in this coupling, and several factors have been proposed in the literature. However, most of these factors were only studied *in vitro* or in murine models.

Purpose: To investigate spatial expression of proposed coupling factors and their receptors within human bone remodeling events.

Methods: Highly sensitive RNA in situ hybridization combined with TRAcP immunostaining on sections from 9 adolescent controls (patients undergoing corrective surgery for Coxa Valga) with Masson Trichrome staining of adjacent sections to enable identification of cortical remodeling events.

Results: In cortical pores with active bone remodeling, *LIF*-receptor (*LIFR*) expression was high in osteoprogenitors in the lumen and on eroded surfaces (osteoblastic reversal cells). In contrast, expression of *LIFR* was lower in bone lining cells of quiescent pores and bone-forming osteoblasts of formative pores. *LIFR* was not expressed by osteoclasts, which instead had a high *LIF* expression. Likewise, expression of the putative coupling factor *SEMA4D* was restricted to osteoclasts, while its receptor *PLXNB1* was expressed in neighbouring reversal cells and in bone-forming osteoblasts. However, *PLXNB1* was not expressed in osteoprogenitors in lumen of resorptive pores. Similarly, *PDGFB* was expressed by osteoclasts, while receptors *PDGFRA* and *PDGFRB* were expressed by reversal cells and in bone-forming osteoblasts. Like *LIFR*, *PDGFRB* was expressed by osteoprogenitors in the lumen of resorptive pores, whereas *PDGFRA* was less abundant within these osteoprogenitors.

Conclusions: This study demonstrates that proposed osteoclastic coupling factors LIF, PDGFB and SEMA4D are expressed by bone-resorbing osteoclasts in human intracortical remodeling events. Moreover, their receptors are expressed by nearby osteoblastic reversal cells. This supports that these coupling factors may be important in osteoclast-osteoblast coupling *in vivo* in humans.

doi:10.1016/j.bonr.2022.101403

P126

Inositol Phosphatase SHIP1 – a Regulator of Osteoclast Lineage Cell Development and Activity

<u>Fatemeh Safari</u>^{a,b}, Jeremy Yeoh^{b,c}, Mark Siegrist^a, Silvia Dolder^a, Franziska Strunz^{a,b}, Willy Hofstetter^a, Philippe Krebs^c

^aUniversity of Bern, Department for BioMedical Research, Bern, Switzerland

^bUniversity of Bern, Graduate School for Cellular and Biomedical Sciences, Bern, Switzerland

^cUniversity of Bern, Institute of Pathology, Bern, Switzerland

Introduction: Src-homology (SH) 2 domain-containing inositol-5-phosphatase 1 (SHIP1) is a negative regulator of the PI3K/Akt pathway that is expressed in hematopoietic cells. Osteoclast (OC) development depends on two essential pathways activated by receptor activator of NF-KB ligand (RANKL) and colony-stimulating factor-1 (CSF-1). Both pathways involve PI3K in their signalling and may therefore be regulated by SHIP1. SHIP1-deficient mice ((*SHIP*^{SUX/} ^{SUX}) are characterized by low bone density that has been suggested to be caused by an increased number of hyperactive OC.

Purpose: This study aimed to investigate cellular mechanisms leading to low bone mass in SHIP1-deficient mice.

Methods: MicroCT analysis of vertebrae and femora was performed to evaluate bone structure *in vivo*. To study OC development *in vitro*, progenitor cells (OPC) from SHIP1-deficient SHIP^{styx/styx} and control mice were cultured with RANKL and CSF-1.

Results: In vivo, BV/TV of vertebrae and femora of $SHIP^{styx/styx}$ mice was decreased compared to *wt* animals (40% and 35%, respectively, p<0.01). Trabecular number in vertebrae from $SHIP^{styx/styx}$ mice was increased by 26%, while thickness was decreased by 30% (p<0.01). In femora from $SHIP^{styx/styx}$, trabecular thickness was reduced by 25% (p<0.05), whereas trabecular number remained unchanged. In vitro, $SHIP^{styx/styx}$ OPC showed a 1.5-fold increased proliferation compared to controls (p<0.001), yet the number of OPC-derived OC was reduced by 40%. The capacity of $SHIP^{styx/styx}$ OC to dissolve CaP was decreased by 60% compared to controls (p<0.001).

Conclusions: Our data indicates a central role for SHIP1 in OC development and activity *in vitro*. The low bone mass phenotype in *SHIP*^{styx/styx} mice, however, may be caused by reduced bone formation or by the wasting disease and systemic inflammatory condition characteristic of SHIP1-deficient mice.

doi:10.1016/j.bonr.2022.101404

P127

Increased bone resorption in mice bearing WHIM Syndrome mutations does not rely on increased intrinsic OCL differentiation capacity

<u>Matthieu Rouleau^a</u>, Adrienne Anginot^b, Julie Nguyen^c, Zeina Abou-Nader^b, Vincent Rondeau^b, Amélie Bonaud^b, Antoine Boutin^d, Julia Lemos^b, Valéria Bisio^b, Joyce Koenen^c, Léa Sakr^e, Caroline Marty^e, Amélie Coudert^e, Sylvain Provot^e, Nicolas Dulphy^b, Michel Aurrand-Lions^f, Stéphane Mancini^f, Gwendal Lazennec^g, Fabien Guidez^h, Claudine Blin-Wakkach^d, DeH McDermottⁱ, Phil.M. Murphy^j, Martine Cohen-Solal^e, Marion Espéli^b, Karl Balabanian^b

^aLaboratoire de PhysioMédecine Moléculaire, UMR7370 CNRS-Université Côte d'Azur, Nice, France

^bInstitut de Recherche Saint-Louis- INSERM U1160, Université de Paris, Paris, France

^cInflammation- Chemokines and Immunopathology, INSERM- Université Paris-Saclay, Clamart, France

^dLaboratoire de PhysioMédecine Moléculaire, UMR 7370 CNRS-Université Côte d'Azur, Nice, France

^eBIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Constitutional Bone Diseases- AP-HP Hospital Lariboisière-Université de Paris, Paris, France

^fInstitut Paoli-Calmettes CNRS- INSERM, Aix Marseille Univ, Marseille, France

^gCNRS sys2DIAG-ALCEDIAG, Cap Delta, Montpellier, France

^hInstitut de Recherche Saint-Louis- INSERM U1131, Université de Paris, Paris, France

ⁱMolecular Signaling Section- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases- NIH, Bethesda, United States

^jMolecular Signaling Section- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, United States

WHIM Syndrome (WS) is a rare immunodeficiency caused by gain-of-CXCR4-function mutations affecting homologous desensitization of the receptor altering the lymphoid differentiation and blood leukocyte numbers. Taking advantage of a mouse model