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Abstract: Carbon dioxide (CO2)-enhanced oil recovery (EOR) has great potential and opportunity
for further development, and it is one of the vital carbon capture, utilization, and storage (CCUS)
technologies. However, strong heterogeneity is one of the several challenges in developing reservoirs,
especially for China’s continental tight oil reserves. This study investigates the effects of heteroge-
neous porosity and permeability on CO2 flooding evolution in low-permeable tight formation. We
simulated CO2-EOR using a numerical model developed on the platform of TOUGH2MP-TMVOC
to evaluate the effect of different levels of heterogeneity on oil production, gas storage, and flow
behaviors in a tight reservoir, controlled by standard deviation and correlation length. A comparison
of nine cases reveals that porosity heterogeneity commonly intensifies flow channeling, and there is
an oil production decline with higher standard deviation and longer correlation length of porosity
field. In addition, the porosity correlation length has a negligible effect on reservoir performance
when the standard deviation is relatively low. Furthermore, strong heterogeneity also has a negative
impact on the storage capacity of CO2 and oil production. Notably, as the standard deviation was
raised to 0.1, a small sweep region arose with the early CO2 breakthrough, which led to a worse
flooding effect. Finally, this study exemplifies that a higher injection/production rate and CO2

alternating N2 injection strategies can improve oil recovery in highly heterogeneous reservoirs.

Keywords: CCUS; enhanced oil recovery; CO2 flood; tight oil reservoir; porosity heterogeneity;
flow channeling

1. Introduction

As an important carbon emission reduction method, CCUS technologies can help with
achieving the global carbon neutrality target [1–5]. In particular, CCUS is a competitive
approach to offset the costs by enhancing the oil recovery (CO2-EOR), coalbed methane
(CO2-ECBM), natural gas (CO2-EGR), and geothermal energy [2,3,6–9]. Since the 1970s,
CO2 has been utilized for tertiary recovery as commercial-scale oil production in the U.S.
and China [6]. Until the end of 2021, more than 100 pilot-scale engineering CCUS projects
have been established globally, and most of these are CO2-EOR or pure CO2 capture projects.
China’s tight gas/oil development has entered a new stage over the last decade, especially
in the Songliao, Sichuan, and Ordos basins. However, unlike the marine sedimentary
complexes in North America, complex petroleum geology exists at various basins in China,
especially for basins with continental deposits [10–16]. The properties of continental tight
oil reservoirs are greatly influenced by deposition, resulting in poor reservoir and fluid
characteristics, including severe heterogeneity, high viscosity, and low fluidity. The above
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factors promote significant challenges in developing continental tight oil in China [17–22].
In this regard, CO2 has been increasingly used in gas injection and enhanced oil recovery in
China due to the capability to decrease crude oil viscosity, extraction of light components,
and competitive adsorption. Several CO2-EOR pilot projects have been constructed in
Songliao, Bohai Bay, and Ordos basins by the major Chinese petroleum companies [3,6,7,23].

Many parameters have been studied during the CO2-EOR process, including the safety
of CO2 transport, CO2 properties, and CO2 injection strategies [24–31]; however, limited
attention has been given to analyzing heterogeneity’s impact on the performance in CO2
flooding processes. For the first time, Cheng [32] investigated heterogeneity’s effect on
improved hydrocarbon recovery in the CO2 huff-n-puff method through the UT-COMP
reservoir simulator. Nevertheless, this study did not imply a sensitive relation between
recovery and correlation length. Yu [33] studied the effects of permeability heterogeneity
on horizontal well production and suggested that the heterogeneity is favorable for the
CO2 huff-n-puff. It is because a more heterogeneous reservoir has a higher residual oil
saturation; more oil can be activated through carbon dioxide diffusion. Bao et al. [34]
built 3D reservoir models with 12 hydraulic fractures to study the effects of correlation
length of the natural fracture in shale reservoirs during the CO2 huff-n-puff process. They
concluded that heterogeneity is unfavorable during primary production, while a long
correlation length is beneficial to oil production. Moreover, a small correlation length
favors CO2 injectivity in the short term and vice versa. Wang et al. [35] researched reservoir
heterogeneity and other influencing factors using numerical simulations of CO2 flooding
in glutenite reservoirs and concluded that stronger reservoir heterogeneity causes the
uneven spread of CO2 flooding and ultimately leads to lower reservoir efficiency. In
addition, the large pores and preferential seepage pathways could raise the possibility
of rapid gas breakthrough. The effect of core-scale heterogeneity on the CO2 flooding
was estimated by Al-Bayati [36] via a series of man-made core samples. The experimental
results from different displacement situations showed that the level of heterogeneity in
layered samples influences the recovery considerably. Generally, a high permeability ratio
gives rise to a lower ultimate recovery factor. Ding [37] investigated the effects of reservoir
heterogeneity through indoor CO2 flood experiments. He observed that oil production in
homogeneous cores is generally more prominent than in heterogeneous cores. In addition,
more CO2 consumption occurs in heterogeneous cores to achieve the same oil production.
Their work demonstrated that oil recovery is sensitive to heterogeneity for both immiscible
and miscible flooding. Wu et al. [38] evaluated the effect of permeability heterogeneity on
the CO2 and N2 injection process in tight oil reservoirs using the numerical simulation
method. They concluded that reservoir performance would become poor with the strong
heterogeneity. Furthermore, nitrogen injection is more favorable in maintaining formation
pressure than pure carbon dioxide injection.

The above studies show that heterogeneity can lead to different effects on oil recovery
and CO2 breakthroughs; however, its effects in a low permeable reservoir are still unex-
plored. In addition, more oilfields are currently conducting CO2 enhanced oil recovery pilot
projects and storage in low-permeability reservoirs. Thus, the heterogeneity effect in the
tight reservoir is evaluated in this work by adopting a numerical modeling approach and
random porosity generation method. The simulations of nine cases with different porosity
distributions have been carried out to investigate the heterogeneity influence on fluid flow
and characteristics, CO2 flooding effect, and CO2 storage capacity in a low-permeable
reservoir. In addition, this study also explored how to restrain the influence of strong
heterogeneity in the process of gas injection.

2. Simulation Concept and Method
2.1. Simulation Approach

Some simulators such as TOUGH2-ECO2N, TOUGH2-ECO2M, TOUGH2-TMGAS, and
MUFTE can be used to simulate the CO2 flow process in subsurface porous media [39–42].
However, the main limitation of these frameworks is the use of two-phase conditions for
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modeling. Particularly, CO2-enhanced oil recovery involves a series of physical and chemical
changes of gas and oil components; thus, the mechanisms differ from the pure CO2 seques-
tration in aquifer or coal beds. This work aims to evaluate the effect of heterogeneity during
the CO2-EOR process. The numerical simulator, TOUGH2MP-TMVOC, which belongs to
the family of the TOUGH2 program, is used to carry out this study. TMVOC is an advanced
numerical simulator that can simulate the flow behavior of water, non-condensable gases
(NCGs), and non-aqueous phase liquids (NAPLs). Regarding eight gases, 18 NAPLs and
water are included; thus, multi-phase multi-component non-isothermal flow of hydrocarbon
mixtures in saturated/unsaturated heterogeneous media can be modeled with reasonable
accuracy. In addition, the multi-phase seepage parameters in reservoirs, e.g., relative per-
meability, capillary pressure, and diffusion coefficient can be established and adjusted. The
updating of fluid property parameters such as saturation, viscosity, and density for each phase
can be executed in every iteration step.

2.2. Mathematical Model and Governing Equations

The physical processes that involve CO2, oil, and water flow in porous media are
governed by mass, momentum, and energy conservation laws. The mathematical model is
based on the following assumptions and considerations: (a) transport and flow mechanisms
include multi-phase Darcy flow and multi-component diffusion; (b) heat transfer in the
porous medium; (c) the involvement of several components such as CO2, water, and oil
with some pseudo-oil components; (d) interphase mass transfer including dissolution of
CO2 in oil; (e) phase behavior of multi-phase and multi-component; (f) adsorption and
precipitation of asphaltene. These physical laws can be represented mathematically by
partial differential or integral equations at the macroscopic level.

For the multi-phase multi-component fluid flow in the porous media, the mass flux can
be calculated as the sum of injection and flux from the boundaries, which can be written as:

∂Mk

∂t
= −

→
∇
(

∑β

→
F βxk

β

)
+ qk (1)

where k is the index for the mass components; Mk is the mass accumulation term of
component k; F is the mass or heat flux; β represents the liquid/gas/NAPL phase; xk

β is the
component k’s fraction in phase β; and q is the source or sink.

The mass of a component k is the sum of its presence in all phases. Mass accumulation
term Mk can be realized as the following equation:

Mk = φ ∑β
Sβρβxk

β (2)

where φ is the porosity [-]; Sβ is the saturation of phase β [-]; and ρβ is the density of phase
β [mol/m3].

As for NAPL, adsorption on rock face is also considered as the following equation:

Mk = φ ∑β
Sβρβxk

β + (1− ϕ)σrσwxk
wkd (3)

where σr, σw represent the density of the rock and water, respectively; xk
w is the mole

fraction of volatile oil components in aqueous phase, and kd is distribution coefficient for
the water phase.

The total advective mass flux can be calculated as the sum of fluid flow of all the
phases and written as:

Fk = ∑β
xk

βFβ (4)

Here, the fluid mass flow can be obtained based on Darcy’s law:

→
F β = −k

krβρβ

µβ

(→
∇Pβ − ρβ

→
g
)

(5)

where k represents the absolute permeability (m2); krβ is the phase β relative permeability (-);
µβ is the phase β viscosity (Pa.s); Pβ is the phase β fluid pressure (Pa); g is the gravitational
acceleration vector (m/s2);
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The heat conservation includes conductive and convection, which can be expressed as:

FNK+1 = −K∇T + ∑β
hβFβ (6)

where K is thermal conductivity (K/m); ∇T denotes the temperature gradient (W/(m · K));
hβ is the specific enthalpy in phase β (J/kg).

The determination of relative permeability and capillary pressure is important for the
simulation of fluid flow in the porous media. Several empirical models can be used to
calculate the relative permeability. Regarding three-phase fluid flow, the modified version
of Stone’s three-phase relative permeability is used in this work and is described in the
following equations.

krg =

[
Sg − Sgr

1− Swr

]n
(7)

krw =

[
Sw − Swr

1− Swr

]n
(8)

kro =

[
1− Sg − Sw − Sor

1− Sg − Swr − Sor

][
1− Swr − Sor

1− Sw − Sor

][(
1− Sg − Swr − Sor

)
(1− Sw)

(1− Swr)

]n

(9)

where krg is the gas phase relative permeability; krw is the water phase relative permeability;
kro is the NAPL phase relative permeability; Sg is the gas phase saturation; Sw is the water
phase saturation; So is the NAPL saturation (So = 1− Sg − Sw); Sgr is the irreducible gas
saturation; Swr is the irreducible water saturation; and Sor is the irreducible NAPL saturation.

Similarly, the three-phase capillary pressure function of Parker et al. [43], which is also
a built-in function in TMVOC, is utilized to calculate the capillary pressure between phases.
It is given in the following equation:

Pcgo = −
ρwg
αgo

[
Sl
−1/n − 1

]1/m
(10)

Pcgw = −ρwg
αow

[(
SW
)−1/m − 1

]1/n
− ρwg

αgo

[(
Sl
)−1/m − 1

]1/n
(11)

Pcow = Pcgw − Pcgo (12)

where Sw = (Sw−Sm)
(1−Sm)

, Sl =
(Sw+Sn−Sm)

(1−Sm)
, m = 1− 1

n , Pcga is the gas–NAPL capillary pressure,
and Pcgw is the gas–water capillary pressure.

Molecular diffusion also plays a vital role in mass transport, especially for the small
advective velocity. Typically, diffusion flux is related to the concentration gradient of the
diffusing component and can be expressed according to Fick’s law as follows:

f = −d∇C (13)

where d denotes the effective diffusivity. This parameter is dependent on the porous media,
the pore fluid, and the diffusing component normally. The concentration variable C can be
chosen by mass and mole fraction.

The concentration can be expressed by the various models, such as De Marsily’s (1986)
function [44]. Consider the multi-components diffusion in

f k
β = −φτ0τβρβdk

β∇Xk
β (14)

where φ denotes the porosity [-]; τ0 is a factor dependent on the porous media [-]; τβ

represents the coefficient that depends on the saturation of phase β [-]; τ0τβ denotes the
tortuosity [-]; ρβ is the density [kg/m3]; and dk

β represents the molecular diffusion coefficient

for component k in phase β [kg/m3].
Therefore, a single effective multi-phase diffusion coefficient that combines all material

constants and tortuosity factors can be expressed as:

∑k
β
= φτ0τβρβdk

β (15)

For the two-phase conditions, the diffusive flux can be written as:
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f k = −∑k
1∇Xk

1 −∑k
g∇Xk

g (16)

It is worth mentioning that in TMVOC, NCG dissolution in the aqueous phase and
NAPL phase is described by Henry’s law. However, the exact solubility of CO2 in oil
depends on oil components, pressure, and temperature for the unconventional hydrocarbon
reservoirs. In addition, due to the difficulty of determining the equilibrium solubility by
correlating at any temperature and pressure accurately, the experimental data of CO2
solubility in a specific crude oil can be used in the numerical model. In this work, the
experimental solubility is adopted from the work of Ju [45] to realize the gas flooding
process under the condition of immiscible flooding.

In TOUGH2MP-TMVOC, the integral finite difference method has been used to dis-
cretize the continuum equations for solving multi-flow in the porous medium. Therefore,
the integral of Equation (1) can be written in the following equation.

d
dt

∫
Vn

MkdVn = −
∫

Γn
Fk·n dΓn +

∫
Vn

qkdVn (17)

2.3. Numerical Model Validation

The accuracy of the simulation method and model used in this work have been
verified in the previous research [9,46–48], which can guarantee the reliability of numerical
simulations. However, to ensure the applicability of the simulation method for CO2-EOR,
model validation is also carried out. One 1D model was generated for comparison with the
slim-tube experimental data conducted by Jilin Oilfeld, CNPC [49]. Table 1 summarizes the
main parameters utilized in the simulation that are the same as the experiments. The mesh
model with injection and production locations is demonstrated in Figure 1.

Table 1. Main parameters data of 1D model.

Parameter Value Parameter Value

Grid block length (m) 10 × 1 × 1 Water saturation 0.2
Grid numbers 10 Oil saturation 0.8

Porosity 0.3 CO2 injection rate (kg/s) 0.0001
Initial temperature (◦C) 90 Initial pressure (MPa) 30

Energies 2022, 15, x FOR PEER REVIEW 6 of 23 
 

 

Table 1. Main parameters data of 1D model. 

Parameter Value Parameter Value 
Grid block length (m) 10 × 1 × 1 Water saturation 0.2 

Grid numbers 10 Oil saturation 0.8 
Porosity 0.3 CO2 injection rate (kg/s) 0.0001 

Initial temperature (°C) 90 Initial pressure (MPa) 30 

 
Figure 1. Validation model of CO2 flooding. 

Figure 2a presents the relation between the oil recovery and CO2 injection volume. It 
can be observed that when the injected CO2 volume reaches 0.4 times the pore volume (0.4 
PV), the recovery obtained from the simulation started to be lower than the experimental 
value until the injected volume reaches about 0.82 PV. Furthermore, due to the gas break-
through, it also can be found that the enhancement in recovery after 1.0 PV injection of 
CO2 slowed down. In addition, the simulated recovery was lower than the experimental 
results after 1.0 PV injection, which is probably since the miscible behavior occurred in 
the experiment. Except for a few differences between the simulated and experimental re-
sults, the recovery matches well, which validates the reliability of our numerical model. 

 
Figure 2. The (a) comparison of simulation results with experimental data, (b) comparison of recov-
ery under different grid numbers. 

The study of discretization and grid convergence is performed to demonstrate the 
numerical method for the CO2-EOR. In this section, six different grid block sizes (a differ-
ent number of cells) are generated, with 5, 10, 20, 40, 80, and 160 cells, respectively. All the 
parameters for the six simulations are the same as those of the model used for the com-
parison with experimental data above. It can be observed that the recovery degree grad-
ually improves with the increase in the number of cells (Figure 2b). The maximum final 
recovery value is 96.68% with 160 cells, which is close to the recovery of 96.31% obtained 
with 80 cells. Similarly, the results obtained by 40 cells, 20 cells, and 10 cells are 95.56%, 
94.62%, and 93.68%, respectively. It is worth mentioning that the value of recovery does 
not deviate from each other significantly in the five cases. However, the final oil recovery 
is maintained at 89.04% when the total cells are only 5; thus, increasing the grid block size 

Figure 1. Validation model of CO2 flooding.

Figure 2a presents the relation between the oil recovery and CO2 injection volume.
It can be observed that when the injected CO2 volume reaches 0.4 times the pore volume
(0.4 PV), the recovery obtained from the simulation started to be lower than the experi-
mental value until the injected volume reaches about 0.82 PV. Furthermore, due to the gas
breakthrough, it also can be found that the enhancement in recovery after 1.0 PV injection
of CO2 slowed down. In addition, the simulated recovery was lower than the experimental
results after 1.0 PV injection, which is probably since the miscible behavior occurred in the
experiment. Except for a few differences between the simulated and experimental results,
the recovery matches well, which validates the reliability of our numerical model.

The study of discretization and grid convergence is performed to demonstrate the
numerical method for the CO2-EOR. In this section, six different grid block sizes (a different
number of cells) are generated, with 5, 10, 20, 40, 80, and 160 cells, respectively. All
the parameters for the six simulations are the same as those of the model used for the
comparison with experimental data above. It can be observed that the recovery degree
gradually improves with the increase in the number of cells (Figure 2b). The maximum final
recovery value is 96.68% with 160 cells, which is close to the recovery of 96.31% obtained
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with 80 cells. Similarly, the results obtained by 40 cells, 20 cells, and 10 cells are 95.56%,
94.62%, and 93.68%, respectively. It is worth mentioning that the value of recovery does
not deviate from each other significantly in the five cases. However, the final oil recovery
is maintained at 89.04% when the total cells are only 5; thus, increasing the grid block
size (more than 1 × 1 × 1 m) will decrease the final recovery significantly. This study
demonstrated that when the grid size is less than 1 × 1 × 1 m, the numerical model has
well grid convergence and consistency. It also proved the capability of the method in
handling CO2-EOR simulation. The results present that there is not much difference when
the cells increase from 10 to 160 and regarding computational time, a grid size of 1 × 1 m
in the x, y-axis is employed in the next simulation work.
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3. Model Generation
3.1. Heterogeneous Porosity and Permeability Fields

Typically, the formation porosity follows a normal or log-normal distribution, which
can be represented by a spatially autocorrelated random field. The variogram model and
the correlation length can characterize the spatial autocorrelation features. The variance
model describes how the semivariance (the difference between the statistical variance
of porosity and the covariance) changes with the distance between two locations. The
exponential and spherical variogram models have been broadly used for geostatistics. The
spherical variance function model is used in this study to realize the two-dimensional log-
normal porosity distributions. In order to obtain the porosity fields that follow the specified
probability distribution and spatial autocorrelation for the simulations, the “gstat” package
in R programming language [50,51] was employed for the heterogeneous modeling.

In this study, the degree of heterogeneity is evaluated by the standard deviation
(SD) and the correlation length (CL) of porosity values, since the spatial variation in
porosity determines flow pattern and reservoir permeability. After obtaining the random
porosity distribution, the distribution of permeability is simulated according to the KC
equation. Permeability is related to porosity, tortuosity, and other parameters via this
semi-empirical equation. In addition, the corresponding modified KC equation is used
for the low permeability reservoirs, which allows obtaining more accurate permeability.
Generally, it has the following form [52,53]:

KKC =
8

35(3 + 2
√

2)
φ3

k(1− φ)2 λ2 (18)

where d is the grain diameter, and k = cτ2 is the K-C constant, which is dependent on the material.
Table 2 summarizes the plan for this investigation. The simulation consists of three sets

with different values of SD and CL, while the porosity with a mean value of 0.07 in each case.
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Table 2. Simulation plan of the porosity field.

Mean Standard Deviation (-) Correlation Length (m)

Set 1:

0.07 0.025 12.5
0.07 0.025 25
0.07 0.025 50
0.07 0.05 12.5

Set 2:
0.07 0.05 25
0.07 0.05 50
0.07 0.1 12.5

Set 3:
0.07 0.1 25
0.07 0.1 50

3.2. Numerical Model

A brick model of 160 × 100 × 10 m in the x, y, and z directions is used for simulation,
forming part of a common tight reservoir well pattern with a confined boundary modified
from Wang et al. [54]. The computation domain is illustrated in the red rectangle with the
injection well on the upper left corner and the production well on the lower right (Figure 3).
The half-length of one fracture is 80 m with the porosity value of 0.5, while the average
value of the matrix porosity is 0.07. The initial distribution of components and properties
of the oil phase are shown in Table 3 [55], and the input parameters applied in the model
for simulations are listed in Table 4 [56].
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Table 3. Oil phase composition and properties.

Component Mole
Fraction, %

Critical
Temperature, K

Critical
Pressure, MPa

Boiling
Point, K

Molecular
Weight, g/mol

Density (289 K),
kg/m3

COMP1 0.36 630.3 3.73 417.6 106.2 880.0
COMP2 0.64 591.8 4.1 383.8 92.1 867.1

The porosity and permeability distribution fields in the simulated model are generated
by the interpolation method of Section 3.1 (Figure 4). It can be observed that if the SD and CL
values are small, the porosity distribution is more uniform, and the larger variation appears
in a small range. As the SD value increases, the homogeneity of porosity distribution
declines. Moreover, as the CL value continues to increase, the porosity distribution in
the same set is no longer uniform, and the areas with larger values appear as a cluster.
Along with the CL enhancement, the area of the clustered aggregation increases (Figure 4i).
The permeability distribution almost corresponds to the porosity and maintains the same
distribution pattern, as shown in Figure 5.
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Table 4. Basic parameters data of simulation model.

Property Value Unit

Grid block length 100 × 160 × 10 m
Mean matrix porosity 0.07 dimensionless

Fracture length 80 m
Fracture porosity 0.5 dimensionless

Initial temperature 90 ◦C
Injection temperature 40 ◦C

Initial pressure 20 Mpa
Injection rate 0.01 kg/s

Production pressure 15 Mpa
Water saturation 0.4 dimensionless

Oil saturation 0.6 dimensionless
Production time 10 year
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4. Simulation Results and Discussion

The homogeneous fields have also been simulated for comparison. The porosity
value of the homogeneous field is 0.07. The gas, oil saturation, and reservoir pressure
during the CO2 injection process have been measured. Figure 6 shows the evolution of
the reservoir phase saturation and pressure in the half, second, sixth, and tenth years. The
CO2 displacement front advances evenly during the injection process, and the gas and
oil saturations alter correspondingly. However, the pressure field changes significantly in
the early injection stage, and the pressure near the injection well increases. The pressure
near the injection well declines with continuous production, and the overall distribution
remains uniform. Moreover, the final cumulative oil recovery of the homogeneous model
is 22.23%.
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4.1. Effect on Oil/Gas Saturation and Pressure

Figure 7 describes the variations in oil/gas saturation and reservoir pressure using
Set 1 during the CO2 flooding process. The results of three cases for short, medium, and
long correlation lengths (i.e., 12.5 m, 25 m, and 50 m) are presented. It can be seen that with
the enhancement in the heterogeneity of the reservoir, uneven distribution appears in the
CO2 displacement front, which is clearly different from the homogeneous case. When SD is
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equal to 0.025, the final sweep area of each case is roughly the same. Nevertheless, when
CL is 50 m, the sweep region is slightly reduced, mainly in the lower-left and upper-right
corners. With the continuous injection of CO2, the gas saturation near the injection well
increases and reaches 0.5 by the end of 10-year production. The reservoir pressure near the
injection well increases remarkably and reaches about 30 MPa in a 6-month period. After
two years of production, the overall reservoir pressure has stabilized, and the pressure near
the production well has dropped markedly.
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Figure 8 demonstrates the changes of oil and gas saturation and reservoir pressure in
the case with an SD value of 0.05. The heterogeneity in porosity becomes large, making
the difference in the range of saturation variation more obvious. In other words, the
direction of CO2 flow and morphology are significantly influenced by the heterogeneity in
porosity and permeability, and the distinction between sweep regions is large. When CL
is 12.5 m, the porosity and permeability near the injection well are relatively low, and the
CO2 front proceeds uniformly. In addition, the displacement effect in the right side of the
reservoir is better, leading to the largest sweep area. In the cases where CL equals 25 m
and 50 m, the CO2 advances mainly to the downward and right sides, and the formation
pressure increases accordingly. The maximum formation pressure is close to 35 MPa in these
two cases during the entire process. While the case with CL equals 12.5 m, the maximum
formation pressure reaches 42 MPa due to the poor seepage conditions near the injection
well. Afterward, the formation pressure decreases uniformly as the CO2 enters the region
with better seepage conditions having smaller correlation lengths and better homogeneity.

The oil/gas saturation and the pressure change of Set 3 are shown in Figure 9. In
Set 3, the standard deviation of porosity reaches 0.1, which means the heterogeneity
is the strongest. The saturation distribution maps show that the swept area of CO2 is
tremendously reduced, and the flow pattern of carbon dioxide is also quite different from
the first two sets at different times. In other words, the overall displacement efficiency
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is significantly reduced. It can be seen that when the CO2 flooding is carried out for
six months, the change in gas saturation range is significantly smaller compared to the first
two sets. For the cases where CL equals 12.5 m and 25 m, CO2 mainly flows along the left
side. However, in the case with CL equal to 50 m, CO2 mainly spreads horizontally along
the upper area. In the case of CL equal to 50 m, CO2 has the smallest swept area by the
second year, and CO2 has already reached the location of the production well. However, it
reaches the production well in approximately four years in the other two cases, indicating
an earlier CO2 breakthrough in the strongest heterogeneity fields.
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4.2. Effects on CO2 Storage and Oil Production

This section compares net CO2 storage and oil production capacity at different hetero-
geneity levels for all cases. Figure 10 shows the results obtained from these ten heteroge-
neous cases. The total amount of net CO2 stored and oil produced varies with standard
deviation and correlation length. For the homogenous field, the storage capacity of CO2
is large and has the same value when SD is 0.025. In the cases where SD equals 0.025,
the storage capacity decreases when CL increases from 12.5 to 50 m. It is observed that
there is no significant influence of CL at the SD of 0.025 on the storage capacity. When
SD increases to 0.05 and 0.1, a noticeable difference in CO2 storage capacity appears. In
the case where SD equals 0.05 and CL equals 12.5 m, the lowest CO2 storage amount is
found. It is because the porosity and permeability near the injection well are quite low,
and the seepage condition is poor, which leads to complexity in CO2 injection. Instead,
it has the maximum CO2 storage amount when the CL is 25 m in Set 2. Moreover, in
the case where SD is 0.1, the storage capacity gradually decreases as the CL increases
from 12.5 m to 50 m. In the case of oil production potential, it is also observed that the
homogeneous field contributes to the largest production, and there is a slight decline in oil
production as SD increases. It is evident from Figure 10 that in Set 1 and Set 2, the standard
deviations were 0.025 and 0.05, respectively, and the increase in CL resulted in a decrease in
oil production. Comparatively, in Set 3 with a standard deviation of 0.1, enhancing CL did
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not decline production. It suggests that when the standard deviation increases to a certain
level, changing the correlation length has little effect on oil production; however, it still has
a large impact on net CO2 storage.
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In order to quantify the reservoir performance and the effects of heterogeneity on oil
production, we calculated and compared the results of cumulative recovery for all cases.
Figure 11 summarizes the evolutions of the cumulative recovery curve. As a reference for
comparison, the final cumulative recovery of the homogeneous case is 22.23%. However,
the average cumulative recovery in Set 1, Set 2, and Set 3 is 22.09%, 20.28%, and 16.94%,
respectively, indicating that the enhanced heterogeneity due to the increased standard
deviation of porosity leads to a decrease in the degree of recovery. It should be noted
that the highest cumulative recovery, 22.77%, is achieved when the SD is 0.025, and the
CL is 12.5 m. In the case where SD equals 0.1 and the associated length equals 50 m, the
recovery degree is 16%, which is the lowest value. However, in this case, the cumulative
recovery remains the highest for the first two years, and then, the growth rate declines
considerably. Moreover, the cumulative recovery showed a downward trend with the
increase in correlation length for each set.
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4.3. Effects on CO2 and Oil Flow

This section investigates the impact of heterogeneity on the flow morphology of CO2
and oil in the reservoir region by calculating and plotting the flow velocity distribution
at different time durations. Three sets of oil and gas flow characteristics with different
degrees of heterogeneity are shown in Figures 12–14. It can be seen that the flow of oil and
gas is greatly affected by the degree of heterogeneity. In three cases of Set 1, the maximum
flow velocity of CO2 and oil are located at the injection/production well (Figure 12). The
flow velocity and area for each case differ slightly, and the whole distribution is relatively
uniform and regular. Figure 13 presents the oil and gas flow characteristics of Set 2, in
which the increase in the porosity standard deviation leads to the appearance of unevenly
distributed flow. The flow of CO2 along a particular streamline starts to appear in the three
cases. In addition, the flow of oil changes into dispersion, and the streamlines become
sparse in the subsequent stages. This phenomenon becomes more prominent when SD
increases to 0.1 (Figure 14). The density of the streamline distribution reduces significantly,
and the flow of oil and gas is mainly concentrated in some areas. The main reason is
that CO2 connects the area with better pore seepage conditions between the injection and
production wells, forming a predominant pathway. In Set 3, as the CL value increases, the
effective flow range of oil and gas gradually decreases, especially for CO2, as shown in
Figure 14c, and the streamline forms a relatively narrow channel. Since most of the oil is
not swept effectively, the seepage range is limited to the vicinity of the dominant channel.
Moreover, due to the continuous injection of CO2, the flow is even more channelized
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along these preferential paths. It can be seen that CO2 bypassed certain areas and could
not reach certain areas with poor porosity at all because of these predominant pathways
(Figure 14a,b). In addition, with the increase in the degree of heterogeneity, the flow velocity
magnitude is also affected. In Set 3, when SD equals 0.1, the maximum flow rate of CO2 is
between 0.2 and 0.32 kg/s, while the maximum flow rate ranges of the remaining two cases
are 0.15–0.20 kg/s and 0.2–0.24 kg/s, respectively.
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In order to encounter the issue of CO2 breakthrough directly, the flow velocity of each
phase at the production well is monitored (Figure 15). It can be seen that the flow velocity of
both CO2 and oil increases gradually in the early stage. Once the breakthrough of CO2 occurs,
the flow velocity of CO2 becomes large in a short period. At the same time, the flow velocity
of oil decreases rapidly. Therefore, oil flow velocity in each case has experienced a peak
(Figure 15a). The peak appears around the third year in Set 1 but slightly earlier in the second
and third set as the heterogeneity increases. It is noteworthy that in Set 2 and Set 3, with
stronger heterogeneity, the oil flow velocity experiences a rapid increase for a short period
before reaching its peak. It is probably related to the fact that oil production increases for
a short period when CO2 displaces into the previously un-swept regions. This phenomenon is
more obvious in the reservoir with stronger heterogeneity since the region with better porosity
and permeability becomes more heterogeneous. It results in a significantly higher velocity of
CO2 and oil compared to other cases in the early period as SD equal to 0.1 and CL is 50 m. In
this case, the oil flow velocity is minimal in the later period. The rapid increase in CO2 flow
velocity and the peak of the oil flow velocity are both earlier than the other cases, indicating
that the CO2 breakthrough has occurred at the earliest.
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4.4. Effect of CO2 Injection Rate and Production Pressure

Two cases with the strongest and the weakest heterogeneity have been selected, and
a comparative study of overcoming the impact of heterogeneity during production is
carried out. The production enhancement of these measurements in the development of
reservoirs with different degrees of heterogeneity is explored by analyzing the recovery
under different CO2 injection rates and production pressures. The enhancement in gas
injection rate results in a significant improvement in recovery (Figure 16a). However, the
final cumulative recovery increases about 16.43% in the weak heterogeneity case compared
to 8.58% in the stronger heterogeneity case. Nevertheless, reducing the production pressure
in the simulation can also increase the recovery effectively, but no noticeable difference
is found related to the heterogeneity. The reduction in production pressure from 20 to
7.5 MPa results in the increase in recovery by 4.34% and 5.38% for the two cases, respectively,
and with the weaker heterogeneity case improving slightly less (Figure 16b). The above
investigation shows that increasing the injection and production rate will increase the oil
production and contribute to positive effects.
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4.5. Effect of CO2-Alternating-N2 (CAN) Injection

Nitrogen gas has good elastic energy during flooding to maintain the reservoir pres-
sure. It has many advantages, such as being abundant in the atmosphere, relatively low-cost,
well-established harnessing/capture technology, and non-corrosive property [57–60]. These
advantages make nitrogen gas another significant candidate to improve tight oil reservoirs.
Several studies have been carried out to investigate the efficiency of N2 gas injection on
tight oil reservoirs, which suggest that the mixed injection of nitrogen and carbon dioxide
can achieve better results than pure carbon dioxide injection [38,60].

In order to reduce the impact of strong heterogeneity on CO2 flooding, further sim-
ulations have been conducted to investigate the mixed injection of carbon dioxide and
nitrogen (CO2-alternating-N2) and compare its optimization effect in the most heteroge-
neous reservoirs. Carbon dioxide and nitrogen are injected alternately into the reservoir
with an injection rate of 0.01 kg/s. Firstly, carbon dioxide is injected in the first year, which
is followed by a continuous injection of nitrogen in the next year. A two-year injection
cycle was generated, and the entire simulation process was carried out for five cycles
(Figure 17). The cumulative recovery is also used to measure the oil-flooding effect. As
shown in Figure 18, in the case of an alternate injection of carbon dioxide and nitrogen, the
recovery degree is higher from the early stage than pure carbon dioxide flooding, and the
final recovery degree reaches 19.94%. However, the final recovery degree reaches 16.04% in
the pure carbon dioxide case. The results indicate that the alternate injection of CO2 and
N2 can obtain a better oil recovery. It is due to the lower solubility of nitrogen in oil, which
can maintain the gas saturation and the reservoir pressure. In addition, a large amount of
injected gas can penetrate the low permeability area due to increased mobility, leading to
a large sweep area.
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5. Conclusions

We used the advanced TOUGH2MP-TMVOC numerical simulator to study the flow
process in engineered CO2 enhanced oil recovery. The effects of spatial porosity heterogene-
ity on sweep region, flow pattern, oil production, and carbon storage capacity in the tight
reservoir are studied. We investigated the two primary variables, the standard deviation
and correlation length of the porosity field, and dozens of realizations were performed to
analyze the reservoir performance.

The simulation results show that porosity and permeability play a significant role in
flow pattern evolution and oil production in the low-permeability reservoir. Compared
with homogeneous porosity and permeability fields, heterogeneous fields that ubiquitously
exist in nature tend to exacerbate flow channeling and generally undermine reservoir
performance. Flow channeling is inevitable regardless of the initial flow pattern. Higher
standard deviation and longer correlation length generally lead to worse reservoir perfor-
mance. Furthermore, the porosity correlation length has a negligible effect on oil production
when the standard deviation is relatively low, while it tends to reduce the amount of oil
for a large standard deviation. Especially as the standard deviation was raised to 0.1,
the smallest sweep region occurred with early CO2 breakthrough, which led to a worse
flooding effect. Moreover, in order to find a way to deal with strong heterogeneity, some
sensitivity assessments relating to production strategies are performed. The results show
that higher injection and production rates can improve the flooding effect and enhance
oil recovery. Furthermore, compared with pure CO2 injection, nitrogen-assisted injection
yields higher oil production when the heterogeneity is high. The present study provides
useful guidelines for developing EOR and CCUS, particularly for tight oil reservoirs with
strong heterogeneity in China to achieve carbon-neutral target.
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