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In this paper, we design and simulate VO2/metal multilayers to obtain a large tunability of the thermal

emissivity of infrared (IR) filters in the typical mid wave IR window of many infrared cameras. The

multilayer structure is optimized to realise a low emissivity filter at high temperatures useful for military

purposes. The values of tunability found for VO2/metal multilayers are larger than the value for a single

thick layer of VO2. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739489]

I. INTRODUCTION

The term infrared signature generically describes how

objects appear to infrared sensors. In most cases, infrared

(IR) emissions from vehicles are used to detect, track, and

lock-on to targets. The infrared signature of a given object

depends on several factors, including the shape and size of

the object, its temperature and its emissivity, as well as

external conditions (illumination, background, to name

some). One of the most challenging tasks regarding the IR

vision is to reduce the infrared signature of objects.

Although the IR spectrum extends from red light to

microwave radiation, i.e., 0.77–1000 lm, there are only two

wavelength ranges showing high IR transmittance in the

atmosphere, i.e., 3–5 and 8–12 lm, known as the mid wave

IR (MWIR) and long wave IR (LWIR) windows, respec-

tively. Outside these windows, CO2 and H2O vapour give

rise to both absorption and scattering phenomena, producing

strong attenuation of IR radiation.

Thermochromic materials, changing their spectral prop-

erties as a function of the temperature, are extensively stud-

ied in the search for active control of thermal emission.

These are, for example, niobium dioxide (NbO2), vanadium

sesquioxide (V2O3), and vanadium dioxide (VO2). The most

known and widely used is vanadium dioxide, VO2, that is

also the object of the present study.1 Its crystalline lattice

exhibits an abrupt semiconductor-to-metal phase transition

at a temperature TC¼ 341 K (68 �C), characterized by an

increase of reflectivity as well as a decrease of emissivity in

the IR range. On microscopic scales, the phase transition in

VO2 produces a physical change of its crystalline cell from

monoclinic to tetragonal.

VO2 shows insulating behavior below TC, whereas above

this temperature it exploits a metallic nature, dramatically

changing its optical, electrical, and magnetic properties. In

particular, the optical properties are sharply changed during

the phase semiconductor-to-metal transition; thus, the disper-

sion law of the complex refractive index nþ ik is strongly

modified.2–4 As a consequence, the phase transition, occurring

during a very short temporal range of the order of few pico-

seconds, can be exploited for the realization of optical compo-

nent switching from transparent (in the semiconductor state)

to reflective (in the metallic state), as well as for efficient ther-

mal switches.5,6

In general, the performance of either optical or thermal

switches can be quantified and estimated through the so-called

dynamic range, which is the difference between the largest

and smallest possible values of a changeable quantity. Within

the present work, we define this figure of merit as the differ-

ence between the emissivity values, averaged in the IR range

3–5 lm and calculated for two different regimes, i.e., below

and above TC. Given this assumption, the sign of the dynamic

range completely changes the filter behavior and thus deter-

mines the type of application. A thermochromic filter display-

ing positive dynamic range, i.e., an IR emissivity decreasing

with increasing temperature, is suitable for IR signature reduc-

tion as well as for smart windows for thermal control.7 On the

other hand, a negative dynamic range is required for space

applications and emissivity control of spacecraft.8

Recent experimental and theoretical works have shown

that the thermal emissivity variation with temperature (and

the dynamic range) of VO2 thin films is strongly influenced

by the substrate used for the deposition.9,10

In what follows, we consider simulations of the optical

response of VO2 thin films first deposited on different sub-

strates (Sec. II), and then in multilayer structures (Sec. III),

below and above the TC. We discuss the effect that different

substrates as well as VO2 layer thicknesses have on the sign

of the dynamic range. Finally, we introduce some metallo-

dielectric multilayer structures, composed of alternating

copper or silver and VO2 layers, where the layer thickness is

systematically varied in order to further increase and opti-

mize the dynamic range.

II. THERMAL EMISSIVITY AND INFRARED
SIGNATURE FOR VO2 THIN FILM

A study for the design and optimization of the VO2 films

may start from the calculation of the emissivity of VO2 thin

films on several different substrates with varying film thick-

ness. As well known from Kirchhoff’s law, the directional

spectral emittance is equal to the directional spectral absorp-

tance so that e ¼ 1� R� T, where R and T, respectively,

are the reflectance and transmittance of the structure.
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To compare the different structures one fundamental

quality factor to be introduced is the tunability of emissivity
defined as the difference of the emissivity of the cold film

minus the emissivity of the hot film. This quantity is usually

averaged over the narrow window of the particular infrared

camera [kmin, kmax] (in our example the MWIR window 3–5

lm) as follows:

Deav ¼

Ðkmax

kmin

De dk

kmax � kmin

¼

Ðkmax

kmin

ðec � ehÞdk

kmax � kmin

; (1)

where ec and eh correspond, respectively, to the emissivity of

the filter when cold or hot with respect to the transition tem-

perature. Figure 1 shows the average tunability of the emis-

sivity Deav as a function of the vanadium dioxide thickness.

The curves refer to different substrates with optical proper-

ties taken from the literature: infrared transparent substrates

(CaF2: blue curve.11 Si: pink curve12), infrared opaque or

metallic substrate (copper: black curve12,13), and as a refer-

ence, a hypothetical free standing VO2 film in air (red curve).

The emissivity is here calculated as e ¼ 1� R� T for nor-

mal incidence by using transfer matrix method. In the figure,

the inset shows the behaviour at small VO2 thickness

(micron).

The average tunability of emissivity might change sign

on varying the vanadium dioxide thickness dVO2. For exam-

ple, in the case of the VO2/CaF2 system (blue curve), the av-

erage tunability reaches a minimum value of about

Deav¼�0.4 for dVO2¼ 20 nm (thin layer), while for thick

layers it changes sign giving Deav>þ0.3 for dVO2¼ 20 lm.

This behaviour is confirmed from the simulated emissivity

spectra shown in Fig. 2. The emissivity of the sample with

the thin VO2 layer (20 nm) increases with temperature (see

dotted lines: blue for ec, red for eh), while the opposite hap-

pens for the sample with the thick VO2 layer (20 lm) (see

solid lines: blue for ec, red for eh). In this last case, interfer-

ence fringes also appear in both MWIR and LWIR (blue

solid line). Their spacing is of the order of the wavelength,

and the vanadium dioxide is in the semiconductor state.

In order to design an IR tunable filter, one must be able

to reduce the infrared signature of hot objects; the require-

ment is to work with a structure with a large and positive

tunability Deav> 0. This is achieved by increasing the film

thickness (see Fig. 1), and also by using metallic absorbing

substrates able to enhance the whole cold emissivity ec when

vanadium dioxide is in the semiconducting state. The black

curve in Fig. 1, corresponding to a copper substrate, shows

an enhancement of the tunability up to the limiting value of

Deav¼þ0.45. Similar behaviour is seen when using other

metallic substrates.

We may now ask if it is possible to achieve a further

enhancement of the tunability by using a more complex

structure which uses vanadium dioxide and metal layers.

III. SIGNATURE REDUCTION WITH AN OPTIMIZED
VO2/METAL MULTILAYER

Here, we study how to enhance the tunability of a single

VO2 film by designing an optimized VO2/metal multilayer

structure acting as a tunable transparent metal. Transparent

metals basically are 1D photonic band gap (PBG) multilayers

which exhibit passband properties in the optical range. This

unusual and rare property of transparency for metals is

achieved by growing an adequate sequence of metal thin layers

(�10 nm) and transparent dielectric thick layers. Thanks to the

tunnelling phenomena in the metal layers14–16 and the interfer-

ence effects in the dielectric layers,17 these structures are able

to enhance the transmittance at some wavelengths.

After some preliminary tests, we have chosen to opti-

mise a structure of Fig. 3 which satisfies the following

requirements:14,18

(a) It is made up of an odd number N of layers. A number

of (Nþ 1)/2 VO2 layers are alternated with a number

of (N � 1)/2 metallic layers.

(b) The two outer vanadium dioxide layers have the same

thickness dextVO2;

FIG. 1. Average tunability of emissivity vs the vanadium dioxide thickness

for different substrates: copper (black line), silicon (pink line), calcium fluo-

ride (blue line), and none (red line). Inset: magnification of the small vana-

dium dioxide thickness range.

FIG. 2. Cold and hot emissivity spectra of VO2/CaF2 for both thin and thick

vanadium dioxide thicknesses. Cold 20 lm layer (blue solid line); hot 20 lm

layer (red solid line); cold 20 nm layer (blue dotted line); cold 20 nm layer

(red dotted line).
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(c) The inner vanadium dioxide layers have the same

thickness dintVO2;

(d) Each metal layer (Cu or Ag) is 10 nm thick so to guar-

antee optical tunnelling.

Although this structure does not maximize the number of

degrees of freedom (i.e., thicknesses of the different layers), it

is sufficiently flexible. An example of an optimization is

reported below for a VO2/Cu structure made of N¼ 9 layers.

The 4 layers of Cu are 10 nm thick. Simulations were made

by changing the vanadium dioxide thicknesses of both the

inner layers of thickness dintVO2 and outer layers of thickness

dextVO2 in the range of 0-500 nm. The tunability of the emis-

sivity for each layer pair [dintVO2, dextVO2] is shown using a

contour plot in Fig. 4(a). The maximum of Deav¼þ0.53 is

reached when dintVO2¼ 370 nm and dextVO2¼ 230 nm. Some

remarks immediately follow:

(a) The value Deav¼þ0.53 is larger than the asymptotic

limit of þ0.45 of Fig. 1 obtained with a single thick

layer of VO2. This justifies the use of multilayered

structures with thinner layers of VO2 and metal. Note

that the total amount of vanadium dioxide is less than

1.5 lm.

(b) From the contours one may see that the choice of the

optimal thicknesses dintVO2 and dextVO2 is not critical

and allows relatively large tolerances (20 nm).

(c) Since a quarter wavelength layer of thickness

ko/4 n� 300 nm for cold vanadium dioxide (<68 �C)

is appropriate at the central wavelength ko¼ 4 lm of

the MWIR window, it appears that the optimized

value dintVO2¼ 370 nm follows the rules of quarter

wavelength stacks normally used in antireflection

structures. This implies that the optimization proce-

dure converges towards structures with minimum

reflection (at T< 68 �C) so to maximize the absorb-

ance (i.e., emissivity) in the metal layers. This is clear

in Figs. 5 and 6. One can see that the quantity Deav is

also maximized.

The second example in Fig. 4(b) shows the optimization

for the same VO2/Cu structure but with a very large number

of layers (N¼ 21) in order to check if any asymptotic limit

for the obtainable value of Deav exists. The maximum of the

average emissivity is now Deav¼þ0.67 for dintVO2¼ 420 nm

and dextVO2¼ 230 nm. As N increases there is an increase of

Deav and an adjustment of dintVO2 which finally stabilizes to

420 nm.

The emissivity spectra of the VO2/Cu optimized struc-

tures are shown in Fig. 5(a). As the number of layers

increases (the arrow shows the sequence N¼ 9,11,13,15,17)

the cold emissivity spectra ec also increases, tending to 1

(maximum emissivity) in the MWIR window, whereas the

hot emissivity spectra eh are practically unchanged because

the IR emission comes entirely from the surface VO2 layer

that becomes a thick metallic layer for T> 68 �C. Fig. 5(b) is

the same as Fig. 5(a) with silver substituting copper.

The reasons for the large cold emissivity ec in the

MWIR window are clearly put into evidence in Fig. 6 where

FIG. 3. Sketch of the VO2/Ag and VO2/

Cu multilayers structures. The number of

layers is here, for example, N¼ 7.

FIG. 4. Contour plot of the average tunability of emissivity of VO2/Cu

multilayer as a function of the inner VO2 layer thickness dintVO2 and outer

VO2 layer thickness dextVO2 as introduced in Fig. 3: (a) multilayered struc-

ture with N¼ 9 made of a total thickness of 40 nm of copper and (b) multi-

layered structure with N¼ 21 made of a total thickness of 100 nm of copper.
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both the reflectance (a) and transmittance (b) spectra are

shown for the same VO2/Cu optimized multilayers discussed

in Fig. 5(a). As expected Fig. 6(a) shows that for T< 68 �C
these multilayers behave as antireflection nanostructures in

the MWIR window; the reflectance curves Rc tend to 0 (thus

maximizing e¼ 1-R-T) with slow or inperceptible improve-

ment as N increases. On the other hand, Fig. 6(b) shows that

the cold transmittance Tc decreases with the number of

layers. Since the optimization procedure tends to maximize

ec¼ 1-Rc-Tc, this is obtained by simply increasing N (the

arrow shows the sequence N¼ 9,11,13,15,17), so to increase

the total amount of copper that can absorb light and conse-

quently affect the emissivity.

The emissivity spectra for VO2/Ag-based structures are

shown in Fig. 5(b); the arrow shows the sequence

N¼ 9,11,13,15,17. In this case, the structures are optimized

asymptotically with dintVO2¼ 430 nm and dextVO2¼ 240 nm

but are less efficient than the VO2/Cu-based ones when con-

sidering the value of Deav. The reason can be understood

from a comparison between Figs. 5(a) and 5(b). The emissiv-

ity spectra for cold VO2/Ag are narrow with respect to cold
VO2/Cu and do not fit completely the MWIR window.

FIG. 5. Cold and hot emissivity spectra for VO2/metal optimized multilayers:

(a) emissivity vs wavelength for VO2/Cu optimized multilayers. Hot emissiv-

ity eh at temperature T> 68 �C (red curve). Cold emissivity ec for multilayers

with an increasing number of layers N¼ 9,11,13,15,17 (other colors) and (b)

emissivity vs wavelength for VO2/Ag optimized multilayers. Hot emissivity

eh at temperature T> 68 �C (red curve). Cold emissivity ec for multilayers

with an increasing number of layers N¼ 9,11,13,15,17 (other colors).

FIG. 6. Cold and hot reflectance and transmittance spectra for VO2/Cu opti-

mized multilayers: (a) Reflectance vs wavelength; hot reflectance Rh at tempera-

ture > 68 �C (red curve); cold reflectance Rc for multilayers with an increasing

number of layers N¼ 9,11,13,15,17 (other colors). The curves are here undistin-

guishable. (b) Transmittance vs wavelength; hot transmittance Th at temperature

>68 �C (red curve); cold transmittance Tc for multilayers with an increasing

number of layers N¼ 9,11,13,15,17 (other colors).

FIG. 7. Maximum tunability of emissivity obtained with optimized multi-

layers VO2/Ag based, and VO2/Cu based as a function of the number of

layers N. Each metal layer is 10 nm thick.
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These slight differences can quantitatively be shown in

the average tunability of the emissivity as a function of N for

the optimized VO2/Ag- and VO2/Cu-based multilayers as

reported in Fig. 7. Whatever the number of layers N, copper

shows better results.

Further enhancement of the tunability can be in princi-

ple obtained by using a 3D-VO2 based photonic bandgap.

Preliminary results are shown in Ref. 19.

IV. CONCLUSIONS

The results presented show the possibility of affecting

the emissivity properties of VO2 layers with temperature by

playing with a number of different parameters, i.e., the layer

thickness, the substrate material, and the use of multilayer

structures. The temporal response of the thermal transition is

affected by all these parameters and should be investigated

in future experiments.
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