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Abstract: Preparative chromatography is a well-established operation in chemical and biotechnology
manufacturing. Chromatography achieves high separation performances, but often has to deal with
the yield versus purity trade-off as the optimization criterium regarding through-put. The initial
trade-off is often disturbed by the well-known phenomenon of chromatogram shifts over process
lifetime, and has to be corrected by operators via adjustment of peak fraction cutting. Nevertheless,
with regard to autonomous operation and batch to continuous processing modes, an advanced
process control strategy is needed to identify and correct shifts from the optimal operation point
automatically. Previous studies have already presented solutions for batch-to-batch variance and
process control options with the aid of rigorous physico-chemical process modeling. These models
can be implemented as distinct digital twins as well as statistical process operation data analyzers.
In order to utilize such models for advanced process control (APC), the model parameters have to
be updated with the aid of inline Process Analytical Technology (PAT) data to describe the actual
operational status. This updating process also includes any operational change phenomena that
occur, and its relation to their physico-chemical root cause. Typical phenomena are fluid dynamic
changes due to packing breakage, channelling or compression as well as mass transfer and phase
equilibrium-related separation performance decrease due to adsorbent aging or feed and buffer
composition changes. In order to track these changes, an Artificial Neural Network (ANN) is trained
in this work. The ANN training is in this first step, based on the simulation results of a distinct
and previously experimentally validated process model. The model is implemented in the open
source tool CasADi for Python. This allows the implementation of interfaces to process control
systems, among others, with relatively low effort. Therefore, PAT signals can easily be incorporated
for sufficient adjustment of the process model for appropriate process control. Further steps would be
the implementation of optimization routines based on PAT and ANN predictions to derive optimal
operation points with the model.

Keywords: parameter estimation; machine learning; ion-exchange chromatography; chromatography
modeling; artificial neural networks

1. Introduction

The utilization of machine-learning approaches in chromatography is a rising field
of research, which ranges from extracting crucial process information from measurement
data in real-time via partial least squares algorithms [1] to separation factor prediction for
chromatography process optimization with the aid of artificial neural networks (ANNs) [2].

Processes 2022, 10, 709. https://doi.org/10.3390/pr10040709 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10040709
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr10040709
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10040709?type=check_update&version=3


Processes 2022, 10, 709 2 of 14

Special focus lies on the ANNs, which become more and more accessible to a wide field of
researches via frameworks like Tensorflow [3] or The MathWorks Inc. MATLAB toolboxes
for Artificial Intelligence [4]. Artificial neural networks (ANNs) enabled computer-aided
solutions for problems that were nearly impossible or difficult to solve with conventional
algorithms within acceptable time limits. Typical applications are computer visions appli-
cations or natural language processing [5,6]. More relevant modeling contributions were
the reduction in computational effort and/or the description of the not yet (sufficiently)
described physico-chemical relationships [7–9]. In general, artificial neural networks con-
sist of interconnected neurons that send information in the form of activations signals
over weighted connections to other neurons, which map inputs onto outputs [5]. The
process of finding the weights of these connection is called training. Usually, this training
is performed by supplying the neural network with input and output data from which
it learns underlying relationships via so-called backpropagation algorithms. After the
training, the ANN is capable of mapping previously unknown inputs onto outputs, be
it classification or regression tasks [5,10]. Further information on ANNs can be found in
Fausett [5] and Goodfellow [10].

Some previous works have already investigated the possibility of determining chro-
matography model parameters by utilizing ANNs. Their results show that a maximum of
three different experiments are necessary to predict model parameters within milliseconds
after the training process, thus shortening model development time. [11,12]. In addition,
both groups suggested that automated real-time model parameter estimation during chro-
matographic experiments should be possible, especially due to the short computation
time. In this work, the possibility of utilizing the suggested approach in a production
environment is investigated. The previous approaches were performed in a lab environ-
ment where multiple experiments with high process parameter variation can be conducted.
One example is the use of different salt gradients. Therefore, the available information in
general and for ANN training is much higher, as in a controlled production environment.
In contrast, production data are only known to be of some variance. The decisions of the
operators mostly take this into account by adjusting fraction cut points. Purity is kept, but
non-optimal yield losses are accepted [13,14]. Additionally, accessible chromatograms in
a production environment are limited to the latest chromatograms from previous batch
runs or cycles in case of continuous/cyclic processes like the multicolumn counter-current
solvent gradient purification process (MCSGP) [15] or periodic counter-current chromatog-
raphy [16]. Such operational data can be analyzed, and necessary actions predicted [17].
On the other hand, the acceptable variation of the process in a production environment
is limited due to the regulatory defined design and control space [18]. For example, the
input feed mixture, purity and yield requirements, the column itself or gradient length and
steepness can be assumed constant over the process lifetime. Therefore, the authors mainly
consider typical column packing fouling/aging phenomena as governing effects on the
chromatograms, which still cause a considerable economic impact on the process [19,20].
The phenomena observed are related to either fluid dynamics or mass-transfer and phase
equilibrium. Fluid-dynamic variations in fluid distribution, packing breakage, channelling,
swelling or compression can be described by axial dispersion and/or voidage adjustments,
whereas, any adsorbent aging phenomena are related to mass transfer and/or phase equilib-
rium behavior. To automatically mitigate these effects, models previously used for process
development can be used to calculate process conditions such as new fraction cut points.
However, the effects on fluid dynamics, column packing and absorption phase equilibria
caused by aging should be taken into account in order to achieve optimal results. In order
to perform this study, a chromatography model was developed in Python [3] with the
CasADi framework [21] for a preparative chromatography separation of a three-component
protein mixture based on previous works [22,23]. It is assumed that a valid PAT strategy
for online concentration determination is implemented, and its feasibility has already been
shown in several publications [24–27]. The concept for advanced process control is shown
in totality in Figure 1.
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Figure 1. Advanced process control concept for process chromatography—batch and continuous.

The PAT signal of the chromatogram is evaluated by a partial least squares algorithm
(PLS). These data are transferred to the ANN, which estimates appropriate model parameter
adjustments for the digital twin. The digital twin is implemented as a rigorous physico-
chemical process model. Such a process model with updated parameter adapts to the
current operation state, and is utilized to predict new operation set-points. For example, to
fit the necessary purity-yield requirements within the predefined control space.

As a first step, a sensitivity analysis is performed to identify the impact of relevant
parameters on chromatograms, which may change over process lifetime. After that, ANNs
are trained from simulative generated data to predict relevant model parameters from a
single chromatogram.

2. Materials and Methods
2.1. Chromatography Modeling

The necessary data for the ANN were generated through simulations. All simulations
were performed in a Python 3.8 environment [28] with the CasADi Framework [21] on
a Dell Optiplex 7010 System. All programming was performed in the Spyder Integrated
Development Environment (IDE) [29]. For ANN implementation, the Tensorflow 3 [3]
backend of Keras v. 2.4.0 [30] was used. Commonly used chromatography models for mass
transport by convection and dispersion are based on the general rate model Equation (1) or
on the lumped pore diffusion model Equation (2) [31,32]. These equations describe the mass
balance of the stationary phase [15]. This work utilized the lumped pore diffusionmodel.
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where the parameters mean diameter of the resin particle dp, the porosity εp,i and the
voidage εS describe the column packing. The variable cp,i represents the concentration of
the component in the pores of the resin, qi the loading, ci the concentration in the continuous
phase, and ke f f ,i the effective mass transport coefficient. The variable t represents the
time. The boundary conditions are described by Equation (3) for the column inlet and
Equation (4) for the column outlet. Dax depicts the axial dispersion coefficient, L the length
of the column, and x the length domain [31].

ucin,i(t) = uci(t, 0)− Dax
∂ci
∂x

(t, 0) (3)
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∂ci
∂x

(t, L) = 0 (4)

The mass transfer coefficient ke f f ,i is given by Equation (5). Here, k f ,i is the film mass
transfer coefficient, rp the particle radius, and Dp,i the pore diffusion coefficient. The pore
diffusion coefficient Dp,i was calculated according to the correlation of Carta [33] and k f ,i
according to Wilson and Geankoplis [34].

ke f f ,i =
1

1
k f ,i

+
rp

Dp,i

(5)

In this work, the competitive Langmuir-isotherm Equation (6), which has already
demonstrated its performance in (bio-) chromatography, was used [35–37]. The adsorption
and desorption behaviour of the components can also be described by various other
approaches [31,35,36,38–40].

qi =
qmax,iKeq,ici

1 + ∑j Keq,jcj
(6)

with qmax,i as the maximum loading capacity of component i and Keq,i as the Langmuir
coefficient of component i. To include salt dependence into Equation (6), the Langmuir
coefficient can be written as shown in Equation (7) [31].

qmax,iKeq,i = Hi (7)

The salt dependence of the maximum loading qmax,i and the Henry coefficient Hi can
then be expressed by Equations (8) and (9) and the empiric coefficients a1,i, a2,i, b1,i and b2,i
for each component i [41,42].

qmax,i = b1,icp,i + b2,i (8)

Hi = a1,icp,i
a2,i (9)

The spatial discretization of the partial differential equations system followed a finite
differences scheme.

2.2. Model Parameter Choice and ANN Dataset Generation

As previously mentioned, the dataset has to reflect the chromatography process
conditions in a production environment. In this environment, the components are fixed and
the option of multiple gradient experiments or arbitrary alternation of injection volumes is
not available. This case stands in clear contrast to the previous work [12], where isotherm
parameters for arbitrary 3 components mixtures were estimated. The data for this study
were generated by an chromatography model based on the previous piloting case study
of a monoclonal antibody manufacturing process from Kornecki et al. [22] and the work
of Zobel-Roos et al. [43]. The model comprises three proteins, immunoglobulin G (IgG),
a weak binding host cell protein (HCP1) and a strong binding host cell protein (HCP2).
To reflect a production environment, the column was up-scaled to a length of 15 cm and
a diameter of 20 cm. The process parameters were increased to 1.6 L/min buffer flow, a
15-column volume (CV) gradient and an injection volume of 2.6 L with 5 g/L IgG, 2 g/L
HCP1 and 2 g/L HCP2.

As stated before, the ANN maps inputs on outputs. Therefore, the relevant outputs
for the prior described use-case, deviation of model parameters due to column aging,
must be identified. A subset of parameters can already be excluded or neglected based on
expert knowledge. This comprises component properties like the molecular mass of the
three proteins or the particle diameter of the packing and others, which should not alter
during the process lifetime. Additionally, some parameters can be excluded beforehand
because they can be substituted in others through correlations. This leads to an implicit
consideration of these via other parameters. The molecular masses, tortuosity, steric
factors, protein radius, particle diameter and molecular diffusion coefficient are considered
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constant [44]. The film diffusion coefficient can be substituted into the mass transfer
coefficient as shown in Equation (5). The pore diffusion coefficient can be substituted in the
particle porosity, as shown in [33]. The influence of the remaining model parameters on
the chromatograms is investigated through one parameter at a time sensitivity analysis.
The variation range of each parameter is intentionally greater as it is expected by expert
knowledge for the investigated use-case. The flow was excluded from this rule because
it is considered as a well controllable input parameter. An overview of the remaining
parameters and their variation ranges for the sensitivity study is given in Table 1. The
results of the sensitivity study are shown in Figure 2.

Table 1. Upper and lower limits of the varied parameters from equation in the sensitivity analysis.
The parameters a1, a2, b1 and b2 originate from Equations (8) and (9), and describe the salt dependency
of the Henry coefficient and maximum loading. Dax, rp, keff, εs and εp represent the axial dispersion
coefficient, the particle radius, the effective mass transfer coefficient, the voidage and the particle
porosity, respectively. The parameters originate from Equations (2), (3) and (5).

Parameter Lower Bound Initial Upper Bound

a1,IgG 0.40 0.78 1.60
a1,HCP1 0.80 1.62 3.20
a1,HCP2 0.05 0.99 0.20
a2,IgG −3.60 −2.98 −1.50

a2,HCP1 −3.60 −3.00 −1.50
a2,HCP2 −3.60 −3.01 −1.50
b1,IgG −0.36 −0.24 −0.12

b1,HCP1 −0.23 −0.15 −0.08
b1,HCP2 −0.15 −0.01 −0.05
b2,IgG 0.13 g/L 0.25 g/L 0.50 g/L

b2,HCP1 0.13 g/L 0.25 g/L 0.50 g/L
b2,HCP2 0.05 g/L 0.11 g/L 0.25 g/L

flow 1.568 L/min 1600 L/min 1.632 L/min
Dax 1.3 × 10−6 cm2/s 1.3 × 10−3 cm2/s 1.3 cm2/s
rp 1 × 10−7 cm 1 × 10−5 cm 1 × 10−3 cm

keff,IgG 1 × 10−5 cm2/s 1.5 × 10−2 cm2/s 1 × 102 cm2/s
keff,HCP1 1 × 10−5 cm2/s 1.2 × 10−2 cm2/s 1 × 102 cm2/s
keff,HCP2 1 × 10−5 cm2/s 2.7 × 10−2 cm2/s 1 × 102 cm2/s

εs 0.24 0.36 0.48
εp 0.3 0.78 0.78

From Figure 2a,b,d, a clear impact of the salt-dependency describing parameters a1, a2
and b2 of the Langmuir isotherm (Equations (6)–(9)) on the chromatogram can be seen. The
impact of b1(c) is minor but still noticeable. Hence, all of these parameters are considered
in the following steps. The flow in (e) has nearly no impact on the resulting chromatogram
within the given variation range. In addition, Dax shows a high impact of values greater
0.1 cm2/s in subplot (f). Because of this and the direct correlation of the flow and Dax,
which is described by Chung and Wen [45], both parameters are considered relevant in
further steps. Following the results of (g) and (j), the pore radius rp and porosity εp are not
considered. The high impact of the voidage εs seen in (i) is considered in the following steps.
Also, ke f f from subplot (h) is considered for now even though its values must decrease
below 10−4 cm2/s to show an impact on the chromatogram. This effect can be explained
by the fact that for a predetermined flow, the mass transport can be assumed instantaneous
above a certain threshold.
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Figure 2. Shows the sensitivity analysis of the non a priori excluded parameters on each component.
Green curves represent HCP1, red curves IgG, orange curves HCP2. Upper and lower variation
ranges for the sensitivity analysis are given in Table 1. (a) Shows the impact on the chromatograms of
parameters a1,i, which describe the salt dependence of the henry coefficients. (b) Depicts the impact
on the chromatograms of parameters a2,i, which also describe the salt dependence of the Henry
coefficients. (c) Illustrates the impact of the parameters b1,i, which describe the salt dependence of
the maximum loading capacities. (d) Depicts the impact of the parameters b2,i, which also describe
the salt dependence of the maximum loading capacities. (e) Shows the impact of the volume flow.
(f) Shows the impact of Dax. (g) Depicts the impact of rp. (h) Shows the impact of keff,i. (i) Illustrates
the impact of εs. (j) Shows the impact of εp.

Because of the number of different parameters, the authors chose to split the set of these
parameters into fluid dynamics, a column packing set, and a phase equilibrium parameter
set in the first step. The mass transfer coefficient is also moved to the fluid dynamic
and column packing set because the effects are similar. The reasoning is to facilitate the
identification of parameters, which definitely need more than one batch experiment for
an adequate estimation, and to reduce the total amount of needed simulations. The fluid
dynamic and column packing set contains the parameter variation from flow, voidage,
axial dispersion and the mass transfer coefficient. The other set contains the variations of
a1, a2, b1 and b2 of all components. All parameter variations were uniformly distributed
and varied in the boundaries of Table 1. As input for the ANN, the chromatogram of
each component was reduced to 38 data points to reduce the complexity of the input data.
Additionally, the concentration value at each peak maximum was included in each entry.
The data reduction scheme, its drawbacks and its benefits are explained in detail in the
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previous publication [12]. Accordingly, a single dataset entry consists of 39 data points.
Another approach to reducing chromatogram information into fewer points can be found
in Wang et al. [11].

3. Results

The aforementioned fluid dynamic and column packing dataset, and the phase equilib-
rium parameter dataset from 2.2. were generated to examine the utilization of a single-batch
chromatography experiment for parameter estimation via ANNs. Therefore, two ANNs
were trained in this process. With the first ANN, the general possibility of estimating the
packing and fluid dynamic parameters and the mass transfer coefficient of each component
from a single chromatogram was investigated. That possibility for the phase equilibrium
parameters was investigated with the second ANN. After the training process of all ANNs
was completed, the corresponding parameters were predicted from training and validation
set. The results were evaluated and used to generate a third dataset in which all remaining
parameters were varied. The prediction of a single data entry costs 200 milliseconds of
computation time, including the loading of input data and the ANN model itself.

3.1. Variation of Packing and Fluid Dynamic Parameters

This ANN was trained with 1000 chromatograms, split into 70% training data and
30% validation data. The FF-ANN consists of 118 input neurons, 120 neurons with tanh
activation in hidden layer 1 and 20% dropout probability, 80 neurons with tanh activation in
hidden layer 2 with 20% dropout probability, and 5 output neurons for Dax, εs, ke f f ,1, ke f f ,2
and ke f f ,3. Adam was chosen as the optimizer. Training was performed over 10,000 epochs
with a batch size of 16. The results after training can be seen in Figure 3.

As shown in Figure 3, the parameters Dax and εs can be predicted well from a single
experiment while the prediction performance of the ke f f values of all components seems
insufficient with rising values of ke f f . As seen before in Figure 2h, the impact of values
greater 10−4 cm2/s is negligible. Therefore, the worse prediction accuracy can be explained
by the low sensitivity of ke f f at higher values. The prediction performance of ke f f ,HCP2 is
notably worse compared to the others. The reason can be seen in Figure 2h,f. The peak
tailing and fronting behaviour of IgG and HCP1 changes depending on whether ke f f or Dax
is varied. The behaviour of the HCP2 peak is the same in both cases. Hence, the distinction
between the effects of Dax and ke f f on the chromatogram is more difficult. To investigate
the prediction accuracy further, the chromatograms were resimulated with the predicted
parameters. An example chromatogram with the original parameters and ANN-predicted
parameters is given in Figure 4.
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Figure 3. Predicted over original data of the test set. (a) depicts the results of the Dax prediction with
an R2 over 99%, (b) depicts the εs prediction with R2 over 99%. The results of keff,IgG, keff,HCP1 and
keff,HCP2 are illustrated in (c), (d) and (e) with R2 of 91%, 88% and 59%, respectively.

The predicted parameters have an error of lower than 5%, except for ke f f ,HCP2. With
values of ∼ 0.02 cm2/s (original) and ∼ 0.007 cm2/s, the error is 172%. Despite the high
error of ke f f ,HCP2, the original chromatogram and the resimulated chromatogram perfectly
match with the coefficient of determination (R2) of over 99%. The confidence interval at
95% level of the R2 of the original and resimulated chromatograms of IgG is [97.4, 99.9], of
HCP1 is [97.5, 99.9] and of HCP2 is [97.1, 99.4]. Hence, these parameters can be predicted
from a single chromatogram with ke f f only needing to be a rough estimate whether it is
smaller or above 10−4 cm2/s.
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Figure 4. Chromatogram of the simulation with the original parameters (solid lines) and the resimu-
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target component IgG, the green line the side component group HCP1, and the yellow line the side
component group HCP2. The blue line represents the salt gradient.



Processes 2022, 10, 709 10 of 14

3.2. Variation of Phase Equilibrium Parameters

To test the prediction ability of the phase equilibrium parameters, an FF-ANN with
118 input neurons, 117 neurons with 20% dropout and tanh activation in hidden layer 1,
100 neurons with tanh activation function and 20% dropout, and 12 output neurons with
relu activation was implemented. As training algorithm, the Adam optimizer was utilized.
The dataset of 1000 simulative experiments was split into 70% training and 30% validation
data. Training was performed over 10,000 epochs with a batch size of 16. The R2 values of
the original values over predicted values of the test set are shown in Table 2.

Table 2. Coefficient of determination of the phase equilibrium parameters from the test set.

a1,IgG a1,HCP1 a1,HCP2 a2,IgG a2,HCP1 a2,HCP2 b1,IgG b1,HCP1 b1,HCP2 b2,IgG b2,HCP1 b2,HCP2

R2 83% 85% 84% 78% 73% 91% 56% 10% 55% 80% 64% 92%

Again, it could be assumed that the prediction quality of all parameters is insufficient.
Therefore, this hypothesis is tested by resimulating all chromatograms with the ANN
predicted parameters. Some example chromatograms are given in Figure 5.
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the capability of predicting the phase equilibrium parameters is assumed to be sufficient. 
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single chromatogram is possible under the previously stated conditions Therefore a final 
dataset was created. For this dataset, the following scenario was set. The previously 
presented chromatography step starts as an optimized process with the initial parameters 
of Table 1. It is assumed that the parameters are affected by column aging/fouling and 
therefore move in the direction of decreasing performance of the column (except the flow) 
within the range of Table 1. The column is deemed insufficient as soon as the target 
protein’s peak area (IgG) is overlapped by the side components’ (HCP1, HCP2) peak area 
by more than 10%. Furthermore, it is assumed that a validated but noisy PAT concept for 
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Figure 5. Comparison of four chromatograms with original and ANN-predicted isotherm parameters
from the validation set. In all subplots, the protein group HCP1 is green, the protein group HCP2 is
yellow, and the IgG is red. Solid lines represent the chromatograms original isotherm parameters.
Dashed lines represent the chromatograms with ANN-predicted isotherm parameters: (a) Depicts
strongly overlapping peaks with nearly maximum loading of IgG and HCP2, and strongly non-ideal
Gauss-peaks with clear competitive behaviour. (b) Illustrates similar behavior like (a) with peak
switching. (c,d) show the typical “shark-fin” shape of highly loaded columns with baseline separation.
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In contrast to the assumptions based on Table 2, the resimulated chromatograms match
the original chromatograms. This even applies to extreme conditions seen in Figure 5a,b.
Based on this, the results of the previous work [12] and the scenario in the next step, the
capability of predicting the phase equilibrium parameters is assumed to be sufficient.

3.3. Variation of Phase Equilibrium, Fluid Dynamic and Packing Parameters at Once

The previous steps have shown that the prediction of relevant parameters from a
single chromatogram is possible under the previously stated conditions Therefore a final
dataset was created. For this dataset, the following scenario was set. The previously
presented chromatography step starts as an optimized process with the initial parameters
of Table 1. It is assumed that the parameters are affected by column aging/fouling and
therefore move in the direction of decreasing performance of the column (except the flow)
within the range of Table 1. The column is deemed insufficient as soon as the target
protein’s peak area (IgG) is overlapped by the side components’ (HCP1, HCP2) peak area
by more than 10%. Furthermore, it is assumed that a validated but noisy PAT concept for
online concentration measurement is implemented. Under these conditions, the covered
parameter range of the dataset is reduced but extra complexity is added by the noise. The
noisy initial chromatogram is shown in Figure 6.

To generate a dataset that suffices the overlapping area rule and does not add unnec-
essary complexity to the dataset, each chromatogram was evaluated after its simulation. If
the 10% rule was violated, the chromatogram was discarded. This process was repeated
until the dataset contained 1000 entries. Unexpectedly, no entries with ke f f values below
10−4 cm2/s were generated. Because greater values had no impact on the chromatograms,
the ke f f prediction was discarded after further investigation. Thus, the complexity of the
prediction task can be reduced further. The resulting dataset was split into 70% training and
30% validation data. Afterwards, a feed-forward ANN with 118 input neurons, 118 neurons
with 20% dropout and tanh activation function in hidden layer I, 100 neurons with 20%
dropout and tanh activation layer and 14 output neurons with linear activation was trained.
The neural network training utilized the Adam algorithm. It was trained over 30,000 epochs
with a batch size of 16. Again, the validation data were used to test the ANN performance.
The predicted parameters were used to resimulate the validation set chromatograms. The
results of the R2 are summarized in the box plot in Figure 7.
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gradient.

Except for a few outliers, a high prediction performance can be seen. The confidence
intervals at 95% level for IgG, HCP1 and HCP2 are [0.97, 0.98], [0.96, 0.97] and [0.96, 0.97],
respectively. The performance may be increased by further optimizing the ANN structure,



Processes 2022, 10, 709 12 of 14

adding additional chromatograms to the dataset, or applying smoothing algorithms to the
input data instead of using the noisy raw data. Additionally, more chromatograms from
previous batches could be used to supply the ANN with more information and, therefore,
increase prediction performance.
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4. Conclusions

In this study, an ANN for chromatography model parameter prediction under prepar-
ative production conditions was developed and evaluated. Instead of using a wide param-
eter range with multiple chromatograms like in previous works for a more screening-like
approach, only a single and noisy chromatogram was used for parameter prediction.
After excluding irrelevant parameters for the set scenario via expert knowledge and
one-parameter-at-a-time sensitivity studies, the ANN was trained to predict the voidage,
the axial dispersion coefficient, and phase equilibrium parameters. Although the prediction
of the individual parameters indicated poor performance, simulating the chromatograms
with predicted values showed that a high agreement occurs between the original and the
chromatograms with predicted parameters. The authors explain this with the sensitivity
of the parameters in certain areas. Therefore, the ANN can be used to track parameter
deviations of the specified process. A schematic application was shown in Figure 1. The
presented approach could be used as supportive tool in chromatography processes with
model-based control and optimization in production environments. The influence of typical
deviations caused by column aging or feed and buffer variations on the model parameters
can be tracked by the ANN within 200 milliseconds. Therefore, a quick adjustment of
the parameters to the current state of the process is possible by a chromatogram given by
PAT. A drift of the model from reality can thus be counteracted, which leads to increased
performance of the control and optimization model over the whole process lifetime.
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