration. The determinant det ∆γk

is the same as for the corresponding partition function configuration ζk with the worm
removed. A combined ‘partition function’ is introduced

W = Z + η(n)ZG(n) , (4.51)
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4. Continuous-time quantum Monte Carlo

where η(n) takes the role of a weight factor to balance the time spent in partition function
space and Green’s function space. To change a partition function configuration ζk into a
Green’s function configuration γk a worm has to be inserted; the proposal probability is
analogous to the segment insertion

Pζk→γk = (dτ ∗)2n

β2n , (4.52)

as for an n-particle Green’s function 2n operators have to be inserted. Note that the
configuration γk contains 2(k + n) operators, 2k connected by hybridization lines and
the worm of 2n free operators. The proposal probability for the removal of the worm is
simply

Pγk→ζk = 1. (4.53)

The probabilities of Green’s function configurations γk are scaled by the weight factor η(n)

and can be read from the expansion of the Green’s function phase-space volume eq. (4.49)

p(γk) ∝ η(n)(dτ ∗)2n dτ1 dτ1′ . . . dτk dτk′
1

(k!)2W
γk
loc det ∆γk . (4.54)

Thus, the acceptance ratio according to the Metropolis choice eq. (4.20) for an insertion
of a worm is

Aζk→γk = min
(

1, p(γk)
p(ζk)

Pγk→ζk
Pζk→γk

)
= min

(
1, η

(n)(dτ ∗)nW γk
loc

W ζk
loc

β2n

(dτ ∗)2n

)
,

= min
(

1, η(n)W
γk
loc

W ζk
loc
β2n

)
,

(4.55)

where p(ζk) is given in eq. (4.24). The contribution by the hybridization function cancels
as the worm contains no hybridization lines. Analogously, the acceptance ratio for a
removal of a worm is

Aγk→ζk = min
(

1, p(ζk)
p(γk)

Pζk→γk
Pζk→γk

)
= min

(
1, 1
η(n)

W ζk
loc

W γk
loc

1
β2n

)
. (4.56)

The insertion and removal updates are not enough to satisfy ergodicity, as shown by
the example in fig. 4.4. Removing the worm yields an invalid configuration, therefore
such a configuration can never be generated from a partition function configuration by
a worm insertion. We further need to define (anti-) segment insertions γk → γk+1 and
removals γk+1 → γk in the Green’s function space. Their probabilities are analogous to the
corresponding updates in partition function space. To obtain reasonable autocorrelation
times an additional updated, the worm replacement update, is necessary [99]. The worm
replacement γk → γ′k exchanges a free worm operator with an operator connected by
hybridization lines. This update only modifies hybridization lines, therefore the acceptance
ratio of the worm replacement update depends only on the determinant ratio of the
hybridization function

Aγk→γ′k = min
(

1, det ∆γ′k

det ∆γk

)
. (4.57)
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4.1. Hybridization expansion of the partition function

β 0

d+
↑ (τ2) d↑(τ ′∗) d+

↑ (τ1) d↑(τ ′2) d+
↑ (τ ∗) d↑(τ ′1)

∆↑(τ2 − τ ′1)
∆↑(τ1 − τ ′2)

Figure 4.4.: Example of a segment for the σ = ↑ channel of order k↑ = 3 with a worm of two
σ = ↑ operators, e.g. G↑(τ∗ − τ ′∗). Worm operators are indicated by the diamonds, the green
edges show hybridization lines.

The Green’s function G(n) can readily be measured in Green’s function space; only the
normalization has to be taken care of, as the Monte Carlo measurement normalizes to the
phase-space volume ZG(n) and not the physical partition function Z. This is amended
by rescaling the Green’s function by the factor NG(n)/NZη(n), where NG(n) are the steps
taken in Green’s function space and NZ the steps taken in partition function space [99].

4.1.5. Negative sign and error estimate
So far, we always assumed the weights to be positive, such that they can be interpreted
as probabilities for the Monte Carlo sampling. For fermions, this is not necessarily the
case, as minus signs are generated by exchanging operators. To use Monte Carlo, we have
to consider the absolute of the weights instead. We define the average sign, where the
average E′ is calculated from the absolute weights:

E′(sign) =
∑
k

∫
dζk

∣∣∣W ζk
MC

∣∣∣ sign(W ζk
MC)∑

k

∫
dζk

∣∣∣W ζk
MC

∣∣∣ . (4.58)

We expand the estimate of an observable by the sum-integral over the absolute weight:

〈
Ô
〉
' E(Ô) =

∑
k

∫
dζkW ζk

MC

〈
Ô
〉
ζk∑

k

∫
dζkW ζk

MC

=
∑
k

∫
dζk

∣∣∣W ζk
MC

∣∣∣ sign(W ζk
MC)

〈
Ô
〉
ζk∑

k

∫
dζk

∣∣∣W ζk
MC

∣∣∣
∑
k

∫
dζk

∣∣∣W ζk
MC

∣∣∣∑
k

∫
dζkW ζk

MC
= E′(Ô)/E′(sign),

(4.59)

that is we sample according to the absolute weight and divide the result by the average
sign. For small values of the average sign, this estimate becomes very inaccurate; a sum
of almost compensating terms is sampled and divided by a tiny number. This is known
as the sign problem [100].
As Monte Carlo is a stochastic estimate, it is important to provide an error estimate.

Sampling the variance of observables is prone to underestimating the error, as we employ
a Markov chain: our samples are not independent but correlated. Standard algorithms,
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4. Continuous-time quantum Monte Carlo

so-called resampling techniques, like Jackknife and bootstrap exist to give reliable error
estimates [101]. A simple technique is to run many independent Monte Carlo simulations
averaging over the runs. The error can then be estimated from the variance of the different
runs. Care has to be taken in seeding the pseudo random number generators to ensure
that the runs are indeed independent. Note that it is important that the Markov chain
has reached stationarity to obtain reliable results. For this purpose, it is common to
perform a large amount of Monte Carlo iterations before starting to measure, this is
called burn-in or warm-up.

4.2. Analytic continuation
The CT-QMC algorithm yields Green’s function in imaginary time or Matsubara frequen-
cies. Typically, we are interested in Green’s functions on the real-frequency axis. Analytic
continuation is a technique to recover these results, it is however an ill-conditioned
procedure to recover the Green’s function from limited information on the imaginary axis.

By considering the Lehmann representation of the commutator Green’s function G(z)
and the Matsubara Green’s function G(n) and comparing them, we find

G(iωn) = G(n) ∀n ∈ Z (4.60)

for fermionic Green’s function with the Matsubara frequencies iωn = (2n+ 1)π/β and

G(iνn) = G(n) ∀n ∈ Z/{0} (4.61)

for bosonic Green’s functions with the Matsubara frequencies iνn = 2nπ/β. The Padé an-
alytic continuation interpolates G(n) by a rational polynomial, the Padé approximant [102–
104]. It is discussed in detail in sections 4.2.1 and 4.2.2. Recently Fei et al. [105] proposed
the use of Nevanlinna functions to interpolate G(n), to ensure non-negative spectra.
Alternatively, the analytic continuation can be performed by inverting the integral

equation obtained from Cauchy’s integral formula. For imaginary times τ ∈ (0, β), the
Green’s function can be expressed as the contour integral

G(τ) = 1
β

∞∑
n=−∞

G(n)e−iωnτ = 1
2πi

∮
L

dzG(z)[1− f(z)]e−zτ (4.62)

for fermionic Green’s functions with the Fermi function f(z) = 1/[exp(βz) − 1] which
has poles at the Matsubara frequencies iωn, cf. eq. (A.37), and

G(τ) = 1
β

∞∑
n=−∞

G(n)e−iνnτ = 1
β
G(0) + 1

2πi

∮
L

dzG(z)[1− b(z)]e−zτ (4.63)

for bosonic Green’s functions with the Bose function b(z) = 1/[exp(βz) + 1]. In the
following, we consider the fermionic Green’s function, the bosonic Green’s function can
be treated analogously. Choosing the contour L parallel to the real axis
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4.2. Analytic continuation

<z

=z
L

= <z

=z

L (4.64)

yields the integral over the real frequency axis

G(τ) =
∫ ∞
−∞

dω
(
[1− f(ω)]e−ωτ

) G(ω + i0+)−G(ω − i0+)
2πi =: −

∫ ∞
−∞

dωK(τ, ω)A(ω)

(4.65)

with A(ω) = [G(ω − i0+)−G(ω + i0+)]/2πi. The kernel K(τ, ω) exponentially decreases
in ω, therefore the spectrum A(ω) at large frequencies contributes little to the imaginary
time Green’s function G(τ). Similar integral equations can be formulated in terms of the
Matsubara Green’s function:

G(iωn) = 1
2πi

∮
L

dz G(z)
z − iωn

= −
∫ ∞
−∞

dω 1
ω − iωn

A(ω)

=: −
∫ ∞
∞

dωK(iωn, ω)A(ω);
(4.66)

for the second equality the contour L is chosen along the real axis analogous to eq. (4.64).
The kernel K(iωn, ω) decays algebraically in ω. In the following, we outline three common
approaches to solve integral equations like eqs. (4.62), (4.63) and (4.66) for the spectral
function A(ω): the maximum entropy (MaxEnt) method, the stochastic optimization
method (SOM), and the sparse modeling (SpM) approach.

Maximum entropy method. The MaxEnt method [106, 107] (sometimes also abbrevi-
ated MEM) employs Bayesian methods to tackle the inversion of the integral equation.
A pedagogical introduction is given by Jarrell [108] which also includes a step-by-step
instruction; we summarize the essence of the algorithm. The expectation values of the
Green’s function sampled by QMC are denoted

E(Gl) = 1
N

N∑
j=1
Gjl , (4.67)

where j enumerates the samples or bins; here Gl denotes either the Green’s function
evaluated at time point Gl = G(τl) or a frequency point Gl = G(iωl). The ‘exact value’
Gl[A] for a given spectrum A is obtained from one of the integral equations eqs. (4.62),
(4.63) and (4.66). The MaxEnt method assumes the conditional probability for the
sampled Green’s function E(Gl) for a given the spectrum A to be Gaussian distributed

P (E(G)|A) ∝ exp
(
−χ2/2

)
with χ2 =

∑
l

[Gl[A]− E(Gl)]2
σ2
l

, (4.68)

where σl is the variance, which is chosen as the square root of the diagonal elements of
the estimate of the covariance matrix

Cll′ = 1
N − 1

N∑
j=1

[Gjl − E(Gl)][Gjl′ − E(Gl′)] = N

N − 1[E(GlGl′)− E(Gl)E(Gl′)]. (4.69)
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The conditional probability P (E(Gl)|A) is referred to as likelihood function. Using the
definition of conditional probability

P (A|B) = P (A ∩B)
P (B) , (4.70)

we can reverse eq. (4.68) to get the conditional probability of the spectral function given
the measured data E(Gl):

P (A|E(G)) = P (E(G)|A)P (A)
P (E(G)) , (4.71)

this equation is known as Bayes’ theorem. The sampled QMC data E(G) is fixed, therefore
its probability is not relevant; we choose P (E(G)) = 1. The probability of a spectrum
P (A) is assumed to be the exponential of an entropy term

P (A|α,m) ∝ exp(αS[A,m]) (4.72)

S[A,m] =
∫

dω
[
A(ω)−m(ω)− A(ω) ln

(
A(ω)
m(ω)

)]
, (4.73)

where m > 0 is a default model and α is a numerical parameter weighting the entropy
term. The probability P (A) is referred to as prior. The factor α and the default model
m still have to be determined, this is not discussed here; we refer to ref. [108] and the
references mentioned therein.

In practice, there are a few issues to be taken into consideration. The assumption of a
Gaussian distribution is an approximation. The error at adjacent or close time points τl
is correlated. Thus, if the off-diagonal elements of the auto-covariance matrix Cll′ are
relevant,

χ2 =
∑
ll′

[Gl − E(Gl)](C−1)ll′ [Gl′ − E(Gl′)] (4.74)

should be used. This equation can be evaluated using the singular value decomposition
(SVD); we write the covariance matrix as

C = XX† with Xlj = G
j
l − E(Gl)√
N − 1

, (4.75)

and use the SVD X = UΣV †. We define xl = Gl[A]− E(Gl), and write χ2 in the form

χ2 = x†(XX†)−1
x = x†UΣ−2U †x =

∑
j

1
σ2
j

∣∣∣∣∣∑
l

U∗jl[Gl[A]− E(Gl)]
∣∣∣∣∣
2

, (4.76)

the last equation writes the matrix and vector products out as the corresponding sums.
Furthermore, a Gaussian distribution is not appropriate for the imaginary time Green’s
function G(τ) as G ≤ 0 for τ ∈ (0, β); this is mostly relevant for small absolute values of
G as is the case close to τ = β/2 for gapped spectral functions. Various implementations
of MaxEnt are available, one example is the code [C4].
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4.2. Analytic continuation

Stochastic optimization method. The main advantage of SOM [109] is to overcome
the dependence on a default model m that is present in MaxEnt. We summarize the
description given by Mishchenko [110]. The basic idea is to average over numerous possible
spectral functions

A =
∫

dA′ P (A′|E(G))A′. (4.77)

In SOM, the trail spectral functions A′ are parametrized as a sum of boxes, i.e., piecewise
constant functions with finite support. The spectral functions are written

A′(ω) =
K∑
t=1

ηht,wt,ct(ω) =
K∑
t=1

ht1[−ωt/2,+ωt/2](ω − ct), (4.78)

where ht is the height, ωt the width, ct the center of the boxes, and 1[−ωt/2,+ωt/2](ω) the
indicator function which equals 1 for ω ∈ [−ωt/2,+ωt/2] and 0 else. The simple form of
the spectral function A′ allows for an efficient calculation of the Green’s function

Gl[A′] =
∫

dωK(l, ω)A′(ω). (4.79)

The quality of a particular spectral function A′ is assessed by the deviation measure

D[A′] =
∑
l

∣∣∣∣∣Gl − E(Gl)
Sl

∣∣∣∣∣, (4.80)

where Sl can be chosen as variance Sl = σl to respect error bars of the data E(Gl), or
Sl = |E(Gl)|d with 0 ≤ d ≤ 1 to weight data points of different magnitude equally for
d→ 1 [110]. In essence, SOM generates different spectral functions A′j parametrized as
eq. (4.78) using a Monte Carlo procedure. Good enough spectra A′j, that is spectra with
D[A′j] below a certain threshold δ, are kept. The resulting spectrum is the average

A(ω) =
∑
j Θ(δ −D[A′j])A′j(ω)∑

j Θ(δ −D[A′j])
, (4.81)

where Θ is the Heaviside step function. The procedure is computationally demanding,
but efficient GPU implementations exist, e.g. [C5].

Sparse modeling approach. The SpM approach [111] starts from the discretization of
one of the integral equations eqs. (4.62), (4.63) and (4.66). Applying a quadrature rule,
we can rewrite the integral equation as matrix equation

G = −KA with elements Gl = −
∑
j

K(l, ωj)A(ωj); (4.82)

we assume possible integration weights to be incorporated in A(ωj). The goal is to
minimize the square error

χ2(A) = 1
2‖G −KA‖

2
2, (4.83)
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the result can be additionally constrained to ensure non-negativity and normalization

(A)j ≥ 0,
∑
j

(A)j = 1. (4.84)

The ill-condition of the matrix equation eq. (4.82) is revealed by the SVD of the kernel
matrix K

K = UΣV †, (4.85)

the singular values decay exponentially. A common approach to invert such matrix
equations is to truncate small singular values, as they enhance errors. The SpM approach
suggest using an L1 regularization instead. This is known as least absolute shrinkage and
selection operator (LASSO); it favors coefficients to be exactly zero therefore reducing
overfitting [112]. The regularization is performed in the SVD basis of the kernel matrix

A′ = V †A G′ = U †G; (4.86)

the regularized cost function reads

F (A′) = 1
2‖G

′ −ΣA′‖2
2 + λ‖A′‖1. (4.87)

This is a quadratic programming problem [112], for the selection of the optimal regu-
larization parameter λ and concrete implementation we refer to Otsuki et al. [111], an
implementation is available [C3]. Motoyama et al. [113] recently combined the SpM
approach with the Padé approximation, to improve the accuracy of the robust SpM
around the Fermi level.

4.2.1. Padé approximants
We focus on probably the simplest method: the Padé approximants. An advantage of
Padé is that its simplicity allows for a large amount of insight. Furthermore, it provides
an analytic (or more precisely meromorphic) function, which can be evaluated anywhere
in the upper complex half-plane.

The Padé approximant is a rational polynomial p(z)/q(z), with polynomials p of degree
N and q of degree M , approximating a function f(z). The Padé approximant writes

[N/M ](z) = p(z)
q(z) ≈ f(z). (4.88)

For Green’s functions with the asymptote G(z) ∼ 1/z for |z| → ∞, an approximant
[N/N + 1](z) with M = N + 1 is appropriate, for self-energies the approximant [N/N ](z)
with M = N can be used. Thiele’s reciprocal difference method [102, 104] provides a
recursive algorithm to calculate the polynomials of these particular degrees.

Thiele’s reciprocal difference. The reciprocal difference method calculates an approxi-
mant of degrees [L2 /

L+1
2 ] interpolating the function G(z) exactly at L sample points zn:

[
L

2
/L+ 1

2

]
(zn) = G(zn); (4.89)
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4.2. Analytic continuation

the division is an integer division. Such a rational fit of given function values is called
a multipoint or N-point Padé approximant. From the samples G(zn) we calculate the
coefficients

an = gn(zn) with gn(z) = gn−1(zn−1)− gn−1(z)
(z − zn−1)gn−1(z) g0(z) = G(z) (4.90)

The fit fn(z) for n points can be recursively calculated

fn(z) = An(z)
Bn(z) (4.91)

An+1(z)
Bn+1(z) = An + (z − zn)an+1An−1

Bn + (z − zn)an+1Bn−1
(4.92)

with the starting values

A−1 = 0, A0 = a0, B−1 = 1, B0 = 1. (4.93)

The function f2n+1 using an odd number of sample points is of degree N = n, M = n+ 1;
the function f2n using an even number of sample points is of degree N = n, M = n. This
algorithm can be used to evaluate the analytic continuation at any point z, or to directly
calculate the rational polynomial p(z)/q(z).

Two issues of this approach for analytic continuation of Monte Carlo data are: (i) the
number of poles is fixed by the number of sample points taken into account; (ii) it is an
exact interpolation, the Monte Carlo data, on the other hand, is subject to noise. In
practice these problems are not as large as they might seem, as the spurious poles appear
along the imaginary axis to compensate noise. Such poles have little impact on the real
axis.

4.2.2. Pole-based Padé approximants
Recently, a Padé algorithm based on the direct calculation of the poles was developed
by Ito and Nakatsukasa [114]. This algorithm is formulated in a least-squares sense in
contrast to the interpolation used in Thiele’s algorithm. First, the optimal number of
poles is determined; in a second step, their optimal position is determined taking all data
points into consideration. We give a summary of this algorithm applied to the physical
problem of continuing Green’s functions.

Matrix formulation. As before, we look for a rational polynomial approximating our
function

f(z) ≈ p(z)/q(z), (4.94)

where f(z) is known only at L sample points zl, and polynomials p(z) and q(z) with
degrees N andM respectively. The degreeM is the number of poles. For physical Green’s
functions we know the relation between the degrees N and M , for Green’s functions with
the asymptote G(z) ∼ 1/z as |z| → ∞, we require M = N + 1. We linearize the rational
polynomial approximation

f(z)q(z) ≈ p(z). (4.95)
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4. Continuous-time quantum Monte Carlo

The L× (M + 1) Vandermonde matrix V q for the polynomial q(z) of degree M reads
(V q)lm = zml , accordingly V p denotes the L × (N + 1) Vandermonde matrix for the
polynomial p(z) of degree N . In terms of these Vandermonde matrices, we can express
the equation at sample points zl as the matrix equation

FV qq = V pp (4.96)

where the matrix F is the diagonal matrix containing the function values (F )ll′ = f(zl)δll′ ,
and q and p are the vectors of polynomial coefficients. This equation shows the reason why
naive matrix-based algorithms are unstable: The Vandermonde matrices for equidistant
sample points, the Matsubara frequencies iωn, are ill-conditioned [95]. We rewrite the
linearized eq. (4.96) as the homogeneous matrix equation

0 =
(
FV q V p

) (
q −p

)T
=: Cx. (4.97)

Theoretically, this equation gives us a clear recipe: We search the right-singular vectors
corresponding to vanishing singular values of C. These vectors span the null space
of C. To obtain a unique solution xT =

(
q −p

)
, we determine the number of poles

M such that the numerical null dimension of the matrix C is dim(null(C)) = 1. In
practice, the huge condition number for Vandermonde matrices on an equidistant grid
prohibits naive numerical treatment. For M poles and L Matsubara frequencies, the
ratio between the largest and the smallest element of the Vandermonde matrix V L×(M+1)

q

is (iωL/iω0)M = (2L+ 1)M ; for example for M = 100, L = 500 they span 300 orders of
magnitude. The top left of fig. 4.5 shows the singular values, normalized to the biggest
singular value σ0 for β = 100, M = 100, L = 500. The singular values span 150 orders
of magnitude, the smallest singular value is 77 orders of magnitude smaller than the
second-smallest. We recognize this as an intrinsic problem of analytic continuation: The
Matsubara frequency mesh is not suitable to obtain information on the real axis. A
preconditioning of the matrix C is necessary.

Conditioning. We define the diagonal matrix D, with the inverse row norm of the
concatenated Vandermonde matrices as diagonal elements

D := diag
(
1/
∥∥∥(V L×(M+1)

q )[l,:] (V L×(N+1)
q )[l,:]

∥∥∥) (4.98)

and scale eq. (4.97) by left-multiplying D to get row norms of the same magnitude

0 =
(
DFV q DV p

) (
q −p

)T
. (4.99)

Figure 4.5(a) shows how this scaling affects the singular values. The condition number of
V q significantly improves, however it is still quite large with a magnitude of order 25.
Furthermore, we choose a suitable polynomial basis instead of monomials. Instead of

searching for suitable orthogonal polynomials, we independently transform the basis of
q(z) and p(z), using the QR-decomposition:

DFV q = QDfqRDfq, DV p = QDpRDp. (4.100)
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Figure 4.5.: Singulars values of the Vandermonde matrix V q (top left) and the matrix C =(
FV q V p

)
for the Green’s function of a half-filled Bethe lattice (top right and bottom).

Roughly the first k = 100 singular values of
(
QDfq QDq

)
are nearly constant; the smallest

singular value (not shown) is 46 orders of magnitudes smaller than the second smallest.
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4. Continuous-time quantum Monte Carlo

This gives an optimal basis; the matrices Q are unitary and thus optimally conditioned.
In the new basis given by RDfq and RDp, the homogeneous equation reads

0 =
(
QDfq QDp

) (
RDfqq RDpp

)T
=: C̃x̃. (4.101)

The optimal number of poles M can now be determined from the null-dimension of C̃; we
vary M until numerically the null-dimension equals one. Figure 4.5(c) shows the singular
values of the conditioned matrix C. For the scaled and transformed matrix, a plateau
of roughly 100 singular values becomes visible, and there is a clear separation from the
smallest singular value (not shown).

Calculating the poles. After finding the optimal number M of poles, we directly
calculate these poles. The poles of f(z) are the roots of the denominator polynomial q(z).
We factorize a pole εm from the polynomial q(z) of degree M

q(z) = θ(z)(z − εm) (4.102)

with the reminder polynomial θ(z) of degree M − 1. Substituting this into the linearized
eq. (4.95) yields

zf(z)θ(z)− p(z) = εmf(z)θ(z). (4.103)

For the L sample points zj, this yields the matrix equation

ZFV θθ − V pp =
(
ZFV θ V p

) (
θ −p

)T
= εmFV θθ, (4.104)

where Z is the diagonal matrix of sample points Z = diag(zl). This equation can be
written as the generalized eigenvalue problem(

ZFV θ V p

) (
θ −p

)T
= εm

(
FV θ 0

) (
θ −p

)T
(4.105)

by expanding the right-hand side with a zero-matrix. Ito and Nakatsukasa [114] also
detail how to solve this equation.

In the following, we summarize the essence of this algorithm. We realize that eq. (4.105)
is of dimension M + (N + 1), thus it produces N + 1 spurious poles εm. These additional
eigenvalues correspond to poles at infinity [114]. They can be removed by eliminating the
polynomial p(z), which is not related to the poles but the zeros, from the equation. The
QR-decomposition of the Vandermonde matrix V p is

V p =
(
Qp V p⊥

) (
Rp 0

)T
with V †p⊥V p = 0, (4.106)

V p⊥ is the orthogonal complement of V p [115]. Multiplying eq. (4.105) by (Qp V p⊥)†

from the left yields(
Q†pZFV θ Rp

V †p⊥ZFV θ 0

)(
θ −p

)T
= εm

(
Q†pFV θ 0
V †p⊥FV θ 0

)(
θ −p

)T
. (4.107)

The second line of this equation is the eigenvalue equation orthogonal to p(z):

V †p⊥ZFV θθ = εmV
†
p⊥FV θθ. (4.108)
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4.2. Analytic continuation

Again, we transform the polynomial basis of θ(z) to θ̃ = Rfθθ using the QR-decomposition
FV θ = QfθRfθ to improve the condition:

V †p⊥ZQfθθ̃ = εmV
†
p⊥Qfθθ̃. (4.109)

This eigenvalue equation provides the M poles εm of f(z).

Calculating the roots. In principle, the roots could be calculated just as the poles of
1/f(z) = q(z)/p(z). However, it is important to use the position of the poles to determine
the roots. Knowing all M roots εm, we can represent the polynomial q(z) by its factorized
form

q(z) =
M∏
m=1

(z − εm), (4.110)

where we choose the constant prefactor to be one without loss of generality. The roots of
f(z) are the roots of the numerator polynomial p(z). We factorize a root zn from the
polynomial p(z) of degree N

p(z) = π(z)(z − zn) (4.111)

with the reminder polynomial π(z) of degree N − 1. Substituting this into the linearized
eq. (4.95) yields

f(z)q(z)− zπ(z) = −znπ(z). (4.112)

For the L sample points zj, this yields the matrix equation

FQ−ZV ππ =
(
FQ ZV π

) (
1 −π

)T
= −znV ππ (4.113)

where Q is the L× 1 matrix of the denominator polynomial values at the sample points
(Q)l0 = q(zl). Again, we expand this equation to the generalized eigenvalue problem(

FQ ZV π

) (
1 −π

)T
= zn

(
0 V π

) (
1 −π

)T
. (4.114)

As previously, we project out the spurious eigenvalue, which, in this case, is associated
with the denominator polynomial. We calculate the orthogonal complement of FQ:

FQ =
(
QFQ (FQ)⊥

) (
RFQ 0

)T
with (FQ)†⊥FQ = 0. (4.115)

Multiplying eq. (4.114) by (QFQ (FQ)⊥)† from the left yields(
RFQ Q†FQZV π

0 (FQ)†⊥ZV π

)(
1 −π

)T
= zn

(
0 Q†FQV π

0 (FQ)†⊥V π

)(
1 −π

)T
. (4.116)

The second line of this equation is the eigenvalue equation for the roots

(FQ)†⊥ZV ππ = zn(FQ)†⊥V ππ. (4.117)

We transform the polynomial basis of π(z) to π̃ = Rππ using the QR-decomposition
V π = QπRπ to improve the condition:

(FQ)†⊥ZQππ̃ = zn(FQ)†⊥Qππ̃. (4.118)

This eigenvalue equation provides the N roots zn of f(z).
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4. Continuous-time quantum Monte Carlo

Padé approximant as rational polynomial. Having determined all poles εm and roots
zn, we write the Padé approximant as the rational polynomial

f(z) = p(z)
q(z) = c

∏N
n=1(z − zn)∏M
m=1(z − εm)

. (4.119)

What is left to determine is the constant factor c. It can be calculated as the mean of

cl = f(zl)/
∏N
n=1(zl − zn)∏M
m=1(zl − εm)

= f(zl)
∏M
m=1(zl − εm)∏N
n=1(zl − zn)

. (4.120)

This constant is the high-frequency asymptote f(z) ∼ czN−M for |z| → ∞, which is
typically known exactly, e.g. c = 1 = 〈{ĉ, ĉ†} 〉 for the diagonal one-particle Green’s
function.

Determining the residues. Physical Green’s functions decay with large frequencies,
thus they have more poles than roots N < M . Self-energies can have an additional
constant and thus N = M ; the constant is the high-frequency asymptote c in eq. (4.119).
Therefore, we can write the rational polynomial as the sum over the residues

f(z) = cδNM +
M∑
m=1

rm
z − εm

, (4.121)

where rm is the residue of the simple pole εm. Knowing the poles εm, for N < M eq. (4.121)
yields the matrix equation at the sample points

f = Er (4.122)
where f is the vector of sample points (f)l = f(zl) and E is the matrix of poles
(E)lm = 1/(zl − εm). This linear equation can be solved for the residues r using standard
techniques. For N = M , the constant c can either be calculated from the roots zn using
eq. (4.120) or from analytic knowledge of the asymptote f(z) ∼ c for |z| → ∞, and
subtracted from the function values f(zj). Alternative, we can include c in the linear
equation(

1 E
) (
c r

)T
= f . (4.123)

If additional high-frequency moments are known, they can be included as equality
constrains to the least-squares problem [115].

It is also possible to determine the residues from the imaginary time Green’s function.
The imaginary time Green’s function corresponding to eq. (4.121) with N 6= M writes

G(τ) =
M∑
m=1
−rm[Θ(τ)− sns(εm)]e−εmτ =:

M∑
m=1

g(τ, εm) (4.124)

where the sign is s = +1 (s = −1) for Fermions (Bosons) and n+1(z) = f(z) is the Fermi
function (n−1(z) = b(z) the Bose function); Θ(τ) is the Heaviside step function. Again,
this yields a matrix equation at the sample points

Gr = g, (4.125)
where (G)lm = g(τl, εm) is the matrix of single-pole Green’s functions, and (g)l = G(τl) is
the vector of sample points. The formulas in frequency eq. (4.122) and imaginary-time
space eq. (4.125) can be combined(

E G
)T
r =

(
f g

)T
. (4.126)
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Algorithm. The full algorithm consists of three basic parts:

1. Determine the number of poles M .

2. Calculate the position of the poles εm.

3. Calculate one of the following:
a) the roots zn from the poles εm,
b) the residues rm corresponding to the poles εm.

The algorithm yields an analytic formula of the Padé approximant which can be evaluated
for any frequency point z. In contrast to Thiele’s reciprocal difference method which
interpolates the data, the pole-based Padé approximant performs a least-squares fit.
This readily allows for the incorporation of uncertainties of the data: The weighted
least-squares solution is obtained by left-multiplying the diagonal matrix of the variances
diag(1/σl). Including information of the covariance matrix C is more complicated if C is
ill-conditioned, a generalized least-squares algorithm should be employed instead [115].
An implementation of this algorithm is provided in ref. [C2].

4.2.3. Numerical example: Bethe Green’s function
We consider the analytic continuation of the Bethe Green’s function to illustrate the
pole-based Padé algorithm. The energy scale is fixed by setting the half-bandwidth of
the Bethe DOS to D = 1. First, we discuss the Padé approximant not for the Matsubara
frequencies but for a suitable contour for analytic continuation. This demonstrates the
properties of the Padé approximant. Next, we discuss realistic test cases for Matsubara
frequencies to discuss some problems one encounters in practice.

We consider the analytic continuation for the Green’s function G(zl) given at frequency
points on the unit half-circle in the upper complex half-plane:

zl = exp
(
πi

l

L+ 1

)
, l ∈ {1, . . . , L}. (4.127)

As all frequencies are of the magnitude |zl| = 1, all elements of the Vandermonde matrices
are of the same magnitude. Figure 4.6 shows that in this case the Padé approximant
closely reproduces the retarded Green’s function also on the real axis where the spectrum
shows sharp edges. The pole-based Padé algorithm yields a [14/15] approximant without
any spurious poles. Even though a slight asymmetry of the poles is visible, the resulting
spectral function is highly accurate. The spectral function becomes slightly negative
(≈ 2× 10−3) around the band edge. It is evident that a sharp band-edge is a very
challenging feature to reproduce with a Padé algorithm. The band-edge is related to
a branch cut in the Green’s function, which Padé approximates by a finite number of
poles; this requires close zero-pole pairs. It is necessary to approximate only the retarded
Green’s function which is defined in the upper complex half-plane and not the Green’s
function which is defined for all complex frequencies. This allows to approximate branch
cuts on the real axis by complex poles in the lower complex half-plane. If we use complex
frequencies zl = exp(2πil/L) on the full unit-circle instead of eq. (4.127) only in the
upper half-plane, the poles εm of the Padé approximant are forced to the real axis. This
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Figure 4.6.: Padé approximant of the retarded Bethe Green’s function. The [14/15] Padé
approximant was generated from L = 256 frequencies on the unit circle eq. (4.127). The circles
indicate the positions of the poles εm in the lower complex half-plane, their color indicates the
absolute values of the corresponding residues |rm|; the crosses indicate the position of the zeros
zn. The blue line shows the spectral function corresponding to the Padé approximant.

results in a Padé spectrum consisting of few sharp delta-like peaks, whose sign depends on
whether the poles are slightly above or below the real axis. Thus, only positive Matsubara
frequencies should be used for the analytic continuation; fig. 4.6 shows a dominant pole
on the lower half of the imaginary axis which would conflict with negative Matsubara
frequencies.
Next, we consider the case of Green’s function values on Matsubara frequencies iωn,

which we are mainly interested in. Before considering realistic noisy date, we emphasize
that the quality of the Padé approximants is temperature dependent as this modifies
the mesh of input points iωn = i(2n+ 1)π/β. For bigger values of β the frequencies are
closer to the real axis, therefore more of the structure of the Green’s function is revealed.
Figure 4.7 shows the Padé approximants obtained for β = 100 and β = 10 for exact input
data G(n). The pole-based Padé algorithm underfits the data compared to fig. 4.6. While
for β = 100 the algorithm produces a reasonable analytic continuation away from the
band-edges, for β = 10 a spiky spectral function is produced. The reason for the spurious
peaks is the too small number of poles, which is unable to reproduce the spectrum of
the continuous branch cut. Thiele’s reciprocal difference method suffers from the same
problem, in spite of producing a [L2 /

L+1
2 ] approximant with much more poles.

We generate the data by running the CT-HYB code for a non-interacting impurity
U = 0, which reproduces the non-interacting input Green’s function up to noise. This
approach produces realistic noise compared to putting artificial Gaussian noise on the
test data. We consider β = 100 and use 64 bins for a long run with 5× 107 measurements
and a short one with 5× 105. Figure 4.8 shows the corresponding approximants, both are
[25/26] approximants; several spurious zero-pole pairs with small residue are generated in
the upper complex half-plane. These spurious poles are placed along the imaginary axis,
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Figure 4.7.: Padé approximant of the retarded Bethe Green’s function at L = 1024 Matsubara
frequencies. Left shows the [8/9] Padé approximant for β = 100, right shows the [5/6]
approximant for β = 10. The blue line shows the spectral function corresponding to the
Padé approximant, the black line indicates the exact spectral function.
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Figure 4.8.: Padé approximant of the retarded Bethe Green’s function for β = 100 at L = 1024
Matsubara frequencies obtained from QMC data. Left shows the approximant for an error of
order 10−5 and G(τ), right shows the approximant for an error of order 10−4; both use a [25/26]
approximant. Not all poles and zeros in the upper complex half-plane are shown.
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4. Continuous-time quantum Monte Carlo

they are added to fit the noise in the data; they hardly affect the analytic continuation
on the real axis as they have a small residue and are reasonably far from the real axis.
More problematic is that in the presence of noise Padé can resolve less physical poles in
the lower complex half-plane, therefore the approximation is worse, especially around the
band-edge. Around the Fermi level the approximation is in general good, as we have a
close-by data point at the zeroth Matsubara frequency iω0. Again, Thiele’s reciprocal
difference method yields similar results.
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Tensor-network-based impurity solvers [116–121] are complementary to the quantum
Monte Carlo approach. They are Hamiltonian-based methods, which solve the SIAM for
a finite number of bath sites. While finite temperature extensions exist, see e.g. Feiguin
and White [122], most methods target the ground state. So in contrast to quantum Monte
Carlo, tensor network methods work at zero-temperature and can calculate quantities
for real times and frequencies. To solve the impurity problem, we consider a two-step
procedure: First, the ground state is calculated, and subsequently a (real-) time evolution
is performed to obtain the Green’s functions. Although methods calculating the Green’s
function directly on frequencies exist [123], like the correction vector technique [124], or
the dynamical density matrix renormalization group (DMRG) by Jeckelmann [125], we
do not consider them in this work. Roughly speaking, whereas frequency methods are
well suited for a precise frequency resolution, time evolution is suitable to provide a wide
frequency window.

First, we explain how to express quantum states and operators in terms of tensor net-
works. At the heart of the tensor network algorithm lies the singular value decomposition
(SVD), which allows for a controlled compression of the tensors representation of the
states in the exponentially large Hilbert space. Next, we give a short, rather mathematical,
introduction into DMRG, originally developed by White [21, 22], to calculate the ground
state. This chapter will introduce the basic concepts and provide the steps to write
a (rather naive) DMRG algorithm without going into rigorous proofs. At the end, we
explain the time evolution using the time-dependent variational principle (TDVP) to
obtain the zero temperature Green’s functions from the ground state. The code [C9] can
be used as a supplement to this chapter, it provides a basic explanatory implementation.
In this chapter, we mainly employ tensor network diagrams. A nice introduction

into the notation is given by Bridgeman and Chubb [126]; most of the notation is,
nonetheless, quite self-explanatory. A tensor of order n is represented by a box with n
legs. If one connects two legs of different tensors the corresponding index is summed
over, that is the tensors are contracted. The connected legs are also referred to as bond.
Likewise, connecting two legs of the same order-n tensor corresponds to a trace over the
corresponding indices reducing the order to n− 2. We can group or split legs, to reshape
the order-n tensor Ti1...in ∈ Cd1×···×dn to an equivalent order-m tensor T̃j1...jm ∈ Cd̃1×···×d̃m ,
for matching sizes ∏n

i=1 di = ∏m
j=1 d̃j, as the vector spaces are isomorphic. This allows us

to apply the toolbox of linear algebra not only to order-2 tensors, but also to higher order
tensors by defining a bipartition to reshape them into a matrix. Consider for example an
order-5 tensor Tijklm with a bipartition between the indices ij and klm:

Ti

j k

l
m = Ti

j k
l
m
∼ T̃α β . (5.1)
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We group the indices ij to the multi-index α = (i, j) and the indices klm to the multi-
index β = (k, l,m) to write the tensor Tijklm as the equivalent matrix T̃αβ; the particular
order of indices is not relevant in this example. The central algorithms employed from
linear algebra are the SVD and the QR-decomposition [95, 115]; we assume the reader to
be familiar with them. In the following, we omit the indices as well as the symbols for
the tensor in the diagrammatic notation.

5.1. Tensor representation of quantum states
Consider a given local basis of states |αi〉, e.g., the occupation of a spin-orbital of a given
site. In terms of this basis, a quantum state can be written as the vector

|ψ〉 =
∑
{αi}

Mα1...αN |α1〉 ⊗ · · · ⊗ |αN〉 =
∑
{αi}

Mα1...αN |α1 . . . αN〉 . (5.2)

For the given basis, the state is fully characterized by the tensor Mα1...αN . Hence, the
state |ψ〉 is equivalent to the tensor M , which we depict graphically as

|ψ〉 ∼ M

. . .

, 〈ψ| ∼ M∗

. . .

. (5.3)

We draw the legs upwards for kets and downwards for bras. The complex conjugation
of the tensor will often be omitted, it is clear from the orientation of the legs. Thus, an
overlap between two states |ψ〉 and |φ〉, represented by the tensorsM and N , is calculated
by contracting the corresponding legs:

〈φ|ψ〉 =
M

N∗

· · · . (5.4)

The overlap is a scalar equal to the contracted tensor, it is basis independent and therefore
an equality not just an equivalence.

The size of such a tensorM , eq. (5.2), representing a quantum states grows exponentially
with the system size N . For local basis states |αi〉 with dimension d, the size of the tensor
is dN . Direct numerical treatment is therefore restricted to small system sizes N ; even for
moderate system sizes it is impossible to naively store or process states on a computer.
Tensor network methods substitute the order-N tensor Mα1...αN by a network of tensors
of low order. Depending on the problem, this can significantly compress the amount of
computer memory required to store the tensor elements.

Consider a given state |ψ〉. While in practice we can neither fit Mα1...αN into memory,
nor process it in any reasonable time, for now we assume exact knowledge of the quantum
state. By defining a bipartition of the tensor (red dashed line), it can be decomposed
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5.1. Tensor representation of quantum states

using the thin SVD1

= U Σ V † . (5.5)

Trapezoidal wedges, , indicate isometric maps: Contracting all legs on the long side
with its conjugate yields the identity

U∗ U = . (5.6)

The short side indicates that the dimension of its legs is smaller (or equal) than the
dimension of the legs at the long side. Diamonds, , represent diagonal tensors. The
repeated application of thin SVDs allows to decompose the tensor into a network of
tensors. Performing a single SVD yields

M

. . .

= U1 Σ2 V †2
... = U1 M2

. . .

, (5.7)

where the dashed box indicates the contraction of Σ2 and V †2 yielding the node M2. The
cheaper QR-decomposition could be employed instead to split the tensor, later, however,
we will make explicit use of the properties of the SVD. Iterating through the whole tensor,
we generate the tensor train

M

. . .

= U1 U2 U3 . . . MN . (5.8)

This procedure is known as tensor-train decomposition [127]. In physics, the tensor train
(as well as a tensor ring [128]) is often referred to as matrix product state (in spite of
all inner nodes being order-3 tensors). There is a geometric and a gauge freedom in
decomposing a high-order tensor into a tensor network. Choosing different bipartitions,
the tensor M can also be decomposed into other geometries than this train, e.g., the fork
geometry [120]. Depending on the system that is studied, different geometries might be
suitable. For simplicity, we concentrate in the following on the tensor-train geometry,
however, any loop-free tree could be also considered. Even for a fixed geometry, the tensor
network is not unique; the tensor-train representation still has a gauge freedom. Doing
the tensor-train decomposition from right to left, yields e.g. the different representation:

M

. . .

= M1 V †2 V †3
. . . V †N . (5.9)

1The full SVD yields unitary matrices U and V and the rectangular diagonal matrix Σ. As we are
not interested in the null-space, it is sufficient to perform the more economic thin SVD which yields
only the relevant rectangular part of U/V which is isometric and the square diagonal matrix Σ. See
standard linear algebra books, e.g., Golub and Van Loan [115].
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5. Tensor network methods

In principle, identities like eq. (5.6) can be inserted in any bond, modifying the neighboring
bonds upon contraction. This freedom is useful to bring the tensor train into a form
suitable for numerical algorithms.
So far, we have not addressed the problem that the space required to store the state

grows exponentially with the system size N . The thin SVD of an M ×N matrix MM×N

is

MM×N = UM×KΣK×K(V †)K×N = UM×KRK×M , (5.10)

where K = min(M,N). Thus, starting from U1 at the left margin of eq. (5.8), the
bond dimension, that is the dimension of the connection between two tensors, grows
exponentially till the middle and decays again towards the boundary:

Md⊗N = Ud×d
1 Ud×d×d2

2 Ud2×d×d3

3 . . . Ud2×d×d
N−1 Md×d

N . (5.11)

We indicate this in eq. (5.8), by increasing the thickness of the bonds. Thus, the central
tensor UN/2 is of the same size as the original tensor M . At this point, the tensor network
requires more computer memory than the initial tensor. For an efficient representation, it
is necessary to compress the network.

5.1.1. Low rank approximation of a tensor network
We can use the properties of the SVD to compress the tensor train, eq. (5.8). Not all the
K singular values (thin SVD) have to be taken into account, only nonzero singular values
(compact SVD) contribute. Numerically, it is not possible to distinguish tiny singular
values from those that are exactly zero. In fact, it is numerically favorable to discard
small singular values, to improve the condition number, which (for the spectral norm) is
given by the ratio of the largest and the smallest singular value. Thus, depending on the
state under consideration, it might be sufficient to keep only a small enough number of
singular values, instead of the exponentially growing number, making the state traceable.

For matrices, the truncated SVD, which keeps only the T < K largest singular values,
is known to be the best rank-T approximation as proven by the Eckart–Young–Mirsky
theorem [129, 130]. The SVD decomposition of a matrix A has the form

A = UΣV † =
K∑
k=1

σkukv
†
k, (5.12)

where uk is the k-th column vector of U , that is uk = U [:,k], likewise vk = V [:,k], and
σk are the corresponding singular values σk = (Σ)k,k. The singular values are sorted in
descending order σ1 ≥ σ2 ≥ . . . ≥ σK . The optimal rank-T approximation of A is then a
matrix

AT =
T∑
k=1

σkukv
†
k. (5.13)

This is a controlled approximation: The error is readily available in the spectral norm as
the largest truncated singular value

‖A−AT‖2 = σT+1, (5.14)
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5.1. Tensor representation of quantum states

or in the Frobenius norm as the square root of the sum of the squared truncated singular
values

‖A−AT‖F =

√√√√ K∑
k=T+1

σ2
k. (5.15)

The well known low-rank approximation of matrices, eqs. (5.13) to (5.15), needs to be
generalized to nodes of a tensor network; while we know that the truncation is optimal
locally for a single tensor, it might not be optimal globally for the network. It is possible
that the network scales the singular values of the node. The Frobenius norm of a matrix
is the trace

‖A‖F =
√

trA†A. (5.16)

This norm readily generalizes from matrices to tensors by contracting all legs of a tensor
M with the equivalents legs of its conjugate∥∥∥∥ M

∥∥∥∥2
= M M∗ . (5.17)

The Frobenius norm of a tensor M is also the norm of the corresponding state |ψ〉 ∼M :

‖|ψ〉‖ =
√
〈ψ|ψ〉 = ‖M‖, (5.18)

cf. eq. (5.4).
It is useful to introduce the concept of a center of orthogonality. We call a tensor C

the center of orthogonality of a tensor network M if all legs connected to C are isometric
towards C, e.g.:

M = C . (5.19)

Due to the isometry = , the norm of the tensor network M

reduces to the norm of the center of orthogonality C:∥∥∥∥ M
∥∥∥∥2

= C C∗

= C C∗ =
∥∥∥∥ C

∥∥∥∥2
.

(5.20)

If we replace this tensor C by its low rank approximation CT , we obtain the new tensor
network MT

MT = CT . (5.21)

The error of approximation of the network M equals that of the low-rank approximation
of the center of orthogonality C:

‖M −MT‖ =
∥∥∥∥ C − CT

∥∥∥∥ = ‖C − CT‖. (5.22)
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5. Tensor network methods

As the error ‖C − CT‖ is minimal for the optimal low-rank approximation of C given by
the truncated SVD, this also minimizes the error for the whole tensor network ‖M −MT‖.
Thus, if the tensor node we approximate is the center of orthogonality, the SVD provides
globally the best low-rank approximation for the tensor network M .

Furthermore, we note that the norm of network M is given by the singular values σk of
the center of orthogonality C:∥∥∥∥ M

∥∥∥∥ =
∥∥∥∥ C

∥∥∥∥ =
√∑

k

σ2
k. (5.23)

Thus, we can normalize the vector |ψ〉 represented by a tensor network M by normalizing
the singular values of the center of orthogonality ∑k σ

2
k

!= 1. After truncating the singular
values, it is necessary to re-normalize the network.

5.1.2. Iterative compression of tensor trains
To compress the tensor representing a state |ψ〉, we require it to have a center of
orthogonality. If this is not already the case, we can iteratively apply QR decompositions
(or SVDs) starting from the nodes the furthest away from the desired center and contract
the non-isometric part towards the center. This procedure works for all loop-free tensor
networks; the distance between two nodes can be defined as the number of nodes on the
unique path between them. Consider the state

|ψ〉 ∼ . . . M N . . . . (5.24)

The tensor train is compressed to a given accuracy by iterating through the train starting
from the center of orthogonality throwing away small singular values and normalizing
the network. In the following, we explicitly iterate the steps, to compress the bond of
dimension N to the right of the center of orthogonality highlighted in red:

1. Perform the thin SVD of center of orthogonality:

|ψ〉 ∼ . . . UM σK
V †

K N . . . ;

(5.25)

2. Discard singular values smaller than a threshold ε, thus limiting the bond dimension
to Tε := max{T ≤ K|∑K

k=T+1 σ
2
k < ε2}, or impose a hard limit Tmax that is

computational feasible T := min(Tε, Tmax):

|ψ〉 ≈ |ψT 〉 ∼ . . . UM σT
V †

T N . . .

= . . . UM σT T . . . ;

(5.26)
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5.2. Tensor representation of operators

3. Normalize the singular values σ̃k := σk/
√∑T

k=1 σ
2
k, and therefore the state |ψT 〉:

|ψ〉 ≈
∣∣∣ψ̃T〉 ∼ . . . UM σ̃T T . . . ;

(5.27)

4. Contract the nodes moving the center of orthogonality right if desired:

|ψ〉 ≈
∣∣∣ψ̃T〉 ∼ . . . M T . . .

= . . . UM T . . . .

(5.28)

Note that truncating the bond dimension to Tε guarantees the error to be smaller than ε.
In practice, however, it might be necessary to truncate the bond dimension to a smaller
value Tmax < Tε, with the value of Tmax limited by computer resources. Such a truncation
is not controlled anymore since the truncation errors can grow arbitrarily large. In this
case, we have to be careful.

The same procedure can be also applied for the bond left of the center of orthogonality
of size M , allowing to move the center of orthogonality to the left. To compress the
complete tensor train, we can start with the center of orthogonality at one end iterating
to the other end, as we can automatically move the center at each truncation step. In
the DMRG algorithm, which will be introduced in section 5.3, the truncation step is
explicitly integrated into the sweeping procedure.

5.2. Tensor representation of operators
Before we discuss algorithms, we still have to represent operators, most importantly the
Hamiltonian operator, in the language of tensor networks. Given the basis |αi〉 used for
the state eq. (5.2), an operator can be written as

Ô =
∑
{αi}

∑
{α′i}
|α1 . . . αN〉〈α1 . . . αN | Ô |α′1 . . . α′N〉〈α′1 . . . α′N |

=
∑
{αi}

∑
{α′i}
|α1 . . . αN〉Oα′1...α

′
N

α1...αN
〈α′1 . . . α′N | .

(5.29)

The operator O is fully characterized by the tensor Oα′1...α
′
N

α1...αN . Graphically, we depict the
operator Ô by the equivalent tensor

Ô ∼ O

. . .

. . .

, (5.30)
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where the upwards pointing legs connect with bra states and the downwards pointing
legs with ket states. Thus, a matrix element between two states |ψ〉 and |φ〉, represented
by the tensors M and N , is calculated by simply connecting the corresponding legs:

〈φ|Ô|ψ〉 =

M

O

N∗

· · ·

· · ·
. (5.31)

Most operators of interest are already sparse, and a small-sized representation in terms of
a tensor network can be found.

We consider the Hamiltonian of the one-band SIAM, eq. (2.15), for a finite number L
of bath sites. It is convenient to rename ĉ†0σ := d̂†σ, and write the Hamiltonian as

Ĥ =
∑
σ

ε0σ ĉ
†
0σ ĉ0σ + Un̂0↑n̂0↓ +

∑
σ

L∑
l=1

εlσ ĉ
†
lσ ĉlσ +

∑
σ

L∑
l=1

(Vlσ ĉ†lσ ĉ0σ + V ∗lσ ĉ
†
0σ ĉlσ). (5.32)

The tensor-train representation of this Hamiltonian is given by Bauernfeind [131]; instead
of providing a general algorithm, we state the result and verify its correctness.

We start with spin-less fermions and build the elementary operators in Fock space. The
local basis |αi〉 consists of two states: The site i can either be empty, |0i〉 = (0, 1)T, or
occupied, |1i〉 = (1, 0)T. The raising and lowering operators with the matrix representation

σ+ =
(

0 1
0 0

)
, σ− = (σ+)† =

(
0 0
1 0

)
(5.33)

map these two states onto each other, σ+ |0i〉 = |1i〉, σ− |1i〉 = |0i〉. The Fock states for
many particles, however, have to be properly anti-symmetrized. Thus, the creation and
annihilation operators have to additionally keep track of the fermionic signs for commuting
electrons. For the Fock states, we choose the sign convention, that the operators are
ordered with increasing (bath) site index, e.g. for L = 4 bath sites

|10110〉 = |10〉 ⊗ |01〉 ⊗ |12〉 ⊗ |13〉 ⊗ |04〉 = ĉ†0ĉ
†
2ĉ
†
3 |0〉 . (5.34)

With this convention, the creation/annihilation operator are represented by

ĉ†i

ĉi

 = σz ⊗ · · · ⊗ σz︸ ︷︷ ︸
i−times

⊗σ±⊗1⊗ · · · ⊗ 1︸ ︷︷ ︸
(L−i)−times

= σz . . . σz σ± . . . , (5.35)

where σz is the parity matrix

σz =
(

+1 0
0 −1

)
, (5.36)
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5.2. Tensor representation of operators

which flips the sign, whenever we have to permute the operator past a creation operator.
The occupation number operator n̂i consists of a pair of a creation and an annihilation
operator, no additional signs are necessary:

n̂i = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−times

⊗n⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
(L−i)−times

= . . . n . . . , (5.37)

where n is the number matrix

n = σ+σ− =
(

0 0
0 1

)
. (5.38)

For a hopping from site i to j, only the signs for the occupied sites in between of i and j
have to be considered. For example for j < i, we write

ĉ†j ĉi = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−times

⊗σ+ ⊗ σz ⊗ · · · ⊗ σz︸ ︷︷ ︸
(i−j−1)−times

⊗σ− ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
(L−i)−times

. (5.39)

With the representation of the basic operators, we can start building the Hamiltonian.
For spin-less fermions, we do not have an interaction term. Thus, for the impurity

site, we have four possible operations: creating a fermion ĉ†0, annihilating a fermion ĉ0,
counting the fermions n̂0, and the identity 1̂. For the impurity site, we choose the tensor
node as the row vector, containing these four operations:

W 0 =
(
1 ε0n σ+ σ−

)
. (5.40)

For the bath sites, the tensor node needs an equivalent column generating the on-site
terms and the hopping (with the amplitude Vj). Additionally, we need to propagate the
hopping terms to/from the impurity multiplied by the correct sign. Bauernfeind [131]
proposes

W i =


1 εin 0 0
0 1 0 0
0 V ∗i σ− σz 0
0 Viσ+ 0 σz

 . (5.41)

Performing the symbolic matrix multiplication, we correctly start accumulating the
Hamiltonian in the second column of the row-matrix

W 0W 1 =
(
1⊗ 1, [ε0n⊗ 1 + ε11⊗ n+ V ∗1 σ+ ⊗ σ− + V1σ− ⊗ σ+] , σ+ ⊗ σz, σ− ⊗ σz

)
,

(5.42)

commata are added to make the columns more visible. The third and fourth column of
W 0W 1 accumulate the fermionic signs necessary for hopping terms eq. (5.39). Filling
up the remaining sites with the tensor identity further clarifies this structure, as the
fermionic operators in Fock space are recovered in the second column:
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W 0W 1

L⊗
l=2

1 =
(

1̂,
[ 1∑
i=0

εin̂i + V ∗1 ĉ
†
0ĉ1 + V1ĉ

†
1ĉ0

]
, σ+ ⊗ σz ⊗

L⊗
l=2

1, σ− ⊗ σz ⊗
L⊗
l=2

1

)
.

(5.43)

Evidently, the ordered matrix product writes

L∏
i=0
W i =

(
1̂,

[
L∑
i=0

εin̂i +
L∑
l=1

(
Vlĉ
†
l ĉ0 + H.c.

)]
, σ+ ⊗

L⊗
l=1
σz, σ− ⊗

L⊗
l=1
σz

)
. (5.44)

Thus, replacing the last matrixW L in the product by its second column W̃ L = (W L)[:,2],
the matrix product is a tensor train representing the spin-less SIAM Hamiltonian. The
in- and outgoing legs of the nodes have the local physical dimensions d = 2; inner nodes
have the bond dimensions χ = 4 to the two neighboring sites:

Ĥ ∼

2 2 2 2

W 0 W 1
4 . . .4 W L−1

4
W̃ L

4

2 2 2 2

. (5.45)

Thus, the Hamiltonian of the size 2N × 2N is equivalent to the tensor train, eq. (5.45),
with size of the order of (22 × 42)N = 64N , where N = L+ 1 is the number of bath plus
impurity sites. The tensor-train representation exploits the sparsity of the Hamiltonian.
Next, we include the spin degree of freedom. The only term in the Hamiltonian

eq. (5.32) coupling the spins is the on-site interaction Un̂0↑n̂0↓ at the impurity site. Thus,
the natural choice is to duplicate our spinless tensor train and couple the trains at the
impurity site i = 0. To fix the geometry of our tensor network, we arrange the up-spins in
descending order, followed by the down-spins in ascending order. The total Hamiltonian
consists of the three parts

Ĥ = Ĥ↑ + Un̂0↑n̂0↓ + Ĥ↓. (5.46)

We already gave the tensor representation eq. (5.45) for Ĥ↑ and Ĥ↓. The interaction term
requires only terms at the impurity site, thus it suffices to introduce a bond of dimension
3 connecting the up- and down-spin nodes at the impurity site to accommodate the three
terms. We extend the row-matrix W 0 eq. (5.40) by two rows

W ↓0 =

1 ε↓0n σ+ σ−
0 1 0 0
0 Un 0 0

 , (5.47)

such that the second column accumulates the three Hamiltonian parts. Similarly,W ↑0 is

W ↑0 =


0 1 0
1 ε↑0n n
0 σ+ 0
0 σ− 0

 . (5.48)
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The total Hamiltonian of size 4N × 4N can thus be written as the tensor train

Ĥ ∼

2 2 2 2 2 2

W̃ ↑L . . .4
W ↑1

4
W ↑0

4
W ↓0 W ↓1

4 . . .4
W̃ ↓L

4

2 2 2 2 2 2

3 (5.49)

with size of the order 64× 2N = 128N . Thus, the tensor network representation of our
Hamiltonian grows only linearly in the system size N . Applying this Hamiltonian to a
tensor-train state of bond dimension χ costs of the order of 128Nχ2 operations. The
bond dimension of the new state Ĥ |ψ〉, however, might be up to 4χ, depending on how
much it can be compressed again using truncated SVD.

Instead of writing down an explicit tensor-train representation of the Hamiltonian, one
could just numerically sum up the tensor trains of the individual operators eqs. (5.37)
and (5.39) and compress the result [132]. In contrast to states, operators are not
normalized, thus the compression has to be done more carefully. The Hamiltonian
operator, for example, is extensive, thus a center of orthogonality would accumulate the
macroscopic norm in a single node, potentially leading to large numerical errors. We use
the explicit form given in eq. (5.49), and do not discuss the compression of operators
further.

5.3. Two-site density matrix renormalization group
Using conventional matrix-based methods such as exact diagonalization, Lanczos [9, 133],
or Davidson [134], the ground state can only be obtained for very small system sizes
as the Hilbert space grows exponentially in system size. The DMRG algorithm [21, 22]
allows for treating considerably larger systems. It can be naturally formulated in terms
of tensor networks [19]. The energy is iteratively lowered by a local optimization of nodes
in a sweeping procedure.
Using the tensor network representation of the previous sections 5.1 and 5.2, we can

write the energy of a state |ψ〉 as the network

Eψ = 〈ψ|Ĥ|ψ〉 =

. . . . . .

W̃↑N . . . W↑1 W↑0 W↓0 W↓1 . . . W̃↓N

. . . . . .

.

(5.50)

Finding the ground state is then equivalent to minimizing the energy for a normalized
state

min
〈φ|φ〉=1

〈φ|Ĥ|φ〉 . (5.51)

Although the minimization with respect to the full state |φ〉 is not in general possible,
given a trail state |ψ〉, we can locally optimize nodes of eq. (5.50). For a fixed tensor
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geometry, the DMRG is independent of the particular Hamiltonian under consideration,
thus we omit its details in the following.

We consider a trail state |φ〉 in form of a tensor train with a center of orthogonality at
position i. The energy is given by the network

Eφ =

. . . i . . .

. . . . . .

. . . i . . .

=

i

i

.

(5.52)

We select the center of orthogonality and one adjacent node, in this case the right one,
and contract the rest indicated by the dashed rectangles. Next, we locally minimize the
energy, keeping all other nodes fixed. This corresponds to finding the eigenstate with the
lowest energy of the matrix represented by the tensor

Hφ
[i:i+2] :=

χ χ

χ χ

d

d

d

d

, (5.53)

where the red dashed line indicates the bipartition. The matrix Hφ
[i:i+2] is called the

effective two-site Hamiltonian. A dense matrix-vector product costs only of the order of
O(d4χ4) operations, where χ is the bond dimension of the state and d the local physical
dimension. Using the tensor network structure this can be reduced to O(2hd2χ3), where h
is the dimension of the bonds of the Hamiltonian. The size of this problem is manageable,
i.e., standard sparse diagonalization algorithms like e.g. Lanczos [9, 133] or Davidson
[134] can be employed. The tensor-train representation of the state |φ〉 provides a starting
point that can be used in iterative diagonalization methods. Furthermore, since we only
perform a local optimization, a lower accuracy result is sufficient; we can increase the
accuracy in later iterations.

The sparse diagonalization yields the new node for the two sites i and i+ 1, which we
split via SVD

∣∣∣φnew[i:i+2]

〉
:= χ χ

d d

=

d d

U
χ

σ
dχ

V ∗
dχ χ

. (5.54)
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The internal bond dimensions grow by the physical dimension d, compared to the outer
bond dimensions. Thus, the local optimization can automatically increase the bond
dimension. The full new state is the old state |φ〉, where the two nodes |φ[i:i+2]〉 are
replaced by |φnew[i:i+2]〉. The new nodes are the center of orthogonality of the state, thus
we can truncate (and re-normalize) the smallest singular values to compress the tensor,
reducing the bond dimension dχ→ χ̃. We can contract the node of singular values either
with the left neighboring node, keeping the center of orthogonality at the same site, or
contract it with the right node, moving the center from site i to the right to i+ 1:

∣∣∣φnew[i:i+2]

〉
≈

d d

U
χ

σ̃
χ̃

V †
χ̃ χ =

d d

U
χ χ̃ χ

. (5.55)

Having moved the center of orthogonality one site to the right, we can repeat the procedure
optimizing the next two nodes i+ 1 and i+ 2. This is the essence of the two-site DMRG:
We sweep the tensor state from left to right and back, always optimizing two nodes at a
time using an iterative diagonalization method. After the local optimization, we split
the new node and truncate the smallest singular values. Thus, the bond dimensions
are automatically adjusted. The contractions of the energy eq. (5.52) for the two-site
Hamiltonian eq. (5.53) can be reused for efficiency, as we always move only by a single
site. We calculate all partial contractions and save them; in every step we only have to
update a single contraction, where the nodes changed.
DMRG is a variational method, minimizing the energy by locally optimizing nodes

in a sweeping procedure, left to right and back. The energy monotonously decreases
with every DMRG step. However, the method can get stuck in local energy minima.
This can be amended by combining the DMRG method with, e.g., an imaginary time
evolution [135]. Another option is to consider more than two sites at once [136]. The
DMRG method described here readily generalizes from tensor trains to loop-free tensor
trees, e.g. to the fork tensor-product states [120] for the multi-orbital SIAM.

5.4. Subspace expansion for single-site methods
It can be preferable to optimize only a single site at a time instead of two, as this is
computationally cheaper. Naively, this can be done by simply replacing the two-site
Hamiltonian eq. (5.53) by an effective one-site Hamiltonian Hφ

[i:i+1]. This naive single-site
algorithm, however, would be prone to getting stuck in local minima. Furthermore, it
lacks the automatic adjustment of the bond dimensions, which is naturally present in
the two-site algorithm, where the bond dimension between the updated nodes increases
eq. (5.54). White [137] proposed a correction term for the density matrix to amend these
problems. For the tensor-train formulation, a subspace expansion [138] can be used to
increase the bond dimension by hand.
We consider the left-to-right sweep. After optimizing the center of orthogonality at

site i, the subspace expansion is used to enlarge the bond χi between site i and i+ 1. We
introduce the following graphical notation for the expansion:

M B
χi

i i+ 1

= M
P

B
0

χi

+χP
, (5.56)
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where M and P denote the nodes at sites i and i+ 1, the blue-shaded parts indicate the
expansion terms. Formally, we concatenate the node M ∈ Cχi−1×di×χi at site i with an
expansion term P ∈ Cχi−1×di×χP :

M̃lσr =
Mlσr if r ≤ χi,

Plσr′ with r′ = r − χi else,
(5.57)

or in short M̃ =
(
M P

)
. We have to expand the node B ∈ Cχi×di+1×χi+1 at site i + 1

accordingly by padding it with zeros

B̃lσr =
Blσr if l ≤ χi,

0 else,
(5.58)

or in short B̃ =
(
B 0

)
. This expansion amounts to adding a zero, written in matrix

notation(
M
P

)(
B 0

)
= MB + P0 = MB. (5.59)

After the artificial expansion, eq. (5.56), a truncated SVD of the node M̃ with subsequent
normalization is performed and the center of orthogonality is moved to the right:

M
P

B
0

χi
+χP ≈ χ̃i χ̃i B

0
χi

+χP

= χ̃i
.

(5.60)

Equations (5.56) and (5.60) allow to dynamically adjust the bond dimension, just like in
the two-site DMRG eqs. (5.54) and (5.55). Suitable terms for the subspace expansion
P are given by Hubig et al. [138] based on Dolgov and Savostyanov [139]. We conclude
that the use of the subspace expansion allows for efficient single-site versions of the
DMRG [138], which automatically adjusts the size of bond dimensions by introducing
additional degrees of freedom.

5.5. Density matrix in tensor trains
At this point, the reader might wonder why the algorithm is named density matrix
renormalization group, as the density matrix has not been mentioned yet. In his seminal
work [21], White introduced the density matrix to decide which states to keep in the
truncation scheme. In the tensor formulation, this corresponds to the compression of
tensor trains discussed in section 5.1 and using eq. (5.54) in the DMRG algorithm. White
[22] established the connection between the density matrix and the SVD; we introduce
the density matrix ρ to show that the SVD used in the two-site DMRG corresponds to
the diagonalization of ρ.
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The density matrix is usually introduced by a bipartition of the universe into the
system and its environment [140]. A general state then reads

|Ψ〉 =
∑
ij

Cij |φi〉 ⊗ |θj〉 , (5.61)

where |φi〉 is a complete basis of the system, and |θj〉 a complete basis of the environment.
The density matrix is then defined as

ρ := CC† ρii′ = CijC
∗
ji′ , (5.62)

such that the expectation value of an operator Ô, acting only on the system, can be
written as the trace over the system

〈Ψ|Ô|Ψ〉 =
∑
ii′
〈φi|Ô|φi′〉 ρi′i = TrOρ (5.63)

with (O)ii′ = 〈φi|Ô|φi′〉.
We consider a state |ψ〉 represented by a tensor train, eq. (5.24). If the center of

orthogonality of the state is considered as ‘system’ and the other sites as ‘environment’,
the density matrix takes a very simple form:

ρ =
. . . . . .

. . . . . .
= . (5.64)

Tracing out the isometric tensors yields only identities, thus the density matrix is fully
described by the center of orthogonality. In the DMRG algorithm discussed in the
previous section, we partition the state in ‘left’ (system) and ‘right’ (environment), where
the middle is between the sites i and i+ 1 which have been optimized, eq. (5.54). The
density matrix of the left half, where the right half (environment) was traced out, reads

ρleft =
. . .

. . .

i i+ 1

. (5.65)

It is well known that the SVD of a matrix C diagonalizes the matrix product CC†:

C = UΣV † ⇒ ρ = CC† = UΣ2U †. (5.66)

Apparently, splitting the double-node using SVD, eq. (5.54), corresponds to a truncated
diagonalization of the density matrix, where the eigenvalues correspond to the squared
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the singular values:

ρleft =
. . .

. . .
. (5.67)

Thus, the truncation of the density matrix in the original algorithm is encoded in the
SVD [22].

5.6. Time-dependent variational principle
There is a variety of methods available to time-evolve tensor trains, Paeckel et al. [20] gave
a recent overview and comparison of the methods. A typical approach to time evolution
is a Trotter-Suzuki [141, 142] decomposition. It is the basis of the so-called time-evolving
block decimation (TEBD) by Vidal [143, 144]. We focus on a different approach, the
TDVP by Haegeman et al. [145, 146] and Lubich et al. [147].

5.6.1. Dirac-Frenkel time-dependent variational principle
First we provide the abstract formulation of the TDVP following ref. [148]. The first
usage is attributed to Dirac [149] deriving the equation of motion of the time-dependent
Hartree-Fock method.
We start by defining the Lagrange density2 [150, 151]

L′ [ψ∗(t), ψ(t)] = 〈ψ(t)|i~∂t − Ĥ|ψ(t)〉 (5.68)

and the action

A′ =
∫ t2

t1
dtL′ [ψ∗(t), ψ(t)] . (5.69)

Variation of the action A′ with respect to ψ∗(t) generates the time-dependent Schrödinger
equation

δA′
δ 〈ψ(t)| =

[
i~∂t − Ĥ

]
|ψ(t)〉 . (5.70)

Fixing the endpoints δψ(t1) = δψ(t2) = 0, and doing a partial integration, the variation
with respect to ψ(t) generates the adjoint equation

δA′
δ |ψ(t)〉 = 〈ψ(t)|

[
−i~

←
∂t − Ĥ

]
; (5.71)

2The prime is used here as the Lagrange density is not symmetrized and appropriate for normalized
states. These subtleties are not relevant for this section and thus are not elaborated further, see
ref. [150] for more details.
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were the arrow indicates that the derivative acts on the left. Demanding that the variation
of the action A′ vanishes

0 != δA′ = 〈δψ(t)|i~∂t − Ĥ|ψ(t)〉+ 〈ψ(t)|−i~
←
∂t − Ĥ|δψ(t)〉 (5.72)

and is thus equivalent to the time-dependent Schrödinger equation, as the variations δψ
and δψ∗ are independent. A common approach is to approximate the solution, e.g. using
a Trotter decomposition. The variational principle, on the other hand, enables us to
approximate the Schrödinger equation by restricting solutions to a submanifold of the
Hilbert space.

We restrict the variations to a smooth submanifoldM of the full Hilbert space H, which
contains the initial vector |ψ(0)〉 ∈ M. For every |u〉 ∈ M, TuM denotes the tangent
space at u, which consists of all derivatives of differential paths onM passing through
|u〉 ∈ M [148]. That is, for |u(t)〉 ∈ M, ∂

∂t
|u(t)〉 ∈ Tu(t)M. According to the variational

principle, the approximate solution ∂
∂t
|u(t)〉 ∈ Tu(t)M has to fulfill the condition

〈v(t)|i~∂t − Ĥ|u(t)〉 = 0 ∀ |v(t)〉 ∈ Tu(t)M, (5.73)

i.e., the residual is orthogonal to the tangent space. The orthogonality guarantees that
the variational approximation ∂

∂t
|u(t)〉 ≈ |v̂(t)〉 ∈ Tu(t)M minimizes the error

∥∥∥∥|v̂(t)〉 − 1
i~
Ĥ |u(t)〉

∥∥∥∥. (5.74)

Consider a different approximation |ṽ(t)〉 ∈ Tu(t)M. We write it in terms of the variational
approximation as |ṽ(t)〉 = |v̂(t)〉+ |v(t)〉 with |v(t)〉 ∈ Tu(t)M. Therefore, the error of the
approximation |ṽ(t)〉 is

∥∥∥∥|ṽ(t)〉 − 1
i~
Ĥ |u(t)〉

∥∥∥∥ =
∥∥∥∥|v̂(t)〉 − 1

i~
Ĥ |u(t)〉

∥∥∥∥+ 2<
〈
v(t)

∣∣∣∣v̂(t)− 1
i~
Ĥu(t)

〉
+ ‖v(t)‖.

(5.75)

The second summand vanishes as the approximate solution |v̂(t)〉 is chosen such that it
fulfills the variational principle, eq. (5.73), proofing that |v̂(t)〉 ∈ Tu(t)M indeed minimizes
the error. The difference between |v̂(t)〉 and the exact time evolution is orthogonal to the
tangent space Tu(t)M; therefore, we can rewrite eq. (5.73) as a differential equation on
the manifoldM [148]:

∂

∂t
|u(t)〉 = P̂u

1
i~
Ĥ |u(t)〉 , (5.76)

where P̂u is the projector onto the tangent space Tu(t)M. In the following, we set ~ = 1
as usual.

5.6.2. Projection onto tangent space of tensor trains
The applications of the TDVP to tensor trains is given by Haegeman et al. [146] and
Lubich et al. [147]; for the overview of the time-evolution algorithms see Paeckel et al. [20].
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We choose the submanifold of tensor trainsMTT and solve the Schrödinger equations
projected to the tangent space Tψ[A(t)]MTT :

∂

∂t
|ψ[A(t)]〉 = −iP̂ψĤ |ψ[A(t)]〉 , (5.77)

where P̂ψ is the projector on the tangent space Tψ[A(t)]MTT [152]. In this notation, the
elements of A(t) represent the nodes of the tensor train representing the state ψ.
First, we discuss the explicit form of the projector P̂ψ. The detailed derivation of the

projector is given in the references [146, 147]. We first define the site projector Πψ(i),
which projects onto the space of tensor-train states which only differ from |ψ〉 in the node
at site i. Using the gauge freedom of the tensor train, we write the state |ψ〉 as tensor
train with a center of orthogonality at site i:

|ψ〉 ∼ . . . i . . . . (5.78)

For this state, we define the projector Πψ(i) as

Πψ(i) =

. . . . . .

. . . . . .

i

i

. (5.79)

From the isometry, it is clear that this is indeed a projector Π2
ψ(i) = Πψ(i). Applying the

projector Πψ(i) to the state |ψ〉 fixes the gauge such that the center of orthogonality is at
site i. Applying Πψ(i) to a different state |φ〉 (shaded in blue), likewise fixes the center of
orthogonality to the site i, furthermore the state Πψ(i) |φ〉 can differ from |ψ〉 only in the
node at site i:

Πψ(i) |φ〉 =

. . . . . .

. . . . . .

. . . . . .

i

= . . . . . .

i

.

(5.80)

Contracting the nodes in the red rectangle yields the center of orthogonality node at site
i. All other nodes are identical to those of |ψ〉. As we want to project to the tangent
space, we still need to remove states parallel to |ψ〉. Again using the gauge freedom of
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the tensor train, we move the center of orthogonality of the state |ψ〉 eq. (5.78) to the
bond between sites i and i+ 1; we label this bond i,

|ψ〉 ∼ . . . . . .

i i+ 1
i

. (5.81)

For this state, we define the bond projector Πψ(i) as

Πψ(i) =

. . . . . .

. . . . . .

i i+ 1

. (5.82)

Similar to the site projector Πψ(i) eq. (5.80), the bond projector Πψ(i) fixes the gauge of
the state |ψ〉 such that the center of orthogonality is at the bond i. Again, the projector
property Π2

ψ(i) = Πψ(i) follows from the isometry. Note that Πψ(i)Πψ(i) = Πψ(i) =
Πψ(i)Πψ(i); the state eq. (5.78) with the center at site i can be obtained from the state
eq. (5.81) by contracting the node at site i with the center of orthogonality at bond i.
With these two projectors, we define the tangent-space projector as [146]

P̂ψ =
N−1∑
i=1

[
Πψ(i)− Πψ(i)

]
+ Πψ(N) = Πψ(1) +

N−1∑
i=1

[Πψ(i+ 1)− Πψ(i)]. (5.83)

For the tangent-space projector, the projector property is less evident than for its elements.
We note that the individual brackets are projectors:

[Πψ(i)− Πψ(i)]2 = Π2
ψ(i)− 2Πψ(i)Πψ(i) + Π2

ψ(i) = [Πψ(i)− Πψ(i)]. (5.84)

The projector property of P̂ψ results from the projector property of the elements combined
with the orthogonality relations shown in the following. For any i < j, we can show that
bond and site projectors are orthogonal to the brackets:

Πψ(j)[Πψ(i)− Πψ(i)] = 0, Πψ(j − 1)[Πψ(i)− Πψ(i)] = 0. (5.85)

The site and the bond projector differ only around site i, the relevant part where these
projectors differ are

Πψ(i) :
. . . . . .

. . . . . .

i

, Πψ(i) :
. . . . . .

. . . . . .

i

. (5.86)

For j > i, the projectors Πψ(j) and Πψ(j − 1) contain from the left-most site up till
site i only nodes isometric towards the right . Contracting these isometric nodes to

65



5. Tensor network methods

identities effectively replaces the identity at site i in Πψ(i) by isometric nodes analogous
to Πψ(i) such that the difference of the two terms vanishes, resulting in the orthogonality
eq. (5.85). Analogously, we can show that for any i ≥ j the bond and site projectors are
orthogonal to the difference in the brackets:

Πψ(j)[Πψ(i+ 1)− Πψ(i)] = 0, Πψ(j)[Πψ(i+ 1)− Πψ(i)] = 0. (5.87)

Using the orthogonality relations eqs. (5.85) and (5.87), we find

Πψ(j)P̂ψ = Πψ(j)
j−1∑
i=1

[Πψ(i)− Πψ(i)] +
N−1∑
i=j

[Πψ(i+ 1)− Πψ(i)] + Πψ(j)
= Πψ(j),

(5.88)

Πψ(j)P̂ψ = Πψ(j)
 j∑
i=1

[Πψ(i)− Πψ(i)] +
N−1∑
i=j

[Πψ(i+ 1)− Πψ(i)] + Πψ(j)
= Πψ(j).

(5.89)

Thus, the tangent-space projector P̂ψ eq. (5.83) is indeed a projector P̂ 2
ψ = P̂ψ.

Substituting the explicit form of the tangent-space projector eq. (5.83) into the time-
dependent Schrödinger equation eq. (5.77), we obtain the system of coupled differential
equations

∂

∂t
|ψ〉 = −iP̂ψĤ |ψ〉 =

N−1∑
i=1

[
−iΠψ(i)Ĥ + iΠψ(i)Ĥ

]
|ψ〉 − iΠψ(N)Ĥ |ψ〉 . (5.90)

The projection on the sites Πψ(i) can be interpreted as forward time evolution, and
the projection on the bonds Πψ(i) as backward time evolution. The equation can be
decoupled using eqs. (5.88) and (5.89), projecting the Schrödinger equation to sites and
bonds:

Πψ(i) ∂
∂t
|ψ〉 = −iΠψ(i)Ĥ |ψ〉 ∀i ∈ {1, . . . , N}

Πψ(i) ∂
∂t
|ψ〉 = +iΠψ(i)Ĥ |ψ〉 ∀i ∈ {1, . . . , N − 1}.

(5.91)

These locally projected Schrödinger equations each evolve a single site or bond node and
can be integrated in closed form. This is the essential idea of the TDVP, the algorithm
will be stated in the next section.

5.6.3. Single-site time-dependent variational principle
The TDVP can be implemented analogous to the DMRG as a sweeping algorithm going
back and forth, locally updating the nodes at a site [146, 147]. In this case, instead of
minimizing the energy, the nodes are time evolved.
We consider a state with center of orthogonality i,

|φ〉 ∼ . . . i . . . (5.92)
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and explicitly show a single update for the left-to-right sweep. The green-shaded nodes left
to the center indicate sites that have already been transformed by the update described
in the following. Analogous to the two-site effective Hamiltonian eq. (5.53) for DMRG,
(1) we define the effective one-site Hamiltonian for TDVP as

Hφ
[i:i+1] :=

. . . i . . .

. . . . . .

. . . i . . .

=

χ χ

χ χ

d

d

.

(5.93)

Again, the red dashed line indicates the bipartition. (2) We evolve the center of orthogo-
nality by half a step δ/2 forward in time, exactly integrating the node

∣∣∣φ[i:i+1](t+ δ/2)
〉

:= i
χ χ

:=

i

−i δ2




exp . (5.94)

Applying the (matrix) exponential of the one-site Hamiltonian to the original node
(white) yields the new time-evolved node (green) at site i. The action of the matrix
exponential [153] on the vector can be accurately evaluated using only matrix-vector
products [154], allowing to use the tensor structure instead of explicitly constructing a
dense matrix, just like for the energy minimization in DMRG. (3) We split the new node
using the QR-algorithm

∣∣∣φ[i:i+1](t+ δ/2)
〉

= i = i . (5.95)

The node |φ[i:i+1]〉 is replaced by the new time evolved node |φ′[i:i+1]〉 = |φ[i:i+1](t+ δ/2)〉,
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from which we construct the effective zero-site Hamiltonian

Kφ′

i
:=

. . . i i+1 . . .

. . . . . .

. . . i i+1 . . .

=

i
χ χ

i
χ χ

=

χ χ

χ χ

.

(5.96)

(4) We evolve the new center of orthogonality between sites i and i + 1 by half a step
backward in time

χ χ = +i δ2




exp . (5.97)

(5) Finally, we contract the bond node eq. (5.97) with the node at site i+ 1, moving the
center of orthogonality one site to the right

∣∣∣φnew[i+1:i+2](t)
〉

:= i+1
χ χ := χ

i+1
χ χ

. (5.98)

Repeating steps (1) – (5) starting from the left i = 1, we iteratively change all nodes
left of the center of orthogonality to a basis representing the state at t+ δ/2. When we
reach the right end i = N , only steps (1) and (2) are applied; we do not need to split
the node anymore, no backward time evolution, eqs. (5.96) to (5.98), is performed. At
this point, the complete state was evolved by half a time step δ/2. The algorithm is then
applied again sweeping from right to left, to evolve the state by a full time step δ. The
one-site algorithm conserves the normalization of states as well as energy, as only unitary
time-evolutions eqs. (5.94) and (5.97) are applied, which can be performed numerically
exact.
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For an imaginary time evolution, the single-site TDVP is equivalent to the single-site
DMRG algorithm in the limit iδ = τ →∞ [146]. In this case, the forward time evolution
eq. (5.94) yields the ground state of the one-site Hamiltonian, eq. (5.93); contributions of
states with larger eigenvalues are suppressed. As the zero-site Hamiltonian, eq. (5.96), is
built from the resulting node eq. (5.95) and the one-site Hamiltonian, the backward time
evolution eq. (5.97) is applied to its eigenstate. Therefore, it yields only a factor exp(τE0),
where E0 is the eigenvalue, which cancels the factor exp(−τE0) from the forward time
evolution. Just like DMRG, the TDVP can be formulated as a two-site algorithm [146],
allowing to adjust bond dimensions. In this case, however, the truncation can break the
energy conservation present in the one-site algorithm. Instead of the two-site algorithm,
a subspace-expansion can be employed to adjust the bond dimension in the one-site
algorithm, retaining the unitarity of the time-evolution [135].
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6. Multicomponent alloys:
substitutional disorder [W3]

In this chapter, we consider an alloy consisting of M types of atoms (‘alloy components’)
denoted by the index α. We model the alloy by a lattice Hamiltonian with substitutional
disorder. Substitutional disorder means that every lattice site i is occupied by a certain
type of component α; the lattice structure itself is not affected by the disorder. Every
lattice site i is uniquely mapped to a particular component α as expressed by

i 7→ α ≡ site i is occupied by component α. (6.1)

This is the physical situation in multicomponent alloys. To address multiple sites, we use
the notation

i, j 7→ α, β := (i 7→ α) ∧ (j 7→ β). (6.2)

We refer to a specific mapping of the N lattice sites to theM components as a configuration
(conf) or disorder realization. A certain disorder configuration, conf, maps every site to
one specific component

conf : {i} → {α}. (6.3)

Mathematically, a configuration is therefore a function

i 7→ conf(i). (6.4)

We denote the set of all possible configurations by

C = {conf}. (6.5)

As the specific configuration of a sample measured in an experiment is unknown, the
common procedure is to average over all possible configurations. Typically, the concen-
trations cα of the different components α are assumed to be known, thus we restrict the
average to configurations compatible with these concentrations. For a given configuration,
conf, we denote the set of lattice sites i occupied by component α as

Sα := {i|i 7→ α}. (6.6)

For a given set of concentrations {cα}, a physical configuration must fulfill the conditions
that the size (cardinality) of Sα matches the concentrations:

|Sα| != Ncα with
∑
α

|Sα| = N =
∑
i

1. (6.7)
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The set of configurations restricted to the given concentrations {cα} is denoted

C|{cα} :=
{

conf
∣∣∣∧
α

(|Sα| = Ncα)
}
. (6.8)

In the absence of additional information, we assume the probability of each physical
configuration to be identical:

∀ conf ∈ C|{cα} : P (conf) = 1∣∣∣C|{cα}∣∣∣ . (6.9)

Let X be a random variable, its possible realizations are denoted xconf ; they depend on
the configuration. The stochastic average of X is the weighted sum over all physical
configurations

E(X) =
∑

conf∈C|{cα}
P (conf)xconf = 1∣∣∣C|{cα}∣∣∣

∑
conf∈C|{cα}

xconf . (6.10)

The probability for a specific lattice site i to be occupied by the component α is the
concentration of that component P (i 7→ α) = cα.

6.1. Tight-binding Hamiltonian [W3]
For a specific configuration, we consider the tight-binding (Anderson) model

Ĥ =
∑
i

vin̂i −
∑
ij

tij ĉ
†
i ĉj, (6.11)

with configuration dependent on-site energies vi and hopping elements tij. The hopping
elements are Hermitian tij = t∗ji and off-diagonal, that is tii = 0. In this section, we
omit the explicit spin-dependency. While this model is non-interacting, we can include
effective local interactions by replacing vi → vi + Σi(z). The 1-particle Hamiltonian can
be written in the compact matrix form

Ĥ =: ĉ†Hĉ, H = v + T , Hij = vij + Tij = δijvi + tij, (6.12)

where we introduced N × 1 column matrices to represent the operators. The rows of
the matrix ĉ are the annihilation operators, (ĉ)[i,:] = ĉi. We call H the (1-particle)
Hamiltonian matrix.

The magnitude of the hopping parameters tij depends on the alloy components located
on sites i and j, respectively, which are referred to as terminal points. In the following
we employ the terminal-point approximation [155, 156] which assumes the parameters
with terminal points i, j, k, . . . depend only on the components occupying sites i, j, k, . . .
and not on the components surrounding these sites. Thus, for a specific configuration
(disorder realization) the parameters vi and tij take a value depending on the component
occupying the respective site or sites. We denote these configuration-specific values with
Fraktur letters with a superscript indicating the component. If site i is occupied by
component α, i.e., i 7→ α, the parameter vi takes the value vα. If sites i and j are occupied
by components α and β respectively, i.e., i, j 7→ α, β, the parameter tij takes the value
tαβ(|ri − rj|).
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AA AA AA AA BB AA

BB AA AA AA AA AA

BB AA BB BB AA AA

AA AA AA AA AA AA

AA AA AA AA AA AA

AA AA AA AA BB BB

vA

vB

tAA(a)
tAB(a)
tBB(a)

Figure 6.1.: Sketch of a configuration for a disordered binary alloy with two components A
and B. The parameters in eq. (6.14) are determined by the components occupying the sites as
indicated by the legend; the lattice constant is denoted a.

This will be formalized in the following. The terminal point approximation can be
expressed conveniently using the indicator function

1Sα(i) :=
1 if i ∈ Sα,

0 if i 6∈ Sα.
(6.13)

Since every site must be occupied by exactly one component, the sum over components is
one: ∑α 1Sα(i) = 1. Thus, the parameters of the Hamiltonian eq. (6.11) read

vi =
∑
α

1Sα(i)vα, tij =
∑
αβ

1Sα(i)tαβ(|ri − rj|)1Sβ(j), (6.14)

Hij =
∑
αβ

1Sα(i)Hαβ
ij 1Sβ(j), with Hαβ

ij = δijδ
αβvα − tαβ(|ri − rj|). (6.15)

This means, we have a finite set of different values vi ∈ {vα}, tij ∈ {tαβ(|ri − rj|)},
where the size of the sets is determined by the number of components |{vα}| = M ,∣∣∣{tαβ(|ri − rj|)}

∣∣∣ = M2. We further note, that the conditional expectation value of
parameters equals component variables written in Fraktur

E(vi|i 7→ α) = vα, E(tij|i, j 7→ α, β) = tαβ(|ri − rj|), E(Hij|i, j 7→ α, β) = Hαβ
ij .

(6.16)

The Hamiltonian eq. (6.11) is quadratic; it contains only terms with pairs of creation/
annihilation operators. Thus, the Green’s function G(z) is given by the resolvent of the
Hamiltonian matrix H :

G(z) = [1z −H ]−1. (6.17)

The central task for disordered systems is to calculate the average Green’s function
E(G(z)). We are mostly interested in the average of the local Green’s function E(Gii(z)),
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6. Multicomponent alloys: substitutional disorder [W3]

as it determines the average spectral function. Furthermore, we investigate the conditional
average E(Gii(z)|i 7→ α). According to the law of total probability [157] the expectation
value is

E(Gii(z)) =
∑
α

E(Gii(z)|i 7→ α)P (i 7→ α) =
∑
α

E(Gii(z)|i 7→ α)cα; (6.18)

the conditional averages fully determine the average.

Notation convention. Lowercase boldface symbols, e.g. v, indicate diagonal matrices;
uppercase boldface symbols, e.g. T , indicate matrices which contain off-diagonal elements.
Indices indicating components are denoted by Greek superscripts (α, β); indices indicating
lattice sites are denoted by roman subscripts (i, j). Fraktur, e.g. vα, is used for component
dependent quantities. In particular, it is used for matrices in component space, e.g. H,
which we introduce in detail in section 6.4.1.

6.2. Propagator expansion and the T -matrix
We choose the propagator expansion to derive approximate methods to treat disorder,
compare e.g. Gonis [158]. Therefore, we give a short definition of the propagator ex-
pansion and the T -matrix. We consider a non-interacting Hamiltonian H, then the
Green’s function is given by the resolvent eq. (6.17) and the propagator expansion is
expressed in terms of simple linear algebra. All equations in this section 6.2 are exact, no
approximations are applied. We partition the Hamiltonian matrix

H = H0 + V (6.19)

where V is considered as a perturbation. In this section, V can be any matrix; for
the application to disorder, V describes the random, or rather component dependent
quantities, while H0 describes the homogeneous nonrandom contribution. The Green’s
function corresponding to the nonrandom part H0 is the resolvent

G0(z) := [1z −H0]−1. (6.20)

This Green’s function is called propagator as H0 typically contains the hopping processes.
We write the full Green’s function G(z) in terms of the propagator

G(z) = [1z −H ]−1 = G0(z)[1− V G0(z)]−1. (6.21)

We rewrite the matrix inverse on the right-hand side of eq. (6.21):

[1− V G0(z)]−1 = 1 + [1− V G0(z)]−1{1− [1− V G0(z)]}
= 1 + [1− V G0(z)]−1V G0(z),

(6.22)

where we added and subtracted the identity matrix 1. Substituting this expression back
into eq. (6.21), we obtain the equation

G(z) = G0(z) +G0(z)[1− V G0(z)]−1V G0(z)
=: G0(z) +G0(z)T (z)G0(z);

(6.23)
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6.2. Propagator expansion and the T -matrix

this is sometimes referred to as Schwinger equation. It defines the T -matrix:

T (z) := [1− V G0(z)]−1V = V + V G0(z)T (z). (6.24)

The average Green’s function reads in terms of the average T -matrix:

E(G(z)) = G0(z) +G0(z)E(T (z))G0(z). (6.25)

Employing the Neumann series in eq. (6.21), the Green’s function is expanded into a
series with respect to the perturbation V :

G(z) = G0(z)
∞∑
k=0

[V G0(z)]k = G0(z) +G0(z)
∞∑
k=0

[V G0(z)]kV G0(z). (6.26)

Instead of the Green’s function, we can also expand the T -matrix:

T (z) := [1− V G0(z)]−1V =
∞∑
k=0

[V G0]kV = V
∞∑
k=0

[V G0]k (6.27)

In case the perturbation V is small, a naive approach would be to calculate the sum
up to a certain order and truncate terms of higher order in V . However, this leads to
large errors; at least some terms need to be treated to infinite order. A partial series of
eq. (6.27) is not suitable for approximating the average Green’s function E(G(z)). The
reason is, that the series contains terms like

ViiG0ii(z)ViiG0ii(z) . . . Vii, (6.28)

where i is the lattice site; other indices are suppressed. Such terms describe multiple
scattering from the same site. This term is highly correlated, as all random terms Vii are
at the same site and therefore identical. The expectation value of such a term is

E(V n
ii )G0

n−1
ii (z), (6.29)

it contains the n-th moment of the random variable Vii. These terms need to be treated
to infinite order. This can be illustrated by the following minimal example: We consider a
single site, where the on-site potential can take the two values 0 and ∆. This corresponds
to the probability distribution p(v) = cδ(v) + (1− c)δ(v −∆), where c is the probability1
of the on-site energy v = 0. The average Green’s function is the two-pole function

E(G(z)) = c

z
+ 1− c
z −∆ . (6.30)

Taking the average of every term of the series representation eq. (6.27) of the T -matrix,
on the other hand, yields

E(T (z)) = c∆
∞∑
k=0

∆kGk
0(z) = c∆

∞∑
k=0

(
∆
z

)k
. (6.31)

This series diverges for all |z| < ∆ independent of c.
1For large systems the probability c is just the concentration.
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6. Multicomponent alloys: substitutional disorder [W3]

In the following sections 6.3 and 6.4, we consider a diagonal perturbation V → v with
(v)ij = δijvi. We separate the propagator G0(z) into its local part [gloc(z)]ij = δijG0ii(z)
and its off-diagonal part G′(z):

G0(z) = gloc(z) +G′(z). (6.32)

Accordingly, we rewrite the T -matrix eq. (6.24), separating the parts containing the local
propagator gloc(z) and the off-diagonal propagator G′(z):

T (z) = vgloc(z)T (z) + v[1 +G′(z)T (z)]
= [1− vgloc(z)]−1v[1 +G′(z)T (z)].

(6.33)

This equation defines the local or atomic t-matrix:

t(z) := [1− vgloc(z)]−1v. (6.34)

In terms of the local t-matrix, the T -matrix reads:

T (z) = t(z) + t(z)G′(z)T (z). (6.35)

The local t-matrix contains the repeated scattering of the same site, which we have to
treat to infinite order.
Comparing the Schwinger equation eq. (6.25) to the Dyson equation E(G(z)) =

G0(z) +G0(z)Σ(z)E(G(z)), we can express the self-energy of the averaged system in
terms of the averaged T -matrix:

Σ(z) = E(T (z))[1 +G0(z)E(T (z))]−1. (6.36)

To this point, all expressions are exact, we have not applied any approximations yet.

6.3. Diagonal disorder: coherent potential approximation
In this section, we consider only the problem of diagonal substitutional disorder [159].
This means the parameter tij is independent of the terminal point components tαβ = t
and therefore nonrandom. The disorder acts only in form of the random local on-site
potentials vα.

The coherent potential approximation (CPA) [158–164] provides a local approximation
for the average Green’s function E(G(z)). Let’s consider a binary alloy with components
A and B, i.e., lattice sites are randomly occupied either by component A or B. The idea
of CPA is to replace all random components by ‘average’ components thereby restoring
periodicity. Substituting the average component by A or B on a single site gives rise to
scattering off this site. CPA chooses the average components such that this scattering
vanishes on average.

Section 6.3.1 gives an ad-hoc definition of the CPA as a local effective medium. Sec-
tion 6.3.2 provides a systematic derivation of CPA as a controlled expansion.
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AA AA AA AA BB AA

BB AA AA AA AA AA

BB AA BB BB AA AA

AA AA AA AA AA AA

AA AA AA AA AA AA

AA AA AA AA BB BB

vA

vB

t(a)

Figure 6.2.: Sketch of a configuration for a disordered binary alloy with two component A
and B, considering only diagonal disorder. In contrast to fig. 6.1, the hopping amplitudes are
assumed to be independent of the components tAA(a) = tAB(a) = tBB(a) = t(a), this is indicated
by the black lines.

6.3.1. Local effective medium
The goal is to find an effective HamiltonianHeff(z) describing the average Green’s function

E(G(z)) = [1z −Heff(z)]−1. (6.37)

Formally, this equation defines the exact effective Hamiltonian. Assuming the average
Green’s function has the same symmetry as the lattice, we also require the effective
Hamiltonian Heff to have of the same symmetry. Thus, it is diagonal in k-space; the
lattice Fourier transform yields

E(G(z, k)) = [z −Heff(z, k)]−1. (6.38)

We decompose the effective Hamiltonian into the lattice dispersion εk, encoding the lattice
symmetry, and the rest which we call coherent potential σ:

Heff(z, k) = εk + σ(z, k). (6.39)

Of course, we still need a strategy to determine the σ(z, k).
CPA is the self-consistent local approximation to the exact coherent potential; in

k-space this corresponds to omitting the k-dependence σ(z, k) ≈ σ(z). Thus, the CPA
is a single-site approximation. We focus on the average local Green’s function. The
average restores the lattice symmetry and is a linear operation, therefore all the following
expressions are equal:

E(Gii(z)) = E(G00(z)) = 1
N

∑
i

E(Gii(z)) = 1
N

Tr(G(z)) := gloc(z). (6.40)
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6. Multicomponent alloys: substitutional disorder [W3]

In terms of the effective Hamiltonian, the local Green’s function writes

gloc(z) = 1
N

∑
k

1
z −Heff(z, k) = 1

N
Tr [1−Heff(z)]−1. (6.41)

We can also express this average in terms of the conditional average if we apply the law
of total probability or the law of total expectation [157]

gloc(z) != E(Gii(z)) =
∑
α

E(Gii(z)|i 7→ α)P (i 7→ α) =
∑
α

cα E(Gii(z)|i 7→ α). (6.42)

We define the component Green’s function as the conditional average of the local Green’s
function

gαloc := E(Gii(z)|i 7→ α). (6.43)

Within the local approximation of CPA, we can calculate gαloc from the effective Hamilto-
nian Heff(z) by replacing σ(z) at a specific site i = 0 by the on-site energy vα:

(Hα
eff)ij =

vα if i = j = 0,
(Heff)ij else,

(6.44)

or in matrix form

Hα
eff(z) = Heff − 1[:,0][σ(z)− vα]1[0,:]. (6.45)

This is a rank-1 update of the effective Hamiltonian, therefore we can relate the component
Green’s function gαloc(z) to the effective local Green’s function gloc(z) using the Woodbury
matrix identity [95]:

gαloc(z) = gloc(z)
1− [vα − σ(z)]gloc(z) . (6.46)

According to the law of total probability eq. (6.42), we get the self-consistency equation
for the local Green’s function

gloc(z) =
∑
α

cα
gloc(z)

1− [vα − σ(z)]gloc(z) , (6.47)

or equivalently

0 = E
(

vα − σ(z)
1− [vα − σ(z)]gloc(z)

)
. (6.48)

This is the CPA self-consistency condition for the effective medium σ(z), which is sketched
in fig. 6.3. The approximation is to demand the effective medium to be local σ(z, k) ≈ σ(z).
Furthermore, the introduction of the conditional effective Hamiltonian Hα

eff was ad-hoc.
In the thermodynamic limit, however, this step is unproblematic, as fixing one site does
not affect the probabilities of the other sites.
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σσ σσ σσ σσ σσ

σσ σσ σσ σσ σσ

σσ σσ σσ σσ σσ

σσ σσ σσ σσ σσ

σσ σσ σσ σσ σσ





σσ σσ σσ σσ σσ

σσ σσ σσ σσ σσ

σσ σσ AA σσ σσ

σσ σσ σσ σσ σσ

σσ σσ σσ σσ σσ





σσ σσ σσ σσ σσ

σσ σσ σσ σσ σσ

σσ σσ BB σσ σσ

σσ σσ σσ σσ σσ

σσ σσ σσ σσ σσ





gloc

cAgAloc + cBgBloc

Figure 6.3.: Sketch of the CPA self-consistency. The average Green’s function is calculated
from a homogeneous effective lattice. The component Green’s functions gαloc(z) are obtained
by replacing the effective site by a site occupied by component α. At self-consistency the local
Green’s function of the effective lattice is equal to the average of component Green’s functions.
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6.3.2. Derivation of the coherent potential approximation
In this section, we rederive the CPA theory as a controlled expansion. We define the
effective Hamiltonian

Heff(z) = σ(z) + T , (6.49)

where T is the exact hopping matrix. The corresponding effective Green’s function is the
resolvent

Geff(z) = [1z −Heff(z)]−1. (6.50)

We treat the difference between the exact and the effective Hamiltonian as perturbation
and write the Dyson equation

G(z) = Geff(z) +Geff(z)[H −Heff(z)]G(z). (6.51)

The corresponding Schwinger equation reads

G(z) = Geff(z) +Geff(z)T (z)Geff(z) (6.52)

with the T -matrix

T (z) =
[
1− [v − σ(z)]Geff(z)

]−1
[v−σ(z)] = [v−σ(z)]+[v−σ(z)]Geff(z)T (z); (6.53)

see section 6.2. The only configuration dependent quantity in the Schwinger equation is
the T -matrix, therefore, the average is

E(G(z)) = Geff(z) +Geff(z)E(T (z))Geff(z). (6.54)

The desired effective medium yielding the average Green’s function Geff(z) = E(G(z)) is
the effective medium with a vanishing average T -matrix

E(T (z)) != 0. (6.55)

CPA is a local effective medium theory; the effective medium is local and homogeneous
σ(z) = 1σ(z). In order to decompose the T -matrix into its local contributions, we separate
the effective Green’s function Geff(z) into its local part gloc(z) and its off-diagonal part
G′(z):

Geff(z) = gloc(z) +G′(z). (6.56)

Then we can express the T -matrix

T (z) = t(z) + t(z)G′(z)T (z) (6.57)

in terms of the local t-matrix

t(z) = [1− [v − σ(z)]gloc(z)]−1[v − σ(z)]; (6.58)

cf. section 6.2. The average T -matrix writes

E(T (z)) = E (t(z)) + E[t(z)G′(z)T (z)], (6.59)
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6.3. Diagonal disorder: coherent potential approximation

we have to average terms of the form

E[t(z)G′(z)t(z) . . .G′(z)t(z)]. (6.60)

The off-diagonal matrix G′ always couples local t elements belonging to different sites. If
no repeated elements of the same site would appear, the average would factorize, and it
would be sufficient to calculate the average E(t(z)). In general, however, this is just an
approximation. Within this approximation, we get

E(T (z)) ≈ E (t(z)) + E(t(z))G′(z)E(T (z)), (6.61)

and therefore the average T -matrix vanishes for

E(t(z)) != 0. (6.62)

The average restores translation invariance for the diagonal t-matrix, thus we get the
scalar equation

E(t(z)) = E
(

vα − σ(z)
1− [vα − σ(z)]gloc(z)

)
!= 0. (6.63)

This equation is the self-consistency condition for the CPA effective medium σ(z). The
approximation (6.61) yields the correct average Green’s function eq. (6.54) up to O(t4(z))

E(G(z))−Geff(z) = Geff(z)E(T (z))Geff(z) = O
(
t4(z)

)
. (6.64)

This can be verified expanding the T -matrix eq. (6.57) into its Neumann series. As G′(z)
in eq. (6.61) is off-diagonal, the order t2(z) contains only terms on different sites, and the
order t3(z) contains at least one term on a different site; all terms up to O(t4(z)) vanish
due to E(t(z)) != 0, eq. (6.62).

For practical implementations, it is favorable to write the self-consistency equation in
terms of the effective medium σ(z). We consider a guess σ̂(z) for the effective medium
and therefore the guess Ĥeff(z) = σ̂(z) + T for the effective Hamiltonian. The exact
effective Hamiltonian yields the average Green’s function E(G(z)) = Geff(z), therefore the
propagator expansion can be formulated in the difference of the exact effective Hamiltonian
Heff(z) and our guess Ĥeff(z), effectively replacing [v − σ(z)] by [σ(z) − σ̂(z)]. From
eq. (6.58), we get the relation

σ(z) = σ̂(z) + E(t(z))
1 + E(t(z))gloc(z) . (6.65)

This equation allows us to iterate the self-consistency equation, by updating the guess
σ̂(z) by the expectation value of the t-matrix eq. (6.58) calculated from σ̂(z).

The CPA has many desirable properties for the treatment of disorder, see Velický et al.
[162] and Gonis [158]. CPA is symmetric in the components, there is no artificial division
into a host material and impurities. We consider a binary alloy with components A and B.
CPA is exact in the dilute limit cA/B � 1. We define the disorder strength as δ = vB−vA

D
,

where D is the half-bandwidth. CPA is also exact in the limit of weak disorder δ � 1, as
well as the atomic limit D → 0. Independent of the parameter regime, CPA yields the
first eight moments of the spectral function correctly [158].
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6.4. Generalization to off-diagonal disorder[W3]
The Blackman–Esterling–Berk (BEB) formalism for disorder is a natural generalization
of the CPA to include also off-diagonal disorder, that is component dependent hopping
matrix elements tij. In 1971 these authors introduced a generalization of the CPA,
incorporating the off-diagonal disorder in the single-site approximation [165, 166]. An
in-depth analysis of the BEB formalism was performed in a tight-binding formalism by
Gonis and Garland [167], using locators, propagators, as well as a variational technique,
proving the analyticity of the BEB Green’s function.
In the conventional approach to systems with random variables, the Green’s function

is first expanded and then an average over an appropriate set of terms is performed. In
contrast, the BEB formalism treats both diagonal- and off-diagonal disorder on equal
footing by employing an extended representation. A systematic way to introduce BEB is
using what we call component space. We have seen in eq. (6.14) that the random parameters
can be expressed in terms of indicator functions 1Sα(i), eq. (6.13). The dependence on the
components is shifted from the parameters into these indicator functions. The following
section will formalize this. The formalism introduced by Koepernik et al. [155, 156] is
particularly suitable for the BEB formalism. For this reason, we adopt the notation
introduced by these references.
We remind the reader that every site has to be occupied by exactly one component.

This fact is reflected in the following two important identities for the indicator function.
Indicator functions evaluated at the same site can only contribute if they involve the
same component:

1Sα(i)1Sβ(i) = δαβ1Sα(i). (6.66)

Summing over all components yields one:∑
α

1Sα(i) = 1. (6.67)

6.4.1. Component space and extended space [W3]
For a specific disorder configuration, we introduce the indicator tensor

(η)[α,:]
ij = 1Sα(i)δij = η

α

i j
. (6.68)

The upper leg carries the alloy component indices α, and the lower legs correspond to the
site indices i, j. This tensor is equivalent to anMN×N matrix. We group the left indices
for sites i and components α, or in the graphical notation the legs above each other; thus
the matrix is equivalent to the vertical bipartition of the tensor. In the following, we
refer to the MN -dimensional vector space of grouped sites and components as extended
space. Matrix products in the extended space sum over the grouped MN elements for
components and site indices; they are equivalent to tensor contractions of two legs, one
for the components and one for the sites. We denote the N -dimensional space of lattice
sites as lattice space, and the M -dimensional space of components component space. The
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indicator tensor eq. (6.68) maps a vector from the lattice to the extended space. Note
that the sum over components

∑
α

ηα = ηTη = ηT η = 1N×N , (6.69)

is the N×N identity matrix in lattice space, following directly from eqs. (6.66) and (6.67).
The transpose ηT is the left inverse. Thus, mathematically speaking, η is an isometric
(distance preserving) embedding of the lattice space in the extended space. Physically,
ηT selects one specific disorder configuration; it is a mapping from the extended space
to the lattice space of this configuration. It is a configuration dependent quantity and
therefore random. The expectation value of a certain component α of the indicator tensor
eq. (6.68) is

E(ηαij) = δijc
α, (6.70)

it is proportional to the concentration cα.

AA AA AA AA AA AA

AA AA AA AA AA AA

BB BB BB BB BB BB

BB BB BB BB BB BB

AA

Figure 6.4.: Sketch of the extended space for a binary alloy with components A and B. In
extended space, translational invariance is restored. We highlight the nearest neighbors of one
site A in red.

We define the MN ×MN extended Hamiltonian matrix H with the components

(H)αβij = δijv
αδαβ + tαβ(|ri − rj|). (6.71)

The indicator tensor η transforms the extended Hamiltonian matrix H to the Hamiltonian
matrix H of one specific configuration:

H = ηTHη = ηT H η . (6.72)

The extended Hamiltonian matrix is independent of the particular disorder realization; it
is nonrandom and independent of the concentrations. In the extended representation, for
every lattice site the Hamiltonian matrix H is assigned a corresponding element for each
component. In this way the Hamiltonian Ĥ = ĉ†Hĉ can be generated by H for every
disorder configuration.
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It is important to note that the only configuration dependent parts of eq. (6.72) are
the indicator tensors ηT and η; the rest is independent of the specific disorder realization.
In other words, the configuration dependency is moved from the Hamiltonian matrix to
the local indicator tensor eq. (6.68). This is the main idea of the BEB formalism: One
can work with a nonrandom but extended Hamiltonian matrix H, which contains the
parameters for all possible configurations. A specific configuration is selected by applying
indicator tensors η. What remains to be averaged over are these local indicator tensors.
Thus, we express the nonlocal disorder by local random variables in an extended space.

Using the indicator tensor η, eq. (6.68), we define the projector onto a specific disorder
configuration in extended space:

χ := ηηT = η ηT , (6.73)

χ2 = η ηT η ηT = χ. (6.74)

It projects a vector in the extended space onto a single disorder configuration: It sets all
elements corresponding to different disorder realizations to zero. The projector property,
eq. (6.74), is a direct consequence of the identity eq. (6.69). Further, we define the
component Green’s function as

G(z) := ηG(z)ηT = η G(z) ηT . (6.75)

The arrangement of indicator tensors η is reversed compared to eq. (6.72): Both the
lattice Green’s function G(z) and the component Green’s function G(z) are configuration
dependent. The sum over all components of G(z) recovers the physical lattice Green’s
function G(z):∑

αβ

Gαβ(z) = G(z). (6.76)

We note that local elements are diagonal in component space, i.e., Gαβ
ii (z) = δαβGαα

ii (z).
In the following, we derive the relation between the component Green’s function G(z)

and the extended Hamiltonian H by repeatedly applying the identity eq. (6.69). The
starting point is the resolvent for the one-particle lattice Green’s function

1 = [1z −H ]G(z). (6.77)

We insert the extended Hamiltonian matrix H eq. (6.72) into the resolvent eq. (6.77) and
insert the identity matrix eq. (6.69) between the bracket and the Green’s function:

1 = [1z − ηTHη]G(z) = [zηT − ηTHηηT]ηG(z). (6.78)

We sandwich this equation from the left by the indicator tensor η and from the right by
its transpose ηT:

χ = ηηT = [1z − χHχ]ηG(z)ηT = [1z − χHχ]G(z). (6.79)

This is the modified resolvent-like equation relating the extended Hamiltonian and the
component Green’s function in extended space.
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Physical relevance of the component Green’s function. To understand the physical
relevance of the component Green’s function, we need to relate its average

E(G(z)) = E(ηG(z)ηT) (6.80)
to the average of the lattice Green’s function E(G(z)). The law of total probability [157]
provides the relation between these two averages. The average is the weighted sum over
all configurations satisfying the concentration restriction. For a given matrix element
E(Gαβ

ij (z)) = E(1Sα(i)Gij(z)1Sβ(j)), the indicator functions eliminates all configurations
but the ones with i 7→ α and j 7→ β. We have to distinguish between (i) the diagonal
case, i = j, and (ii) the off-diagonal case, i 6= j.

(i) For i = j, terms with α 6= β vanish. Only configurations where i 7→ α = β contribute.
We explicitly write out the expectation values:

E(Gαα
ii ) =

∑
conf∈C|{cα}

P (conf)1Sα(i)Gii(z)1Sα(i) =
∑

C|{cα}
P (conf ∩i 7→ α)Gii(z)

=
∑

C|{cα}
P (conf |i 7→ α)P (i 7→ α)Gii(z) = cα

∑
C|{cα}

P (conf |i 7→ α)Gii(z)

= cα E(Gii(z)|i 7→ α).

(6.81)

Thus, the expectation value of local elements of the component Green’s function Gαα
ii (z)

is proportional to the conditional expectation value of the local one-particle Green’s
function Gii(z). The expectation value of the one-particle Green’s function Gii(z) is given
by

E(Gii(z)) =
∑
α

E(Gii(z)|i 7→ α)P (i 7→ α) =
∑
α

E(Gαα
ii )

= Trα E(Gii(z)) = 1
N

TrE(G(z)),
(6.82)

where Trα is the trace in component space and Tr is the trace in extended space. Instead
of using the law of total probability, eq. (6.82) can also be obtained from the indicator
function identities eqs. (6.66) and (6.67), as we have already related the sum over the
components of Gαβ(z) to the lattice Green’s function, see eq. (6.76).
(ii) For i 6= j, also the matrix elements with α 6= β that are off-diagonal in the

components remain finite. Analogous to the previous case, the expectation value reads
E(Gαβ

ij ) =
∑
conf

P (conf |i, j 7→ α, β)P (i, j 7→ α, β)Gij(z)

= cαcβ E(Gij(z)|i, j 7→ α, β).
(6.83)

The average of the matrix elements of the component Green’s function Gαβ
ij (z) is propor-

tional to the conditional average of the lattice Green’s function Gij(z). This time, however,
the two components of two sites i and j are fixed, which results in the proportionality
constant cαcβ instead of cα for i = j. Again, the average of the one-particle Green’s
function Gij(z) is given by

E(Gij(z)) =
∑
αβ

E(Gαβ
ij ). (6.84)

Thus, calculating the average E(G(z)) yields not only the average E(G(z)), but also
the conditional averages E(Gii(z)|i 7→ α) and E(Gij(z)|i, j 7→ α, β). Therefore, in the
following we focus on calculating the average of the component Green’s function, E(G(z)).
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6. Multicomponent alloys: substitutional disorder [W3]

6.4.2. Effective medium theory
Just like in section 6.3 for CPA, we define an effective medium S(z). This time, however,
we define the effective medium and effective Hamiltonian in the expanded space:

Heff(z) := S(z) + T with (T)αβij = tαβ(|ri − rj|) (6.85)

where we use the uppercase latter T for the matrix of hopping amplitudes as we use
lowercase letters to indicate diagonal matrices. The corresponding effective Green’s
function is the resolvent

Geff(z) = [1z −Heff(z)]−1. (6.86)

We relate the component Green’s function G(z) to the effective Green’s function Geff(z),
in order to find the condition for the effective potential S(z). This is done by inserting
the identity H = H−Heff(z) + Heff(z). The component Green’s function G(z) eq. (6.75)
is invariant under the projection χ; eq. (6.79) reads in terms of the effective Green’s
function:

G(z) = χG(z) = χ
[
1z − χ

(
1z −Heff(z) + H

)
χ+ χG−1

eff (z)χ
]−1
χ

=: χ
[
−A(z) + χG−1

eff (z)χ
]−1
χ,

(6.87)

where A(z) = χ
(
1z −Heff(z) + H

)
χ− 1z. We need to pay particular attention to the

fact that the projector χ is a singular matrix. The newly defined matrix A(z), on the
other hand, is invertible for an appropriate Heff(z). There are exceptions for which A(z)
is singular, for example in the case Heff(z) ≡ H. Here we assume that A(z) is always
invertible as the measure of the subspace of singular matrices is zero and singularity
can be avoided by small perturbations of Heff. We invert the bracket by applying the
Woodbury matrix identity, avoiding the inversion of the singular projectors:

G(z) = −χA−1(z)χ− χA−1(z)χ[Geff(z)− χA−1(z)χ]−1
χA−1(z)χ

=: −B(z)−B(z)[Geff(z)−B(z)]−1B(z),
(6.88)

with the singular matrix B(z) = χA−1(z)χ. Next, we expand the remaining matrix
inversion:

−B(z)[Geff(z)−B(z)]−1B(z) = B(z)[Geff(z)−B(z)]−1[Geff(z)−B(z)−Geff(z)]
= B(z)−B(z)[Geff(z)−B(z)]−1Geff(z).

(6.89)

Another application of an expansion like eq. (6.89) yields

G(z) = B(z)[B(z)−Geff(z)]−1Geff(z)
= Geff(z) + Geff(z)[B(z)−Geff(z)]−1Geff(z).

(6.90)

Defining the T -matrix in extended space T (z) := [B(z)−Geff(z)]−1, we obtain the
relation between component and effective Green’s function

G(z) = Geff(z) + Geff(z)T (z)Geff(z). (6.91)
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The effective medium yielding the average component Green’s function Geff(z) = E(G(z)),
is the effective medium with a vanishing average T -matrix

E(T (z)) = E([B(z)−Geff(z)]−1) = 0. (6.92)

As in CPA, this result is exact; however, we cannot in general find the appropriate medium
without further simplifications.

6.4.3. Local approximation
As in CPA, we employ the local single-site approximate of the effective medium. We
choose an effective medium local in lattice space Sαβ

ij (z) = δijS
αβ
ii (z). A local matrix L

sandwiched between the projectors χ is also diagonal in component space; thus matrices
of the type χLχ are diagonal in extended space. Consequently, the matrix

B(z) = −χ[1z − χ(1z −S(z) + v)χ]−1χ =: b(z), (6.93)

is diagonal in extended space; we change the notation to the lowercase letter b to denote
that it is a diagonal matrix. We split the effective Green’s function Geff(z) into its local
part gloc(z) and the off-diagonal part G′eff(z). The T -matrix can be rewritten

T (z) = [1− t(z)G′eff(z)]−1t(z) = t(z) + t(z)G′eff(z)T (z) (6.94)

in terms of the local t-matrix

t(z) = [b(z)− gloc(z)]−1. (6.95)

These equations are analogous to eqs. (6.57) and (6.58) in CPA, where in component
space b(z) takes the role of [v − σ(z)]−1. As in CPA, we approximate the average by
decoupling the terms

E(T (z)) = E(t(z)) + E
(

t(z)G′eff(z)T (z)
)

≈ E(t(z)) + E(t(z))G′eff(z)E(T (z))
(6.96)

and require

E(t(z)) != 0. (6.97)

If we expand the local approximation to the T -matrix eq. (6.94) into its Neumann series,
we see from comparison with eq. (6.91) that

E(G(z))−Geff(z) = O
(
E(t4)

)
; (6.98)

the approximation is accurate to fourth order, just like in the regular CPA.
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6.4.4. Self-consistency equation
In this section, we present the self-consistency equation for the BEB formalism in terms
of the local effective medium S(z). We consider only substitutional without structural
disorder; i.e., the lattice structure is assumed to be fixed. Thus, we assume that the
lattice structure is the same for all components and the hopping tensor tαβ(|ri − rj|) can
be decomposed into its component part, Tαβ, and its lattice part, t(|ri − rj|):

(T)αβij = tαβ(|ri − rj|) =: Tαβt(|ri − rj|), (6.99)

or written in tensorial notation

T =
T

t
. (6.100)

Depending on the component of the endpoints, the matrix elements Tαβ scale the hopping
amplitudes on a given lattice structure by a dimensionless factor. In the following we
refer to Tαβ simply as a dimensionless hopping parameter. We perform the lattice Fourier
transform of the hopping matrix elements as

1
N

∑
ij

Tαβt(|ri − rj|)eik·(ri−rj) = Tαβεk, (6.101)

where εk is the lattice dispersion; in the following we omit the boldface notation for the
vector k.

With the lattice Fourier transform, the local effective Green’s function gloc(z) for a
given effective medium S(z) is evaluated as the k-sum in component space

gloc(z) = gloc(z) = 1
N

∑
k

[1z −S(z)−Tεk]−1. (6.102)

These being local quantities, we omit the lattice indices. The effective medium as well as
the effective local Green’s function are represented by M ×M matrices in the components.
Next, we evaluate the t-matrix by using the Woodbury matrix identity:

t(z) = [b(z)− gloc(z)]−1 = [χa−1(z)χ− gloc(z)]−1

= −g−1
loc(z)− g−1

loc(z)χ[a(z)− χg−1
loc(z)χ]−1

χg−1
loc(z),

(6.103)

with the diagonal matrix a(z) = −1z + χ[1z −S(z) + v]χ. As gloc is local, χg−1
locχ

is diagonal in extended space. The matrix inverse sandwiched by the projectors χ in
eq. (6.103) is therefore a diagonal matrix and can readily be evaluated as the reciprocal
elements:(

χ[χg−1
loc(z)χ− a(z)]−1

χ
)αα
ii

= 1Sα(i)
[g−1

loc(z)]αα + Sαα(z)− vα
=: g̃ααii (z); (6.104)

the identity matrices 1z in a(z) cancel due to the surrounding projectors χ. The only
random quantity is the indicator function, thus the expectation value reads

gααii (z) := E(g̃ααii (z)) = cα

[g−1
loc(z)]αα + Sαα(z)− vα

. (6.105)
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Therefore, the average of the t-matrix eq. (6.103) is

E(t(z)) = −g−1
loc(z) + g−1

loc(z)gii(z)g−1
loc(z) != 0. (6.106)

We multiply the matrix by gloc(z)g−1
ii (z) from the right to obtain the self-consistency

equation

0 = g−1
loc(z)− g−1

ii (z). (6.107)

This equation can be solved numerically to obtain S(z). Note that this self-consistency
equation equals

g−1
loc(z)− g−1

ii (z) = [1 + E(t(z))gloc(z)]−1 E(t(z)) (6.108)

and is therefore of the same form as the CPA self-consistency equation eq. (6.65).

6.4.5. Efficient calculation: diagonal structure in k-points [W3]
To solve the BEB self-consistency eq. (6.107), we need to repeatedly evaluate the effective
local Green’s function

gloc(z) = 1
N

∑
k

[ξ(z)−Tεk]−1, (6.109)

where ξ(z) = 1z−S(z), or rather its inverse g−1
loc(z). A naive evaluation is computationally

involved, as we need to invert an M ×M matrix for every k-point and every frequency
point z. While this is feasible for small matrix sizes M , it also has the potential risk of
inaccurate k-summations (or integrations), especially for DOSs with singularities (e.g.
one-dimensional or square lattice).
We therefore propose an algorithm based on the compact SVD of the T-matrix:

T = UσV †. (6.110)

It is important to employ the compact SVD, keeping only non-zero singular values, as we
explicitly use the inverse σ−1. Due to finite precision in numerics, we need to introduce a
cut-off value and consider all values that are smaller to be zero. Therefore, small singular
values below this cut-off are truncated, this is referred to as truncated SVD. In case T is
rank-deficient, the dimension of σ will be smaller than the component dimension. We
note that for the binary alloy M = 2 the rank-1 case, where the SVD has only a single
nonzero singular value, is given by a hopping parameter T of the type(

TAA
√
TAATBB√

TAATBB TBB

)
=
(√

TAA√
TBB

)(√
TAA

√
TBB

)
. (6.111)

This is the structure of the hopping matrix discussed by Shiba [168]. Another prominent
rank-1 example is the CPA limit with Tαβ = 1. As the T-matrix is Hermitian, we can
use the unitary eigendecomposition instead of the SVD, to get slightly more symmetric
equations:

T = UλU † = ULU
†
R, (6.112)
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6. Multicomponent alloys: substitutional disorder [W3]

where λ is the diagonal matrix of real eigenvalues. We use the decomposition to split the
matrix; here we partition the eigenvalues symmetrically as UL = U

√
λ, U †R =

√
λU †.

The goal is to efficiently calculate the local component Green’s function

gloc(z) = 1
N

∑
k

G(z, k) = 1
N

∑
k

[ξ(z)−ULεkU
†
R]−1

. (6.113)

We first consider G(z, k) for εk 6= 0, employing the Woodbury matrix identity:

G(z, k) = ξ−1(z)− ξ−1(z)UL

[
U †Rξ

−1(z)UL − 1/εk
]−1
U †Rξ

−1(z). (6.114)

For each frequency z we calculate the eigendecomposition

U †Rξ
−1(z)UL = P (z)d(z)P−1(z), (6.115)

where d(z) is the diagonal matrix of eigenvalues. We note, that if T is real symmetric,
we have U † = UT and equation eq. (6.115) is complex symmetric as ξ(z) is complex
symmetric. For a diagonalizable complex symmetric matrix, a complex orthogonal
eigendecomposition exists [169].
Inserting this decomposition in the k-dependent Green’s function, we get

G(z, k) = ξ−1(z)− ξ−1(z)ULP (z)[d(z)− 1/εk]−1P−1(z)U †Rξ−1(z). (6.116)

We note that only the term in the square brackets depends on k. It contains only diagonal
matrices, therefore the matrix inverse only involves the reciprocal matrix elements. We
focus on a particular diagonal element with the z-dependent eigenvalue [d(z)]ii = di(z).
We simplify the bracket

−
[
di(z)− 1

εk

]−1
= εk

1− εkdi(z) = 1/d2
i (z)

1/di(z)− εk
− 1
di(z) . (6.117)

This result holds for the previously excluded case εk = 0. It is straightforward to carry
out the k-summation:

1
N

∑
k

1
1/di(z)− εk

= g0(1/di(z)); (6.118)

it has the standard form of the lattice Hilbert transform. For many simple lattices, we
know the analytic expression for g0 (see e.g. [164, 170–174]); no numerical integration is
necessary. For the local Green’s function we obtain the lengthy expression

gloc(z) = ξ−1(z) + ξ−1(z)ULP (z)
[
d−1(z)g0

(
d−1(z)

)
− 1

]
d−1(z)P−1(z)U †Rξ−1(z).

(6.119)

Full-rank case. In the case of a full-rank matrix T, the Green’s function simplifies
as we can use U † = U−1 in eq. (6.115), i.e., U †Rξ−1(z)UL = P (z)d(z)P−1(z). Using
UL

−1 = λ−1/2U †, we identify

d−1(z)P−1(z)U †Rξ−1(z) = P−1(z)λ−1/2U †, (6.120)
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and with (U †R)−1 = Uλ−1/2, we identify

ξ−1(z)ULP (z)d−1(z) = Uλ−1/2P (z). (6.121)

Using these two equations, eq. (6.119) simplifies to the expression

gloc(z) = Uλ−1/2P (z)g0
(
d−1(z)

)
P−1(z)λ−1/2U † (6.122)

for the local Green’s function. The inverse is also straightforward to calculate

g−1
loc(z) = ULP (z) 1

g0
(
d−1(z)

)P−1(z)U †R. (6.123)

We also note that in the full-rank problem, it is not necessary to invert ξ(z). Instead, we
can also perform the eigendecomposition

λ−1/2U †ξ(z)Uλ−1/2 = P (z)d−1(z)P−1(z) (6.124)

which immediately yields the desired inverse of the diagonal matrix d(z).

Rank-deficient case. In the rank-deficient case, we have to be more careful, the matrices
UL and U †R are rectangular and cannot be inverted. Therefore, we cannot apply the
simplifications and instead have to work with the form eq. (6.119) for the local Green’s
function. The matrix inversion can be carried out using the Woodbury matrix identity

g−1
loc(z) = ξ(z) +ULP (z)

[
1

g0(1/d(z)) − 1/d(z)
]
P−1(z)U †R. (6.125)

If ξ(z) = ULP (z)d−1(z)P−1(z)U †R, then ξ(z) cancels the term 1/d(z) in the bracket,
and we verify that eq. (6.125) agrees with eq. (6.123)

Computational effort. Let’s assume that the cost of matrix multiplications can be
neglected compared to the cost of matrix inversion and diagonalization. The cost of
directly evaluating g−1

loc(z) using eq. (6.109) is Nz(Nk + 1) matrix inversions, where Nz is
the number of frequency points and Nk the number of k-points necessary to evaluate the
k-summation. The computational effort using eq. (6.125), on the other hand, amounts to
Nz matrix inversions to calculate ξ−1(z), and Nz matrix diagonalizations [eq. (6.115)]. In
the full-rank case, the matrix inversions can also be avoided; we only have to perform
the Nz matrix diagonalizations. In the rank-deficient case, the matrix inversions are
performed in the space of the compact SVD/eigendecomposition which is smaller than
the full M ×M component space. We conclude that eqs. (6.123) and (6.125) can be
computed much more efficiently than the direct evaluation of g−1

loc(z). Additionally, by
isolating the k-summation, it is easier to control the accuracy of the k-summation, and
analytically known lattice Hilbert transforms can be directly employed.
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6.4.6. Self-consistency with renormalized indicator tensors [W3]
For alloy components α 6= β, the self-consistency equation eq. (6.107) yields the high-
frequency expansion of the effective medium

Sαβ(z) = −ε(1)T
αβ +O

(
z−1

)
, (6.126)

Sαα(z) = −c
α

cα
z + vα − µ+ cαTααε(1)

cα
+O

(
z−1

)
, (6.127)

where cα = 1− cα is the concentration complement; ε(1) =
∫

dερ(ε)ε is the first moment of
the DOS, which vanishes for standard definitions of the DOS of a lattice, as it is just a shift
of the on-site energy.2 Note that in case a local self-energy Σα(z) is included to describe
interacting systems as in chapter 7, v in eq. (6.127) has to incorporate the static part Σα

HF.
The diagonal matrix elements of the effective medium, Sαα(z), contain a contribution
which grows linearly in z, and the on-site energies in the static part are multiplied by
the inverse of the concentration. The origin of this peculiar structure is evident from
eqs. (6.81) and (6.83) and the definition eq. (6.102). Unlike the diagonal elements of a
one-particle Green’s function which are asymptotic equivalent to Gii(z) ∼ 1/z for large z,
the effective local Green’s function gloc(z) has the asymptote gloc(z) ∼ c/z. Its definition
in terms of the effective medium, however, has the regular form of [1z −S(z)−Tεk]−1,
see eq. (6.102).

This strange behavior of the effective medium can be resolved by replacing the indicator
tensor η, eq. (6.68), with the concentration-scaled indicator tensor

γα

i j
= (γ)[α,:]

ij :=
√
cα1Sα(i)δij = ηη

√
cα

i j
(6.128)

and its Moore–Penrose inverse [175, 176] γ+ of its equivalent matrix representation. Here,
the Moore–Penrose inverse is the left-inverse, i.e., γ+γ = 1. The concentration-scaled
indicator tensor γ is an embedding of the lattice space in the extended space but unlike
η it is not isometric as γT 6= γ+. The components of the Moore–Penrose inverse read

(γ+) α

ij =


1√
cα

1Sα(i)δij if cα > 0,
0 if cα = 0.

(6.129)

We can express the projector eq. (6.73) in terms of the concentration-scaled γ-tensor:

χ = ηηT = γγ+. (6.130)

For the renormalized BEB formalism, we define the component Green’s function and the
Hamiltonian matrix in terms of γ and the inverse γ+ as

G̃(z) := (γ+)T
G(z)γ+,

H =: γH̃γT.
(6.131)

2The DOS is defined as ρ(ε) = 1
N

∑
k δ(ε − εk), where the dispersion εk are the eigenvalues of a

matrix of hopping amplitudes T . Therefore, the first moment is the normalized sum over eigenvalues
ε(1) =

∫
dερ(ε)ε = 1

N

∑
k εk, that is the trace ε(1) = 1

N TrT . Typically, the definition of the matrix
of amplitudes T contains only off-diagonal elements, consequently first moment vanished ε(1) = 0.
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Compared to the definitions in section 6.4.1, the Green’s function and the Hamiltonian
are scaled by the concentration.

The renormalized formalism can be conveniently demonstrated in the locator expansion

G(z) = g(z) + g(z)TG(z), (6.132)

where g(z) = [1z − v]−1 is the locator and (T )ij = tij the hopping matrix elements.
Sandwiching this equation by (γ+)T and γ+, we obtain

(γ+)T
G(z)γ+ = (γ+)T

g(z)γ+ + (γ+)T
g(z)γ+γTγT(γ+)T

G(z)γ+, (6.133)

where we inserted the identity γ+γ = 1 = (γ+γ)T. In terms of the renormalized
component quantities, this equation writes

G̃(z) = g̃(z) + g̃(z)T̃ G̃(z). (6.134)

Compared to the regular BEB formalism the Green’s functions are scaled with the
reciprocal concentration, and the hopping matrix eq. (6.99) with the concentration

(T̃)αβij =
√
cαtαβ(|ri − rj|)

√
cβ. (6.135)

The renormalized component Green’s function G̃(z) relates to the one-particle Green’s
G(z) function in the following way:

E
(
G̃αβ
ij (z)

)
=
 E(Gii(z)|i 7→ α)δαβ if i = j,√

cαcβ E(Gii(z)|i, j 7→ α, β) if i 6= j.
(6.136)

For the local Green’s function E(G̃αβ
ii (z)) there is no concentration prefactor in the

renormalized formulation; since the BEB formalism is a local theory, E(G̃αβ
ii (z)) is the

central quantity. The renormalized version of the self-consistency equation eqs. (6.105)
and (6.107) reads

0 = g̃−1
loc(z)− g̃

−1(z), (6.137)

with the diagonal matrix in the components

g̃
αβ(z) = cαδαβ

(g̃−1
loc)

αα + S̃αα − cαz + cα(µ− vα − Σα)
. (6.138)

With α 6= β, the high-frequency expansion of the renormalized effective medium yields

S̃αβ(z) = −ε(1)
√
cαTαβ

√
cβ +O

(
z−1

)
(6.139)

S̃αα(z) = vα − µ+ cαTααε(1) +O
(
z−1

)
. (6.140)

The renormalization removes the contribution proportional to z, and the static part is
simply the on-site energy of the components for the typical case ε(1) = 0. Furthermore,
the static part remains finite for vanishing concentration cα → 0.
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6.4.7. Limit of independent components [W3]
We consider the limit of vanishing hopping between different components. If the hopping is
diagonal in the components, Tαβ ∝ δαβ, the BEB effective mediumS(z) is also diagonal in
the components, and the components decouple in the self-consistency equations eq. (6.107).
In this case, the effective local Green’s function eq. (6.102) can be readily calculated,
since the matrix inverse is the reciprocal of the diagonal elements:

gαβloc(z) = 1
N

∑
k

δαβ

z −Sαα(z)− Tααεk
= δαβgα0

(
z −Sαα(z)

)
. (6.141)

Here, gα0 is the lattice Hilbert transform g0(z) = 1
N

∑
k

1
z−εk ; its superscript α indicates

that the bandwidth is scaled by Tαα:

gα0 (z) = 1
N

∑
k

1
z − Tααεk

= 1
Tαα

g0(z/Tαα). (6.142)

For the component α, the decoupled self-consistency eq. (6.107) reads

0 = cα

gα0 (z −Sαα) + Sαα − vα, (6.143)

with the concentration complement cα = 1− cα ≥ 0.
For a Bethe lattice with coordination number Z with the lattice Hilbert transform [164]

g0(z, Z) = 2(Z − 2)/
[
z
(
Z − 2 + Z

√
1−D2/z2

)]
, (6.144)

where D is the half-bandwidth, the self-consistency condition is an algebraic equation
and can be solved analytically. The BEB effective medium reads

Sαα(z, Z)

=
(Z−2)vαcα+Zvα+(Z+2)cαz−Zz−2(cα)2z−Zcαs

√
(z−vα)2−cα(Dα)2 Z−cα

Z−1

2cα(Z−cα) , (6.145)

where s is the sign s = sign
(
<(z − vα)

)
, and Dα is the half-bandwidth scaled by Tαα;

this is the retarded solution. A conjugate solution exists with −s and therefore with a
plus sign in front of the square root.
We are interested in the bandwidth of the resulting component spectrum

Aα(ω) = − 1
cαπ
=gα0

(
ω + i0+ −Sαα(ω + i0+)

)
. (6.146)

For non-interacting systems, the Gershgorin circle theorem [177] gives the maximal
spectral bounds

|ω − vα| ≤ Dα. (6.147)

In the limit Tαβ ∝ δαβ, we can make a more precise statement and derive the exact
spectral bounds of BEB as will be discussed below. The spectral function can only vanish
where the imaginary part of the effective medium vanishes. Thus, for non-interacting
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Figure 6.5.: Spectral function Aα for component α in the limit of independent components
Tαβ = δαβ for different concentrations cα. Only a single component α is shown as the components
are independent. The on-site energy is vα = 0, and half-bandwidth D = 1.

systems, we need to check where the argument of the square root is negative. One finds a
finite imaginary part and therefore spectral weight for

|ω − vα| <
√
cα
Z − cα
Z − 1 D

α. (6.148)

Therefore, for the Bethe lattice with coordination number Z and Tαβ ∝ δαβ, the bandwidth
is reduced due to concentration by a factor

√
cα(Z − cα)/(Z − 1). We obtain the effective

bandwidth

Dα
eff =

√
cα
Z − cα
Z − 1 TααD. (6.149)

Many of our numerical results were obtained for a semicircular DOS, i.e., the Bethe
lattice with infinite coordination number Z → ∞. In this limit one finds an effective
bandwidth

Dα
eff =

√
cαTααD. (6.150)

The same factor
√
c was found by Byczuk et al. [178] in the CPA (TAA = TAB = TBB = 1)

in the limit of high disorder strength (vB − vA)/D = δ � max(1, U/D). In spite of the
different parameter regimes, both limits, Tαβ ∝ δαβ and δ � max(1, U/D), describe the
same physics, namely the decoupling of components. Indeed, the components decouple
not only for vanishing hopping between the components TAB = 0, but also in the case of
a large separation in energy (δ � 1). Figure 6.5(a) shows the component spectra of the
Bethe lattice for different concentrations.

For coordination number Z = 2 another interesting limit of the Bethe lattice is obtained;
this is the one-dimensional (1D) lattice [164], where

g1D
0 (z) = g0(z, Z = 2) = 1/

[
z
√

1−D2/z2
]
. (6.151)
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6. Multicomponent alloys: substitutional disorder [W3]

The spectral bounds are given by

Dα
eff =

√
cα(2− cα)TααD =

√
1− (cα)2TααD. (6.152)

For the one-dimensional lattice and Tαβ ∝ δαβ the bandwidth is reduced by the factor√
cα(2− cα). Figure 6.5(b) shows the corresponding component spectra for different

concentrations.
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7. Electronic correlation in alloys

7.1. The local CPA+DMFT approach for off-diagonal
disorder [W3]

In this chapter, we combine chapters 3 and 6 to study disordered systems of interacting
electrons; the notation of chapter 6, in particular section 6.4, is used. We treat the local
Hubbard interaction within the DMFT [59, 62, 63], which assumes a local self-energy
Σij(z) = δijΣii(z); this property becomes exact in the limit of infinite coordination
number.

The problem of interacting disordered electrons may hence equally be viewed as a system
of non-interacting particles moving in an effective local, energy-dependent potential Σii(z)
(for details see refs. [66, 179]). The DMFT self-consistency equations [62] are equivalent to
a fixed-point problem which can be expressed by a functional Σ̂: Given a self-energy Σii

and the resulting local Green’s function Gii(Σii) this functional provides a new self-energy
Σ̂[Gii(Σii),Σii], such that the DMFT self-energy is determined self-consistently by the
fixed-point

Σii = Σ̂
[
Gii(Σii),Σii

]
. (7.1)

Within the CPA, the local Green’s function for a given self-energy Gii(Σii) is replaced
by the conditional average E(Gii(Σii)|i 7→ α) = gααloc(Σii)/cα, see eqs. (6.81) and (6.102).
Thus, the self-energy Σ̂[gααloc(Σii)/cα,Σii] depends on the component α. Consequently, the
self-energy at the fixed-point depends on the component α, but not on the explicit site i:

Σα = Σ̂
[
gααloc(Σα)/cα,Σα

]
. (7.2)

This allows one to introduce the BEB+DMFT self-consistency which we will discuss next.
By merging the BEB formalism with DMFT a twofold self-consistency arises, one for

the BEB and one for the DMFT corresponding to the fixed-point eq. (7.2). The self-
consistency equation of the BEB formalism is pointwise in the frequencies and is therefore
much simpler than the self-consistency condition of the DMFT, where frequencies mix
due to the energy exchange caused by the interaction between the electrons. We view the
BEB self-consistency as an inner part of the full self-consistency loop. In the BEB method
we calculate an effective local Green’s function matrix gloc(z), eq. (6.102). The effective
medium S(z) and, therefore, the effective local Green’s function have to be calculated
self-consistently from eqs. (6.105) and (6.107). Including the DMFT self-energy Σα(z) for
the component α in the on-site potential vα → vα + Σα(z), the average eq. (6.105) reads

gαβ(z) = cαδαβ

(g−1
loc)

αα(z) + Sαα(z) + µ− vα − Σα(z)
, (7.3)
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7. Electronic correlation in alloys

The self-consistent eq. (6.107) can be solved with standard root-search algorithms or by
simple iteration. In practice, we use an implementation of the BEB formalism without
interactions and merely shift the on-site energy vα → vα + Σα(z). An efficient evaluation
of the BEB self-consistency equation is discussed in section 6.4.5; an implementation is
provided by the code [C2]. To emphasize the dependence on the self-energy, we denote the
self-consistently determined effective local Green’s function matrix for a given self-energy
eq. (6.107) by gloc

(
z,Σ(z)

)
.

With the BEB self-consistency condition eq. (6.107) for the local Green’s function
gloc

(
z,Σ(z)

)
, the combined algorithm corresponds to the conventional DMFT self-

consistency condition eq. (7.2), where the local Green’s function, calculated from the
lattice Hilbert transform, is replaced by the average

E(Gii|i 7→ α) = gααloc
(
z,Σ(z)

)
/cα.

The multiplicative concentration factor 1/cα can be avoided by employing the con-
centration-scaled indicator tensor eq. (6.128), which leads to a slightly modified BEB
self-consistency as elaborated in section 6.4.6. We have to solve a separate impurity
problem for every component α. Starting from an initial guess for the DMFT self-energy
Σα(z) for every component, the BEB+DMFT scheme is the following:

1. Calculate the effective local Green’s function matrix eq. (6.102) using eqs. (6.107)
and (7.3), which yields

gloc

(
z,Σ(z)

)
. (7.4a)

2. For every component α, calculate the hybridization function

∆α(z) = z + µ− vα − Σα(z)− cα/gααloc
(
z,Σ(z)

)
, (7.4b)

3. For every component α, solve the impurity problem for the self-energy

Σα(z) = Σ[vα,Uα,∆α] (7.4c)

4. Repeat from step 1 until self-consistency is reached.

The hybridization function can also be expressed in terms of BEB quantities using the
self-consistency condition eq. (6.107):

∆α(z) = z −Sαα(z)− (g−1
loc)

αα
(
z,Σ(z)

)
. (7.5)

This hybridization function differs from CPA+DMFT, where only one unique hybridization
functions exists independent of the alloy components.

7.2. Numerical results [W3]
The above formalism is now used to study the effect of off-diagonal disorder in the
Anderson–Hubbard model at zero temperature. We employ a Bethe lattice with infinite
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7.2. Numerical results [W3]

coordination number, whose half-bandwidth D sets the energy scale. Furthermore, we
consider a discrete binary random alloy distribution with components A and B.
In all applications we consider the case of half-filling on average E(ni) = 1; this leads

to a fixed chemical potential which we choose as µ = 0. In the following subsection we fix
the alloy component concentration and study the change in the spectral function starting
with the non-interacting case and equal atomic potentials. The alloy component spectral
functions are the concentration-weighted conditional spectral functions

Aα(ω) := − 1
π
=gααloc(ω) = −c

α

π
=E(Gii(ω)|i 7→ α). (7.6)

The average spectral functions are given by the trace

E
(
A(ω)

)
=
∑
α

Aα(ω) = − 1
π
=Trgloc(ω). (7.7)

The central part of the DMFT problem is the impurity solver which provides the
local dynamic self-energy eq. (7.4c). To this end, we employ a tensor-network-based
zero-temperature solver, the fork tensor-product state solver [120]. We discretize the
hybridization function eq. (7.4b) using 249 sites per spin resulting in a median energy
distance of 0.03D. We calculate the ground state |GS〉 of the finite size impurity problem
using the DMRG [21, 22]. Subsequently, we perform the time evolution using the
TDVP [145–147, 180]. To obtain the retarded time impurity Green’s function Gr(t),
the states ĉσ |GS〉, ĉ†σ |GS〉, as well as their adjoint states are time-evolved, cf. Ganahl
et al. [119], where ĉσ (ĉ†σ) is the annihilation (creation) operator of the impurity site. For
DMRG we chose a truncated weight of 10−15 and a maximal bond dimension of 100. We
perform the TDVP using time steps of 0.1/D up to a maximal time tmax = 150/D with a
truncated weight of 10−9 and a maximal bond dimension of 150. The convergence with
respect to these parameters is checked. For the Laplace transform, we use a shift η = 0.08
and calculate the first order correction

G(ω + i0+) = G(ω + iη) + η Fη [tGr(t)] (ω) +O
(
η2
)

(7.8)

see appendix B.4 eqs. (B.22) and (B.23). The self-energy is calculated from the equation
of motion of the impurity model [71],

Σσ(z) = UFσ(z)/Gσ(z), (7.9)
F r(t) = 〈GS|ĉσ(t)n̂−σ(t)ĉ†σ|GS〉 , (7.10)

where F (z) is the Laplace transform of F r(t), cf. section 3.1.1.

7.2.1. Non-interacting limit [W3]
We start with the non-interacting case by setting UA = UB = 0, which corresponds to
the Anderson model with purely off-diagonal disorder. Since the non-interacting Green’s
function is independent of temperature the results presented in this section are valid not
only for zero, but also for finite temperatures. We choose the parameters

vA = vB = −U/2 = 0; cA = 0.1 = 1− cB; TAA = TBB = 1
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7. Electronic correlation in alloys

and calculate the average and the alloy component spectral functions for several values of
TAB at half filling. The case TAB = 1 is equivalent to the non-disordered case since vA = vB;
in this case the components are indistinguishable. Thus, the average spectral function is
just the spectral function of the non-disordered Bethe lattice, and the component Green’s
functions gααloc(ω) are proportional to the Bethe Green’s function with the concentration
prefactor cα.
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Figure 7.1.: Non-interacting case: Comparison of spectral functions for different dimensionless
hopping parameters TAB. The parameters are UA = UB = 0, vA = vB = 0, cA = 0.1 = 1− cB,
and TAA = TBB = 1. The solid lines represent the component spectral functions Aα(z) =
cα E

(
Ai(z)|i 7→ α

)
, where A is red and B is blue; the dotted yellow line shows the average

spectral function E
(
A(z)

)
= AA(z) + AB(z). The thin vertical lines show the maximal spectral

bounds given by the Gershgorin circle theorem [177]. Figure adapted from ref. [W3] (fig. 1).

Figure 7.1 shows the spectral function for off-diagonal disorder for the hopping param-
eters TAB = 0.0, 0.5, 1.5, 5.0. The case TAB = 0 was solved exactly in section 6.4.7. The
panel TAB = 0 in fig. 7.1 indicates that off-diagonal disorder reduces the bandwidths;
according to eq. (6.149) the effective bandwidths are given by DA

eff =
√

0.1D ≈ 0.32D
and DB

eff =
√

0.9D ≈ 0.95D. For TAB < 1 = Tαα the probabilities for hopping between
the alloy components A and B are less than those between the same component α. The
spectral functions in the upper half of fig. 7.1 correspond to this situation. In spite of
a similar support on the energy axis, the spectral function of the majority component
B has a larger bandwidth, which encompasses the effective bandwidth of component A.
By contrast, when TAB > 1 = Tαα, A-B bonds are energetically favorable. The panel
TAB = 1.5 in fig. 7.1 shows that the spectral function of component A develops shoulders,
although both components have similar effective bandwidths. When the value of TAB is
increased further the shoulders split off from the central band; for the parameters chosen
the split-off is visible for TAB ≥ 2.25. According to Burdin and Fulde [181] the split-off
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7.2. Numerical results [W3]

upper and lower bands correspond to bonding and antibonding states, respectively. In
the particle-hole symmetric case, the bonding and antibonding bands in panel TAB = 5.0
of fig. 7.1 have equal weights. Due to the large value TAB = 5.0, the minority component
A is completely suppressed in the central band. The components A and B contribute
roughly equally to the bonding and antibonding subbands. Therefore, the central band
of the average spectral function is depleted by an amount of (1− 2cA) = 0.8. The overall
results and the spectral weight transfer from the central band are consistent with those
reported by Burdin and Fulde [181].

7.2.2. Alloy components with equal interaction strengths [W3]
In the following, we will discuss the results for the interacting case using the setup
described in section 7.2.1 at zero temperature (T = 0). The alloy components have
identical on-site interaction parameters:

UA = UB = U = 3D.

At half-filling, the on-site energies are vA = vB = −U/2 = −1.5D.
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Figure 7.2.: Comparison of spectral functions for different values of the dimensionless hopping
parameter TAB with UA = UB = 3D, vA = vB = −1.5D, cA = 0.1 = 1− cB, and TAA = TBB = 1
at T = 0. For TAB = 0 a shift η = 0.12 had to be used; the other panels were calculated for
η = 0.08. Figure adapted from ref. [W3] (fig. 2).

Figure 7.2 shows the spectral function for various values of TAB. For TAB = 0, when
the self-consistency equations decouple, the spectral functions of both components imply
insulating behavior due to the strong interaction U = 3D. The upper and lower Hubbard
bands centered around ±U/2 are visible. The bandwidth of the Hubbard bands is
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7. Electronic correlation in alloys

effectively reduced according to eq. (6.149). Therefore, the gap is wider for component A.
Finite values of TAB lead to wider spectral functions, and the bandwidth of the minority
component A broadens to the same bandwidth as for B. Although for TAB = 1.5 the
imaginary part of the self-energy shows a prominent peak at ω = 0, the spectral function
remains finite at the Fermi level. The convergence of the DMFT computations slows
down for this value of TAB = 1.5, hinting at the proximity of a transition. The minority
component A exhibits shoulders at the band-edge. For TAB = 1.7 (not shown) one observes
a pronounced quasi-particle peak at the Fermi level of both components, indicating that
the system is metallic. A further increase to TAB = 5.0 leads to an increased spectral
weight at the Fermi level for the majority component B, while the spectral function of A
has a minimum at the Fermi level.

For small values of TAB the spectral gap results from the local Hubbard physics. Disorder
then plays a minor role and mostly modifies the bandwidth and therefore the gap size.
An increase of TAB leads to a larger bandwidth compared to that of the CPA+DMFT
result for TAB = 1. For larger values of TAB the spectral function of the component A is
seen to open a pseudogap around the Fermi level which is accompanied by an increase
of spectral weight of the component B. For large TAB, the pseudogap is a result of the
off-diagonal disorder.

7.2.3. Alloy components with different interaction strengths [W3]

In a binary alloy the strength of the interaction between electrons may also depend on
the alloy component. Therefore, we explore the effect of off-diagonal disorder in this case.
We illustrate the results for an extreme case, namely for a strong repulsion UB = 3D of
the majority component B only, while the minority component remains non-interacting
(UA = 0). We consider half-filling with vA = 0, vB = −UB/2 = −1.5D and note that, in
spite of the different values vA 6= vB, the effective (diagonal) disorder strength is zero,
since the Hartree self-energy compensates the difference.

Figure 7.3 shows the evolution of the spectral function for increasing TAB. For TAB = 0,
the A alloy component is metallic, while due to the large UB value the B component is
insulating. We note that the two components have different effective bandwidths due
to the different concentrations. The panel with TAB = 0.5 shows a small peak for the B
component, in spite of the large interaction strength. At TAB = 1, the A-A, A-B, and B-B
hopping probabilities are the same, which leads to the same effective bandwidths, and to
the appearance of the metallic state for both alloy components.

In fig. 7.3 the panel with TAB = 1.5 shows a distinct peak for the majority component B
at the Fermi level, which reduces the spectral function for the A component at the Fermi
level, leading to a local minimum. Increasing the inter-component hopping to TAB = 5.0,
the peak of B becomes even larger, and the spectral weight of A almost vanishes at the
Fermi level. The panels with TAB = 5.0 of figs. 7.2 and 7.3 are seen to be very similar;
apparently the interaction of the minority component has little effect on the spectral
function.
Figure 7.4 shows the quasi-particle weight

Zα =
[
1− ∂<Σα(ω + iη)

∂ω

∣∣∣∣∣
ω=0

]−1

(7.11)
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Figure 7.3.: Comparison of spectral functions for different values of the dimensionless hopping
parameter TAB with UA = 0, UB = 3D, vA = 0, vB = −1.5D, cA = 0.1 = 1 − cB, and
TAA = TBB = 1 at T = 0. Figure adapted from ref. [W3] (fig. 3).

corresponding to the spectral functions of panel TAB = 5.0 in the figs. 7.2 and 7.3. In spite
of the large value of UA = 3D, the quasiparticle weight ZA is large, with a magnitude
around 0.9. This gives an indication why the panels TAB = 5.0 of figs. 7.2 and 7.3 are so
similar; the large value of UA = 3D leads only to a small mass renormalization. Increasing
the concentration of the weakly correlated component A leads to a significant increase
of the quasiparticle weight ZB for both setups. This can be explained by the increasing
number of A-B bonds, which leads to an increased mobility of the electrons due to the
large value of hopping parameter TAB = 5.0 compared to the inter-component hopping
parameters TAA = TBB = 1.

7.2.4. Combined effect of diagonal and off-diagonal disorder [W3]
In the following, we explore the combined effect of both diagonal and off-diagonal
disorder, and their interplay with interaction. We choose a uniform interaction strength
UA = UB = U and introduce diagonal disorder with on-site potentials vA = −1.5D − U/2,
vB = +1.5D − U/2. This means that the scattering strength is of the magnitude
δ = (vB − vA)/D = 3. We consider components with equal bandwidth TAA = TBB = 1
and equal concentration cA = cB = 0.5. Thus, the components are particle-hole conjugate
and fulfill the relation

gAA
loc(z) = −[gBB

loc(z)]∗. (7.12)

Figure 7.5 shows the average spectral function as well as that for the individual
components for different values of the Hubbard parameter U and dimensionless inter-
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Figure 7.4.: Quasi-particle weight Z corresponding to TAB = 5.0 in figs. 7.2 and 7.3 for the
parameters vA = −UA/2, vB = −UB/2, TAA = TBB = 1, and TAB = 5.0 at T = 0, calculated for
a shift η = 0.12. Figure adapted from ref. [W3] (fig. 4).

component hopping amplitudes TAB. In the non-interacting case U = 0 (first column of
fig. 7.5) the split-band limit is apparent for all values of TAB.

We first discuss the CPA limit TAB = 1 (second row of fig. 7.5). In the split-band limit,
there are no correlation effects: One component is basically filled nA

σ ≈ 1, and the other is
depleted nB

σ ≈ 0. However, the Hartree energy, ΣH
σ = nσU , decreases the effective disorder

strength:

δeff = (vB + nB
σU)− (vA + nAU)

D
≈ [vB − vA − U ]/D = δ − U/D.

(7.13)

Switching on the interaction U effectively decreases the scattering strength δ. From
U ≈ 2D on, the split-band limit at large scattering strength no longer applies, i.e., there
is a combination of disorder and interaction effects. For U = 4D, we see the upper and
lower Hubbard bands for each component, as well as a quasiparticle peak at the Fermi
level. For even larger interaction strength (U = 6D) a Mott insulating phase is observed.
Thus, by increasing U it is possible to tune the system from an alloy-band insulator,
through a metallic phase, to a Mott insulating state. Similar results were reported by
Lombardo et al. [182] for diagonal disorder using CPA+DMFT for somewhat different
parameters and a finite-temperature impurity solver.
The behavior obtained in the CPA limit can now be modified by varying TAB. At

U = 2D an off-diagonal hopping TAB < 1 leads to metallic behavior, while TAB > 1
favors a band gap. On the other hand, for U = 6D a large TAB favors metallicity. For
TAB ≤ 1 the spectral function is gapped – similar to the result obtained in the Hubbard-I
approximation [32].
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Figure 7.5.: Comparison of the spectral functions for UA = UB = U , −(vA +U/2) = vB +U/2 =
1.5D, cA = 0.5 = cB, TAA = TBB = 1, and T = 0 for different values of TAB and U . Figure
adapted from ref. [W3] (fig. 5).

105





8. Half-metals in layered systems [W2]
A half-metal is a material that has a metallic spectral function at the Fermi level for one
spin channel and simultaneously a band gap for the other spin channel. This extreme
asymmetry between the spin channels is the source of great promise for spintronic
application [23, 24]. Half-metallic electrodes could provide fully spin-polarized currents
and large magnetoresistance in giant magnetoresistance and tunnel magnetoresistance
devices [23].
In this chapter, we investigate models for bulk and bilayers containing half-metallic

ferromagnet (HMF), in order to elucidate the effects of strong electronic correlations on
the spectral function. Our focus is on the evolution of the finite-temperature many-body
induced tails in the half-metallic gap.

8.1. Revisiting the bulk [W2]
In the one-band model, eq. (2.1), a simple way to generate the half-metallic ferromagnetic
state is to introduce a sufficiently strong spin splitting such that one spin subband is
empty (or full) in the Hartree-Fock (Stoner) picture. This section discusses the results for
a homogeneous Hubbard Hamiltonian eq. (2.1) of a Bethe lattice with infinite coordination
number with half-bandwidthD (setting the energy scale), spin splitting h = ε̃↓−ε̃↑ = 0.5D,
on-site energy ε̃− µ = (ε̃↓ + ε̃↑)/2− µ = 1.5D, and Hubbard interaction U = 2D. The
on-site energies ε̃σ are given with respect to the particle-hole symmetric case, that is
ε̃σ = εσ − U/2, cf. section 2.1.1. Difficulties in solving the Hubbard model for such a
saturated ferromagnet are well known [27].
For the real-frequency results at zero temperature, the hybridization function of the

Bethe lattice ∆σ(ω), eq. (3.20), is discretized using 251 bath sites per spin. We find the
ground state |GS〉 (T ≡ 0) of the effective impurity model to be fully polarized (n↓ = 0,
n↑ = 0.341). The interacting Green’s function Gr(t) is calculated from the time-evolution
of the states ĉ†σ |GS〉 and ĉσ |GS〉, as well as of the adjoint states 〈GS| ĉσ and 〈GS| ĉ†σ, cf.
Ganahl et al. [119], employing the TDVP described in section 5.6. This is done using
time steps δ = 0.1/D, up to a maximal time of tmax = 120/D. For DMRG we chose
a truncated weight of 10−15 and a maximal bond dimension of 100. For the TDVP, a
truncated weight of 10−11 together with a maximal bond dimension of 500 is chosen. The
Laplace transform is preformed employing the quadratic Hermite-Padé algorithm, cf.
appendix B.5 and evaluated for a shift η = 10−3 into the imaginary plane.

For the QMC results at finite temperature, we compute the self-energy via the ratio of
the two-particle Green’s function Fσ(z) and the one-particle Green’s function Gσ(z) [71,
72]:

Fσ(τ − τ ′) =
〈
cσ(τ)c+

−σ(τ)c−σ(τ)c+
σ (τ ′)

〉
Seff

, (8.1)

Σσ(iωn) = UFσ(iωn)/Gσ(iωn), (8.2)
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Figure 8.1.: (a) Spin-resolved spectral function Aσ(ω) for the bulk half-metal. Black dotted
lines correspond to the Hartree-Fock (HF) approximation. At high temperatures (T = 0.25D),
the tail of the spectral function A↓(ω) crosses the Fermi level, while for low enough temperatures
(T ≤ 0.02D) the half-metallic gap is preserved. (b) Evolution of the tail in the minority spin
spectral function A↓(ω) with temperature, the lowest temperature corresponding to the low T
result of the left panel. Again, the black dotted line shows the HF result. The inset (c) displays
the T dependence of the spectral weight A↓(ω = 0). Crosses indicate finite temperatures shown
in the left panel as well as T = 0.25D; the circle corresponds to T ≡ 0. Figure adapted from
ref. [W2] (fig. 1).

as explained in section 3.1.1. The brackets 〈·〉Seff
denote the average in the effective

impurity model. This provides more accurate results than the Dyson equation, such that
the Padé analytic continuation [102–104] of the self-energy is reasonably accurate. We
calculate the spectral function from the analytically continued self-energy Σ̃σ(ω):

Aσ(ω) = − 1
π
=
∫ D

−D
dε ρ(ε)
ω − ε− ε̃σ − Σ̃σ(ω)

, (8.3)

where ρ(ε) is the DOS of the lattice and Σ̃(ω) is the Padé analytic continuation of the
self-energy, eq. (8.2). Note that the calculation of eq. (8.2) simplifies for the fully polarized
ground state |GS〉, as ĉ↓ |GS〉 = 0 and ĉ†↑n̂↓ |GS〉 = 0. Thus, at T ≡ 0 the two-particle
Green’s function for the ↑ spin vanishes, i.e. F↑ ≡ 0, and therefore also the self-energy
Σ↑ ≡ 0.

Figure 8.1(a) displays the results of the DMFT calculations for zero, low (T = 0.02D),
and high (T = 0.25D) temperature. The dotted line shows the HF solution as a reference.
We first discuss the T ≡ 0 spectrum. As the ↓ spin is completely depleted, the result
for the ↑ spin are nearly identical to the HF result. The ↑-spin electrons are almost
uncorrelated, and the magnitude of the self-energy Σ↑(ω) is negligibly small. For the ↓
spin, we see two main effects of correlations. First, the size of the gap is reduced compared
to the HF approximation. For low energies, there is a dynamical reduction of the (static)
Hartree self-energy (cf. fig. 8.2). Additionally, a many-body satellite appears at ω ≈ 3.5D
in A↓(ω), as shown in fig. 8.1(a). At low temperature T = 0.02D, the QMC result for
the spectral function eq. (8.3) is in good agreement with the real-frequency results for
zero temperature. There is a deviation for the satellite; however, analytic continuation is
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8.1. Revisiting the bulk [W2]

not expected to resolve features that far from the Fermi level well. At high temperature,
T = 0.25D, we obtain a tail crossing the Fermi level ω = 0 shown in fig. 8.1(a), which
depolarizes the HMF. Because of the tail, the ↓ spin is now partially filled, resulting
in correlation effects also in the ↑ spin. The many-body satellite is visible in both spin
channels for the high temperature.

Previous calculations [183] used a simplified quantum Monte Carlo scheme within the
so-called exact enumeration technique [62], and therefore results for high temperature
(T = 0.25D) only were accessible. Our high-T results differ from the previous ones [183],
which show additional peaks in the spectral function. In contrast to the previous
calculations [183], we determine the spectra from the analytically continued self-energy
using eq. (8.3). In fact, we demonstrated in the appendix of [W2] that a Padé analytic
continuation of the Green’s function – instead of the self-energy eq. (8.2) – causes the
appearance of these spurious features in the spectral function. Compare also the examples
in section 4.2.3 which show similar spurious features.

Figure 8.1(b) shows the temperature dependence of the spectral function for the minor-
ity spin, A↓(ω), in particular its tail crossing the Fermi level. The highest temperature
is T = 0.16D, and subsequent lines correspond to always half the previous temperature.
The disappearance of the spectral weight at the Fermi level with decreasing temperature
is apparent. A specific many-body feature in HMFs is attributed to spin-polaron pro-
cesses [28]: The down-spin electron excitations forbidden in the one-electron description of
HMFs arise due to the superposition of up-spin electron excitations and virtual magnons.
In model calculations, the existence of this feature has been shown by perturbation-
theory arguments for the broad-band case [27] (cf. next paragraph), and in the opposite,
infinite-U limit [23, 28]. An analytic approximation allows us to explore the shape of
the temperature dependence of the spectral function for the minority spins considering
a contact electron-magnon interaction described by the exchange parameter [23, 28,
184]. According to this theory, a nonlinear temperature dependence is obtained from
the competing effects of the magnon contribution to the residue of the Green’s function,
∼ T 3/2, with the shift of the band edge states being proportional to T 5/2. By a direct fit
A↓(ω = 0) ∝ Tα to the data in the inset of fig. 8.1(c), an exponent α in the range of 3/2
to 2 is obtained.
Considering the perturbation-theory arguments in more detail, we first note that

for a completely depleted down-spin channel as depicted in fig. 8.1(a) for T ≡ 0 and
T = 0.02D, it is evident that an added up-electron (or hole) is not subject to interactions.
Therefore, the up-spin self-energy Σ↑(ω) vanishes. On the other hand, there is a significant
contribution to the down-spin self-energy, Σ↓(ω), due to scattering at up-spin electron-hole
pairs that arise because of electronic correlations [23, 27, 28, 184, 185] (while down-spin
electron-hole pairs are not possible as the minority spin channel is depleted). The
ferromagnetic instability is triggered by the scattering of the down electron and the up
hole, and hence this electron-hole triplet ‘bound-state’ can be considered a magnon [23, 27].
In perturbation theory, the following expression for the imaginary part of the self-energy
is found:

=Σk,↓(ω) = −πU
2n↑
N

∑
q

[1− f(εk+q,↑) + n(ωq)]δ(ω − εk+q,↑ − ~ωq), (8.4)

where ωq ∝ q2 is the magnon dispersion, f(ε) denotes the Fermi-Dirac distribution, and
n(ω) is the Bose-Einstein distribution. As a consequence of the local approximation of
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Figure 8.2.: Imaginary (left) and real (right) part of the down-spin self-energy Σ↓(ω) for the
bulk half-metal. The dotted line for the real part indicates the HF result. The peak in =Σ↓(ω)
for T ≡ 0 (truncated in the figure) extends downward to −9.1D. Figure adapted from ref. [W2]
(fig. 2).

DMFT, the momentum dispersion of the magnons is lost; nevertheless, there is a pole
in the magnetic susceptibility corresponding to a local spin flip. We thus conclude that
the DMFT solver includes the scattering of electrons at virtual ‘magnons’ (of purely
electronic origin), which can be described by diagrams constructed from the local Green’s
function, and that the (numerical) local self-energy describes the same type of effective
low-energy physics as discussed earlier [23, 27, 28, 184].

Figure 8.2 presents the self-energy for down-spin electrons corresponding to the spectral
functions shown in fig. 8.1(a). At zero (T ≡ 0) and low (T = 0.02D) temperature, the
imaginary part of the self-energy =Σ↓ vanishes at the Fermi level (ω = 0); for high
temperature (T = 0.25D), there is a finite tail, −=Σ↓ > 0, crossing the Fermi level. The
minimum of =Σ(ω) is located in the frequency range 3D to 3.5D for the temperatures
considered, slightly below the energies where the satellite in the spectral function is visible
in fig. 8.1(a). The satellite is located in the range ω − <Σ↓(ω) ∈ (ε̃↓ −D, ε̃↓ +D); this
range is reduced further due to the peak in the imaginary part of the self-energy. As a
consequence, the satellites in the spectral functions are found at energies slightly above
the peak of the imaginary part of the self-energy.
Furthermore, we investigate the local spin-flip susceptibility which we calculate from

the effective impurity model:

χ+−(τ − τ ′) =
〈
S+(τ)S−(τ ′)

〉
Seff

=
〈
c+
↑ (τ)c↓(τ)c+

↓ (τ ′)c↑(τ ′)
〉
Seff

, (8.5)

where Seff is the same effective impurity model action from DMFT as in eq. (8.1). At
zero temperature, the spin-flip susceptibility is obtained directly on the real axis by
time-evolving the matrix-product state |ψ〉 = ĉ†↓ĉ↑ |GS〉 using TEBD and then calculating
the overlap χ+−(τ − τ ′) = 〈ψ(τ)|ψ(τ ′)〉. Finite-temperature results are sampled with
worm-sampling in CT-HYB [C1]; the analytic continuation to real frequencies is performed
using a sparse modeling approach [C3, 111].
Figure 8.3 shows the imaginary part of the susceptibilities χ+−(ω) for different tem-

peratures. For low and zero temperatures, the imaginary part is gapped; i.e., it vanishes
for a finite region around ω = 0, in correspondence with the gapped spectral function
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Figure 8.3.: Imaginary part of the local spin-flip susceptibility at zero temperature (dashed
green line), and for a selection of finite temperatures (T = 0.02D and 0.08D: purple and blue
solid lines). The inset shows the susceptibility divided by frequency: −=χ+−(ω)/ω. Figure
adapted from ref. [W2] (fig. 3).

shown in fig. 8.1(b). For high temperatures, on the other hand, we obtain a power-law
behavior, limω→0(−=χ+−(ω)/ω) > 0, as visible in the inset of fig. 8.3; this is in agreement
with the closing of the gap in fig. 8.1(b). All curves have one peak; the peak position
(in frequency) seems to slightly increase with temperature. The real-frequency results
show an additional shoulder around ω ≈ 1.5D. In addition, a small satellite is found near
ω ≈ 3.5D, outside the area shown.

8.2. Half-metals in bilayers [W2]

The systems studied next consist of two coupled layers; one of the layers (l = 1) is
half-metallic and the other (l = 2) is either a metal, a band insulator, or a Mott insulator.
Within the layers, we consider two-dimensional square lattices as depicted in fig. 8.4. The
DOS in a single layer has a half-bandwidth D, which corresponds to an in-plane hopping
tlαβ = D/4 for nearest neighbors α and β within the layer l. The half-metallic layer has
the same parameters as in section 8.1: h1 = 0.5D, ε1 = −1.5D, and U1 = 2D. We fix
the filling of the bilayer to match the sum of the fillings of the isolated layers nisol ; the
HMF layer contributes a filling of niso1 = 0.355. The nearest-neighbor interlayer hopping
t12 = t21 = t = D/2 couples the layers. For the remainder of section 8.2, we fix the
temperature at T = 0.16D.
In the absence of interactions, Ul = 0 and Vl = 0, and in the presence of a splitting

field h1 acting only on the HMF layer l = 1, the energy spectrum shows bonding [E−σ (k‖)]
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t

Figure 8.4.: Illustration of coupled monolayers of square lattices. The in- and interlayer hopping
integrals are indicated. Figure adapted from ref. [W2] (fig. 4).

and anti-bonding [E+
σ (k‖)] subbands:

E±σ (k‖) = εk‖ + ε̄σ ±
√
ε̄2σ + ∆2

σ =: εk‖ + ε±σ ,

εk‖ = −D
2 (cos kx + cos ky),

ε̄σ = (ε̃1σ + ε̃2)/2,
∆2
σ = t2 − ε̃1σ ε̃2,

ε̃1σ = ε̃1 + σh1.

(8.6)

For the Green’s functions of the layers l = 1, 2, we get

G0
llσ(z, εk‖) = 1

ε+σ − ε−σ

[
ε̃lσ − ε−σ

(z − εk‖ − ε+σ ) −
ε̃lσ − ε+σ

(z − εk‖ − ε−σ )

]
. (8.7)

The magnetic field (h1) splits the two spin channels.
Figure 8.5 shows the spectral functions of the bilayer heterostructure with one HMF

layer coupled to a metallic layer (M). The metallic layer l = 2 is non-interacting, U2 = 0,
nonmagnetic, h2 = 0, and half-filled, ε2 = 0, niso2 = 1; these values imply a chemical
potential of µ = −0.078D. Both layer spectral functions Alσ(ω), l = 1, 2 are metallic;
the gap in the minority channel of the HMF layer l = 1 closes. The essential physics is
the charge transfer between the half-metallic and the metallic layer, which increases the
filling in the minority spin channel of the half-metal that closes the gap. This effect also
occurs in the absence of interactions.

Figure 8.6 shows the spectral function of a bilayer structure of a HMF layer interfaced
with a band-insulating (BI) layer. The band-insulating layer l = 2 is non-interacting,
U2 = 0, nonmagnetic, h2 = 0, and completely empty, ε2 = −2.25D, niso2 = 5× 10−5;
these values imply a chemical potential of µ = −0.129D. The layer-resolved spectral
functions show that the disappearance of the minority spin half-metallic gap is due to the
interactions in the half-metallic layer. According to the HF solution of the bilayer, both
layers show a gap for down-spin electrons; cf. the dotted lines in figs. 8.6(a) and 8.6(b).
The proximity to the correlated HMF layer causes the appearance of electronic states
around the Fermi level of the band insulator. The many-body induced tail in the HMF is
enhanced, decreasing the polarization of the HMF layer further.
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Figure 8.5.: Spin-resolved spectral function Alσ(ω) for one HMF layer (a) interfaced with one
metallic (M) layer (b). The solid lines are DMFT (CT-HYB), and the dotted lines the HF
results (t = 0.5D). The green lines show the spectral function for isolated layers (t ≡ 0). Figure
adapted from ref. [W2] (fig. 5).

Figure 8.7 shows the spectral functions of the bilayer formed by interfacing the HMF
layer and a Mott insulating (MI) layer. Electrons in the MI layer are subject to a
considerable interaction, U2 = 5D, no magnetic splitting, h2 = 0, and for the layer
occupation the half-filled case (ε2 = 0, niso2 = 1) is considered; for these parameters, the
chemical potential is µ = 0.013D. At the level of HF, this corresponds to the interface
between the half-metallic and the ordinary metallic layer as both spectral functions show
states at and around the Fermi level. Within the insulating layer, fig. 8.7(b), the splitting
into lower and upper Hubbard bands is visible (separated by ≈ U2). The proximity to
the HMF layer induces a slightly spin-polarized quasiparticle (QP) peak located at the
Fermi level of the MI layer. In contrast, the isolated Mott layer, tll′ ≡ 0, shows no QP
peak for these parameters [186, 187]. In order to study the polarization of the QP peak,
we perform calculations increasing the magnitude of U2 starting from U2 = 1D.

In fig. 8.8, we present the spectral function obtained for fixed parameters of the HMF
layer (U1 = 2D, ε1 = −1.5D, h1 = 0.5D), while increasing the strength of the Hubbard
parameter U2 = 1, 2, 3D toward a Mott insulator in the adjacent layer, l = 2 (ε2 = 0,
h2 = 0). The quasiparticle peak and the lower and upper Hubbard bands are already seen
for U2 = 2D in fig. 8.8(b), and their separation increases with increasing U2. The spectral
function of the HMF layer shows, besides the expected satellite at about 3.5D, some
additional spectral weight corresponding to the position of the lower Hubbard band of the
Mott insulating layer. Likewise, at higher energies at the position of the upper Hubbard
band a shoulder in the spectral function of the HMF layer is visible. Contrary to the
homogeneous single layer, where increasing U2 leads to a sharpening of the QP feature,
the spectral weight induced by the charge transfer seems to overlay the QP. While the
spectral weight around the Fermi level decreases with increasing U2, it persists even for
values as large as U2 = 10D. Accordingly, the double occupation of the MI layer is not
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Figure 8.6.: Spin-resolved spectral function Alσ(ω) for one HMF layer (a) interfaced with one
band insulating (BI) layer (b). The solid lines are the DMFT (CT-HYB), and the dotted lines
the HF results (t = 0.5D). The green lines show the spectral function for isolated layers (t ≡ 0).
Figure adapted from ref. [W2] (fig. 6).

completely suppressed in the bilayer case: While increasing the interaction U2 reduces it,
the double occupation is larger than in the isolated MI layer case.
We point out that due to the proximity to the half-metallic layer, we do not expect a

strict Mott transition in the sense of a vanishing quasiparticle weight, respectively of a
divergent effective mass. Instead, the mutual doping of Mott and HMF layer leads to
metallic behavior of the whole bilayer, similar to what was discussed previously [188, 189].
Thus, the system favors a certain amount of charge fluctuations, and the hopping between
the layers is never renormalized to zero. Such a behavior has been coined ‘electronic
reconstruction’ [190]. The common feature of these results indicates that the transfer of
charge between the layers is a general phenomenon that produces metallic interfaces.

8.3. Summary [W2]
In summary, we have presented detailed model studies for the spectral properties of
bulk HMFs as well as for bilayers containing HMFs. DMFT is employed to describe
the local correlations between charge carriers. Our numerical results show that the
correlation-induced tails in the vicinity of the Fermi level in bulk HMFs are significantly
reduced at zero temperature, in agreement with analytical predictions [23]. On the other
hand, for bilayers we find an enhancement of the tail contribution at the half-metallic
side, as well as coherent quasiparticle states on the Mott insulating side. Furthermore,
the Fermi liquid states at the interface reduce the full spin polarization characteristic for
bulk HMFs.
For the bilayer setup, we consider a half-metallic monolayer in contact with either a

metal, a band, or a Mott insulator; the layers are modeled as square lattices. We see
that charge reconstruction at the interface causes the existence of metallicity, even in the
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Figure 8.7.: Spin-resolved spectral function Alσ(ω) for one HMF layer (a) interfaced with one
Mott insulating (MI) layer (b). The solid lines are the DMFT (CT-HYB), and the dotted
lines the HF results (t = 0.5D). The green lines show the spectral functions for isolated layers
(t ≡ 0).* (c) Spectral weight at the Fermi level Alσ(ω = 0) as function of the hopping t between
the layers. Figure adapted from ref. [W2] (fig. 7).
* Note that the analytic continuation for the MI layer at t ≡ 0 is not reliable for the Hubbard bands;
in this case Padé tends to overestimate features.
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Figure 8.8.: Spin-resolved spectral function Alσ(ω) for one HMF layer interfaced with one layer
of different interacting strengths U2. The solid lines are the DMFT (CT-HYB), and the dotted
lines the HF results (t = 0.5D). The green lines show the spectral function for isolated layers
t ≡ 0. Figure adapted from ref. [W2] (fig. 8).
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8.3. Summary [W2]

presence of large Hubbard U parameters at the Mott insulating layer. In the real-space
DMFT analysis, the HMF/Mott insulator bilayers are Fermi liquids with well-defined
quasiparticles, and thus the present approach offers a way to access Fermi liquid quantities
on the basis of a microscopic model.
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9. Electronic transport through a
correlated magnetic layer [W4]

The electronic transport through a device can be conveniently addressed by applying
scattering theory, which was pioneered by Landauer [191, 192] and Büttiker [193, 194],
and worked out in detail by Meir and Wingreen [195]. This approach (see, e.g., Rammer
and Smith [196]) typically considers a mesoscopic system, like a molecule or a quantum
dot, coupled to ideal leads. These leads act as charge reservoirs which are so large that
they can be described by equilibrium distributions. Hence, the corresponding left (L) and
right (R) leads are characterized by the equilibrium Fermi distribution functions fL/R(ω).
The derivation assumes that the leads L and R are disconnected in the infinite past; the
isolated leads and the central region are in equilibrium, albeit at their respective chemical
potentials and temperatures. The couplings are then turned on adiabatically [197, 198].
In the following, we apply the Meir–Wingreen approach [195] to our heterostructure
setup, in which electronic correlations are considered in the scattering region only, i.e., in
the central layer. All layers are of macroscopic extent in the x-y-planes; we consider the
transport direction along the z-axis, i.e., perpendicular to the layers.

Recently, Chioncel et al. [199] and Morari et al. [200] described how to take into account
local interactions when computing the transmission of correlated heterostructures using
density functional theory. Compared to the density functional theory + DMFT approach,
the computation of the transmission becomes more apparent in the present tight-binding
Hamiltonian. In particular, using the Meir–Wingreen formalism, we replace the scattering
region Green’s function directly by its interacting counterpart, which takes electronic
correlations into account through the local self-energy Σ(ω).
It is well known that the Meir–Wingreen approach [195] considerably simplifies for

non-interacting systems, or when the two matrices, respectively describing the coupling to
left and right lead, are proportional to each other. As long as the central region consists
of just a single interacting layer, the proportionality is fulfilled for our setup. For two or
more interacting layers, on the other hand, the lesser Green’s function will be needed.

9.1. Generic transport model [W4]
Figure 9.1 shows the geometry of the system: non-interacting leads, left (L) and right
(R), separated by the central region (C). Both leads consist of a semi-infinite stack of
square-lattice planes. The hopping amplitude between the layers in the left (right) lead
is tL (tR), and the on-site energy is εLσ (εRσ). The central region consists of a single
square-lattice layer with the on-site energy ε0σ. Due to the two-dimensional translation
invariance of the layers, the electrons are characterized by an in-plane dispersion.

For lattice sites i we introduce the multi-index i = (l, α), where l is the layer index and
α denotes the site within the layer. The position vector ri of site i decomposes into the
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Figure 9.1.: Schematic graph of the model setup. The layers are labeled with l, such that l < 0
corresponds to the left, and l > 0 to the right lead. The central layer is l = 0. In the present
setup, the z-direction, here labeled by l, is the direction of transport. The transverse (w.r.t. the
transport direction) wave vector, k‖, is a good quantum number. Figure adapted from ref. [W4]
(fig. 1).
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9.1. Generic transport model [W4]

parallel contribution rl ‖ êz of the layers and the perpendicular contribution rα ⊥ êz, i.e.,
ri = rl + rα. We perform the two-dimensional in-plane Fourier transform:

ĉ†iσ = ĉ†lασ = 1√
N‖

∑
kxky

ĉ†lk‖σe−i(xαkx+yαky) = 1√
N‖

∑
k‖

ĉ†lk‖σe−irα·k‖ , (9.1)

where k‖ = (kx ky)
T ⊥ êz and N‖ is the number of sites in a layer. The diagonal on-site

terms ĉ†lασ ĉlασ = n̂lασ remain local after the Fourier transform. Likewise, the hopping
between layers is not affected as we consider epitaxial layers with nearest-neighbor hopping
only, where the position in the layer rα is independent of the layer l:∑

α

tll′ ĉ
†
lασ ĉl′ασ = 1

N‖

∑
αk‖k

′
‖

tll′ ĉ
†
lk‖σ

ĉl′k′‖σ
e−irα·(k‖−k

′
‖) =

∑
k‖

tll′ ĉ
†
lk‖σ

ĉ†l′k‖σ. (9.2)

Thus, the on-site energy terms, εlσ ĉ†lασ ĉlασ, as well as the hopping in transport direction
êz, tll+1ĉ

†
lαĉl+1α, are diagonal in k‖-space and the coefficients are k‖-independent. For the

two-dimensional square lattice, the Fourier transform yields the in-plane dispersion

εk‖ = 2t‖[cos(kx) + cos(ky)] (9.3)

where t‖ is the hopping within the layers. Thus, we identify the wave vector parallel to
the layers, kT

‖ =
(
kx ky

)
, as a good quantum number of the model system.

In the mixed representation, treating the layers l in real-space and the in-layer degrees
in k‖-space, the complete Hamiltonian can be partitioned as

Ĥ = ĤL + ĤC + ĤR, (9.4)

where ĤC contains the coupling between leads and central region. In particular, the
Hamiltonians for the semi-infinite left and right leads read:

ĤL =
∑

l<0k‖σ
(εLσ + εk‖)n̂lk‖σ −

∑
l<0k‖σ

(tLĉ†l−1k‖σ ĉlk‖σ + t∗Lĉ
†
lk‖σ

ĉl−1k‖σ), (9.5)

ĤR =
∑

l>0k‖σ
(εRσ + εk‖)n̂lk‖σ −

∑
l>0k‖σ

(tRĉ†lk‖σ ĉl+1k‖σ + t∗Rĉ
†
l+1k‖σ ĉlk‖σ), (9.6)

where σ = ±1
2 labels the spin. For the central region containing just a single layer, the

Hamiltonian reads:
ĤC =−

∑
k‖σ

(t−10ĉ
†
−1k‖σ ĉ0k‖σ + H.c.) +

∑
k‖σ

(ε0σ + εk‖)n̂0k‖σ + U0
∑
i

n̂0i↓n̂0i↑

−
∑
k‖σ

(t01ĉ
†
0k‖σ ĉ1k‖σ + H.c.)

(9.7)

The hopping amplitudes describing the hybridization between the central region and the
leads, t−10 and t01, are chosen to be real, positive, and equal t−10 = t01. The hopping
amplitudes in the transport direction are also assumed to be real, tL/R = t∗L/R, without
loss of generality. Furthermore, ε0σ = ε0 + σh0 is the on-site energy, h0 the magnetic
splitting, and U0 the on-site Hubbard interaction in the central layer.

The Meir–Wingreen formalism [195] is typically formulated for the case of lead Hamil-
tonians eqs. (9.5) and (9.6) that are diagonal, contrary to the layered structure, fig. 9.1,
which we consider here. Therefore, we diagonalize the non-interacting leads, to obtain
the same structure.
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9. Electronic transport through a correlated magnetic layer [W4]

9.1.1. Diagonalizing the leads
To diagonalize the leads in the layers indices l, that is in transport direction perpendicular
to the layers, we employ the discrete sine transform for the finite system. For l < 0, we
define the unitary transformation (for real hopping it is orthogonal):

ĉ†lk‖σ =
√

2
NL + 1

NL∑
n=1

sin
(

πnl

NL + 1

)
ĉ†nk‖σ =:

√
2

NL + 1
∑
kL

sin(kLl)ĉ†kLk‖σ, (9.8)

where NL is the number of left leads l < 0 (going to infinity). This defines the k-numbers
kL ∈ {πn/(NL + 1)} for the left lead. If the hopping amplitudes tL were complex, we
would have to modify the transformation by a factor (tL/t∗L)n/2 =: einφ, where φ is the
complex phase of tL. The inverse transformation reads

ĉ†kLk‖σ =
√

2
NL + 1

−NL∑
l=−1

sin(kLl)ĉ†lk‖σ. (9.9)

This is a unitary transformation due to the orthogonality relation

N∑
n=1

sin
(

πnl

N + 1

)
sin
(
πnl′

N + 1

)
= N + 1

2 δll′ . (9.10)

By symmetry, the transformation for the right leads is analogous replacing L with R, and
l by −l. Applying these transformations to the Hamiltonian yields for the leads:

ĤL =
∑
kLk‖σ

(εLσ + εk‖ + εkL)n̂kLk‖σ +
√

2
NL + 1

∑
kLk‖σ

[sin(−kL)t−10ĉ
†
kLk‖σ

ĉ0k‖σ + H.c.],

(9.11)

ĤR =
∑
kRk‖σ

(εRσ + εk‖ + εkR)n̂kRk‖σ +
√

2
NR + 1

∑
kRk‖σ

[sin(+kR)t+10ĉ
†
kRk‖σ

ĉ0k‖σ + H.c.],

(9.12)

with the left/right dispersion εkL/R = 2tL/R cos(kL/R).
This can be conveniently expressed in matrix notation. Only the central region ĤC is

subject to interaction; as it is invariant under the unitary transformation of the leads,
it is sufficient to consider the non-interacting Hamiltonian Ĥ0. The non-interacting
Hamiltonian is diagonal in k‖ and σ; thus we suppress these indices for a more concise
notation. The Hamiltonian can be written in the matrix form

Ĥ0 = c†H0c =
(
c†L c†C c†R

)HL tL 0
t†L H0

C tR
0 t†R HR


cLcC
cR

 , (9.13)

the second equality is the block matrix form. The elements of the column vectors are the
annihilation operators, i.e.,

c†L =
(
ĉ†−NL · · · ĉ†−1

)
, c†C =

(
ĉ†0
)
, and c†R =

(
ĉ†1 · · · ĉ†NR

)
. (9.14)
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9.1. Generic transport model [W4]

In the setup we consider, the central block H0
C of eq. (9.13) is of size 1 × 1 and can

therefore be expressed as a scalar. Thus, the hopping to the central region takes a
particular simple form, i.e. t†L =

(
0 . . . 0 t∗−10

)
and an analogous expression for R. We

consider the unitary transformation for the left block L. We define the unitary matrix for
the left block

(U)nl =
√

2
NL + 1 sin

(
πnl

NL + 1

)
with (U †)ln =

√
2

NL + 1 sin
(

πln

NL + 1

)
. (9.15)

In the full matrix space, the matrix reads

Û =

U 0 0
0 1C 0
0 0 1R

 (9.16)

with the identity matrices in the central block 1C and in the right block 1R. Thus, by
inserting the full identity 1 = Û

†
Û , we diagonalize the left block

Ĥ0 = c†Û
†
ÛH0Û

†
Ûc =

UcLcC
cR


†UHLU

† UtL 0
t†LU

† H0
C tR

0 t†R HR


UcLcC
cR

 . (9.17)

This matrix defines the new vector of fermionic operators c̃L = UcL; elements of the
vector are the operators eq. (9.8) in k‖-space. While the left block has now a simpler
diagonal form, the hopping between the left and central block is not sparse anymore. We
obtain the hopping elements

(UtL)n0 =
√

2
NL + 1 sin

( −πn
NL + 1

)
t−10. (9.18)

The diagonalization of the right block is analogous. The unitary transformations commute:

ÛÛR =

U 0 0
0 1C 0
0 0 1R


1L 0 0

0 1C 0
0 0 UR

 = ÛRÛ , (9.19)

as they act on different blocks of the Hamiltonian matrix, therefore the transformations
can be applied independently.
Furthermore, we define the surface DOS for the leads. For the left lead, we write

ρL(ε) := 2
NL + 1

∑
kL

sin2(kL)δ(ε− εkL) = 2
NL + 1

∑
kL

[1− cos2(kL)]δ(ε− 2tL cos(kL))

= 2[1− (ε/2tL)2] 1
NL + 1

∑
kL

δ(ε− 2tL cos(kL)).

(9.20)

In the limit NL →∞, the sum can be replaced by an integral. We identify the integral
as the DOS of a one-dimensional lattice

ρ1D(ε) = 1
π2t

1√
1− (ε/2t)2

Θ(2t− |ε|), (9.21)
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9. Electronic transport through a correlated magnetic layer [W4]

where t is the hopping amplitude and Θ(ε) the Heaviside step function. Therefore, the
surface DOS writes

ρL(ε) = 2
[
1− (ε/2tL)2

]
ρ1D(ε) = 2

π2tL

√
1− (ε/2tL)2Θ(2t− |ε|). (9.22)

We note that the surface DOS coincides with the semicircular DOS of the Bethe lattice for
the half-bandwidth D = 2tL. Alternatively, the surfaces Green’s function can be derived
by a recursion relation for the semi-infinite lead. As the lead is non-interacting, the Green’s
function of the decoupled lead can be calculated from the resolvent gL(z) = [1z −HL]−1.
The surface Green’s function is the right-most matrix element (l = −1) of the left lead;
defining L(z) = 1z −HL, it can be calculated as the inverse of the block matrix:

gsL(z) = (L−1)[−1,−1] =
(L[:−1,:−1] t

t† L[−1,−1]

)−1


[−1,−1]

=
[
L[−1,−1] − t†(L[:−1,:−1])−1t

]−1

=
[
L[−1,−1] − |tL|2[(L[:−1,:−1])−1][−1,−1]

]−1
,

(9.23)

where we omit the frequency argument z for readability, and t is the vector of hopping
elements t† =

(
t∗L 0 . . . 0

)
. In the limit NL →∞, the left lead remains a semi-infinite

stack of layers after removing one layer; thus the matrix inverse with the right-most layer
removed is identical to the surface Green’s function:

[(L[:−1,:−1])−1][−1,−1] = [L−1][−1,−1] = gsL(z). (9.24)

We obtain the quadratic equation for the surface Green’s function

|tL|2[gsL(z)]2 − L[−1,−1](z)gsL(z) + 1 = 0. (9.25)

Again, the equation coincides with the Green’s function of the Bethe lattice. We define
the surface Green’s function gsL(z) excluding the on-site energies:

gsL(z) = z

2|tL|2

1−
√√√√1−

(
2|tL|
z

)2
 ; (9.26)

to the on-site energies in the calculations we shift the frequency argument.

9.1.2. Meir–Wingreen formula for the transmission
In the following, we outline the main ideas of Meir–Wingreen [195] to obtain the trans-
mission, we mainly follow the more detailed derivation found in the book of Haug and
Jauho [201].

The current from the left lead L with l < 0 to the central region C with l = 0 is given
by the continuity equation

JL = −ie
~
〈[
Ĥ, N̂L

]〉
with N̂L =

∑
l<0k‖σ

n̂lk‖σ, (9.27)
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where N̂L is the total particle number of the left lead. Using the diagonal form of the left
lead eq. (9.11), we obtain the following expression for the current:

JL = 2ie
~

√
2

NL + 1
∑
kLk‖σ

[
sin(−kL)t−10

〈
ĉ†kLk‖σ ĉ0k‖σ

〉
− H.c.

]

= 2e
~

√
2

NL + 1<
∑
kLk‖σ

sin(−kL)t−10i
〈
ĉ†kLk‖σ ĉ0k‖σ

〉
.

(9.28)

The static expectation value
〈
ĉ†kLk‖σ ĉ0k‖σ

〉
can be expressed in terms of the lesser Green’s

function at times t = 0

G<0,kL;k‖σ(0, 0) = i
〈
ĉ†kLk‖σ(0)ĉ0k‖σ(0)

〉
. (9.29)

Due to the fact that we consider non-interacting leads, the equation of motion for the
Green’s function G0,kL;k‖σ(z) =

〈〈
ĉ0k‖σ

∣∣∣ĉ†kLk‖σ〉〉 (z) generates no higher-order Green’s
functions. The diagonal structure eq. (9.11) of the lead Hamiltonian yields the equation
of motion

zG0,kL;k‖σ(z) = (εLσ+εk‖+εkL)G0,kL;k‖σ(z)+
√

2
NL + 1 sin(−kL)t∗−10G0,0;k‖σ(z). (9.30)

This equation connects the current from the left lead JL to the Green’s function of the
central region G0,0;k‖σ(z) =

〈〈
ĉ0k‖σ

∣∣∣ĉ†0k‖σ〉〉 (z). We identify the Green’s function of the
uncoupled left lead

gkLk‖σ(z) =
〈〈
ĉkLk‖σ

∣∣∣ĉ†kLk‖σ〉〉ĤL(z) = [z − (εLσ + εk‖ + εkL)]−1 (9.31)

and write the equation of motion eq. (9.30) in the compact form

g−1
kLk‖σ

(z)G0,kL;k‖σ(z) =
√

2
NL + 1 sin(−kL)t∗−10G0,0;k‖σ(z). (9.32)

For the calculation of the lesser Green’s function we refer to Haug and Jauho [201] and
state only the result for the left current:

JL = 2e
~

2
NL + 1<

∑
kLk‖σ

sin2(kL)|t−10|2
∞∫
−∞

dω
2π

[
Gr

00;k‖σ(ω)g<kLk‖σ(ω) +G<
00;k‖σ(ω)ga

kLk‖σ(ω)
]
.

(9.33)

Only the lead Green’s functions depend on kL, therefore the kL-summation can be moved
into the integral and evaluated for the lead Green’s functions. This yields the current

JL = 2e
~
<
∑
k‖σ

|t−10|2
∫ ∞
−∞

dω
2π

[
Gr

00;k‖σ(ω)g<−1k‖σ(ω) +G<
00;k‖σ(ω)ga

−1k‖σ(ω)
]

(9.34)

in terms of the Green’s function glk‖σ(z) =
〈〈
ĉlk‖σ

∣∣∣ĉ†lk‖σ〉〉ĤL(z) of the surface layer l = −1.
Since the central region is just a single layer, the effect of the leads is characterized by
the scalar level-width function

ΓLσ (ω, εk‖) = −2|t01|2=gr
lk‖σ(ω) = −2|t01|2=gsL(ω+ − εLσ − εk‖), (9.35)
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9. Electronic transport through a correlated magnetic layer [W4]

where ω+ = ω+ i0+, and gsL(z) is the leads’ surface Green’s function eq. (9.26). The lesser
Green’s functions in eq. (9.34) are purely imaginary; evaluating the real part yields [201]

JL = e

~
∑
k‖σ

∫ ∞
−∞

dω
2π ΓLσ (ω, εk‖)

[
fL(ω)=Gr

00;k‖σ(ω) + iG<
00;k‖σ(ω)

]
. (9.36)

Analogous, an expression for the right current JR can be derived, replacing all indices L
by R. In steady state the left and right current have the same magnitude JL = −JR = J .
The level-width functions Γσ are scalar and identical for the left and right lead. Therefore,
by considering the symmetrized current

J = 1
2(JL − JR), (9.37)

the lesser Green’s functions G<
00;k‖σ(ω) in eq. (9.36) can be eliminated, as the corresponding

contributions of the left and right current cancel.
Applying the Meir–Wingreen formalism [195] to the present, highly symmetric het-

erostructure, therefore yields a particularly simple expression for the charge current
perpendicular to the layers:

J = − e
h
N‖

∑
σ

∫ dω
2π [fL(ω)− fR(ω)]

∫
dε‖ρ‖(ε‖)ΓLσ (ω, ε‖)=G00σ(ω+, ε‖), (9.38)

where G00σ is the Green’s function of the central region, G00σ(z, εk‖) = 〈〈ĉ0k‖σ|ĉ
†
0k‖σ〉〉(z),

and N‖ the number of sites within a layer (going to infinity). The layer DOS is given by

ρ‖(ε‖) = 1
N‖

∑
k‖

δ(ε‖ − εk‖) = 2
π2D

K(1− ε2
‖/D

2)Θ(|ε‖| −D), (9.39)

where Θ(ε) is the Heaviside step function. For the square lattice [164], it can be written
in terms of the complete elliptic integral of the first kind:

K(m) =
∫ π/2

0
dt[1−m sin2(t)]−1/2

. (9.40)

From the above quantities, the normalized transmission for the spin channel σ can be
computed as follows:

Tσ(ω) = −
∫

dε‖ρ‖(ε‖)ΓLσ (ω, ε‖)=G00σ(ω+, ε‖)

= 2|t01|2
∫

dε‖ρ‖(ε‖)=gsL(ω+ − ε‖ − εLσ)=G00σ(ω+, ε‖).
(9.41)

Within DMFT, the local self-energy, Σσ(z), is included in the central region Green’s
function:

G00σ(z, ε‖) = 1
z − ε‖ − ε0σ − Σσ(z)− 2|t01|2gsL(z − εLσ − ε‖)

. (9.42)

The DMFT self-energy Σσ(z) is obtained by numerically solving a self-consistently
determined reference system, which is interacting but local, see section 9.2.3.

In the next section, we discuss the behavior of the spin-resolved spectral functions, and
contrast it with the spin-resolved transmissions, when varying the hopping to/from the
central region, as well as the strength of the local interaction on the central layer.
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Figure 9.2.: Dependence of the transmission at the Fermi level Tσ(ω = 0) on t01 and ε0σ. On
the left, a logarithmic color scale is used, on the right, the transmission is normalized to the
value Tσ(ω = 0) for ε0σ = 0 and a linear color scale is used.

9.2. Results [W4]
We consider the setup as shown in fig. 9.1. In the following, we consider the leads to
be identical, but keep the notation ‘L’ which henceforth refers to ‘lead’. As discussed
above, our model consists of non-magnetic (non-spin-polarized) metallic leads in contact
with a single layer of a ferromagnetic metal. The Hamiltonian describing the leads (at
half-filling) is specified by the on-site energies, εLσ = 0, and the electrons’ hopping matrix
elements tL in the direction of transport. The latter are fixed at tL = 0.25D, where D
denotes the parallel (in-plane) half-bandwidth. Furthermore, the square-lattice parallel
hopping matrix elements, t‖, are assumed to have the same value. From now on, D
(= 4t‖) will be our energy unit, i.e., formally D = 1, and tL = t‖ = 0.25.

According to eq. (9.41), the transmission is determined by the product of the surface
spectral functions of the uncoupled leads and that of the central region. The surface
Green’s function is given above, eq. (9.26). The corresponding spectral function

AsL(ω − ε‖) = − 1
π
=gs(ω+ − ε‖) (9.43)

has a semicircular shape and vanishes at the band edges, ±2|tL| = ±0.5. The lead spectral
function AsL is independent of the parameters of the central layer; in the following, we
focus on the spectral function of the central region.
First, we present our results for the non-interacting case, i.e., we discuss how the

spectral function of the central region and the transmission depend on the parameters
on-site energy (ε0σ) and coupling (t01), cf. figs. 9.3 to 9.5. In the second part of this
section, we discuss the modifications induced by a local interaction (U0) within the central
layer: We vary t01 for fixed U0, see fig. 9.7, as well as U0 for fixed t01, see fig. 9.8.

9.2.1. Non-interacting central layer [W4]
For the non-interacting case, the two spin directions are independent and can be discussed
separately. Figure 9.2 shows the dependence of the transmission on the coupling t−10 and
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9. Electronic transport through a correlated magnetic layer [W4]

the on-site energy for ω = 0. For small coupling t−10 we observe and dome of increased
transmission extending till ε0 = 0.5 = 2|tL| at t−10 = 0. Tuning the on-site energy close
to the edge of this dome, transmission and its polarization can be strongly modified.
Therefore, we are interested in parameters in the vicinity of this dome. In the following,
we explain the origin of this feature by investing the spectral function of the central
region.
In the non-interacting case, the Green’s function depends only on the difference

between frequency and dispersion, G00σ(ω, εk‖) = G00σ(ω − εk‖). The corresponding
spectral function reads

A00σ(ω − ε‖) = − 1
π
= 1
ω+ − ε‖ − ε0σ − 2|t01|2gsL(ω+ − ε‖)

. (9.44)

In addition, the spin directions are decoupled. We define ξσ = ω − ε‖ as the (generally
complex) root of the denominator of the right-hand side of eq. (9.44), i.e.,

ξσ − ε0σ − 2|t01|2gsL(ξσ) = 0, (9.45)

which leads to

(1− 2r)ξ2
σ − 2(1− r)ε0σξσ + ε20σ + 4r2|tL|2 = 0, (9.46)

where r = |t01/tL|2 characterizes the hopping to the central region relative to the hopping
in the leads. First, we consider energies outside the lead band, |ω − ε‖| > 2|tL| = 0.5.
Then the lead Green’s function gsL is real, implying that the spectral function is a sum
over delta functions:

A00σ(ω − ε‖) ∝
∑
ξσ

δ(ω − ε‖ − ξσ). (9.47)

The corresponding ξσ-solutions of eq. (9.46) are

ξ±σ =
(1− r)ε0σ ± r

√
ε20σ − 4(1− 2r)|tL|2

1− 2r . (9.48)

Note that this expression also contains spurious solutions belonging to the unphysical
branch of the square root in gsL(z). On the other hand, inside the bandwidth of the lead,
|ω − ε‖| < 2|tL| = 0.5, the denominator of eq. (9.44) has an imaginary part stemming
from gsL(ω+− ε‖), eq. (9.26). In this case the spectral function of the central region reads

A00σ(ω − ε‖) = 1
π

r
√

(2|tL|)2 − (ω − ε‖)2[
(1− r)(ω − ε‖)− ε‖

]2
+ r2

[
(2|tL|)2 − (ω − ε‖)2

] .
= 1
π

r
√

(2|tL|)2 − (ω − ε‖)2

(1− 2r)(ω − ε‖)2 − 2(1− r)(ω − ε‖)ε0σ + ε20σ + 4r2|tL|2
.

(9.49)

Hence, within the band of the lead the spectral function A00σ(ω − ε‖) is finite. The
real part of the roots ξ±σ , eq. (9.48), indicates resonances of increased amplitude in the
spectrum.
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The results are summarized in fig. 9.3 which shows the spectral function, eq. (9.44),
as a function of the energy and the coupling, t01. We consider the on-site energies
ε0σ = 0, 0.25 and 0.75; the value ε0σ = 0.25 crosses the dome in fig. 9.2, the value
ε0σ = 0.75 lies outside. Note that the horizontal axis refers to ω−ε‖; in this representation
the information about the lattice structure drops out, as it is only encode in the dispersion
argument ε‖ of the spectral function A00σ(ω − ε‖) eq. (9.44).
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Figure 9.3.: Dependence of the spectral function of the central region, A00σ(ω, ε‖), on t01 for
a selection of ε0σ. The parameters are εLσ = 0, tL = 0.25, and U0 = 0. For a non-interacting
system, the spectral function is a function of ω − ε‖ only: A00σ(ω, ε‖) = A00σ(ω − ε‖). The
white line indicates the position of the delta peak outside the band, |ω − ε‖| > 2tL, while the
red-dotted line is determined by the real part of ξσ within the band |ω − ε‖| < 2tL, ω−ε‖ = <ξσ,
resulting in an enhanced spectral intensity; cf. eq. (9.48). Figure adapted from ref. [W4] (fig. 2).

The representative feature of the spectral function is a continuum band in the energy
range of [−2tL,+2tL] = [−0.5,+0.5], which corresponds to the band of the leads. The
left graph in the figure (ε0σ = 0) includes the homogeneous ‘bulk’ case, namely the setup
in which t01 = tL (= 0.25), i.e., all hopping parameters as well as the on-site energies in
each layer are the same, ε0σ = εL (= 0). At this coupling strength t01 = 0.25, the spectral
function A00σ(ω − ε‖) diverges at the edges of the continuum band

∣∣∣ω − ε‖∣∣∣ = 2tL = 0.5.
The homogeneous case is an infinite stack of equivalent layers, therefore the A00σ(ω − ε‖)
corresponds to the DOS of a one-dimensional lattice.
In addition to the continuum, the spectral function displays a set of up to two high-

intensity lines. The existence of these states entails an enhancement of the spectral
function, and corresponds to bound and resonance states generated by the coupling of
the semi-infinite leads and the central region. We note that a similar distinction between
bound and resonance states can be made within the single impurity Anderson model [202,
203]. The analysis of bound versus resonance states can also be based on the assessment
of the poles of the spectral function, eq. (9.44).
For larger values of the coupling, |t01|2 > |tL|2/2 − ε20σ/8, bound states are located

outside the continuum (white line). Since the transmission is determined by the overlap
of the spectral functions of the leads with that of the central region, the bound states
outside the continuum do not contribute to transmission. With decreasing t01 values, the
high-intensity states approach the continuum, and depending on the on-site energy ε0σ
they may enter the continuum region. This leads to an enhancement of the transmission,
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9. Electronic transport through a correlated magnetic layer [W4]

as is apparent in fig. 9.4, where we show the transmission for a given on-site energy
of ε0σ = 0.25 in the central square-lattice layer. Up to t01 ≈ 0.1, the maximum of the
transmission is determined by the position of the resonance, which is indicated by the
black line with red dots. This line represents the transmission strength at the resonance
as a function of t01, i.e., t01 7→ Tσ(ω = <ξσ(t01), t01).
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Figure 9.4.: Transmission Tσ(ω) versus frequency ω for various values of t01 for ε0σ = 0.25,
corresponding to the central plot of fig. 9.3. The black line with red dots is the transmission at
the position of the resonance (red dotted line in fig. 9.3). For small coupling, up to t01 ≈ 0.1,
the maximum of transmission corresponds to the position of the resonance. Figure adapted
from ref. [W4] (fig. 3).

Based on these results, we can discuss the model parameters for which the investigated
setup acts as an efficient spin filter. Clearly, choosing an on-site energy ε0σ within the
continuum for one spin channel and outside the continuum for the other, a high spin
polarization of the transmission can be achieved due to the resonant states only present
in one spin channel. As an example, we consider the parameters ε0 = 0.5 and h0 = 0.5
(ε0↑ = 0.25, ε0↓ = 0.75). These are the same values used for the half-metallic layer in the
bilayers investigated in section 8.2. In spite of a finite spectral weight at the Fermi level
for the down-spin, for very small values of t01 we obtain a complete spin polarization in
transmission, albeit with a small magnitude. Thus, mediated by the resonant state, an
enhancement of the spin polarization of the transmission is found. This becomes apparent
in fig. 9.5 which shows the k‖-resolved spectral function for the lead and the central
region at ω = 0 for a square lattice. The left (right) graph corresponds to t01 = 0.05
(t01 = 0.25), the upper (lower) part of each graph shows the spectral function of the
up-spins (down-spins), and the left (right) part of each graph displays the lead (central
region) spectral function, respectively. The Brillouin zone (BZ) extends from [−π, π] (with
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the lattice constant a = 1); the plots are taken in one of the four (identical) quadrants of
the BZ.
The surface spectral function of the leads, AsL(ω − εk‖) (left half of each graph), is

identical for up- and down-spin since the leads are non-magnetic. The lead spectral
function AsL is independent of t01, as it is calculated for the case where the lead is decoupled
from the central layer. The right half of each graph in fig. 9.5 shows the momentum
resolved spectral function A00σ(ω − εk‖) in the central region; A00σ is calculated in the
presence of the leads and therefore depends on t01.
For t01 = 0.05, the maximum intensity of the spectral function is located within the

continuum for σ = ↑, respectively outside the continuum for the σ = ↓ electrons. In
spite of significant spectral weight in the central region

∫
dε‖ρ‖(ε‖)A00↓(ω − ε‖), the

transmission for the down-spin almost vanishes. This spectral weight originates from the
bound states which do not contribute to the current. Thus, we obtain a high polarization
over a large frequency range.

Increasing the coupling strength to t01 = 0.25, we find that the spectral function of the
central region significantly changes. The high-intensity states of the spin-up electrons are
shifted out of the continuum, becoming sharp delta peaks. Similarly, the sharp states
(white line) in the down-spin channel are repelled by the continuum and shift towards
the edge of the Brillouin zone. Now for both spin channels only the continuous spectrum
contributes, which is of similar magnitude for both spins.

This analysis shows that a change in the hopping amplitude between leads and central
region, t01, significantly affects the central region spectral function and consequently
modifies the transmission qualitatively, beyond a mere change of the prefactor |t01| 2 in
eq. (9.41). In real materials such a situation is likely to happen as electronic states are
significantly influenced by structural reconstructions at the surfaces.

9.2.2. Effect of lattice mismatch
So far we have considered epitaxial layers: In the transport direction êz, every lattice site
has exactly one site in each adjacent layer, see fig. 9.1. The neighboring sites in transport
direction are at the same position in the x-y-plane, thus the hopping between layers tll+1
is independent of k‖. We focus on a particular simple mismatch between the central and
the lead layers: a shift of half a lattice constant in x and y directions.

If the interface between leads and central region is not epitaxial, the hopping processes
t−10 and t01 are not parallel to the transport direction, therefore these hopping amplitudes
gain k‖-dependent phase factors. We assume the central region to be shifted diagonally
by rT = (δ δ 0). The in-plane Fourier transform of the hopping from the left to the
central layer yields

t−10
∑
α

ĉ†−1ασ ĉ0α+rσ = t−10
∑
kxky

ĉ†−1k‖σ ĉ0k‖σe−iδ(kx+ky). (9.50)

For small shifts |r| =
√

2δ, the transmission eq. (9.41) does not change as it depends only
on the absolute square of the hopping amplitudes. For larger shifts, however, we need
to consider the hopping amplitudes to different sites in the adjacent layer. We consider
rT = (1/2 1/2 0), in this case electrons should be able to hop to four different sites
in the adjacent layer positioned at ±r as well as ±r′T = (−1/2 1/2 0). We have to
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Figure 9.5.: (a) Spectral functions of the non-interacting setup at the Fermi level ω = 0. The
left-hand-side, kx ∈ [−π, 0), of each graph shows the surface spectral function of the uncoupled
lead, AsL(0 − εk‖), and the right-hand-side, kx ∈ (0,+π], shows the spectral function of the
central region, A00σ(0 − εk‖), respectively. The top half, ky ∈ (0,+π], and the bottom half,
ky ∈ [−π, 0), parts correspond to the respective spin directions, as indicated. First graph: weak
coupling, t01 = 0.05; second graph: strong coupling, t01 = 0.25. Other parameters are: ε0 = 0.5,
h0 = 0.5. Figure adapted from ref. [W4] (fig. 4). (b) Corresponding k‖-resolved transmission at
frequency ω = 0. The left-hand-side, kx ∈ [−π, 0), shows the result for t−10 = 0.05, and the
right-hand-side, kx ∈ (0,+π], shows the result for t−10 = 0.25. The transmission is proportional
to the product of the lead and the central region spectral function.

consider the following terms:

t−10
∑
α

[ĉ†−1ασ ĉ0α+rσ + ĉ†−1ασ ĉ0α−rσ + ĉ†−1ασ ĉ0α+r′σ + ĉ†−1ασ ĉ0α−r′σ]

= t−10
∑
kxky

ĉ†−1k‖σ ĉ0k‖σ[e−i(kx+ky)/2 + ei(kx+ky)/2 + e−i(kx−ky)/2 + ei(kx−ky)/2]

= 4t−10
∑
kxky

ĉ†−1k‖σ ĉ0k‖σ[cos(kx/2) cos(ky/2)].

(9.51)

Thus, we should modify the hopping amplitude t−10 → 4t−10 cos(kx/2) cos(ky/2). In
general, the bare hopping amplitude t−10 should also change in a realistic system as the
distance between the sites increased. Here, we employ the typical 1/

√
Z = 1/2 scaling

and define

t̃−10(kx, ky) = 2t−10 cos(kx/2) cos(ky/2). (9.52)

Thus, we adapt the transport eqs. (9.41) and (9.42) to the lattice mismatch using the
effective hopping t̃−10(kx, ky). As the hopping explicitly depends on the kx and ky,
the integration over the layer DOS has to be replaced by the two k-summations. The
transmission for this lattice mismatch reads

Tσ(ω) = 2
N‖

∑
kxky

∣∣∣t̃−10(kx, ky)
∣∣∣2=gsL(ω+ − εk‖ − εLσ)=G00k‖σ(ω) (9.53)

with the Green’s function for the central region

G00k‖σ(z) = 1
z − εk‖ − ε0σ − Σσ(z)− 2

∣∣∣t̃−10(kx, ky)
∣∣∣2gLσ (z − εLσ − εk‖)

. (9.54)
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(a) Spectral function, left t−10 = 0.05 right t−10 = 0.25 (b) Transmission

Figure 9.6.: (a) Spectral functions of the non-interacting setup with lattice mismatch at the
Fermi level ω = 0. The plot is analogous to fig. 9.5, the right-hand-side of each graph shows the
spectral function of the central region eq. (9.54), and left-hand-side shows the surface spectral
function AsL(0 − εk‖) multiplied by the

∣∣t̃−10(kx, ky)/t−10
∣∣2. Compared to fig. 9.5, the factor∣∣t̃−10(kx, ky)/t−10

∣∣2 was included, such that the transmission is obtained as the product of the left
and right half. Left graph: weak coupling, t01 = 0.05; right graph: strong coupling, t01 = 0.25.
Other parameters are: ε0 = 0.5, h0 = 0.5. (b) Corresponding k‖-resolved transmission at
frequency ω = 0. The transmission is proportional to t̃−10(kx, ky) times the product of the lead
and the central region spectral function.

Just like in the epitaxial case, the modified transmission is determined by the product of
the surface spectral functions of the uncoupled leads and that of the central region.

Results. Figure 9.6 illustrates the differences to the epitaxial case shown in fig. 9.5. It
shows the k‖-resolved spectral function for the lead and the central region at ω = 0 for a
square lattice. Again, the left (right) graph corresponds to t01 = 0.05 (t01 = 0.25). The
right part of each graph displays the central region spectral function eq. (9.54), left part
shows the leads spectral function times the k‖-modulation, |t̃−10(kx, ky)/t−10| 2AsL(0−εk‖).
We have to use an imaginary shift η = 10−5 broadening the spectra, in order to make the
sharp bound states visible.

For small coupling t01 = 0.05, the resonant and bound states are unchanged compared
to fig. 9.5. Only continuum band is modulated by the k‖-dependent hopping t̃(ky, ky).
Increasing the coupling strength to t01 = 0.25, we find significant deviations compared to
the epitaxial lattice in fig. 9.5. The bound state of the spin-down electron is closer to the
continuum. For the spin-up electrons the difference is more drastic: a bound state for
small k‖ is obtained as well as a resonant state, whereas the epitaxial lattice shows only
a bound state for large k‖.

The transmission eq. (9.53) remains a product of the surface spectral functions of the
uncoupled leads and that of the central region. While the position of bound and resonant
states changes with the lattice mismatch; qualitatively, the bound and resonant states
affect the transmission in the same way as for the epitaxial lattice. Thus, we focus only
on epitaxial layers in the following section.

133



9. Electronic transport through a correlated magnetic layer [W4]

9.2.3. Local electronic interaction in the central region [W4]
We treat the local electronic interaction in the central layer employing DMFT [59, 62,
63], see chapter 3. In combination with materials-specific input, the density functional
theory + DMFT [204] technique was applied to heterostructures, more recently using
supercells [199, 200]. While these studies were based on a perturbative impurity solver,
in this thesis the recently developed fork tensor-product states (FTPS) solver [120] is
employed, which is non-perturbative and allows for the accurate computation of spectral
functions. Note that this solver works at zero temperature, and that there is no need to
perform an analytic continuation of the spectral function which is otherwise a difficult
technical issue [205, 206]. The hybridization function of the SIAM is discretized using
249 bath sites per spin. The ground state of the finite-size impurity problem is calculated
using the DMRG [21, 207]. Subsequently, the time evolution is performed using the
TDVP [145–147, 180] to obtain the local Green’s function. The time evolution is performed
using time steps of 0.1 up to a maximal time tmax = 250.

We apply the computational scheme outlined above to the setup described in section 9.1,
including the Hubbard term U0 in the central region, see eq. (9.7). Again, we consider
the planes to be square lattices, the leads are non-magnetic and half-filled, εLσ = 0, with
hopping tL = 0.25; in the central layer, we choose the parameters ε0 = 0.5 and h0 = 0.5.
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Figure 9.7.: Dependence of the spectral function of the central region, A00σ(ω, ε‖), on t01. The
parameters are εLσ = 0, tL = 0.25, D = 1, ε0 = 0.5, h0 = 0.5, and U0 = 2. The red dotted line
corresponds to the real part of eq. (9.48) within the band of the leads for the non-interacting
system, U0 = 0. Figure adapted from ref. [W4] (fig. 5).

The spectral function of the central region is given by the imaginary part of eq. (9.42)
on the real axis, z = ω+. This requires the knowledge of the many-body self-energy
for the various coupling strengths t01 for a fixed interaction strength, here U0 = 2. We
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calculate the self-energy for different values of t01 in steps of 0.05 and linearly interpolate
in-between to obtain a continuous function. Figure 9.7 shows the spectral function. To
contrast it with the non-interacting case, we plot the delta peak outside the lead band
(white line) and the resonance within the band (red dotted) line for U0 = 0, which are
given by the real part of eq. (9.48). We observe that the resonance in the up-spin is
hardly affected by the interaction. In the regime of small t01 the down-spin is almost
depleted, consequently there are only small interaction effects for the up-spin. On the
other hand, the slope of the up-spin bound state changes compared to the non-interacting
case. For the down-spin, we observe the bound state to be shifted to higher frequencies ω
and to be considerably broadened.
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Figure 9.8.: Polarization of the transmission (top row) and local spectral function (bottom
row) for an interacting central layer with varying on-site interaction U0. Left column: small
coupling, t01 = 0.05; right column: intermediate coupling, t01 = 0.25. The spectral function for
the down-spin varies strongly with U0 at the Fermi level ω = 0; the polarization of transmission,
on the other hand, varies strongly only for t01 = 0.25. Figure adapted from ref. [W4] (fig. 6).

Figure 9.8 shows the local spectral functions of the central region, A00σ(ω) (bottom),
as well as the transmission polarization (top) for weak, t01 = 0.05 (left column), and
strong, t01 = 0.25 (right column), coupling between leads and central region, for various
interaction strengths U0. The local Coulomb interaction in the central region leads to
an increased polarization of the spectral function, because the minority spin states are
shifted towards higher energies. If the central region is decoupled, t01 = 0, the spectral
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function is fully polarized for U0 ≥ 2 due to the Hartree shift, which means that the layer
is a half-metallic ferromagnet, see chapter 8 and compare figs. 8.1 and 8.5(a). While for
larger values of t01 the leads induce states for minority electrons in the central region,
the spectral functions remain strongly polarized. For both couplings, t01 = 0.05 and
t01 = 0.25, the majority spectral function remains largely unchanged in the presence of
the interaction. This is a consequence of the almost depleted spin-down channel. Away
from the Fermi energy tails of the spectral functions are formed, which are contributing
to the high-energy satellite as discussed in chapter 8.

The polarization of the transmission, however, shows a behavior different from that of
the local spectral function. For t01 = 0.05, in spite of the significant change of the minority
spectral function at the Fermi energy (ω = 0), the polarization remains above 95% for all
values of U0, and changes only by a few percent. In this regime, the transmission of the
majority spin is dominated by the resonance, while the spectral weight in the minority
spin originates from the bound state which does not contribute to the current. In contrast
to the small coupling t01 = 0.05, for t01 = 0.25 the polarization of transmission follows
the interaction-induced change of the local spectral function. It increases from ≈ 50% at
U0 = 0 to ≈ 70% at U0 = 4.

9.3. Summary [W4]
In this chapter we study a one-band generic model for transmission through metallic
heterostructures. This model consists of two non-interacting leads sandwiching a central
region that can be subject to local Coulomb interactions. The spin-dependent transmission
is computed within the Meir–Wingreen formalism. The left and right leads in our model
are assumed to be identical, and the central region consists only of a single layer, therefore
the transmission decomposes into a product of the spectral function of the central region
and the surface spectral function of the uncoupled leads. Independent of the presence of
the local electronic interaction, small variations of the on-site energies and the hopping
amplitude between leads and central region may strongly affect the shape of the spectral
functions in the central region, and hence the conductance.

We identify bound and resonant states that may appear in this model, depending on the
coupling strength between the leads and the central region. Generally speaking, resonance
phenomena reveal themselves in the electronic conduction of mesoscopic condensed matter
systems, however, a direct characterization of the resonance energy and the line width
remains non-trivial. As a result, for a large coupling between the leads and the central
region bound states are formed outside the continuum spectrum of the leads. These states
do not contribute to the transmission, thus we expect them to be localized. In contrast,
for the weak-coupling resonant state, the complex poles of the Green’s function entail an
enhancement of the spin polarization of the transmission.
For the interacting central region, accurate results for the spectral functions and for

the position of the bound and resonant states are obtained using the tensor network
methods from chapter 5. For a certain set of parameters, electronic interactions lead
to an enhanced spin polarization of the spectral function, as the minority electrons are
shifted away from the Fermi level. As a consequence, a reduction of electronic correlations
for the majority spins is found. For the bound states outside the continuum of the leads’
spectral function, electronic correlations lead to a significant broadening.
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For many solids, the properties of electrons can be well approximated by an independent
particle picture. This is, in particular, the case for itinerant electrons with broad
energy bands; for such electrons, Bloch waves extending over the entire lattice are an
appropriate description. For narrow bands, on the other hand, a particle-like picture is
more appropriate since electrons may localize around atoms. Narrow bands are generally
associated with partially filled d- and f -bands, which can, e.g., be found in transition
metal oxides and rare earths. Particularly interesting phenomena occur if localization
effects on larger energy scales compete with the itinerant character of electrons on smaller
energy scales. In this case, intermediate energy scales become relevant, and diverse
material-dependent properties emerge. A prime example is the metal-to-Mott-insulator
transition where the energy cost of Coulomb repulsion competes against the kinetic energy,
which favors delocalization. Theoretically, this is a most challenging problem, as the
many-body problem of interacting electrons has to be solved. In this context, the thesis
contributes to the development of numerical methods and applies them to models of
half-metallic ferromagnets.

Methodological developments. We consider the local approximation to the problem
of interacting electrons: the dynamical mean-field theory (DMFT). We summarize the
derivation of DMFT and present the two complementary state-of-the-art algorithms to
solve the impurity problem: continuous-time quantum Monte Carlo and tensor network
methods.

We outline the continuous-time quantum Monte Carlo algorithm for the hybridization
expansion CT-HYB (section 4.1). Appendix A provides an error-estimate related to
the required number of Matsubara frequencies, as well as a more accurate Fourier
transform for large Matsubara frequencies based on the Filon method. As the Monte
Carlo algorithms are formulated in imaginary time, an analytic continuation is required
to obtain spectral functions. We formulate an alternative version of the N -point Padé
algorithm (section 4.2.2). The standard Padé algorithm is based on an exact interpolation
of all data points. We employ the algorithm by Ito and Nakatsukasa [114]: Instead
of determining the polynomial coefficients of the approximant, this algorithm directly
calculates the position of the poles. It is formulated in a least-squares sense and therefore
allows for incorporating uncertainties in the input data.
We also summarize the ideas of the density matrix renormalization group (DMRG)

algorithm and the time evolution using the time-dependent variational principle (TDVP),
employing the diagrammatic notation instead of explicit formulas (chapter 5). Appendix B
discusses the Padé-Fourier algorithm for the Laplace transformation, for which a shorter
time evolution suffices compared to a discrete Fourier transform. Therefore, the algorithm
allows for reducing the computation time. We relate the Padé-Fourier algorithm to the
commonly used linear prediction, identifying it with the linear prediction z-transform,
which considers infinitely large times.
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Further, we discuss the combination of DMFT for interacting electrons with the single-
site approximation for disorder, the coherent potential approximation (CPA), and extend
the combined scheme to off-diagonal disorder. For this purpose, we review the Blackman–
Esterling–Berk (BEB) formulation of the CPA (section 6.4). We illustrate its ideas using
tensor diagrams and provide an efficient implementation. The structure of the BEB
effective medium is discussed, and we propose a concentration scaling that resolves some
of its peculiarities. The limit of independent components for vanishing hopping between
different components is discussed and solved analytically for the Bethe lattice with a
general coordination number. We obtain the same concentration scaling of the bandwidth
as found in the split-band limit for large disorder strength. While not providing a formal
proof, we show how the BEB formulation can intuitively be combined with DMFT to
treat interacting electrons in multicomponent alloys on a local level (chapter 7). As an
example, we apply the algorithm to a Bethe lattice with an infinite coordination number,
showing results that exhibit alloy band insulator to correlated metal to Mott insulator
transitions.

Application to half-metallic ferromagnets. We apply the presented methods to models
of half-metallic ferromagnets (chapter 8). We consider a Bethe lattice with a static spin
splitting to produce a half-metal and investigate its spectral function. This problem was
studied previously using a simplified Monte Carlo method. Applying the Padé analytic
continuation to the self-energy instead of the Green’s function, we are able to produce
reliable spectral functions. These spectra agree with zero-temperature results obtained by
the DMRG+TDVP tensor network method, which produces results directly on the real
axis without the need for an analytic continuation. Further, we investigate half-metallic
ferromagnets in bilayers interfaced with a metallic, band insulating, or Mott insulating
layer. Charge reconstruction at the interface of the layers induces metallicity; in spite of
a large Hubbard U , we observe quasiparticle states in the Mott insulating layer.
Further, we study the transport through a single half-metallic layer sandwiched by

metallic non-magnetic leads within the Meir–Wingreen formalism (chapter 9). This
allows for a transparent calculation of the transmission in the presence of the Hubbard
interaction. We identify bound and resonant states by analyzing the poles of the Green’s
function in the central layer. For small coupling between the leads and the central layer,
we find resonant states which enhance the transmission. For large coupling, on the other
hand, we find bound states which do not contribute to the transmission. As a result, by
modifying the doping of the weakly coupled central region, the transmission can be tuned
to be strongly polarized.

Outlook. The BEB+DMFT algorithm could be further formalized by providing a
rigorous derivation. Due to its similarity with the well-known CPA+DMFT algorithm,
it should be feasible to generalize the existing proofs to off-diagonal disorder. Further
investigations of the phase diagram of the Anderson–Hubbard model for off-diagonal
disorder will be interesting. For vanishing hopping between the components, the self-
consistency equations decouple in the components. Thus, it becomes clear that in this
limit, a phase exits where one component is Mott insulating while the other remains
metallic. The Mott insulator transition can also be tuned by the concentration, as it
modifies the effective bandwidth of the components. It would be interesting to study
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the evolution of this phase in terms of the hopping parameter between the different
components. Combining the present formalism with band-structure calculations, it can
be extended to real materials.
More realistic models of half-metallic ferromagnets could be investigated, like the

frustrated face-centered cubic lattice, as the ferromagnetic phase can be stabilized for
this lattice without a static magnetic splitting. Furthermore, half-metallic alloys could be
studied using the BEB+DMFT algorithm as we expect interesting physics in the presence
of both, disorder and interaction.

The transmission calculations could also be extended to larger central regions. In this
case, the coupling between the leads and the interacting region is described by matrices
which break the proportionality condition of the Meir–Wingreen formalism. Therefore, it
is decisive to employ the transmission formula for the general case.
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A. Matsubara sum and Fourier
transform

The DMFT self-consistency equations are algebraic in the frequency domain; the CT-QMC
impurity solver, on the other hand, works in imaginary time. Thus, the self-consistency
equations on the imaginary axis require the transformation between Matsubara frequencies
and imaginary times. The imaginary time Green’s function

GÂ,B̂(τ − τ ′) := −
〈
T Â(τ)B̂(τ ′)

〉
= −

〈
T Â(τ − τ ′)B̂

〉
, (A.1)

where T denotes the time ordering, is by definition periodic in (imaginary) time. Mathe-
matically, a clear recipe is given by the Fourier transform:

G
(n) = 1

2

∫ β

−β
dτG(τ)eiωnτ (A.2)

and its inverse

G(τ) = 1
β

∞∑
n=−∞

G
(n)e−iωnτ , (A.3)

with the Matsubara frequencies iωn = iπn/β. We focus on anti-periodic fermionic
Green’s functions, where only the odd frequencies, iωn = (2n+ 1)π/β, contribute; these
are accordingly referred to as fermionic Matsubara frequencies. Therefore, the Fourier
transforms of fermionic Green’s functions simplify: The Fourier integral can be reduced
to an integration over half the interval

G(n) := G
(2n+1) =

∫ β

0
dτG(τ)eiωnτ (A.4)

and the Fourier sum contains only the odd frequencies

G(τ) = 1
β

∞∑
n=−∞

G(n)e−iωnτ . (A.5)

Static quantities can be calculated from the Matsubara sum of the corresponding Green’s
functions〈

B̂Â
〉

= GÂ,B̂(0−) = 1
β

∞∑
n=−∞

G
(n)
Â,B̂

e−iωn0− ; (A.6)

like for example the occupation 〈n̂〉 = Gĉ,ĉ†(0−) with Â = ĉ and B̂ = ĉ†.
While these equations seem simple enough, they have to be treated with care in

numerics. The main issues are the following:
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Figure A.1.: Poles εm and corresponding residues rm of the example Green’s functions given by
250 equidistant poles. The crosses mark the value of the residues rm, the vertical lines indicate
their position εm.

1. We can only calculate a finite number of Matsubara frequencies, thus the Matsubara
and Fourier sum eq. (A.5) have to be truncated.

2. We calculate the imaginary time Green’s function G(τ) only on a grid, discretizing
the Fourier integral eq. (A.4).

Alternative techniques exist, most notably sampling the Matsubara Green’s function G(n)

directly using nonuniform fast Fourier transform (NUFFT) [98]. Another approach is
working with a polynomial basis like Legendre polynomials [97]. Here, we only focus on
the simple approach of transforming a sampled imaginary-time Green’s function. The
algorithms discussed in this appendix are implemented in [C2].

Test case. Throughout this chapter we use the same example problem, which is analyt-
ically solvable, to benchmark the numerical algorithms. We choose an example Green’s
function

G(z) =
250∑
m=1

rm
z − εm

(A.7)

given by 250 equidistant poles. The residues are chosen according to the simple cubic
DOS [172, 208, 209], shifted by the chemical potential µ = 0.2 and normalized to∑
m rm = 1. Figure A.1 shows its poles and residues. The particular choice of example

Green’s function does not affect the general results. However, it is essential that the
example is away from particle whole symmetry. The symmetry leads to error cancellations,
and would give the impression that the algorithms are more accurate.
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A.1. Matsubara and Fourier sum
The Fourier summation eq. (A.4) can be expressed as the contour integral

G(τ) = 1
β

∞∑
n=−∞

G(n)e−iωnτ =
−

1
2πi
∮
L dzG(z)f(z)e−zτ if τ ∈ (−β, 0)

1
2πi
∮
L dzG(z)[1− f(z)]e−zτ if τ ∈ (0,+β)

(A.8)

via the analytic continuation G(z) of the Matsubara Green’s function G(n) = G(iωn),
where f(z) is the Fermi function

f(z) = 1
eβz + 1 . (A.9)

The contour L can be chosen parallel to the real axis

<z

=z

L

=̂ <z

=z

L (A.10)

where the shift into the imaginary half-planes η has to be smaller than the zeroth
Matsubara frequency η < ω0 = π/β. The contour integral is helpful, to check the
accuracy of the sums, as it can be evaluated exactly for simple Green’s functions.

A.1.1. Example: occupation of the single-pole Green’s function
The prime example for a static Matsubara sum is the occupation number

〈n̂〉 = Gĉ,ĉ†(τ = 0−) = 1
β

∞∑
n=−∞

G
(n)
ĉ,ĉ†e

iωn0+
, (A.11)

where G(n) is the diagonal one-particle Green’s function. The Matsubara Green’s function
is asymptotic equivalent to G(n) ∼ 1/iωn as n → ±∞, thus the convergence of the
summation is problematic. It is instructive to consider the simplest Green’s function
G(z) = 1/z as an example.
Using the analytic continuation, eq. (A.11), it is trivial to evaluate the occupation

number of the single-pole Green’s function G(z) = 1/z exactly:

〈n̂〉 = f(0) = 1
2 . (A.12)

If we symmetrically truncate the Matsubara sum after N positive and negative frequencies,
we obtain, on the other hand,

1
β

N−1∑
n=−N

1
iωn

eiωn0+ = 1
β

N−1∑
n=−N

1
iωn

= 1
β

N−1∑
n=0

[ 1
iωn

+ 1
−iωn

]
= 0. (A.13)
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No matter, how many frequencies we take into account, the truncated sum yields the
wrong result 〈n̂〉 ≈ 0. We cannot expect naively truncated Matsubara summations to
yield the correct result. In this example, the entire weight of 1/2 comes from the infinitely
large frequencies combined with the convergence generating factor exp(iωn0+). It is
essential, to first take the limit N →∞, and to afterwards let 0+ go to 0, dropping the
convergence generating phase factor.

Integral test. The truncation error can be estimated using the integral test [210]. Let
h(x) be a monotonously decreasing function, then∫ ∞

N
dxh(x) ≤

∞∑
n=N

h(n) ≤ h(N) +
∫ ∞
N

dxh(x). (A.14)

Note that the function has to be non-negative h ≥ 0 for the integrals and sum to
converge. The first inequality approximates the integral by the left Riemann sum
with unit steps; this is an upper bound as the function is monotonously decreasing.
Analogously, the second inequality corresponds to the right Riemann sum, as can be seen
by subtracting the term h(N). The integral test eq. (A.14) allows calculating boundaries
of the truncation error if the asymptotic limit of G(z) has been reached. We assume
the Green’s function in consideration decays like 1/iωn for large Matsubara frequencies.
Ignoring the convergence generating factor exp(iωn0+), the weight of the truncation after
any finite N is logarithmically divergent

1
β

∞∑
n=N

1
ωn
≥ 1

2π

∫ ∞
N

dx 1
x+ 1/2 = 1

2π ln x
∣∣∣∣∞
N+1/2

. (A.15)

In fact, the integral test yields the exact value of f(0) = 1/2 for the truncated weight.
We split the summation in the three parts

1
β

∞∑
n=−∞

1
iωn

eiωn0+ = 1
β

N−1∑
n=−N

1
iωn

+ 1
β

∞∑
n=N

1
iωn

eiωn0+ + 1
β

−N−1∑
n=−∞

1
iωn

eiωn0+

= 2
β

∞∑
n=N

1
ωn

sin
(
ωn0+

)
.

(A.16)

We can neglect the convergence generating factor in the first addend because it is a finite
sum. As shown before in eq. (A.13), this sum vanishes by symmetry. The remaining term
of eq. (A.16) can be estimated using the integral test.1 We calculate the integral

lim
η↘0

2
β

∫ ∞
N

dxsin(ωxη)
ωx

= lim
η↘0

1
π

∫ ∞
ωNη

dy sin(y)
y

= 1
2 , (A.17)

where we keep the order of the limits: first integrating till infinity and then letting η go to
zero. The result is independent of N , as for any finite N we perform the full integration
from zero to infinity. Thus, the integral test yields the sharp bounds

1
2 ≤

 1
β

∞∑
n=N

1
iωn

eiωn0+ + 1
β

−∞∑
n=−N−1

1
iωn

eiωn0+

 ≤ 1
2 + 2

β

sin(ωN0+)
ωN

= 1
2 , (A.18)

therefore, the whole contribution comes from frequencies at infinity. Therefore, at least
the 1/z asymptote of the Green’s function has to be treated analytically.

1For any finite value instead 0+, the summand is in fact not monotonously decreasing. We neglect
mathematical rigor here, and simply ignore this fact.
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A.1.2. Truncation error estimate
In the following, we provide an error estimate, that enables us to judge the number of
Matsubara frequencies which is necessary for an accurate summation. In the following,
we assume that we know at least how to handle the high-frequency asymptote 1/z of the
Green’s functions. More precisely, we assume that G̃(n) ∼ a(iωn)−k−1 as n → ∞, with
k > 0; in this case the convergence generating factor exp(iωn0+) does not contribute and
can be omitted. We define the truncation error

T (N) =
∣∣∣∣∣∣ 1β

∞∑
n=−∞

G̃(n) − 1
β

N−1∑
n=−N

G̃(n)

∣∣∣∣∣∣. (A.19)

For simplicity, we restrict the calculations to diagonal Green’s function elements with the
symmetry G(−iωn) = G∗(iωn), thus we can simplify the truncation error to the sum over
the real parts at positive Matsubara frequencies

T (N) = 2
β

∣∣∣∣∣
∞∑
n=N
<G̃(n)

∣∣∣∣∣. (A.20)

Again, we employ the integral test eq. (A.14), however, G̃(n) is unknown for n ≥ N .
Knowing the high-frequency behavior, we can however find a function g(x) > 0 with∣∣∣G̃(n)

∣∣∣ ≤ g(x) ∀x > N . Thus, eq. (A.14) provides an upper limit of the truncation error:

T (N) ≤ 2
β

∞∑
n=N

∣∣∣<G̃(n)
∣∣∣ ≤ 2

β

∞∑
n=N

g(n) ≤ 2
β

∫ ∞
N−1

dxg(x). (A.21)

We assume, that for large enough n, G̃(n) is asymptotic to G̃(n) ∼ a(iωn)−k−1. Thus,
assuming N is large enough, there is a constant c ≥ a such that

∣∣∣G̃(n)
∣∣∣ ≤ cω−k−1

n =
g(n) ∀n ≥ N . The integral test yields the estimate

T (N + 1) ≤ 2
β

∫ ∞
N

dxcω−k−1
x = 1

π

∫ ∞
ωN

dωcω−k−1

= c

πkωkN
= cβk

kπk+1(2N + 1)k
= O

(
(β/N)k

)
.

(A.22)

To obtain a truncation error smaller than δ, we thus need to include at least

N ≥ k

√
c

kδ

β

2π + 1
2 (A.23)

positive Matsubara frequencies. We remind, this estimate assumes that we have reached
the asymptotic limit G̃(n) ∼ iω−k−1

n . The constant c can be estimated in practice by
fitting the function g(n) to the available data points G̃(n). If applied correctly, the error
estimate is an upper bound for all imaginary times τ , not just the static sum at τ = 0−,
as the absolute in eq. (A.21) is applied to every summand, ignoring the phase factor. For
τ approaching β/2, the exact truncation error eq. (A.19) is typically much smaller than
the estimate, as the phase factors cause cancellations.
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A.1.3. Treatment of high-frequency behavior
To improve the accuracy of the Fourier summation, we need to treat the high-frequency
behavior of the Green’s function exactly. We propose a simple function g(x), which can
be summed exactly and rewrite the sum

1
β

∞∑
n=−∞

G(n)e−iωnτ = 1
β

∞∑
n=−∞

[
G(n) − g(iωn)

]
e−iωnτ + 1

β

∞∑
n=−∞

g(iωn)eiωnτ (A.24)

The function g(x) needs to be chosen such that it cancels the high-frequency behavior of
G(n). We truncate only the sum over the difference [G(n) − g(iωn)], reducing the error as
shown in the previous section. To treat the 1/z asymptote, we can choose g1(x) = 1/x
which sums up

1
β

∞∑
n=−∞

1
iωn

e−iωnτ =
+1

2 if τ ∈ (−β, 0),
−1

2 if τ ∈ (0,+β).
(A.25)

To additionally include a c/z2 behavior, the function g2(x) = 1/(x− c) can be used which
sums to

1
β

∞∑
n=−∞

1
iωn − c

e−iωnτ =
f(c)e−cτ if τ ∈ (−β, 0),
−[1− f(c)]e−cτ if τ ∈ (0,+β).

(A.26)

In general, the Green’s function G(z) has the high-frequency behavior

G(z) =
∞∑
k=0

mk

zk+1 , (A.27)

with the high-frequency moments mk. These moments can e.g. be calculated via the
equation of motion. They also equal the frequency integral

mk = − 1
2πi

∫
L

dzG(z)zk =
∫ ∞
−∞

dωA(ω)ωk, (A.28)

with the spectral function 2πiA(ω) = limη↘0[G(ω − iη) − G(ω + iη)]. Thus, the high-
frequency moments are the moments of the spectral function. Furthermore, the moments
describe the discontinuity at τ = 0 on the imaginary axis:

lim
ε↘0

[G(k)(−ε)− G(k)(+ε)] = − 1
2πi lim

ε↘0

∫
L

dzG(z)zk{f(z)e+zε + [1− f(z)]e−zε}

= mk, (A.29)

where G(k)(τ) is the k-th derivative G(k) = dk
dτkG(τ).

To treat a larger number of moments mk a linear superposition of functions g2(x) with
different constants is adequate. The moments of g2(x) are the powers of the constant
mk = ck. Thus, the function

gM(x) =
M∑
m=1

rm
x− εm

(A.30)
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Figure A.2.: Accuracy of Fourier sum including the first K moments. The inverse temperature
is β = 10, 512 positive Matsubara frequencies are used; the Green’s function is given by fig. A.1.
The dotted line shows the corresponding error estimate eq. (A.22) using the moment c = mK+1.

has the moments mk = ∑
m rmε

k
m. Let m be the vector of desired moments (m)k = mk,

then the moments are given by the matrix equation

m = V Tr (V )mk = εkm (A.31)

where r is the vector of residues (r)m = rm, and V is the Vandermonde matrix of the
poles εm. For a given set of poles εm, the linear equation can easily be solved. The
Vandermonde matrix is known to be ill conditioned, as we consider only a few moments
and therefore small matrices, the condition number is unproblematic. The problem is
similar to polynomial interpolation, for which the Chebyshev points are known to be a
good choice. We choose the Chebyshev points [211], that are the nodes of the Chebyshev
polynomials, as poles εm

εm = cos
(2m− 1

2M π
)

= sin
(
M − 2m+ 1

2M π
)

m ∈ {1, . . . ,M}. (A.32)

For these points, the Vandermonde matrix is better conditioned [212, 213] than for
equidistant points. Specific algorithms for solving Vandermonde systems are known, also
in particular on the Chebyshev points [115, 213–215]. We consider only small matrices,
therefore we directly solve eq. (A.31) using a standard algorithm instead of an algorithm
tailored to the Vandermonde system. Figure A.2 shows the absolute error for the example
Green’s function eq. (A.7). For the chosen parameters, using N = 4 moments yields an
accuracy of 10−13 close to machine precision. Using more moments N > 4, the Fourier
transform becomes numerically exact. For numbers N ≥ 15 numerical errors start to
accumulate, and the results gradually get worse.
If not enough moments are known, additional moments can be fit using an equality-

constrained least-squares algorithm [115]. We define the kernel matrix

(K)nm = 1
iωn − εm

. (A.33)
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The residues rm of a function gM(x) can be determined by solving the linear equation

g ≈Kr constrained to m = V Tr, (A.34)

where g is the vector of known values (g)n = G(n). This is a least-squares problem with
equality constrains, for its solution, Golub and Van Loan [115] provide an algorithm
using the QR-decomposition. Of course, gM (x) needs to reproduce the tail of the Green’s
function G(n), not the whole function itself. For this purpose, we weight the rows of the
least-squares problem eq. (A.34) by left-multiplying the diagonal matrix W = diag(ωMn ).
If error estimates for the Green’s function G(n) are available, they can also be incorporated
into the matrix W . To obtain real-valued residues and thus moments, the kernel K and
g in eq. (A.34) can be split into real and imaginary part to obtain the real equation

[W<g,W=g]T ≈ [W<K,W=K]Tr constrained to m = V Tr. (A.35)

Solving this equation yields the function gM(x), eq. (A.30), that exactly matches the
known moments mk, additional moments are approximate by the least-squares fit of the
tail of G(n).
We conclude, that the truncation error for Fourier sum eq. (A.3) can be reduced

by using eq. (A.24) with a suitable auxiliary function gM(z), eq. (A.30). For known
high-frequency moments mk eq. (A.31) provides gM(z), additional moments can be fit
using eq. (A.35).

A.1.4. Gibbs oscillation of Fourier sum
Truncating the Fourier sum after N Matsubara frequencies equals approximating G(n) != 0
for n ≥ N . Thus, we introduce an artificial jump. Such a jump or step function is known
to cause oscillations for the Fourier transform, this is known as the Gibbs phenomenon.
Using a truncated Fourier sum, we observe oscillations around τ = 0 and τ = β. This
effect can be reduced, if G(n) != 0 is replaced by a tail explicitly going to 0 at finite n > N .
E.g. we choose

G(n) != G(N−1)

2

[
cos
(
π
n−N
N + 1

)
+ 1

]
for 2N > n > N. (A.36)

While this tail is not physically motivated, it is a better heuristic than the truncation,
which amounts to the equally unphysical choice of setting all elements 0. Figure A.3
shows that the heuristic choice reduces the errors.

A.1.5. Truncation as approximate Fermi function
From the analytic continuation eq. (A.8), we realize that the truncation of the Matsubara
sum is equivalent to the approximation of the Fermi function by a finite number of poles.
The Fermi function has simple poles at the Matsubara frequencies with residue −β; it
can be written as the infinity sum

f(z) = 1
2 −

∞∑
n=−∞

β

z − iωn
. (A.37)
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Figure A.3.: Absolute error of the truncated Fourier sums (blue) compared to the tail (orange)
eq. (A.36). The inverse temperature is β = 10, 512 positive Matsubara frequencies are used; the
Green’s function is given by fig. A.1. The inset shows the difference between the exact Green’s
function using a symmetric logarithmic scale to show the oscillations.

Truncating the Matsubara sum after N positive and negative Matsubara frequencies
amounts to approximating the Fermi function by 2N poles:

f(z) ' fN(z) = 1
2 −

N−1∑
n=−N

β

z − iωn
. (A.38)

While the Fermi function is a strictly monotonous decreasing function, the approximation
fN(z) has a local maximum and minimum on the real axis. The approximation fN(z) is
converging only slowly, requiring large N for a decent approximation.
Instead of using the exact 2N poles, one can search for a given N the 2N poles

which approximate the Fermi function best. In essence this is finding the [2N/2N ] Padé
approximant [216, 217]. Ozaki [216] provides the poles izp and corresponding residues
−βrp. Just like the Matsubara frequencies, the poles izp are purely imaginary. We denote
izp Padé frequencies. This approximation writes

f(z) ' fpN(z) = 1
2 −

N−1∑
p=−N

βrp
z − izp

. (A.39)

Figure A.4 compares the approximation using Matsubara frequencies iωn, eq. (A.38),
and Padé frequencies izp, eq. (A.39). The left plot compares the exact result (black)
on the interval ω/β ∈ [0, 100]. The Matsubara approximation fN(z) agrees only close
to the Fermi level, thus the approximation is only applicable for small band-widths or
high temperature. The Padé approximation converges much faster, already for N = 25 it
follows the exact result until machine precision is reached. It is instructive to consider
the error integrated from to Fermi level ω = 0 up to the distance ω = d

ε(d) =
∫ d

0
dω[fN(ω)−f(ω)] = d

2−β
N∑
n=0

ln
(
1 + (d/ωn)2

)
−β ln

(
1

1 + exp(−βd)

)
−β ln(2),
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Figure A.4.: (a) Approximations of the Fermi function using 2N poles. Solid lines use Nm

positive Matsubara frequencies eq. (A.38), dashed lines use Np positive Padé frequencies
eq. (A.39); the black solid line is the exact Fermi function. (b) Distance d(ε) till integrated
error eq. (A.40) reaches ε.

(A.40)

or rather its inverse, the accuracy distance d(ε). This is the distance up to which integrals
are accurate up to ε; for a desired accuracy we require the bandwidth to be less than d(ε).
Figure A.4(b) shows the accuracy distance for both approximations. Padé frequencies
(dashed) exhibit much larger accuracy distances even for small numbers of poles, and the
distance grows faster with the number of poles. For the Matsubara approximation the
distance is roughly proportional to d(ε) ∝ N1/2; while for the results shown in fig. A.4(b),
the Padé approximation exhibits an asymptote d(ε) ∼ c(ε)N1.9.
The frequencies and residues can be calculated as the generalized eigenvalue prob-

lem [216, 217]

Avp = (βzp)Bvp, with Aij = −δij(2i+ 1), Bij = 1
2(δij+1 + δi+1j); (A.41)

the corresponding residues are given by

rp = 1
4V [0,:](V −1)[:,0](βzp)

2, (A.42)

where V is the matrix of right eigenvectors V [:,p] = vp. Roughly the first 61% of the
Padé frequencies coincide with the Matsubara frequencies, the rest of the frequencies are
located at increasing distances, such that large imaginary frequencies are covered [216].
Such frequencies are suitable for an integral over the Green’s functions: The poles of the
Green’s function are located on the real axis, therefore it becomes featureless for large
imaginary frequencies. A suitable imaginary mesh should have many points close to the
real axis, and few points deep in the imaginary plane.
Compared with the Matsubara frequencies, the usage of Padé frequencies yields ex-

tremely accurate results for static quantities, that is the limit τ = 0+ of the integral
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eq. (A.8):

− 1
2πi

∮
L

dzg(z)f(z)e−z0+ ≈
N−1∑
p=−N

rpg(izp). (A.43)

The transformation to and from imaginary time, however, is not as simple. Formally, the
imaginary time Green’s function for τ > 0 can be expressed as the linear equation

G(τ) = 1
2πi

∫
L

dzG(z)[1− f(z)]e−zτ ≈ 1
β

N−1∑
p=−N

rpG(izp)e−izpτ , (A.44)

which can readily be inverted. In practice, this approximation turns out to be rather
poor for small N , as the Fourier basis is strongly truncated. Furthermore, it does not
fulfill the periodicity exp(−iωn[τ + β]) = − exp(−iωnτ) of the imaginary time Green’s
function. While the Green’s function G(z) becomes featureless deep in the imaginary
plane, the phase factor exp(−zτ) rapidly oscillates. These oscillations are not captured
by the mesh izp, which is sparse for large imaginary frequencies. Thus, f(z) should not
be treated on its own, instead an accurate approximation for

f(z) exp(−zτ) = e−zτ
ezβ + 1 (A.45)

has to be sought.
To circumvent the problem, we propose the use of a basis for the Fourier transform.

We consider single-pole functions as basis functions. In principle, an infinite number of
poles and therefore basis functions would be necessary to describe a Green’s function in
the thermodynamic limit. Finding the correct poles is equivalent to the hard problem of
analytic continuation. For our purpose, this is not an issue as we evaluate the equation
only in the imaginary plane far away from the poles. The main difficulty of analytic
continuation is precisely that there is an infinite number of spectral functions that match
the imaginary time/frequency data for a given accuracy. We are only interested in the
data on the imaginary axis, therefore the precise pole structure is of little relevance.
We introduce the single-pole basis functions

g(z, εm) = 1
z − εm

, g(τ, εm) = −[1− f(εm)]e−εmτ for τ ∈ (0, β). (A.46)

For a given set of poles εm, the coefficients wm are fit to the Green’s function

G(izp) ≈
∑
m

wmg(izp, εm) (A.47)

which is a standard linear least-squares problem. Equality constraints can readily be
included [115], to fix known high-frequency moments (e.g. ∑m ωm = 1) or the occupation,
cf. appendix A.1.3. The imaginary time Green’s function is reconstructed from the basis
functions

G(τ) ≈
∑
m

ωmg(τ, εm). (A.48)

The inverse transformation is analog, fitting the imaginary time Green’s function G(τ). The
fitting of the weights ωm is analogous to that of high-frequency moments in appendix A.1.3.
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Therefore, we choose the same poles, the Chebyshev points. We fix the number of poles
to the number of Padé frequencies. For the transformation iωn → τ , this results in
an overfitting of factor 2, as we get a separate equation for real and imaginary part.
Additionally, we scale the poles by a widening factorW > 0, which is left as an optimization
parameter. The least-squares problem can be weighted by the inverse variance 1/σ of the
data points, to account for errors in QMC data.

A.2. Fourier integral
We assume G(τ) to be sampled at equidistant time points τl. We approximate the integral
by a weighted sum over these sample points. Writing these sums in the form of a discrete
Fourier transform (DFT), the fast Fourier transform (FFT) algorithm can be employed
for an efficient evaluation. We define the inverse discrete Fourier transform (iDFT)

an = iDFT[Al] = 1
N

N−1∑
l=0

Alei2πnl/N . (A.49)

Note that we obtain G(τ) from a Monte Carlo algorithm, therefore we require algorithms
which are stable against noise.

Riemann sum. The standard approach is to approximate the Fourier integral eq. (A.4)
by the Riemann sum. To apply it to eq. (A.4), we discretize the interval [−β, β] into
N + 1 τ -points, with

τl = −β + 2βl/N,= −β + l∆τ l ∈ {0, 1, . . . N}. (A.50)

With this mesh, the Riemann sum for the full Fourier integral eq. (A.2) reads

G
(n) = 1

2

∫ β

−β
dτG(τ)eiωnτ ≈ β

N

N−1∑
l=0
Gleiωnτl , (A.51)

where Gl is the sample Gl ≈ G(τl) and iωn = iπn/β. Note that the integral contains
a jump of size 〈{A,B}〉 at τ = 0; this jump needs to be removed by hand else the
approximation is very crude. With τl = −β + l∆τ , we can shift the constant −β in the
prefactor exp(−iωnβ) = ±1. The bosonic Matsubara frequencies vanish by symmetry, so
we can use the negative sign for the whole expression

G
(n) ≈ − β

N

N−1∑
l=0
Gl exp(iωn∆τ l) = −β 1

N

N−1∑
l=0
Glei2πnl/N = −β iDFT[Gl]. (A.52)

We have approximately written the Matsubara Green’s function in terms of a iDFT. The
values at the bosonic Matsubara frequency vanish and can be discarded. Equation (A.52)
can be efficiently evaluated using FFT algorithms; algorithms exploiting the Hermitian
symmetry G(−n) = [G(n)]∗ of local Green’s functions are available.
The accuracy of the Riemann sum eq. (A.52) is determined by the discretization ∆τ .

The method is stable against the noise of quantum Monte Carlo. However, the error
grows with frequency as seen in fig. A.5. Increasing the number of mesh points, accuracy
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Figure A.5.: Accuracy of Riemann sum to approximate the Fourier integral. The inverse
temperature is β = 10, the interval [0, β] is discretized using Nτ τ -points; the Green’s function
is given by fig. A.1. The legend provides the maximum error, which is not shown as the plot is
truncated for large Matsubara frequencies.

improves and the increase in error shifts to higher frequencies.2 Accurate Matsubara sums,
however, need large numbers of Matsubara frequencies and therefore large frequencies.
This problem can be amended employing Filon integration [218–220], which is a technique
to integrate fast oscillating integrals.

Filon integration. We can employ standard techniques for oscillating integrals to im-
prove accuracy for large frequencies. Filon methods are a particular simple approach,
which come with little additional cost. Considering the continuous integral eq. (A.2),
we observe that for large frequencies |iωn| � ∆τ , the phase exp(iωnτ) oscillates rapidly
in τ , even on the scale of a discretization ∆τ ; the Green’s function G(τ) on the other
hand varies only slowly. At the Nyquist frequency iωN/2 = iπ/2∆τ , the phase function
performs a quarter oscillation exp

(
iωN/2∆τ

)
= i for every discretization step. Filon

methods account for the oscillating function by only approximating G(τ) and integrating
the phase exp(iωnτ) analytically. Thus, the Filon method takes more information into
account than the Riemann sum, which uses the known phase only at the sample points τl.
We split the integral at the sample points τl into intervals of the length ∆τ

G(n) = 1
2

N−1∑
l=0

∫ τl+1

τl

dτG(τ)eiωnτ =: 1
2

N−1∑
l=0

Il. (A.53)

As mentioned before, in the limit of high frequencies, the phase factor oscillates rapidly
on the interval [τl, τl+1], while G(τ) changes little for a sufficiently dense τ -mesh. Thus,
we approximate G|[τl,τl+1] (τ) by a simple function and evaluate the integral analytically.

2For setups symmetric with respect to the Fermi level, the Riemann sum is extremely accurate. In this
scenario it is the method of choice; in practice, however, this is a rather rare situation.
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A. Matsubara sum and Fourier transform

We choose a linear interpolation for the Green’s function:

G
∣∣∣∣
[τl,τl+1]

(τ) ≈ τl+1 − τ
τl+1 − τl

G(τl) + τ − τl
τl+1 − τl

G(τl+1). (A.54)

Higher order interpolations are not suitable for noisy Monte Carlo data, as they tend to
enhance the noise. Within this approximation, the integrals can be evaluated explicitly

Il ≈
∫ τl+1

τl

dτ G
∣∣∣∣
[τl,τl+1]

(τ)eiωnτ

= wnGl∆τeiωnτl + exp(iωn∆τ)− wn
∆τiωn

∆Gl∆τeiωnτl ,
(A.55)

with the weights wn = [exp(iωn∆τ)− 1]/iωn∆τ and the difference ∆Gl = Gl+1 − Gl. The
sum eq. (A.53) over these approximations (A.55) for the integrals yields the approximation

G(n) ≈ −β
(
wn iDFT[Gl]−

exp(iωn∆τ)− wn
∆τiωn

iDFT[∆Gl]
)
. (A.56)

Again, we can employ the inverse FFT algorithm for an efficient evaluation. The Filon
method is therefore of the same complexity as the Riemann sum, the computation is
only slightly more involved, as we have to perform two separate iDFTs and calculate two
weight factors. In the static limit iωn → 0, the weights are all one limiωn→0wn = 1, and
we recover the Riemann sum eq. (A.52).
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Figure A.6.: Accuracy of Filon method (solid line) compared to Riemann sum (dashed line)
to approximate the Fourier integral. The inverse temperature is β = 10, the interval [0, β] is
discretized using Nτ τ -points; the Green’s function is given by fig. A.1.

Figure A.6 compares the accuracy of the Filon method with the Riemann sum. For
the first few Matsubara frequencies, the accuracy of the two methods is comparable.
For larger Matsubara frequencies, however, the Filon method is orders of magnitudes
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Figure A.7.: Accuracy of Filon method (orange) compared to Riemann sum (blue) to approxi-
mate the Fourier integral in the presence of Gaussian noise. The black line indicates the variance
of the noise. The inverse temperature is β = 10, the interval [0, β] is discretized using 513
τ -points; the Green’s function is given by fig. A.1.
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Figure A.8.: Accuracy of Filon method compared to Riemann sum (dashed) to approximate
the Fourier integral for noisy QMC data, the rolling average over 10 frequencies is plotted to
increase readability. The QMC data is produced using 64 bins, the blue line corresponds to 107

measurements, the orange to 109 measurements, and the green is calculated from exact data
as comparison. The inverse temperature is β = 50, the interval [0, β] is discretized using 2049
τ -points; the Green’s function is given by fig. A.1.
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more accurate. Thus, this is the preferred method to obtain accurate high-frequency
data. This is also true for noisy data as shown by fig. A.7 for normal noise. If the noise
is larger than the accuracy of the approximation of the Fourier integral (first row), it
dominates the overall error and there is little difference between the methods. If the noise
is of the same magnitude or smaller than the accuracy of the approximation, the Filon
method is significantly more accurate for large frequencies. Figure A.8 shows real QMC
data: We calculate the non-interacting (U = 0) Green’s function G(τl) for eq. (A.7) using
the CT-HYB code. This provides realistic test data that can be compared to the exact
solution. Qualitatively the results are the same as in fig. A.7. For large frequencies the
Filon method significantly improves the accuracy of the Fourier integral. We conclude,
that Filon method should in general be preferred over a Riemann sum.

157





B. Laplace transform
We consider the retarded-/advanced-time Green’s function Gr/a(t) obtained from real-time
evolution. The Laplace transform yields the retarded/advanced Green’s function Gr/a(z)
in frequency domain:

Gr/a(z) =
∫ ∞
−∞

dtGr/a(t)eizt/~ with
=z > 0 for Gr,

=z < 0 for Ga.
(B.1)

This equation defines the retarded/advanced Green’s function in the upper/lower complex
half-plane. We write the complex frequencies as z = ω + iη, where ω denotes real
frequencies and η the shift into the imaginary plane. The retarded/advanced Green’s
function on the real-axis is defined by the limit

Gr/a(ω) := lim
η↘0

Gr/a(ω ± iη). (B.2)

This appendix discusses only the retarded Green’s function, the advanced Green’s function
can be treated analogous. We set ~ = 1 as usual, such that frequencies are given in units
of energy and times in units of inverse energy.

B.1. Test cases: analytic examples
Before discussing the numerical treatment of the Laplace transform eq. (B.1), we provide
examples with known analytic expressions. These examples allow to validate the accuracy
of numerical approximations. A main interest is the evaluation of spectral functions,
which requires knowledge of the Green’s function on the real-axis. Therefore, the pole
structure of the examples is relevant. We consider the three examples, simple poles, a
square-root branch cut, and a logarithmic branch cut with a finite jump of the spectral
function.
For the simple poles, we consider a Green’s function given by 10 poles with random

position εm and residue rm:

Gr(t) = −iΘ(t)
10∑
m=1

rme−iεmt, (B.3a)

G(z) =
10∑
m=1

rm
z − εm

. (B.3b)

For the branch cut, we consider the Bethe lattice with infinite coordination, with the
known analytic expression for the retarded-time Green’s function

Gr(t) = −iΘ(t)2J1(Dt)
Dt

eiµt, (B.4a)

G(z − µ) = 2z
D2

(
1−

√
1− z2/D2

)
, (B.4b)
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B. Laplace transform

where D is the half-bandwidth, µ the chemical potential which determines the center of
the spectral function, and J1(t) is the Bessel function of first kind. We fix the energy
scale as D ≡ 1, and consider the asymmetric spectrum centered around ω = 0.2 = −µ.
For the logarithmic branch cut, we consider the Green’s function corresponding to a

box-shaped DOS:

Gr(t) = −iΘ(t)sin(Dt)
Dt

eiµt, (B.5a)

G(z − µ) = 1
2D ln

(
z/D + 1
z/D − 1

)
. (B.5b)

The numerical treatment of the Laplace transform is particularly hard for this example,
as it contains a finite jump at the band-edge ω − µ = ±D.
Note, that the Green’s function for a finite number of simple poles oscillates without

decaying till infinite times, while the Green’s function for the two continuous DOSs decays
like 1/t (or faster) in time. Therefore, in the case of simple poles larger times are relevant
for the Laplace transform of the Green’s function than in the case of continuous DOSs.

B.2. Discretization
The time-evolution algorithms we employ are based on an equidistant time discretization,
thus we approximate the Laplace integral by the discrete Riemann sum

Gr(z) =
∫ ∞

0
dtGr(t)eizt ≈

∞∑
l=0

∆tGr(tl)eiztl , (B.6)

with tl = l∆t. This discretization in time of the Laplace transform yields a function which
is periodic in real frequencies. The approximate Green’s function fulfills the periodicity
condition Gr(ω + 2π/∆t + iη) = Gr(ω + iη). Therefore, such a discretized Laplace
transform only approximates the Green’s function on an interval ω ∈ [−π/∆t,+π/∆t],
and the approximation is expected to be of poor quality around the boundaries due to
the artificial periodicity.
Figure B.1 shows the effect of discretization for the Bethe Green’s function eq. (B.4).

We approximat eq. (B.6) by 104 time points using a trapezoidal rule, and evaluate the
transform for a large shift, η = 10−2, into the imaginary plane to focus on the discretization
error. The blue line shows a reasonable discretization of ∆t = 0.1, the relative error is
below 10−3. Visually, it is indistinguishable from the exact solution (black). Increasing
the discretization by a factor of 20 (orange) to ∆t = 2 hardly affects the imaginary part,
the real part on the other hand deviates strongly; the error increases to the order 0.1 to
1. The imaginary part is hardly affected by the discretization ∆t = 2, as it is contained
in the interval [−0.8, 1.2] ⊂ [−π/∆t,+π/∆t] (up to small tails due to the imaginary shift
η). The real part, on the other hand, is long-ranged, thus it is affected by the periodicity
due to the discretization. Increasing ∆t further by a factor of two (green), the imaginary
part exceeds the periodicity interval, and side lobes start to appear.
The discretized Laplace transform is closely related to the Z-transform in signal

processing. We introduce the new variable

y(z) = exp(iz∆t). (B.7)
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Figure B.1.: Discretized Laplace transform eq. (B.6) for a Bethe Green’s function eq. (B.4)
centered at −µ = 0.2. The solid lines show the imaginary part, the dashed lines the real part.
The Trapezoid rule is used with 104 time points, the shift is η = 10−2.

The discretized Laplace transform eq. (B.6) reads

Gr
(
y(z)

)
≈
∞∑
l=0

∆tGr(l∆t)yl. (B.8)

Its structure is analogous to a (unilateral1) Z-transform, which is typically written in
terms of a variable z replacing y−1. The change of variable y(z) maps contours parallel
to the real axis z = ω + iη onto circles in the complex plane:

y : <

=

− π
∆t + π

∆t

→ <

=

−1 +1
(B.9)

The radius of the circles is given by exp(−η∆t), for large shifts η →∞ the circles shrink
to a single point at the origin y = 0. This mapping encodes the periodicity in real
frequencies ω, caused by the discretization of the Laplace transform: y(z+ 2π/∆t) = y(z).
Thus, the band −π/∆t < <z < +π/∆t of the upper complex half-plane is mapped to
the unit ball in the y-plane. Both, the Padé-Fourier algorithm appendix B.5, and the
linear prediction appendix B.6 employ this structure.

1That is, the sum contains only the non-negative values of l.
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B. Laplace transform

In practice, the discretization error poses no problem because typical values of ∆t are
sufficiently small. Keep in mind, that the discretization tends to affect the real part
stronger than the imaginary part as seen in fig. B.1. Instead of the Riemann sum in
eq. (B.6), more accurate quadrature schemes for the sampling points tl should be chosen.
The corresponding weights are assumed to be included in Gr(tl) to keep the notation
simple. The examples we present only consider the trapezoidal rule; that is the first,
l = 0, and last, l = ∞, point are weighted by 1/2. Other quadrature schemes like the
Simpson rule can readily be chosen, to reduce the discretization error.
Throughout the rest of this appendix, we will use the discretization ∆t = 0.1 using a

trapezoidal rule. Thus, fig. B.1 is the reference for the discretization error (blue). Errors
of the same magnitude can be attributed to the discretization.

B.3. Truncation
More crucial than the discretization eq. (B.6), is the fact, that we can only evolve up to a
maximal time tL:

Gr(z) ≈
L∑
l=0

∆tlGr(tl)eiztl ; (B.10)

we have to truncate the series after the time point tL < ∞. This corresponds to the
approximation Gr(tl>L) != 0 and causes oscillation similar to the Gibbs phenomenon.
Evidently, the truncated sum does not capture the high frequency behavior, as the limit
reads

lim
z→i∞

L∑
l=0

∆tlGr(tl)eiztl = ∆t0Gr(0) 6= 0, (B.11)

but we are mainly interested in the opposite limit =z ↘ 0.
Let’s investigate the truncation error of the Laplace transform for the example of a

single-pole Green’s function

Gr(t) = −iΘ(t)e−iεt, G(z) = 1
z − ε. (B.12)

Truncating the Laplace integral eq. (B.1) at a finite time tL, yields the approximation

Gapprox(z) =
∫ tL

0
dtGr(t)eizt = G(z)− ei(z−ε)tL

z − ε = G(z)[1− ei(z−ε)tL ]. (B.13)

The magnitude of the error is determined by the product of the shift η and the maximal
time tL, and error oscillates with real frequencies ω:

G(z)−Gapprox(z)
G(z) = ei(ω−ε)tLe−ηtL . (B.14)

If the error is large, the oscillations are problematic as the imaginary part of eq. (B.13)
can change its sign:

=Gapprox(z) = =G(z)
[
1− cos([ω − ε]tL)e−ηtL

]
−<G(z) sin([ω − ε]tL)e−ηtL . (B.15)
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This is especially relevant where the spectral weight is small, e.g., around band-edges. To
keep the truncation error small, a contour z = ω + iη with a sufficiently large shift η into
the upper complex half-plane is necessary.

For large shifts η the error of truncating Gr(t) is exponentially suppressed by the factor
exp(−ηt) for large times. However, to obtain spectra, we need to evaluate the retarded
Green’s function Gr(z) at the real axis A(ω) = − 1

π
=G(ω + i0+). Therefore, we analyze

the difference between the Green’s function G(ω + i0+) we are interested in and the
Green’s function G(ω + iη) on the shifted contour. A finite shift η into the complex
plane acts as a broadening of the Green’s function G(z); this can be shown using the
convolution theorem. We define the auxiliary function

hη(t) = exp(−η|t|); (B.16)

the absolute |t| is necessary for the existence of the Fourier transform F[hη](ω). In terms
of this helper function, we can interpret the Laplace transform eq. (B.1) as the Fourier
transform

G(ω + iη) =
∫ ∞
−∞

dtGr(t)hη(t)eiωt =: F[Gr · hη](ω), (B.17)

where we omit the infinitesimal shift i0+ to shorten the notation. Applying the convolution
theorem, we can write the Green’s function

G(ω + iη) = (F[hη] ∗G)(ω) = 1
2π

∫ ∞
−∞

dω′ F[hη](ω − ω′)G(ω′)

=
∫ ∞
−∞

dω′ 1
π

η

(ω − ω′)2 + η2
G(ω′), (B.18)

this is the convolution of the Green’s function at the real axis G(ω+ i0+) with the Cauchy
distribution (also known as Lorentz distribution).

To summarize, for an accurate evaluation of the Laplace transform a sufficiently large
shift η is necessary to keep the truncation error small; on the other hand, the Green’s
function G(ω + iη) on the shifted contour yields a broadened spectrum compared to
G(ω + i0+) as it is convoluted with the Cauchy distribution. In the following, we present
three algorithms to reduce the truncation error, with the goal to obtain good spectra,
that is good approximations for the imaginary part of the Green’s function at the real
axis η ↘ 0. The first algorithm is based on a Taylor expansion in a finite shift η giving
sharper spectra in spite of η. The second algorithm employs a Padé algorithm, and the
third extends the time points by linear prediction; these algorithms reduce the truncation
errors allowing for smaller shifts η.

B.4. Expansion to the real axis
We assume, that the truncation error is kept small by using a sufficient large shift η
into the upper complex half-plane. To improve the spectra obtained from the Green’s
functions evaluated at this finite shift η, an expansion in η can be performed as I proposed
in [W3]. The retarded Green’s function Gr(ω+ iη) on the contour parallel to the real axis
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shifted by a fixed η > 0 into the upper complex half-plane corresponds to the Laplace
transform:

G(ω + iη) =
∫ ∞

0
dtGr(t)ei(ω+iη)t = F[Gr · hη](ω) =: Fη[Gr](ω). (B.19)

This Laplace transform can be interpreted as the Fourier transform of the Green’s function
Gr(t) damped by the factor exp(−ηt); we denote this transformation by Fη. The spectrum
is given by the retarded Green’s function on the real axis G(ω + i0+). Introducing an
arbitrary finite parameter η, the Green’s function on the real axis can be written in terms
of the damped Fourier transform Fη:

G(ω + i0+) = lim
η′↘0

Fη′ [Gr(t)](ω) = Fη[etη
−Gr(t)](ω) (B.20)

where η− = η − 0+. The second equality replaces the limit η′ ↘ 0 by the finite shift η:

lim
η′↘0

e−η′t = e−ηteη−t. (B.21)

Next, we rewrite the exponential function exp(η−t) as its series representation:

G(ω + i0+) = Fη[etη
−Gr(t)](ω) =

∑
k

1
k! (η

−)k Fη[tkGr(t)](ω). (B.22)

Truncating the sum after a finite order k = K <∞, we can drop the infinitesimal shift
in η− and write η instead. The first term, k = 0, corresponds to the Green’s function on
the shifted contour G(ω + iη), higher order terms give systematic corrections:

G(ω + i0+) = G(ω + iη) + η Fη [tGr(t)] (ω) + η2

2 Fη
[
t2Gr(t)

]
(ω) +O

(
η3
)
. (B.23)

For a given contour determined by the shift η, this equation allows to systematically
calculate corrections to approach the real axis z = ω + i0+. We retain the exponential
damping factor exp(−ηt), in return we have to include the kth power tk for the kth
expansion order. The expansion is systematic in η, for the expansion order K we can
estimate the ‘error’ of our spectra by ηK+1/(K + 1)!. We can also calculate the next order
K + 1 and visually inspect the changes, to see if features exist which might be washed
out by the shift η. Equation (B.23) can be interpreted as an approximate deconvolution
of eq. (B.18). We note, that the factor tk can be generated by differentiating with respect
to the shift η,

∂k

∂ηk
G(ω + iη) = Fη[(−t)kGr(t)], (B.24)

thus the expansion is indeed a Taylor expansion in η.

B.4.1. Examples
Figure B.2 compares the truncated Fourier transform eq. (B.10) with the expansion
algorithm eq. (B.22) for a Green’s function given by 10 poles with random position εm
and residue rm, eq. (B.3). A maximal time tL = 150 and a shift η = 5× 10−2 are used,
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Figure B.2.: Comparison of Laplace transforms for 10 poles eq. (B.3). The vertical black lines
indicate the position of the poles εm, their height equals 30rm. Time steps of ∆t = 0.1 are used
up to a maximal time of tL = 150, the shift is η = 5× 10−2. The trapezoid rule is used for the
finite DFT eq. (B.10) and the expansion algorithm eq. (B.22).

such that exp(−ηtL) ≈ 6× 10−4. The shift is chosen approximately as the smallest shift
that produces no unphysical oscillations; the accuracy for the truncated Fourier transform
eq. (B.10) is of the order |G(ω + iη)− F[G](ω + iη)| ≈ 10−3. Including corrections in η
according to eq. (B.22), the peaks become sharper. From the second order corrections
k = 2, visible oscillations start to appear especially where the spectral function approaches
0. Increasing the order to k = 3, these oscillations increase producing more negative
spectral weight. Another problem becomes apparent: We cannot adequately compare
the results with an exact solution, which consists of delta-peaks at the real axis. The
expansion of the form eq. (B.23) is an approximation to the real axis, but does not
correspond to a particular contour z = ω + iη′ in the complex plane. Therefore, if we
want to evaluate the DMFT self-consistency equation closer to the real axis than the
bare contour z = ω + iη, the usage of the corrections eq. (B.23) to the Green’s function
introduce ambiguity. On the other hand, this is not relevant if the expansion is used only
as a post-processing step to obtain sharper spectra. Furthermore, there is no clear criteria
for choosing the shift η. Larger shifts could be used, allowing higher order corrections
before unphysical oscillations are generated.
Figure B.3 compares the algorithms for the Bethe lattice with infinite coordination

number eq. (B.4). A maximal time tL = 50 and a shift η = 5× 10−2 are used. The Green’s
function on this contour is a poor approximation to the spectrum as the shift η is relatively
large. The first correction k = 1, however, yields already a good approximation of the
spectrum away from the band-edge. Higher orders further improve the spectrum, but the
corrections are rather minor. At the band-edge, however, the higher order corrections
start to overshoot, yielding a negative spectral weight outside the band-edges.
Figure B.4 compares the algorithms for the Green’s function corresponding to a box-

shaped DOS eq. (B.5). Compared to the Bethe Green’s function, a larger maximal time
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Figure B.3.: Comparison of Laplace transforms for a Bethe Green’s function at −µ = 0.2
eq. (B.4). Time steps of ∆t = 0.1 are used up to a maximal time of tL = 50, the shift is
η = 5× 10−2. The trapezoid rule is used for the finite DFT eq. (B.10) and the expansion
algorithm eq. (B.22).
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Figure B.4.: Comparison of Laplace transforms for a box-shaped Green’s function at −µ = 0.2
eq. (B.5). Time steps of ∆t = 0.1 are used up to a maximal time of tL = 75, the shift is
η = 5× 10−2. The trapezoid rule is used for the finite DFT eq. (B.10) and the expansion
algorithm eq. (B.22).
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B.5. Padé-Fourier approximation

tL = 75 is necessary to avoid oscillations for the shift η = 5× 10−2. Apparently the finite
jump is much harder to approximate. The expansion yields little improvement for the
jump, and higher order corrections k > 1 are plagued by overshooting the spectrum.
Oscillations are also visible within the spectrum.

B.5. Padé-Fourier approximation
The Padé-Fourier approximation [104, 221] provides a significant improvement for small
number of time points. It is essential that the time points are equidistant, to employ
eq. (B.8) with y = exp(iz∆t). In terms of y(z), the truncated series eq. (B.10) reads

Gr(y(z)) ≈
L∑
l=0

∆tGr(l∆t)yl. (B.25)

We recognize this as a truncated Taylor expansion in y. A typical approach to improve
Taylor expansions is the Padé algorithm, we search for polynomials p(y) and q(y) of
degrees N and M , fulfilling

q(y)Gr(y)− p(y) = O
(
yN+M+1

)
. (B.26)

Substituting the polynomial forms of the functions, yields the linear system of equations(
−1 C1
0 C2

)(
p
q

)
= 0, (B.27)

where p and q are the vectors of polynomial coefficients, and C is the Toeplitz matrix
containing the function values Cll′ = ∆tGr([l − l′]∆t), which is partitioned in the two
rows CT =

(
C1 C2

)
. The system is underdetermined, it has N + M + 1 rows from

eq. (B.26), but N +M + 2 coefficients. We first solve the second row, determining q as
the null-vector of the M ×M +1 matrix C2, in a second step we get p = C1q. This is the
Padé-Fourier algorithm: The improved approximation of the retarded Green’s function
reads

Gr(z) ≈ p(eiz∆t)
q(eiz∆t) . (B.28)

The rational polynomial p(y)/q(y) is evidently especially suitable to resolve a finite
number of poles, where the number of sampling points should be at least two times the
number of poles. Note that the high-frequency limit z → i∞ corresponds to the center
y = 0 of the y-plane, thus

lim
z→i∞

Gr(z) ≈ lim
y→0

p(0)
q(0) = p0

q0
= ∆tGr(0) (B.29)

as eq. (B.11) pointed out.
The remaining task is to fix the degrees N and M . For Green’s functions, we know

the high-frequency asymptote from the equation of motion, e.g., a diagonal one-particle
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Green’s function is asymptotic G(z) ∼ 1/z for |z| → ∞. For a finite system, the Lehmann
representation of the Green’s function can be expressed as a rational polynomial in z

G(z) != p̃(z)
q̃(z) (B.30)

with polynomials p̃(z) of degree N and q̃(z) of degree M . To satisfy the asymptote 1/z,
the degrees have to fulfill M = N + 1. This means the Green’s function has M poles and
N zeros on the real axis. Assuming that our discretization ∆t spans the relevant region
containing these poles and zeros, they are mapped by y(z), eq. (B.7), to the unit-circle.
Therefore, the rational approximant p(y)/q(y) should be of the same degree [N/M ]. In
practice, this produces suboptimal results, as the example of a one-pole Green’s function
will demonstrate in the next paragraph. The approximant improves if an additional zero
is included to reduce the discretization error. This zero can be placed at the boundary of
the periodicity interval (generated by the discretization), which reduces the error due to
the discretization periodicity. This requires to use a higher order quadrature scheme than
the Riemann sum, else the additional coefficient qN+1 vanishes.
It is instructive to consider the simplest example, the one-pole Green’s function

G(z) = 1
z − ε, Gr(t) = −iΘ(t)e−iεt. (B.31)

First, we consider a single time step L = 1 of size ∆t and calculate the [0/1] approximant.
The approximant is determined by the linear system of equations

(
−1 ∆tGr(0) 0

0 ∆tGr(∆t) ∆tGr(0)

)p0
q0
q1

 = 0. (B.32)

Fixing the constant term in the denominator q0 = 1, we obtain q1 = − exp(−iε∆t) and
p0 = −i∆t:

Gr(z) ≈ −i∆t
1− ei(z−ε)∆t = −i∆t

1− e−iε∆ty(z) =
[
0
/

1
](
y(z)

)
. (B.33)

The approximant correctly yields a single pole with residue 1 at z = ε, and due to
periodicity all equivalent points z = ε+ 2πn/∆t which map to the same point on the unit
circle in y(z). We can rewrite the rational polynomial as the sum

[0/1](z) = −i∆t
1− ei(z−ε)∆t = −i∆t2 +

∞∑
n=−∞

1
z − ε+ 2πn/∆t . (B.34)

Ignoring the small off-set −i∆t/2, a single time step is enough to exactly reproduce the
single-pole Green’s function up to the periodicity introduced by the discretization ∆t.
The off-set is a discretization error, for ∆t → 0 we recover the exact result. For large
broadening, the spectral weight of the ‘mirror’ poles at ε + 2πn/∆t will spill, causing
excess spectral weight. In practice, this is no problem as we are interested in results close
to the real axis, not for large shifts η. As mentioned in appendix B.2, the long-ranged
real part on the other hand is affected by the periodicity.
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Figure B.5.: Laplace transforms for 10 poles eq. (B.3). Time steps of ∆t = 0.1 are used up to a
maximal time of tL = 150, the shift is η = 10−2. The trapezoid rule is used for the finite DFT
eq. (B.10) and the Padé-Fourier algorithm eq. (B.28). For (b) a maximal time of tL = 25 is
used which is sufficient for the Padé-Fourier algorithm.

Adding an additional zero, that is increasing the numerator degree by 1, fixes the off-set.
We need an additional time point, and employ the trapezoidal rule

 −1 0 ∆t
2 Gr(0) 0

0 −1 ∆tGr(∆t) ∆t
2 Gr(0)

0 0 ∆tGr(2∆t) ∆tGr(∆t)



p0
p1
q0
q1

 = 0. (B.35)

Setting q0 = 1 and solving the equation yields q1 = − exp(−iε∆t), p0 = −i∆t/2, and
p1 = −i∆t exp(−iε∆t)/2:

G(z) ≈ −i∆t2
1 + ei(z−ε)∆t
1− ei(z−ε)∆t = [1/1](z) (B.36)

This Padé approximant produces the same poles and residues, but without any off-set:

[1/1](z) = −i∆t2
1 + ei(z−ε)∆t
1− ei(z−ε)∆t =

∞∑
n=−∞

1
z − ε+ 2πn/∆t . (B.37)

The zero [1/1](z0) = 0 is placed periodically between the poles z0 = ε+ (2n+ 1)π/∆t. If
we place the periodicity interval around the pole ε, i.e. consider ω ∈ ε+ [−π/∆t,+π/∆t],
the zero is placed at the interval boundary.

To conclude, the Padé-Fourier algorithm yields the exact result up to the discretization
error using only 3 time points. Numerically we found that using a [M−1/M ] approximant
for the Padé-Fourier algorithm the coefficient qM is nearly zero. This is further evidence
that the [M/M ] approximant is indeed the correct choice for the Padé-Fourier algorithm.
Figure B.5(a) compares the truncated Laplace transform eq. (B.10) with the Padé-

Fourier algorithm for a Green’s function given by 10 poles with random position εm and
residue rm, eq. (B.3). The maximal time is tL = 150 and the shift in the imaginary plane
is η = 10−2. As expected the truncated sum eq. (B.10) is inaccurate for such a small
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B. Laplace transform

shift η. Green’s functions given by simple poles, eq. (B.3a), oscillate in time without
decaying, thus long times tL are necessary to resolve them. The truncated Laplace
transform eq. (B.10) yields unphysical oscillations, causing negative spectral weight. The
Padé-Fourier algorithm, on the other hand, resolves the peaks to the discretization error
of order 10−3; by eye we see no difference to the exact solution. A maximal time of tL = 25
suffices to obtain results of similar accuracy, and much smaller shifts η are accessible. The
Padé-Fourier algorithm is expected to excel at resolving small numbers of poles, as this
corresponds to the assumed rational approximant. This becomes obvious by investigating
the pole structure of the rational polynomial approximation (B.28). Figure B.5(b) shows
the poles in the complex y-plane, they are colored according to the absolute of their
residuum. Most poles have negligible residues, they cancel with zeros of the numerator.
Only the 10 poles on the unit-circle shown in the inset significantly contribute; these
poles approximate the true poles of eq. (B.3).
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Figure B.6.: Laplace transforms for a Bethe Green’s function at −µ = 0.2 eq. (B.4). Time steps
of ∆t = 0.1 are used up to a maximal time of tL = 50, the shift is η = 10−3. The trapezoid rule
is used for the finite DFT eq. (B.10) and the Padé-Fourier algorithm eq. (B.28).

For Green’s functions in the thermodynamic limit with branch cuts, the quality of the
Padé-Fourier algorithm is less obvious, as Padé cannot reproduce branch cuts exactly.
We consider the Bethe lattice with infinite coordination eq. (B.4). The retarded-time
Green’s functions eq. (B.4a) decays in time, thus the error due to truncation is smaller.
Figure B.6(a) shows, that the Padé-Fourier algorithm is also in this case superior. A
relative small maximal time tL = 50 and shift η = 10−3 are used, but also for larger
parameters, where eq. (B.10) performs better, the Padé-Fourier is more accurate. For
the chosen parameters, we see that it is an order of magnitude more accurate. But the
algorithm also has problems reproducing the band-edges. This is to be expected, as
Padé cannot reproduce the branch cut. However, unlike eq. (B.10) the Padé-Fourier
algorithm does not produce unphysical oscillations, the spectral function is non-negative
even around the band-edge. Again, we investigate the pole structure in the y-plane shown
in fig. B.6(b). As before the majority of poles have negligible weight as they cancel with
zeros of the numerator. For the Bethe Green’s function, however, the relevant poles shown
in the inset lie outside the unit circle. Thus, they do not lie on the real z-axis, but in the
lower complex half-plane. This is the correct behavior to approximate the continuous
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B.5. Padé-Fourier approximation

branch cut. We further note, that the physical poles are well separated from the spurious
poles in real energy ω.
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Figure B.7.: Laplace transforms for a box-shaped Green’s function at −µ = 0.2 eq. (B.5). Time
steps of ∆t = 0.1 are used up to a maximal time of tL = 75, the shift is η = 10−3. The trapezoid
rule is used for the finite DFT eq. (B.10) and the Padé-Fourier algorithm eq. (B.28).

Furthermore, we test the Padé-Fourier algorithm against the Green’s function with
the box-shaped DOS eq. (B.5). Figure B.7(a) shows, the algorithm can even handle
finite jumps reasonable well. The inset shows, however, a small spurious shoulder inside
the band near the edge. Reducing the shift η further, this shoulder becomes sharper
and turns into a spurious peak. For smaller times tL the Padé-Fourier algorithm still
performs well, however, the spurious peak at the edge becomes even sharper. Like for the
Bethe example, the errors appear locally at the band-edge, and the spectral function is
non-negative.
The rational polynomial given by the Padé-Fourier algorithm eq. (B.28) is a global

approximation in the whole upper complex half-plane. Therefore, it is instructive to
investigate the method not only on a contour for a fixed shift η, but in the upper complex
half-plane. Figures B.8(a) to B.8(c) show the results for the test cases eqs. (B.3) to (B.5)
in the upper complex half-plane, note the symlog scale of the error. The parameters
are the same as in figs. B.5(a), B.6(a) and B.7(a). We plot not the absolute error, but
the error in the imaginary part, − 1

π
=[F(G)−G], to resolve oscillations. Note, that the

discretization error mainly affects the real part, thus errors of the imaginary part can get
smaller than the error of 10−3 due to discretization. Evaluating eq. (B.10), we observe
the existence of a rough threshold for η. For shifts smaller than this threshold, the
approximate is unemployable. For shifts around the threshold, reasonable results can be
obtained, however unphysical oscillations occur. With increasing shift, the approximation
becomes more and more accurate. For the example of poles, fig. B.8(a), the Padé-Fourier
algorithm performs well for the full shown range of η. For the Bethe and the box Green’s
function with continuous DOSs, below a certain threshold η, the inaccuracies around the
band-edges appear. In principle the methods is applicable for the full range of η again,
the error is localized at the band-edge.
We conclude that Padé-Fourier algorithm using a [M/M ] approximant substantially

improves the quality of the numerical Laplace transform. It yields accurate results for
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Figure B.8.: Error of Laplace transform in the complex plane z = ω + iη. (a) Pole Green’s
function corresponding to fig. B.5(a). (b) Bethe Green’s function corresponding to fig. B.6(a).
(c) Box-shaped Green’s function corresponding to fig. B.7(a). The same parameters, in particular
the different maximal times tL, are chosen as in the corresponding figs. B.5(a), B.6(a) and B.7(a).
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B.5. Padé-Fourier approximation

smaller sampling times tL, and makes the real axis limit η ↘ 0 accessible. Errors are
mostly located at the band-edges and associated with the branch cuts. We found the
Padé-Fourier transform to be stable against small normal noise. It might be possible to
employ the Padé algorithm to determine the necessary sampling time tL by investigating
the necessary degree M ; criteria to determine the degree M are given, e.g., by Gonnet
et al. [222] or Mishonov and Varonov [223].

B.5.1. Quadratic Hermite-Padé approximant
To improve the Padé-Fourier algorithm for branch cuts, Driscoll and Fornberg [221]
suggests explicitly including a logarithmic branch cut. In our case, their algorithm seems
unpractical as it requires knowledge of the position of the branch cut. Instead, the Padé
approximant can be further generalized to the so-called Hermite-Padé approximants [104,
224], which introduces square-root (or higher order root) branch cuts. We generalize
eq. (B.26) to the equation

J∑
j=0

pj(y)f j(y) = O
(
y
∑

j
(Nj+1)−1), (B.38)

where pj(y) are polynomials of order Nj and f j(y) is the j-th power of the function
f(y) = Gr(y). We identify the definition eq. (B.26) of the (linear) Padé approximant as a
special case of eq. (B.38) with J = 1, N0 = N , N1 = M , p0(y) = −p(y), and p1(y) = q(y).
Theoretical details can be found the book by Baker and Graves-Morris [104], we focus
only on the practical application to our problem, following Fasondini et al. [225].
The first order beyond Padé is the quadratic Hermite-Padé approximant J = 2:

p(y) + q(y)f(y) + r(y)f 2(y) = O
(
zNp+Np+Nr+2

)
(B.39)

with polynomials p(y), q(y), r(y) of orders Np, Nq, Nr. Analogous to the Padé approx-
imant, we find the diagonal Hermite-Padé approximant Np = Nq = Nr to be suitable,
which we validate numerically by inspecting the coefficients pNp , qNq , and rNr . The linear
system of equations can be solved just like Padé using standard methods to obtain the
polynomials. Substituting the polynomial forms of the functions yields the linear system
of equations

(
1 C [:Np+1, :Nq+1] (C2)[:Np+1, :Nr+1]
0 C [Np+1:, :Nq+1] (C2)[Np+1:, :Nr+1]

)pq
r

 = 0 (B.40)

where C is the Toeplitz matrix Cll′ = ∆tGr([l − l′]∆t). Solving the quadratic eq. (B.39)
for f(y) yields the quadratic Hermite-Padé approximant F2 which has two branches

F±2 (y) =
−q(y)±

√
q2(y)− 4p(y)r(y)
2r(y) . (B.41)

Compared to the Padé approximant, the quadratic Hermite-Padé approximant can
represent not only simple poles but square-root branch cuts. Thus, the Bethe Green’s
function eq. (B.4) can be accurately represented. Additional structure, like finite jumps,
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Figure B.9.: Comparison of Laplace transforms for a Bethe Green’s function at −µ = 0.2
eq. (B.4). Time steps of ∆t = 0.1 are used up to a maximal time of tL = 50, the shift is
η = 10−6. The trapezoid rule is used for Padé-Fourier algorithm eq. (B.28) and the Hermite-Padé
algorithm.

can be generated by switching between the two branches F+
2 (y) and F−2 (y). This poses,

however, an additional difficulty compared to Padé: The appropriate branch of F±2 (y) has
to be determined (locally for every y). In some case, this might be done according to the
properties of the function F2(y) != Gr(y); the imaginary part has to be negative. If one
branch corresponds to the advanced and the other to the retarded Green’s function, the
correct branch can be picked. In practice, we assume that the linear Padé approximant
[M/M ](y) is a reasonable approximation, and accordingly choose the branch F±2 that
differs less from it [225], that is

F2(y) =
F

+
2 (y) if |F+

2 (y)− [M/M ](y)| ≤ |F−2 (y)− [M/M ](y)| ,
F−2 (y) if |F−2 (y)− [M/M ](y)| < |F+

2 (y)− [M/M ](y)| . (B.42)

Test cases. We revisit the test cases we studied using the Padé-Fourier transform. The
pole Green’s function eq. (B.3) is already correctly treated by the Padé-Fourier transform,
the Hermite-Padé algorithm also yields accurate results. As expected, for the Bethe
Green’s function eq. (B.4), the Hermite-Padé removes the errors at the band-edge. Only
the discretization error remains, which mainly affects the real part. This is shown by
fig. B.9. For the Padé-Fourier algorithms, we can use a tiny shift of η = 10−6, evaluating
the Green’s function almost at the real axis.

For the box-shaped DOS eq. (B.5) shown in fig. B.10, the improvement of the Hermite-
Padé algorithm is less significant. While the error is located in a smaller region around
the jump, and the frequency-integrated error is accordingly smaller, the Hermite-Padé
algorithm suffers the same deficiencies as the Padé algorithm. A spurious peak is present
at the band-edge, and we get negative spectral weight. For larger shifts, e.g., η = 10−3,
Hermite-Padé correctly reproduces the spectrum, while for Padé a spurious shoulder
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Figure B.10.: Comparison of Laplace transforms for a box-shaped Green’s function at −µ = 0.2
eq. (B.5). Time steps of ∆t = 0.1 are used up to a maximal time of tL = 75, the shift is η = 10−3.
The trapezoid rule is used for the Padé-Fourier algorithm eq. (B.28) and the Hermite-Padé
algorithm.

remains and the band edge is not represented correctly.

B.6. Linear prediction
Linear prediction (LP) can be used to predict values at later or previous time points
(forward and backward prediction), interpolate missing data, or compress signals. It is
a widely used technique, e.g., for nuclear magnetic resonance signals or speech process-
ing [226]. In the context of the Laplace transform, we focus only on the forward prediction,
to extend eq. (B.10) beyond the maximum sampled time Gr(tL). The LP predicts the
next time point of a signal x̂l as linear combination of the past K time points xl:

x̂l = −
K∑
k=1

aK,kxl−k, (B.43)

where K is the prediction order, and aK,k are the prediction coefficients. We drop the
subscript K for the coefficients, which indicates that they depend on the prediction order.
LP is routinely used to obtain accurate spectra from time evolution, e.g. [119, 227]. The
review on tensor-network time-evolution methods [20] lists it as an ‘additional trick’. An
accessible introduction to LP is given, e.g., by Vaidyanathan [228], or the detailed review
by Makhoul [229].

B.6.1. Validity for Green’s functions
The retarded Green’s function can also be written in the form of a linear prediction (also
known as autoregressive processes), as shown by Koehl [226]. We consider a Green’s
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function given by K simple poles εm with residue rm

G(z) =
K∑
m=1

rm
z − εm

, Gr(t) = −iΘ(t)
K∑
m=1

rme−iεmt. (B.44)

While the Lehmann representation yields strictly real poles εm ∈ R, for the retarded
Green’s function we allow also effective complex poles =εm ≤ 0 in the lower half plane.
Similar to the Padé-Fourier transform, we assume an equidistant discretization of time
and define the new variable

ym = y(−εm) = exp(−iεm∆t), (B.45)

in terms of the poles εm, and not of the complex frequency z like for the Padé-Fourier
algorithm in appendix B.5. For non-negative times l∆t ≥ 0, the time-discretized Green’s
function reads

Gr(l∆t) = −i
K∑
m=1

rmy
l
m. (B.46)

Next, we define a complex polynomial P (y) with the roots ym:

P (y) =
K∏
m=1

(y − ym) =
K∑
k=0

bky
k k→K−k=:

K∑
k=0

aky
K−k, (B.47)

where bk are the coefficients from expanding the product, which depend on all ym. The
second equality is just a relabeling ak = bK−k. We point out, the roots ym = y(−εm) lie
inside the unit-circle of the complex y-plane, they are the reciprocal ym = 1/y(εm) of the
poles y(εm) we encounter in the Padé-Fourier algorithm appendix B.5. By definition ym
are the roots of P (y), i.e. P (ym) = 0, and the 0-th coefficient is a0 = bK = 1, therefore
solving eq. (B.47) for yKm yields the expression

yKm = −
K−1∑
k=0

bky
k
m = −

K∑
k=1

aky
K−k
m (B.48)

for the K-th power. Multiplying this equation by yl−Km with l ≥ K generalizes this result
to

ylm = −
K∑
k=1

aky
l−k
m . (B.49)

Inserting this expression in the Green’s function eq. (B.46), we obtain

Gr(l∆t) = i
K∑
m=1

rm
K∑
k=1

aky
l−k
m = −

K∑
k=1

ak

(
−i

K∑
m=1

rmy
l−k
m

)
= −

K∑
k=1

akGr([l−k]∆t). (B.50)

This is the linear prediction eq. (B.43) for the retarded Green’s function: Knowing the K
previous time points Gr([l − k]∆t), we can predict the next time point Gr(l∆t).
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B.6.2. Linear prediction coefficients
We follow Vaidyanathan [228] to determine the LP coefficients ak. The number of available
data points L+ 1 is considered to be larger than the prediction order K, i.e. L+ 1 > K.
The prediction coefficients ak are chosen to minimize the error in the 2-norm

δ =
L∑

l=K
|xl − x̂l|2 =

L∑
l=K

∣∣∣∣∣xl +
K∑
k=1

akxl−k

∣∣∣∣∣
2

=:
L∑

l=K
|δl|2. (B.51)

The error δ is minimal, if the individual difference δl are orthogonal to the previous data
points [228]

L∑
l=K

δlx
∗
l−k = 0 ∀k ∈ {1, . . . K}. (B.52)

We proof that the orthogonality condition indeed minimizes the error. Let ãk be a different
choice of parameters which yields the prediction x̃l. The difference δ̃l between the true
data points xl and the prediction x̃l is

δ̃l = xl − x̃l = xl +
K∑
k=1

ãkxl−k. (B.53)

Using the difference δl = xl − x̂l, the 2-norm error of the prediction can be expanded as

δ̃ =
L∑

l=K
|xl − x̃l|2 =

L∑
l=K
|δl + x̂l − x̃l|2 = δ+

L∑
l=K
|x̂− x̃|2+

L∑
l=K

[δl(x̂∗l−x̃∗l )]+
L∑

l=K
[(x̂l−x̃l)δ∗l ].

(B.54)

The two cross-terms vanish due to the orthogonality eq. (B.52):

L∑
l=K

[δl(x̂∗l − x̃∗l )] = −
L∑

l=K
[δl

K∑
k=1

(a∗k − ã∗k)x∗l−k] = −
K∑
k=1

(a∗k − ã∗k)
L∑

l=K
δlx
∗
l−k = 0. (B.55)

Hence, the error is indeed minimal; any different choice ãk yields a larger error

δ̃ = δ +
L∑

l=K
|x̂l − x̃l|2 ≥ δ. (B.56)

Substituting the difference δl by its explicit form in terms of the prediction coefficients ak
in eq. (B.52) yields the equation

K∑
k′=1

ak′
L∑

l=K
xl−k′x

∗
l−k = −

L∑
l=K

xlx
∗
l−k ∀k ∈ {1, . . . K}, (B.57)

or equivalently written as the matrix equation

Ra = −r with Rkk′ =
L∑

l=K
x∗l−kxl−k′ , rk =

L∑
l=K

x∗l−kxl (B.58)
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with the Hermitian covariance matrix R and the cross-covariance vector r (not to be
confused with the previously defined residues). Accordingly, this method is denoted
covariance method [229]. The covariance matrix can be expressed as the matrix product

R = X†X with (R)kk′ =
L−K∑
l=0

X∗lkXlk′ , (X)lk = xl+K−k, (B.59)

where the L+ 1−K ×K matrix X is the Toeplitz matrix containing all measured values
xl. Therefore, R is positive semi-definite. Likewise, the cross-covariance vector can be
expressed as

r = X†xK with (xK)l = xl+K . (B.60)

We identify the LP eq. (B.58) as the normal equation to

Xa = −xK . (B.61)

Therefore, it is better to solve eq. (B.61) in a least-squares sense, as it is better conditioned
than its normal equation eq. (B.58). Thus, we obtain the LP coefficients ak using the
covariance method as the least-squares solution of the matrix eq. (B.61). Typically, the
solution is regularized by truncating singular values smaller than a given threshold.

Equation (B.61) is identical to determining the poles of the Padé-Fourier approximant
eq. (B.27). We add the coefficient a0 = 1 and find

0 = xKa0 +Xa =
(
xK X

)(a0
a

)
≡ C2q, (B.62)

where the numerator degree of the Padé approximant isN = K−1, the denominator degree
is M = K, and the total number of points is twice the prediction order L+ 1 = 2K + 1.
For completeness, we also mention the autocorrelation method [228, 229]. If the time

series xl was completely known for all l ∈ Z (this is never the case for retarded Green’s
functions), the sum in eq. (B.58) could be extended over all l. The elements of the matrix
R depend only on the time difference Rkk′ = R(k − k′), with R(−k) = R∗(k). This is R
is the autocorrelation matrix, which is a Hermitian Toeplitz matrix. As only the finite
signal xl l ∈ {0, . . . L} is known, a window function has to be applied, setting unknown
values to 0.

The autocorrelation method is inadequate for our purpose, see the comparisons of
the methods by Vaidyanathan [228] and the references mentioned therein. We employ
the covariance method and obtain the LP coefficients by solving eq. (B.61) using a
least-squares algorithm.

B.6.3. Pole-structure of Green’s function from prediction roots
The polynomial P (y) eq. (B.47) relates the prediction coefficients ak = bK−k to the poles
εm of the Green’s function eq. (B.44). Numerically, the roots of the polynomial P (y) are
calculated as the eigenvalues of the companion matrix [115, 230]

Akk′ = δk+1k′ − aK−k+1δk′K , A =



0 0 . . . 0 −aK
1 0 . . . 0 −aK−1
0 1 0 −aK−2
... . . . ...
0 0 . . . 1 −a1

 , (B.63)
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the matrix of eigenvectors is the Vandermonde matrix of the eigenvalues. The roots
are ym = y(−εm) = exp(−iεm∆t), thus the eigenvalues should be all in the unit circle
|ym| ≤ 1. Eigenvalues outside the unit circle correspond to poles in the upper complex
half-plane, and thus an exponentially growing contribution in the Green’s function. The
exponential growing contribution of poles in the upper half-plane is also reflected by the
linear prediction. The transpose companion matrix AT generates the linear prediction:

AT


xl−K
xl−K+1

...
xl−1

 =


xl−K+1
xl−K+2

...
−∑K

k=1 akxl−k

 =


xl−K+1
xl−K+2

...
x̂l

 , (B.64)

the ones on the sub-diagonal of eq. (B.63) shift the vector elements, the last column
generates the LP eq. (B.43). Defining the data vector (x)l = xl, the predicted value x̂K+l
is generated by applying l times the companion matrix AT to x. Thus, x̂K+l can be
calculated as the K-th vector element

x̂K+l = ([AT]lx)K = (xTAl)K . (B.65)

We diagonalize the companion matrix A = V −1ΛV to write the predicted value as

x̂K+l =
K∑
l′=1

xl′−1

K∑
k=1

(V −1)l′kλ
l
k(V )kK =

K∑
k=1

λlkVkK
K∑
l′=1

xl′−1(V −1)l′k. (B.66)

Defining r̃k = VkK
∑K
l′=1 xl′−1(V −1)l′k and using λk = exp(−iεk∆t), the prediction can be

written in the form

x̂K+l =
K∑
k=1

λlkr̃k =
K∑
k=1

e−iεkl∆tr̃k. (B.67)

While in principle this equation allows to reconstruct the Green’s function by reading of the
residues r̃k and poles εk, in practice this yields highly inaccurate results. Equation (B.67)
can be used to produce a stable prediction, by omitting the exponential growing terms
|λk| > 1, which correspond to poles in the upper half-plane.

B.6.4. Linear prediction z-transform
The linear prediction (LP) allows in principle to extend the Green’s function Gr(l∆t)
till infinite times. Thus, it is not necessary to truncate the discrete Laplace transform
eq. (B.6), the infinite summation can be performed. We write the full series for the
discretized Laplace transform eq. (B.6) in the form eq. (B.8):

Gr(y) ≈
∞∑
l=0

∆tGr(l∆t)yl, (B.68)

with y = exp(iz∆t) eq. (B.7), see also eq. (B.25) for the Padé-Fourier transform ap-
pendix B.5. We shorten the notation using Gr

l = Gr(l∆t) and define

S(y) :=
∞∑
l=0
Gr
l y
l =

K−1∑
l=0
Gr
l y
l +

∞∑
l=K
Gr
l y
l, (B.69)
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where K is the prediction order. Such an equation is known as Z-transform, we used
the variable y instead of z−1, as the variable name z is already taken for the complex
frequency. We partition S(y) into the first K Green’s function points, which are sampled,
and the rest which will be replaced by the prediction. For now, we focus on the second
sum, in which we replace the unknown Green’s function values Gr

l by their predicted
function Ĝr

l . In the following, we drop the hat and do not distinguish between measured
Gr
l and predicted Ĝr

l values. We insert the prediction expression eq. (B.43):

∞∑
l=K
Gr
l y
l = −

∞∑
l=K

yl
K∑
k=1

akGr
l−k = −

K∑
k=1

ak
∞∑
l=K
Gr
l−ky

l = −
K∑
k=1

aky
k

∞∑
l=K−k

Gr
l y
l, (B.70)

in the second equality we exchange the order of the summations, in the third equality we
shifted the summation index l. We extend the l-summation to start at l = 0 yielding the
full summation of S(y), and subtract the added terms l = 0 to l = K − k − 1:

∞∑
l=K
Gr
l y
l = −

K∑
k=1

aky
k

[
S(y)−

K−k−1∑
l=0
Gr
l y
l

]
= −S(y)

K∑
k=1

aky
k+

K∑
k=1

K−k−1∑
l=0

aky
k+lGr

l . (B.71)

Next, we shift the summation l→ l− k, and thereafter exchange the order of the k and l
summation to pull the free variable y out of the double summation:

∞∑
l=K
Gr
l y
l = −S(y)

K∑
k=1

aky
k+

K∑
k=1

K−1∑
l=k

aky
lGr
l−k = −S(y)

K∑
k=1

aky
k+

K−1∑
l=1

yl
l∑

k=1
akGr

l−k (B.72)

The summation over l can be extended to include l = 0, as the term with Gr
−k = 0 does

not contribute. The formula for the full S(y), eq. (B.69), yields

S(y) = −S(y)
K∑
k=1

aky
k +

K−1∑
l=0

yl
[
Gr
l +

l∑
k=1

akGr
l−k

]
=
∑K−1
l=0 yl

[
Gr
l +∑l

k=1 akGr
l−k
]

1 +∑K
k=1 aky

k

=
∑K−1
l=0 yl

∑l
k=0 akGr

l−k∑K
k=0 aky

k
,

(B.73)

where we included a0 = 1 to write the result more compactly. This is the linear prediction
z-transform (LPZ) by Tang and Norris [231–233]. A similar expression is given by Ni and
Scheraga [234] including all sampled times Gr

l . The retarded Green’s function vanishes
for negative times, thus the upper limit of the k-summation can be extended from l to K.
The numerator of S(y) is the truncated Laplace transform of the convolution of the LP
coefficients with the sampled Green’s function a ∗ Gr; the denominator is the truncated
Laplace transform of the LP coefficients ak. Thus, defining LK [x](y) = ∑K−1

l=0 xly
l, we can

write eq. (B.73) in the form

S(y) = LK [a ∗ Gr]/LK+1[a]. (B.74)

The formula for the Green’s function eq. (B.68) reads

Gr(z) ≈ ∆tS(y(z)) =

K−1∑
l=0

eizl∆t
l∑

k=0
ak∆tGr([l − k]∆t)

K∑
k=0

akeizl∆t
. (B.75)
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The result can be interpreted as truncation of the convolution theorem. In the limit
K →∞, we recover the infinite discretized Laplace transform eq. (B.6) according to the
convolution theorem, as the transform turns the convolution of Green’s function and
prediction coefficients into a product.
The LPZ is in fact equivalent to the Padé-Fourier algorithm [235]. As shown in

appendix B.6.2, the prediction coefficients and the denominator of eq. (B.75) are identical
to the denominator polynomial q(z) of the [K − 1/K](z) Padé approximant for L = 2K.
Likewise, we identify the numerator of eq. (B.75) with the numerator polynomial p(z)
with the first line of Padé equation eq. (B.27). Thus, choosing the (maximal) prediction
order K = L/2, the Padé-Fourier approximant [K − 1/K](z) and the LPZ algorithm
are in fact identical. In principle, this allows to transfer knowledge between the two
methods. Methods to calculate LP coefficients can be used to calculate the denominator
polynomial of Padé. Furthermore, LP readily defines least-squares versions of Padé for
overdetermined systems N + M < L. On the other hand, we can use the flexibility of
Padé to use different polynomial degrees; the [K/K](z) approximant is better suited
for the Padé-Fourier algorithm. There is literature for both algorithms how to choose a
suitable order.

As mentioned before, the LPZ transform takes only the first K time points directly into
account, the rest of the L time points only enter the prediction coefficients. We modify
the above derivation to include all available time points on equal footing. In this case, we
split the Z-transform eq. (B.69) after the L time points, not the prediction order K:

S(y) =
L∑
l=0
Gr
l y
l +

∞∑
l=L+1

Gr
l y
l. (B.76)

We follow the analogous steps till eq. (B.72), which reads in this case

∞∑
l=L+1

Gr
l y
l = −S(y)

K∑
k=1

aky
k+

K∑
k=1

L∑
l=k

aky
lGr
l−k = −S(y)

K∑
k=1

aky
k+

L∑
l=0

yl
K∑
k=1

akGr
l−k. (B.77)

For the second equation, we again employed the fact that the retarded Green’s function
vanishes for negative times, Gl<0 = 0. This allows us to extend the lower limit of the
l-summation to 0, and exchange the summations over k and l. The summation for the
full summation eq. (B.76) yields

S(y) = −S(y)
K∑
k=1

aky
k +

L∑
l=0

yl[Gr
l +

K∑
k=1

akGr
l−k] =

∑L
l=0 y

l∑K
k=0 akGr

l−k∑K
k=0 aky

k
, (B.78)

where we included a0 = 1. Surprisingly, we recover the same structure as in the LPZ,
however, we sum over all available time points

Gr(z) ≈ ∆tS(y(z)) =

L∑
l=0

yl
K∑
k=0

ak∆tGr([l − k]∆t)

K∑
k=0

aky
k

. (B.79)
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B.7. Comparison
We compare the different methods for Laplace transform for a realistic example. We
calculate the retarded Green’s function for a simple cubic lattice [172, 208, 209] with
µ = 0.2, where the hybridization function is discretized using 250 bath sites. The time
evolution is calculated using the TDVP with time steps of ∆t = 0.1. While the non-
interacting example is non-trivial using tensor-network methods, we should keep in mind
that the results are simpler. The up and down spins decouple, which is reflected in the
bond dimension between the impurity sites. We consider the integrated error

εn := n

√
1
W

∫ W/2

−W/2
dω|Gr(ω + iη)− F[Gr](ω + iη)|n with W = 3, (B.80)

where F[Gr] denotes our approximation for the Laplace transform. Note that Gr(z) is
the continuous Green’s function for the simple cubic lattice, not the discretized Green’s
function calculated from the bath parameters.
Figure B.11(a) shows the errors ε1 of the different methods for η = 10−6 using a

trapezoidal rule. The error is plotted against the number of time points included in the
Laplace transform. The inset shows the error for the first few times points L ≤ 300, i.e.,
tL ≤ 30. The blue line DFT is the reference for the truncated summation of eq. (B.10).
The error of DFT decreases nearly monotonously in the number of time points L, showing
a step-like structure. The convergence is, however, slow. Even L = 3000 time points are
not sufficient to reach an error smaller than 10−3.

The error of the [L2 /
L
2 ] Padé-Fourier approximant eq. (B.28) changes rather erratically.

In the region L ∈ {200, . . . 1500}, it decreases rapidly, converging against a value of
ε1 ≈ 10−3, which is determined by the discretization ∆t = 0.1. The usage of larger
numbers of time points L > 2000 cannot decrease the error further; instead, it increases
slightly. The Hermite-Padé algorithm, eqs. (B.40) and (B.41), which additionally includes
square-root branch cuts further improves the Laplace transform. Except for some outliers,
it is more accurate for all values of L and converges faster than the Padé-Fourier and
the LPZ algorithm. It also converges to the discretization error of 10−3. Values of
L > 2000 yield no further improvement, in fact, the error slightly grows, and the (linear)
Padé-Fourier algorithm yields slightly more accurate results.

Next, we consider the LP algorithms. To determine the LP coefficients, we use a relative
threshold of 10−6, truncating singular values σk smaller than σ010−6. This truncation
considerably smooths the error, especially for small numbers of time points L ≤ 200.
Increasing this relative threshold leads to similar behavior as seen for the Padé-Fourier
algorithm. For the LP, algorithm we choose the maximal prediction order K = L/2,
predict the Green’s function till t10L, and remove zeros outside the unit circle, which
would generate exponentially growing terms. The same prediction order K = L/2 is used
for the LPZ algorithm; it is, however, not necessary to remove zeros outside the unit circle.
These zeros result in poles in the upper complex half-plane, but they do not generate
relevant errors as their residue is small. LP and LPZ result in comparable errors. In
general, the Padé-Fourier, LP, and LPZ algorithms all yield comparable results, as they
are all based on simple poles. The Hermite-Padé algorithm, on the other hand, is a better
approximation for this example. Considering the error ε2 instead of ε1 shows qualitatively
the same picture; however, the advantage over the basic DFT is smaller. The improved
algorithms tend to produce more localized errors resulting in small ε1 errors.
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(a) Trapezoidal rule
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(b) Simpson rule

Figure B.11.: Comparison of different methods for the Laplace transform using (a) the trape-
zoidal rule and (b) the Simpson rule. The time steps are ∆t = 0.1 and the shift is η = 10−6.
Note the different limits for the vertical axis ε1. The markers are just a guide to the eye.
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Figure B.11(b) shows the error using the Simpson rule instead of the trapezoidal rule.
Qualitatively, the picture remains the same. For the Simpson rule, lower errors are
reachable due to the smaller discretization error. Consequently, the difference between
the error of DFT and the other algorithms is bigger. The Hermite-Padé algorithm reaches
its minimal error already at L ≈ 1000; the error grows for larger numbers of time points.
For large values L ≈ 3000, the error of LPZ shows large peaks. The prediction coefficients
of LPZ are calculated from the Green’s function weighted by the Simpson coefficients,
while for LP, we can predict the bare Green’s function. This difference explains the larger
error of LPZ compared to LP. However, for this example, both algorithms perform worse
than the Padé-Fourier algorithm for large values L ≈ 3000.

500 1000 1500 2000 2500 3000
L

10−3

10−2

ε 1 0 50 100 150 200 250 300

10−2

10−1

100DFT
Padé
Herm
Padé (L)
Herm (L)

Figure B.12.: Comparison of the Padé-Fourier algorithms for the Laplace transform using the
trapezoidal rule. The time steps are ∆t = 0.1 and the shift is η = 10−6. The lines without
marker correspond to using a least-squares solution (L) truncating singular values σk smaller
than σ010−6, where σ0 is the largest singular value.

We conclude all algorithms discussed in this low for accurate Laplace transforms for
much shorter maximal times tL than the basic DFT algorithm. We find the Padé-Fourier-
based algorithms, in particular using the square Hermite-Padé, to produce the best results.
However, the error as a function of the number of time points ε1(L) shows many peaks,
unlike the DFT. Instead of calculating the Padé coefficients as the null vector of the
second row in eqs. (B.27) and (B.40), we can use a least-squares solution analogous to
the LP algorithm. We fix one parameter and calculate the other parameters truncating
the smaller singular values. For the linear Padé algorithm, we can, e.g., set q0 = 1 and
calculate the other parameters as

(C2)[:, 1:]q[1:] = −(C2)[:, 0]q0, (B.81)
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cf. eq. (B.27). This approach yields a smoother error ε1(L), as seen in fig. B.12. For large
values of L, this yields more accurate results for the quadratic Hermite-Padé approximants.
The error still contains several peaks; hence, it could be useful to take the average (or
median) over several approximants for different values of L.

Conclusion. Both the Padé-Fourier and the LP algorithm significantly reduce the
truncation error compared to the DFT, allowing for shorter time evolutions and, thereby,
shorter computation times. This is in particular relevant as the bond dimension typically
grows, which limits the maximal time tL that can be computed.
Instead of using the LP to predict the Green’s function until a finite time tLP > tL,

the LPZ algorithm can be employed, corresponding to an infinitely large time tLP →∞.
Therefore, the LPZ algorithm eliminates the arbitrary parameter tLP. The LPZ with
prediction order K = L/2 is identical to the [K − 1/K] approximant of the Padé-Fourier
algorithm; both algorithms yield comparable results. Out of the considered algorithms, we
find the quadratic Hermite-Padé approximant [L/3, L/3, L/3] to give the most accurate
results for the Laplace transform.
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