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Abstract 

In vitro models of liver (patho)physiology, new technologies and experimental 

approaches are progressing rapidly. Based on cell lines, induced pluripotent stem cells 

(iPSCs) or primary cells derived from mouse or human liver as well as whole tissue 

(slices), such in vitro single- and multi-cellular models, including complex microfluidic 

organ-on-a-chip systems, provide tools to functionally understand mechanisms of liver 

health and disease. The International Society of Hepatic Sinusoidal Research (ISHSR) 

commissioned this working group to review the currently available in vitro liver models 

and describe the advantages and disadvantages of each in the context of evaluating 

their use for the study of liver functionality, disease modelling, therapeutic discovery and 

clinical applicability.  
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1- Introduction  

Liver disease represents one of the leading causes of death worldwide, and the 

incidence of some pathologies, such as non-alcoholic fatty liver disease (NAFLD), non-

alcoholic steatohepatitis (NASH) and liver cancer, continues to rise 1. Despite years of 

research, liver diseases still have limited treatment options in the clinic. This paucity of 

treatments is partly explained by the limitations of traditional in vitro tools and animal 

models that do not accurately mimic the clinical pathophysiology of diseases and have 

a low accuracy for drug discovery purposes. Indeed, several studies have shown that 

traditional cell culture methodologies do not reflect the complexity of a human liver in 

vivo and thus cannot predict drug sensitivity. In contrast, animal models differ in biology 

compared to human pathologies, which explains why promising therapies tested in 

animal models often fail when tested in humans and, unfortunately, the field of 

hepatology has numerous recent examples of failures in clinical phases 2. With the 

advent of precision medicine, which offers much hope for individual patient outcomes, 

there is increased demand for robust and patient-specific tools to better improve our 

understanding and treatment of complex and multifactorial diseases such as liver 

diseases. Advances in vascular biology, microfluidics, and bioengineering have led to 

the development of sophisticated in vitro models that could fill this gap (Figure 1). In 

addition, omics techniques provide further insight to pre-clinical research in hepatology. 

In this review, we discuss the benefits and limitations of advanced in vitro research 

techniques that are presently being applied to the study of liver diseases and further 

critique how these tools may provide an insight into the prediction of patients’ responses 

to a therapy. 

2- Liver-on-chip & microfluidic devices  

During the XXI century, the development of biology-inspired devices aimed at mimicking 

the sinusoidal niche integrating microfluidics led to the rapidly evolving liver-on-a-chip 

(LoC) technology 3. The design of these in vitro liver-resembling tools, which have been 
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extensively reviewed in 4 and is out of the scope of the present review, are inspired in 

sinusoidal cell biology, architecture and hemodynamics but materialized under each 

research teams’ eyes in terms of appearance, size, fabrication procedures, costs, and 

microfluidics integration, leading to significant variation in the finalized product. 

Latest advances in the field include chronic liver disease-specific devices, LoC models 

designed to study key pathophysiological processes in the development of liver disease 

and to understand the interconnection with other organs-on-chip to better depict liver 

functions and systemic implications (Figure 2). Multi-organ chips, for instance, liver-, 

adipose- and gut-on-a-chip connected, may be particularly suitable to understand organ-

crosstalk in chronic liver disease (CLD) such as NAFLD/NASH or cholangiopathies 5. 

In the recent years, disease-focused LoC devices mimicking some of the landmark 

etiological characteristics of CLD have been developed. Fat accumulation in 

hepatocytes, occurring in NAFLD/NASH, has been represented in LoC under the 

combination of glucose and free fatty acids (usually a 2:1 ratio of oleic and palmitic acid) 

6. Antifibrotic compounds such as obeticholic acid, elafibranor 7, pioglitazone or 

metformin 8,9 showed promising results in reducing lipid droplets in these in vitro settings. 

Indeed, the anti-NASH agent lanifibranor efficiently reduced hepatocytic lipid 

accumulation 10, and improved human hepatocyte and hepatic stellate cells (HSCs) 

phenotype 11 in a LoC model but not in two-dimensional (2D) cell cultures, supporting the 

specific value of multicellular LoC devices over traditional mono-cell cultures. Alcohol-

associated liver disease has been addressed in several publications focusing on its 

impact in sinusoidal cell biology during development 12 or recovery from alcohol 

(abstinence) either with perfused spheroid 13 or layered cultures 14. Importantly, Ortega-

Prieto et al 15 developed a model for hepatitis B virus (HBV) long-term infection in primary 

human hepatocytes which recapitulates virus-host interactions and its associated 

immune effectors. LoC using primary cells isolated using standardized protocols from 

pre-clinical models of CLD and from patients have also been developed 16,17. These 
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specialized LoC settings may widen the current knowledge on disease dynamics and 

provide potential applicability as in vitro preclinical models for drug screening. 

Even though LoC complexity has outstandingly increased since the initial 

models/prototypes, the intricacy of the whole liver is still underrepresented. In this regard, 

several scientists brought the attention and focused their studies into specific processes 

or structures. For example: the essential features of the bile duct containing primary 

mouse cholangiocytes 18, the unique vasculature organization of the liver 19, the 

sinusoidal zonation within LoC devices 20, neutrophil recruitment and interaction with liver 

sinusoidal endothelial cells (LSECs) after lipopolysaccharide stimulation 21 or drug 

metabolism and toxicity 22 are now embedded in available LoC systems.  

Moreover, CLD has been extensively reported as a systemic syndrome with major 

extrahepatic implications 23. Therefore, the combination of LoC devices has now evolved 

to the extent that disease specific models are being combined with others such as 

intestine, brain, kidney 24–26 or even metastasis niche-on-chip models 27 to recreate body-

on-chip structures to further study gut-liver-brain axis, systemic drug clearance or 

exosome communication between the liver and the tumor microenvironment. However, 

alongside these advances in multi-organ and etiology-centered approaches, a lack of 

consensus in cellular sources and mechanobiological cues within the various LoC 

models remain as unsolved challenges in the field.  

3- Liver scaffolds, matrices & other substrates 

A key component for the engineering of in vitro liver models is the development of 

appropriate scaffold/matrix that recapitulates the hepatic microenvironment well-enough 

to result in realistic functional cells. Several factors affect the efficiency of a scaffold as 

a support for liver cell growth and function including porosity, pore size, biomechanical 

properties, and the scaffold design. To simulate the microenvironment of natural 

extracellular matrix (ECM), substrate design and biomechanical properties are of great 
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significance; hence, bioinspired and biomimetic approaches have been explored to 

model the healthy or damaged liver (Figure 3). Double layers of collagen have been used 

for years as a well-established 2D in vitro model for sandwich cultures of hepatocytes 28. 

Recent studies have identified, and characterized, the hepatic matrisome comprising 

ECM signatures beyond collagen that can potentially provide matrix for in vitro systems 

to study liver diseases 29,30.  

Scaffolds have been fabricated using natural polymers such as gelatin, elastin, silk 

fibroin, chitosan, chitin, fibrin, and fibrinogen or synthetic polymers like polylactic acid 

(PLA), poly(glycolic acid), polyhydroxyalkanoate, and poly (lactic-co-glycolic acid) 

(PLGA) 31. Modified versions of biomaterials such as collagen incorporated PLGA have 

resulted in enhancement of hepatocyte survival and functions likely due to an increase 

in the bioactivity of the newly developed scaffolds 32,33. Similarly, natural polymers such 

as silk fibroin have been modified with arginyl-glycyl-aspartic acid or RGD (an integrin-

based cell adhesion motif), that has been reported to support the growth of functional 

hepatocyte clusters 34. The modification with RGD may also support attachment of 

LSECs, known as endothelization of materials 35. Efficient spheroid cultures of 

hepatocytes have been reported on highly porous hydrogel scaffolds composed of 

alginate and galactosylated chitosan 36. Additionally, synthetic polymer thin films-based 

scaffolds allow organized hepatocytes culture and patterned co-culture of hepatocytes 

with non-parenchymal cells 37–39. Recent interest in mechanical signaling has led to the 

development of scaffolds that can recreate liver stiffness in physiological and 

pathological conditions. In this context, heparin hydrogel has been developed to 

modulate stiffness and has demonstrated that hepatocytes cultured on a softer heparin 

hydrogel (10 kPa) retained five times higher levels of albumin production compared to 

those on a stiffer heparin gel (110 kPa) after 5 days 40. Primary hepatocytes grown on 

modified polyacrylamide gels with cell adhesive ligands are shown to reduce albumin 

production and impair hepatocyte function with increasing stiffness 41,42. Chang and co-
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workers used polyacrylamide gels to tune the substrate stiffness and demonstrated that 

fibrotic levels of stiffness significantly inhibit hepatocyte-specific functions in part through 

the inhibition of the hepatocyte nuclear factor 4α transcriptional network mediated via the 

Rho/Rho-associated protein kinase pathway 43. An innovative platform named BEASTS 

(Bio-Engineered Adhesive Siloxane substrate with Tunable Stiffness) based on a 

polydimethyl siloxane (PDMS) substrate in combination with polyelectrolyte multilayer 

film-coating technology was developed to engineer mechanically tunable substrates 

mimicking physiologic and pathologic liver stiffness 44–48. More recently, 3D bioprinting 

has emerged for precise spatial positioning of both cells and biomaterials or bioinks such 

as alginate together in 3D complex geometries and providing mechanical support 49,50. 

Nguyen et al have bioprinted hepatocytes and non-parenchymal cells in 3D architecture 

and developed models of drug induced liver injury 51. Recent studies have printed liver 

cells along with a liver decellularized ECM bioink creating an environment for maximal 

cellular function 52–54. With 3D bioprinting, vascular and biliary fluidic channels have also 

been successfully created in the LoC device format 53. 3D bioprinting of spheroids and 

organoids represent the next level of technological advancement for creating the highly 

complex liver architecture 55.  

4- Liver spheroids and organoids  

As described above, over the last century, 2D cell cultures have been used as common 

in vitro models to study cellular responses to stimulations and allowing the construction 

of low-cost, simple and well-accepted models of liver disease. However, they do not 

precisely reflect the true physiological state of cells in vivo due to the absence of 

structural, mechanical, and biochemical cues, as well as the interaction between cells 

and extracellular matrices 56. To overcome this limitation, novel 3D cell culture platforms 

including liver spheroid and organoid cultures are being created to better mimic the in 

vivo conditions 57–61. 3D spheroids are produced via self-assembly, in which mono-

dispersed cells form 3D microtissues called multi-cellular spheroids, and mimic natural 
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processes that occur during embryogenesis, morphogenesis and organogenesis 62. 3D 

organoids derive from either pluripotent stem cells, neonatal tissue stem cells or adult 

stem cells/adult progenitors, in which cells spontaneously self-organize into properly 

differentiated functional cell types and progenitors, resembling their in vivo counterparts 

and recapitulating at least some functions of the organ 63. 

In the field of studying liver diseases, recent innovation of hepatic 3D spheroids also offer 

a promising application via combination of 3D printing based techniques and HepG2 liver 

spheroid culture models to develop in situ quantitative evaluation and high-throughput 

monitoring of drug-induced hepatotoxicity 64. HepG2 cell-laden hydrogel constructs were 

3D printed in the shape of a cross on the mini-9-well plate which showed the of HepG2 

liver spheroids embedded in the gelatin-alginate hydrogel. On the 6th day of culture, 

HepG2 liver spheroids exposed to varying concentrations of troglitazone and 

nefazodone were used to predict hepatotoxicity. This model provided a promising tool 

for screening and characterization of hepatotoxicity in a 3D spheroid-embedded hydrogel 

system that more closely resembles conditions in vivo.  

In 2013, Takebe et al. first described the in vitro generation of 3D liver buds organoids 

from human iPSCs derived hepatic endoderm cells co-cultured with endothelial and 

mesenchymal lineages 59. Interestingly, when these liver buds were ectopic transplanted 

at various sites including the cranium, subrenal capsule, distal-, and proximal-mesentery 

in immunodeficient mice, they were able to rescue the drug induced lethal liver failure 

model 61,65. These studies have provided a promising new approach to study 

regenerative medicine and to translate these techniques for treating patients with end-

stage liver failure 65. Furthermore, single cell RNA sequencing (scRNAseq) data from 

human liver bud organoids revealed several aspects of heterotypic interlineage 

communication and organ development 66. Interestingly, Shinozawa et al. reported a 

simple, robust, and high-throughput human liver organoid system to measure bile 

transport activity by live fluorescent imaging with large-scale screening and multiplexed 
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readouts. By using this system, the study analyzed the pathology of drug induced liver 

injury and provided the possibility to assess varying drug susceptibilities based on 

individual polymorphism at organoid resolution 67. These approaches are undergoing 

rapid developments, allowing to establish human organoids from adult/fetal human liver 

or pluripotent stem cells and modelling different liver diseases 68,69,70,71. Different types of 

liver organoid models from mice, humans, dogs, cats are now available for several 

monogenic liver diseases such as Alagille syndrome, cystic fibrosis, primary sclerosing 

cholangitis, Wilsons disease, HBV infection, steatosis or liver cancer amongst others 72–

78. The generation of organoids from adult patient liver tissues also retains the genetic 

background of the individual patient thus creating patient-specific disease models and 

enabling in-depth investigations of pathogenesis mechanisms underlying genetic 

diseases and cancer. In conclusion, induced liver buds and liver organoids provide a 

platform for cell-based therapy, liver disease models, drug screening which satisfy the 

demands of both basic and translational biomedical research. 

5- Tissue-based approaches 

Precision cut liver slices (PCLS) are a native liver-like ex vivo model with intact 

intercellular and cell-matrix interactions 79. PCLS systems use ex vivo liver explants with 

a well-defined thickness and in comparison, to the primary hepatocytes that are short-

lived and lose much of their function in culture, PCLS cultures have been maintained for 

15 days under optimal conditions. Hepatocytes in slices retain their membrane and 

intracellular polarization, in contrast to isolated hepatocytes, which lose their anatomical 

polarity after isolation. PCLS cultures have been established both from murine and 

human livers (Figure 3). 

Human tissue for PCLS are obtained from explanted, resected, or non-transplantable 

tissues from liver tumor patients undergoing transplantation or liver resection. Liver slices 

can also be obtained from patients with severe fibrosis and cirrhosis undergoing 

transplantation. These are usually obtained using Krumdieck (now ‘Alabama’) tissue 
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slicer to make liver slices with their diametric from 5-8 mm 79,80, their thickness at 250-

350 µm 81. These slices are then cultured with William’s’ E medium in regular tissue 

plates either in static, dynamic or bioreactor-based culture systems. In static conditions, 

PCLS cultures have a shorter lifespan (24-48 hours) due to hypoxia and increased cell 

death. To minimize hypoxic death, strategies such as the use of synthetic oxygen 

carriers, rocking or shaking cultures or perfusion bioreactors have been employed to 

provide better perfusion of oxygen and media components 82,83. One study has reported 

PCLS ex vivo cultures with sustained viability for over a two-week period on a rocking 

platform 84. Through microarray profiling of purified individual cells, this study illustrated 

that all liver cells undergo changes in their gene expression profiles until day 4 of PCLS 

cultures, however these changes seem to be stabilized from day 4 until day 15. 

Recently, a study has cultured PCLS on a bioreactor platform at a flow rate of about 18 

µL/sec, which imparted functional longevity to the system for about 6 days without any 

hepatocellular stress and fibrogenesis 83. Using this system, the study also successfully 

modelled ex vivo liver fibrogenesis using transforming growth factor β1 and platelet-

derived growth factor (PDGFβ) stimulation. In another similar culture platform, primary 

hepatocytes or liver stem cells have been cultured on ECM discs developed from a 

decellularized porcine 85 or rat liver 86. 

Human PCLS cultures have proven indispensable for modelling of liver diseases and to 

the study of transport, metabolism, biotransformation of drugs, toxins and xenobiotics in 

both normal and diseased conditions 87–89. They have also been employed to study 

ischemia/reperfusion damage in rodents and to evaluate the efficacy, specificity and 

toxicity of virus-mediated gene therapy agents 80,90. 

With improved technological advancements and culture longevity, PCLS cultures of 

patient-specific tissues offers enormous potential for the characterization of patient-

specific liver cellular heterogeneity and for the screening of novel anti-fibrotic and anti-

tumorigenic drugs. 
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6- Mimicking the sinusoidal mechanobiology in vitro 

LSECs, the second most abundant cell type in the liver, are a key players in maintaining 

hepatic homeostasis 91. Importantly, LSECs differ from classical vasculature 

endothelium, as they lack an organized basement membrane and have cytoplasm that 

is penetrated by open fenestrae, making the hepatic microvascular endothelium 

discontinuous 92. LSECs behavior is largely regulated by shear stress and mechanical 

stretch induced by blood perfusion and liver microenvironment stiffness changes derived 

from deposition of ECM 93–96. The effect of these varying mechanical cues on LSECs is 

particularly interesting, however, this has not been extensively explored until recently. 

Employing in vitro culture models of LSECs with microfluidic setups revealed the effects 

of shear stress-derived effects. In a pioneering work from the Sessa and Groszmann 

labs, authors demonstrated that LSECs respond to increasing shear stress in the 

microenvironment by increasing nitric oxide (NO) synthesis 97. Subsequent work defined 

the upstream signaling pathways, including the induction of the transcription factor 

Krüppel-like factor 2, in both healthy and cirrhotic LSECs 98. A recent study by Shah and 

co-workers further elucidated the role of the mechano-sensitive pathways in LSECs 

which drive recruitment of circulating blood cells contributing to portal hypertension and 

fibrogenesis 99. Using a Flexcell device, cyclic biaxial stretch on murine LSEC was 

modelled, and demonstrated transcriptional up-regulation of several chemotactic 

cytokines (CXCL1, CXCL2, and CCL2), neutrophil-extracellular traps activation from the 

recruited neutrophils and microthrombi formation contributing to fibrosis. More recently, 

a LoC device with microfluidics was used to mimic physiological and pathological 

pressures on primary LSECs culture 100. Transcriptomic analysis revealed the 

detrimental effect of increased pressure on LSECs phenotype and allowed to identify 

LSEC-derived pressure-related genes as non-invasive biomarkers for portal 

hypertension. Altogether these data demonstrate that mechanical cues can cause 
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angiocrine and phenotypic changes in LSECs, leading to rapid alteration of HSCs 

phenotype and fibrogenesis 101. 

In fibrotic livers, microvasculature remodeling contributes to increased ECM deposition 

and consequent raise in the intrahepatic vascular resistance 92. Wells and colleagues 

demonstrated that increased stiffness induced activation of HSCs 102. Juin and co-

workers showed that increased ECM matrix rigidity increased the number of podosomes 

(actin-rich structures involved in motility and proteolysis) formed in LSECs suggesting 

that the cells responded to mechanical stress, however effect on LSEC function was not 

explored 103. Impairment of hepatocyte and stellate cell function in response to high 

stiffness has been previously described in the literature 41,43,102,104. In the context of liver-

specific endothelial cells, a recent publication demonstrated that LSECs also 

dedifferentiate in high stiffness conditions, losing their capacity of producing vasoactive 

mediators such as NO and becoming capillarized as shown by the loss of their 

characteristic fenestrae. Interestingly, authors point out the tension between the 

cytoskeleton and the nuclear shape as process transducing the stiffness sensing into 

phenotypical responses in all sinusoidal cells 105. Importantly, this last study also 

demonstrated that cirrhotic liver cells improve their phenotype when cultured in a healthy 

(non-stiff) environment, suggesting potential new avenues of therapy development. In an 

unpublished work, Kidambi and co-workers confirmed that LSECs are responsive to 

stiffness resulting in rapid capillarization (loss in fenestrae), loss of hyaluronic acid 

endocytosis, and higher cell adhesion molecules 46.  

These advanced in vitro experiments point to an interesting and underexplored area of 

the role of mechanical stimuli on sinusoidal biology during physiological and pathological 

conditions. The key to unlocking the potential therapeutic avenues for sinusoidal 

dysfunction from these in vitro findings will be to integrate the data with in vivo functions.  

7- “omics” for the study of liver cells 
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Advances in omics methods have led to discoveries in liver biology and pathology at the 

cellular, tissue and system levels. These methods have also facilitated holistic insight 

into CLD in the clinical setting, and are generating non-invasive diagnostic modalities for 

the distinct stages of liver diseases. This multi-omics approach consists of tracing the 

flow of information from transcriptomics, proteomics, metabolomics, scRNA-seq, single 

nucleus analysis, and interactomics. The key findings of these techniques are 

summarized herein.  

Transcriptomics refers to the quantitative assessment of all coding and non-coding RNA 

transcripts and reflects cellular transcriptional activity. Transcriptomic profiling has 

resulted in various predictive modalities involving gene expression parameters, targeted 

measurements and miRNA panels with increased functionality in different chronic liver 

diseases 106,107. Several studies have identified miR-122 as a potential diagnostic 

biomarker for chronic liver diseases. Most of them have shown that miR-122 alone or in 

combination with other miRNAs (e.g. miR-1290, miR-27, miR-192, miR-34, miR-99a) can 

accurately predict the presence of NAFLD or NASH, but they all perform inadequately 

when trying to differentiate NAFLD from NASH 108–110. A recent study carried out a 

comprehensive transcriptomic analysis of primary LSECs during the progression of 

cirrhosis in which specific molecular signatures, novel biomarkers and therapeutic 

targets associated with LSECs were delineated 111.  

Proteomics refers to the investigation of “proteome” - all proteins expressed by a cell. 

Several studies have investigated the hepatic proteome alone or in combination with the 

blood proteome, both in animal models or in humans with chronic liver diseases, aiming 

to answer fundamental pathophysiological questions 112,113. Mann and co-workers 

assessed the levels and cellular distribution of 6000 liver proteins and 16000 

phosphopeptides in the liver of mice developing hepatic steatosis due to high fat diet. 

This work produced important fundamental information about the reorganization of 

organelles, lipid accumulation and cellular dysfunction that occurs with nutrient overload 
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112. Xue and co-workers identified almost 220 proteins that are significantly different in 

patients with NAFLD compared to obese metabolically healthy individuals. The proteins 

that were identified to be increased in CLD were those involved in peroxisome 

proliferator-activate receptor-signaling and ECM-receptor interactions whereas the ones 

that were reduced were mainly localized in mitochondria and involved with oxidative 

phosphorylation 113. Expanding on complications of the disease, the proteome of specific 

cells has also been examined. Helm and co-workers compared the proteome of 

hepatocytes monoculture and hepatocytes in organotypic rat liver models 114, and 

showed that when in a 3D liver model the predominant proteomic phenotype supports 

fatty acid metabolism and when hepatocytes are cultured in monoculture the proteome 

shifts to favor glucose metabolism. Additionally, they observed an increase in structural 

and migratory proteins (signaling hepatocyte dedifferentiation), in hepatocytes 

monoculture, highlighting the need for cell-cell and cell-ECM interactions for 

maintenance of functional hepatocytes. He and co-workers carried out a proteomic 

analysis between normal and dedifferentiated LSECs 115. Dedifferentiation and loss of 

fenestrae in LSECs precedes the onset of fibrosis and is considered a crucial event in 

the pathology of liver diseases 92,116,117. A comparison of the normal and dedifferentiated 

LSECs showed that in dedifferentiated LSECs the most enriched functional categories 

of proteins were those related to nucleotide, organic acid metabolism, oxidative stress, 

small molecular and lipid metabolism, cell death regulation and endocytosis while those 

down-regulated by dedifferentiation were transcription regulation, actin cytoskeleton 

reorganization, cell migration, immune system process, ribosome biogenesis, apoptotic 

process, angiogenesis, glycerophospholipid metabolism and cellular lipid metabolism.  

Metabolomics refers to the investigation of small molecules and metabolic products, such 

as amino acids, fatty acids and carbohydrates. A growing number of studies have begun 

to study liver specific metabolomics in the context of develop and disease using both 

primary cells and cell culture models. Ishida and co-workers analyzed and compared 
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metabolites in fetal and adult hepatocytes from human donors 118. They identified 211 

metabolites in the hepatocytes. Specifically, the metabolites in the 

glycolysis/glyconeogenesis pathway, tricarboxylic acid cycle and urea cycle were lower 

in fetal hepatocytes than in adult hepatocytes. Tang and co-workers used nuclear 

magnetic resonance based metabolomics to investigate the metabolic alterations in 

hepatocytes caused by HBV infection 119. They showed that HBV infection contributed to 

hepatocellular carcinoma (HCC) by upregulation of the glutamine-fructose-6-phosphate 

amidotransferase 1 -activated hexosamine biosynthesis and choline kinase alpha -

activated phosphatidylcholine biosynthesis. Cheng and co-workers demonstrated using 

NMR-based metabolomic approach that HBV protein (HBx) disrupted the metabolism of 

glucose, lipids, and amino acids, especially nucleic acids 120. Sanyal and co-workers 

performed metabolic profiling on Huh7 cells with patatin like phospholipase domain 

containing 3 (PNPLA3) siRNA silencing and overexpression using gas chromatography 

– mass spectrometry (MS) and liquid chromatography-MS metabolic profiling of Huh7 

cells to investigate its role in HCC 121. Silencing of PNPLA3 gene resulted in decrease in 

amino acid metabolism, suggestive of a catabolic response with extensive protein 

breakdown. Among the lipids, there was an increase in the levels of myoinositol, cysteine 

sulfinic acid, polyunsaturated fatty acids, lysolipids, and sphingolipids Overexpression of 

PNPLA3 mirrored metabolic changes in the opposite direction with an increase in the 

levels of cholesterol and lactic acid with a shift to anaerobic metabolism. Some of the 

metabolic signatures associated with the presence of PNPLA3 risk allele such as high 

cholesterol levels, very low density lipoproteins levels etc have also been associated with 

cardiovascular disease in patients with NAFLD 122. These, and other studies123, explain 

how the use of omics approaches could help to unravel novel phenotype and 

pathogenesis mechanisms associated with the presence of genetic polymorphisms in 

complex human liver diseases.  
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Single-cell, -nuclei transcriptomics using next-generation transcript sequencing 

(sc/snRNA-seq) is now emerging as a powerful tool to profile cell-to-cell variability on a 

genomic scale with broad implications for both basic and clinical research 124. In a mouse 

model of liver fibrosis induced by carbon tetrachloride (CCl4), Krenkel et al used freshly 

isolated HSCs for scRNA-seq and found that activation of HSCs and their trans-

differentiation towards collagen-secreting myofibroblasts split into heterogeneous 

populations, characterized by αSMA, collagens, or immunological markers, while resting 

HSCs formed a homogenous population characterized by high PDGFR expression 125. 

A similar scRNA-seq study using CCl4 to induce advanced liver cirrhosis identified 6 

clusters of liver endothelial cells (EC) populations including 3 clusters of LSECs which 

associated with zone-specific transcriptomic changes, 2 clusters of vascular ECs, and 1 

cluster of lymphatic ECs 126. Hepatotoxicity induced by 2,3,7,8-Tetrachlorodibenzo-p-

dioxin also demonstrated the diversity of liver cells through the identification of 11 

subtypes following pericentral, midzonal, and periportal hepatocyte subpopulations by 

snRNA-seq whose technique was more feasible than scRNA-seq in terms of application 

to frozen samples 127. Recently, scRNA-seq was utilized to characterize mouse embryos 

at day E7.5 to E10.5, and Lotto et al provided a comprehensive atlas liver cell lineage 

detailing divergence of vascular and sinusoidal endothelia, hepatoblast specification, 

and the emergence of a distinct, migratory hepatomesenchymal cell type 128. The most 

developed scRNA-seq data set is likely that established key immune cell populations in 

the liver, particularly from mouse models of NAFLD/NASH 129. A series of elegant studies 

using scRNA-seq has provided unprecedentedly granular insights into hepatic immune 

cell heterogeneity, revealing striking alterations, particularly in myeloid cells and 

macrophages in liver diseases 130–134 , and into related extrahepatic compartments such 

as bone marrow 135  or adipose tissue 136 . 

Regarding the cellular landscape of the human liver, scRNA-seq has also revealed the 

physiological heterogeneity of human liver cells 137,138, the fibrotic niche of human liver 
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cirrhosis including the identification of pathogenic subpopulations of TREM2+CD9+ 

macrophages, atypical chemokine receptor 1+ and plasmalemma vesicle associated 

protein+ ECs and PDGFRα+ collagen-producing myofibroblasts 139, and the immune 

microenvironment in the context of HCC 140. Although sc/snRNA-seq remains an 

expensive and time consuming technique that requires skilled bioinformatics support, it 

is a valuable tool to characterize liver function and gene expression dynamics during 

liver disease, as well as to identify prognostic markers or signatures, and to facilitate 

discovery of new therapeutic targets 141. A key challenge for all mentioned omics 

techniques is accurate data integration. For instance, the most granular insight into 

single-cell transcriptomes by sc/snRNA-seq techniques comes at the expense of 

isolating the cells (or nuclei) out of their cellular context 141; therefore, spatially resolved 

modalities (e.g. multiplex immunostaining, spatial transcriptomics, imaging mass 

cytometry) are needed to complement these findings 142. This has been convincingly 

demonstrated for immune cell populations, in which not only the immune cell phenotype 

(or single-cell transcriptome) but also their location within the hepatic microenvironment 

determines their most likely function during liver diseases 143 . 

8- Conclusions and future directions 

As described above, in recent years there has been a great advance in the availability 

and utility of in vitro systems for the study of the pathophysiology of the liver. Today we 

have a wide range of possibilities to better understand the behavior of cells and tissues 

in the laboratory, which combine harmoniously with those observations obtained in 

animal models. Although progress in the field of translational hepatology is evident, we 

must continue working to create more complete, reliable and cost-effective systems of 

human liver diseases. In the following lines we summarize some of the avenues of work 

that we should develop through collaborative, multidisciplinary work combining the 

academic and private sectors. 
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Liver-on-a-chip systems, which already reflect the multicellularity of the liver, should be 

improved by incorporating biomechanical stimuli typical of the disease under study, such 

as a specific matrix or sinusoidal pressure, and potentially the relevant immune cells. In 

addition, the incorporation of biochemical or biological parameter sensors would be of 

great help for real time cellular analysis in response to new drugs. 

The great potential of 3D liver systems, which currently mostly use matrices of natural 

origin, has the great advantage of simulating the ECM of the human liver but, at the same 

time, complicates its standardization and global use. The development and validation of 

matrices with defined composition, perhaps including the most abundant components in 

adequate ratios, could assist with expanding their use. Similarly, experimental variables 

that mimic the biomechanics of the sinusoid (shear stress, pressure, stiffness...) should 

also be standardized, thus facilitating the comparison of results from different research 

groups. 

The use of PCLS allows an understanding the hepatic response to new compounds but 

only for a limited period of time. It would be very beneficial to improve the viable 

incubation time, perhaps by combining several in vitro systems including slices, and the 

use of tissue from liver disease patients/models. 

The field of omics applied to hepatology, and to the rest of biomedical disciplines, is 

immense and it is difficult to ensure currency of literature and use of the most advanced 

techniques. Analysis at the single cell level, which are already being prototyped using 

fixed tissue, will transform what we know today as spatial omics. However, tissue 

cartography requires significant financial investment and excellent experimental design. 

Therefore, public-private consortiums that include basic scientists and physicians would 

be of great interest for the sake of advancing knowledge. 

Overall, the techniques described in this review and those that are on the horizon can 

greatly assist to understand liver diseases, develop new therapies and foster 
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personalized medicine in hepatology. Of course, we need to combine them in a virtuous 

way, including tissue/cells of human origin whenever possible, and improving the way 

we mimic human diseases in vitro. If future work is further developed by multidisciplinary 

teams, success is assured. 
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Figure legends 

Figure 1. Schematic view of mostly used in vitro models in Hepatology. PCLS, precision cut liver 

slices. + low; ++ medium; +++ high. 

Figure 2. From single cells to liver-on-a-chip and body-on-a-chip. HSCs, hepatic stellate cells; 

LSECs, liver sinusoidal endothelial cells. 

Figure 3. Schematic overview of in vitro and ex vivo liver models using natural scaffolds including 

hydrogels, fiber-like structures generated by electrospinning or bioinks (A) and synthetic scaffolds 

such as microporous, 3D fibrous or bioengineered platforms (B) to generate organoids/spheroids 

(C), PCLS and bioreactors (D), and 3D liver sinusoid on a chip (E). Natural scaffolds obtained 

from hepatic tissues from various sources such as human, porcine and rat undergo 

decellularization using detergents. Synthetic scaffolds including polymer and hydrogel based in 

combination with novel methods like 3D printing provides the capability for tuning the properties 

of the material to recreate the liver microenvironment at stages of disease progression. Current 

2D and 3D hepatic models include organoids and spheroids, tissue-based approaches such as 

PCLS and ex vivo bioreactors, and liver-on-a-chip, micropatterned co-culture models. ECM, 

extracellular matrix; PCLS, precision cut liver slices; BEASTS, Bio-Engineered Adhesive Siloxane 

substrate with Tunable Stiffness. 
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