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Scenario‑based analysis 
of the impacts of lake drying 
on food production in the Lake 
Urmia Basin of Northern Iran
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Thomas Blaschke5 & Sadra Karimzadeh2,6

In many parts of the world, lake drying is caused by water management failures, while the 
phenomenon is exacerbated by climate change. Lake Urmia in Northern Iran is drying up at such 
an alarming rate that it is considered to be a dying lake, which has dire consequences for the whole 
region. While salinization caused by a dying lake is well understood and known to influence the local 
and regional food production, other potential impacts by dying lakes are as yet unknown. The food 
production in the Urmia region is predominantly regional and relies on local water sources. To explore 
the current and projected impacts of the dying lake on food production, we investigated changes 
in the climatic conditions, land use, and land degradation for the period 1990–2020. We examined 
the environmental impacts of lake drought on food production using an integrated scenario-based 
geoinformation framework. The results show that the lake drought has significantly affected and 
reduced food production over the past three decades. Based on a combination of cellular automaton 
and Markov modeling, we project the food production for the next 30 years and predict it will reduce 
further. The results of this study emphasize the critical environmental impacts of the Urmia Lake 
drought on food production in the region. We hope that the results will encourage authorities and 
environmental planners to counteract these issues and take steps to support food production. As 
our proposed integrated geoinformation approach considers both the extensive impacts of global 
climate change and the factors associated with dying lakes, we consider it to be suitable to investigate 
the relationships between environmental degradation and scenario-based food production in other 
regions with dying lakes around the world.

The importance of large lakes as significant freshwater resources is widely acknowledged1. Large lakes provide 
recreational, economic, and ecosystem services to millions of inhabitants worldwide. Global climate change and 
associated environmental changes have significantly impacted many lakes in recent decades. Many well-known 
lakes are shrinking or drying up, and some lakes are even dying. Some noteworthy examples include Lake Chad, 
the Sea of Galilee, and Lake Urmia2. Lake drying can lead to major environmental and socioeconomic problems 
such as water scarcity, land degradation, and food shortages. Lakes around the world have experienced at least 
four periods of significant shrinkage due to climatic changes in the last 5 million years. Between 7.65 million 
and 7.9 million years ago, lake water levels dropped by up to 250 m3.

Among other effects, the drying up of lakes can significantly impact Food Production (FP). Given the poten-
tial impacts of the rapid rates in global population growth and the projected effects of environmental changes 
on FP, the United Nations (UN) and local governments increasingly acknowledge the need to address food 
security as one of the major challenges to be faced in the coming decades4. According to the UN5, the world 
population will reach about 9.7 billion by 2050. While this will increase the global demand for food resources, 
global environmental changes are expected to negatively impact the food production capacity6. Addressing FP 
in the context of lake drying is particularly important as the land degradation of the lake ecosystems could have 
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ramifications for peace, quality of life, and food security7 (see Table 1 for a full list of acronyms). When dying 
lakes lead to and/or intensify salinization (e.g., Lake Urmia, Iran), the environmental and social impacts on FP 
are more significant and obvious.

Lake drying could pose significant challenges for the provision of reliable, affordable, and nutritious food 
sources required for maintaining the health and wellbeing of the global population. Accordingly, the main goal 
of this research is to apply an integrated geoinformation approach to examine the FP in environments affected by 
drying lakes. We focus on Lake Urmia as a case study. The proposed integrated geoinformation approach could 
support international and local decision-makers and authorities in developing efficient policies for mitigating the 
impacts of climatic changes on the fragile ecosystems of drying lakes. The results of this study and application of 
the proposed approach to other major dying lakes could inform the development and implementation of action 
plans that can, ultimately, contribute to preventing large-scale food crises and human suffering8.

The case of Lake Urmia.  Lake Urmia is one of the most hyper-saline and well-known drying (and even 
dying) lakes. It has been drying up since 2000. The lake, at an elevation of 1286 m above mean sea level and with 
an area of 5000 km2, is located in north-western Iran (Supplementary Fig. 1). Lake Urmia and its watershed are 
critical in the daily life of millions of people as well as 226 species of birds and other animals. The Lake Urmia 
Basin (LUB), with an area of 51,876 km2, hosts agricultural areas for FP and industrial activities. Extensive plains 
and fertile agricultural farmlands surrounding the lake have made LUB one of the most critical areas for food 
production and animal husbandry in Iran. According to the Iranian Ministry of Agriculture9, with about 500,000 
hectares** of farmlands (360,000 croplands and 140,000 orchards), the LUB accounts for 8.4% of the total area 
of farmland in Iran. There are 42 cities and 520 villages in the LUB, according to the National Statistics Center of 
Iran10. Based on the latest Iranian census (2016), 7.3 million people live in the LUB, which is about 9.2% of Iran’s 
total population. Due to climate change and intensive land use/cover changes (LUCC), the lake has lost about 
65–85 percent of its surface area since 2000, increasing the expanse of flat salty areas2. Aside from changing 
climate conditions, inappropriate irrigation practices and extensive anthropogenic pressure are further factors 
contributing to the drying up process, leading to drastic changes to the ecosystem of the LUB. The gradual dry-
ing up of the lake and associated environmental changes are also anticipated to lead to salt and dust storms, and 
extensive soil and water salinization. Such major environmental issues will threaten public health and the FP in 
the coming decades. From the environmental perspective, it is believed that a reduction in the lake’s water level 
will lead to the formation of salt domes and intensify desertification, thereby threatening the productivity of the 
nearby farmlands through soil and water salinization. As with other drying lakes, there is also great concern that 
the lake will completely dry up in the future (see Supplementary Fig. 2 as an example).

Climate change impacts.  The impact of climate change on FP is one of the most threatening environmen-
tal challenges for today’s societies. The LUB, with a semi-arid climate, an average annual precipitation (AAP) of 
350 mm (mm) and an average annual temperature (AAT) of 12.5 °C, has been experiencing an intense drought 
over the past decades11–16. Figure 1a represents the AAP and AAT trends for the past 30 years in the LUB. As this 
figure shows, there were several stages of drought, especially from 1995 (465 mm) to 1998 (268 mm). There was 
a slight increase in the AAP between 2000 (210 mm) and 2002 (390 mm). While the general drought continued 
until 2017 when the LUB received less than 155.47 mm AAP, the AAP increased between 2018 (309.75 mm) 
and 2020 (507.1 mm), which led to an increase in the lake’s surface area for two consecutive years. The figures 
also show a considerable AAP decrease in 2021. The AAT trends show an increase of about 2 °C between 1995 
(11.7 °C) and 2018 (13.7 °C). The spatial distribution of the temperature at the basin level shows that the drought 
of the lake has a direct spatial correlation with the temperature distribution, whereby the temperature around 
the lake increases as the lake continues to shrink. Figures 2a,b show the impacts of climate change on the water 
body of Lake Urmia between 1990 and 2020. As this figure shows, the lake’s size reduced significantly between 

Table 1.   Acronyms.

FP Food production

UN United Nations

LUB Lake Urmia Basin

LUCC​ Land use/cover changes 

AAT​ Average annual temperature

AAP Average annual precipitation

CSRI Combined Spectral Response Index 

SAR Synthetic aperture radar 

PCA Principal component analysis 

WQI Water Quality Index

MCDA Multi criteria decision analysis

FANP Fuzzy analytical network analysis 

DST Dempster Shafer theory 

FOBIA Fuzzy object based image analysis

FSE Fuzzy synthetic evaluation
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2005 and 2015, when it lost about 80% of its area (Fig. 2a). As Fig. 2b shows, there was a slight increase in surface 
area due to the increasing AAP from 2018 to 2020. Other factors, such as increased awareness about the critical 
condition of the lake and the implementation of several policies to limit the expansion of farmlands and prohibit 
the cultivation of high-water demand crops in the LUB may have also contributed to this increase in the water 
body of the lake. However, despite this slight increase of the lake’s water body, our investigation indicated that, 
overall, the lake has still lost 1766 km2 (34.5%) of its surface area between 1990 and 2020, resulting in intensive 
environmental issues in LUB.

Anthropogenic pressure.  In the past two centuries, rapid industrial development and increasing resource 
demands have led to major land use/cover changes (LUCC), land degradation, and deforestation in many parts 
of the world. Understanding the spatiotemporal pattern of LUCC provides critical information for more efficient 
management practices towards sustainable development and FP17. In addition, intensive LUCC can negatively 
impact the environment and socioeconomic conditions18. In most drying lake ecosystems, the insufficient and 
irrational LUCC cause a variety of environmental pressures and issues that further complicate global crises such 
as food insecurity19. In the context of LUB, the results of this study indicate that extensive LUCC have occurred 
in the past three decades. Figure 3 represents the LUCC maps for LUB derived from satellite images using image 
processing methods. According to our results, the area of croplands and cultivated areas significantly increased 
from 2005 to 2015, which contributed to the Lake Urmia drought by increasing the water demand and extraction 
from the nearby aquifers for farmland irrigation. It is worth mentioning that the agriculture system in Iran is 
essentially based on the traditional irrigation systems of flood/surface irrigation, which require large amounts of 
water. In addition, farmers around the lake mainly produce high-water demand plants and crops such as onions, 
tomatoes, potatoes, sugar beets, grapes, apples, peaches, and nectarines, which has also contributed to the lake 
drought. The changes between 1990 and 2020 indicate an intensive growth of the settlement areas, dry and fallow 
lands, and orchards. At the same time, the rangeland areas and rocky outcrops decreased. Based on these maps, 
the LUCC were computed to affect about 2,000,000 hectares, which is equivalent to 47.1% of the LUB. The main 
change was observed to be in the rangelands (− 70.1%). In the second and third rank, the orchards with + 41.2% 
and the croplands with + 36.6% have also experienced considerable changes in area (Fig. 1b).

Land degradation.  Land degradation is one of the unavoidable consequences of lake drying, especially in 
the LUB2. In this study, the soil salinization and land subsidence were monitored to detect the impacts of the 
Lake Urmia drought on the land degradation of the surrounding areas. Therefore, the soil salinization from 

Figure 1.   (a) Average annual precipitation and an average annual temperature time series s, indicating the 
climate change impacts on the lake drought, (b) land use/cover change in the LUB derived from time series 
image analysis from 1990–2020, (c) time series analysis of changes in the soil salinity and water body of the 
lake and the extension of soil salinity in the past three decades, and (d) time series assessment of groundwater 
salinization from 2000 to 2020.
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1990 to 2020 was evaluated using earth observation satellite images. The resulting soil salinity maps based on 
the Combined Spectral Response Index are presented in Fig. 4. As this figure shows, the salty lands/deserts and 
soil salinity in the LUB have significantly increased in the eastern area surrounding the lake. The area of the 
salty lands and salinization continuously increased from 1995 to 2015, with the most significant increase in 2015 
when the lake reached its worst critical condition. Figure 1c also shows the trend of the water body and soil salin-
ity for the study period and the spatial correlation between the lake drought and the extension of soil salinity. 
From the hydrodynamic perspective, it must be indicated that the elevation of the lake bed increases from west 
to east, which means that the water depth in the eastern area of the lake is much less than in the western areas. 
Thus, the lake generally shrinks from east to west. In addition to climate change and intensive LUCC, the cause-
way that divides the lake into north and south has changed the balance of water around the lake. The causeway 
was constructed to connect Tabriz and Urmia, two major cities that are located on the western and eastern sides 
of the lake, respectively. The causeway has reduced the normal water circulation by about 48–50%. As a result, 
the salt density in the northern part and the concentration difference between the two parts have increased by 
about 49%, which is another environmental change that has exacerbated the lake drought and intensified the 
associated environmental impacts20.

Land subsidence is another aspect of land degradation and a critical issue in LUB. Land subsidence occurs 
when large amounts of groundwater are withdrawn from certain types of rocks, such as fine-grained sediments. 
The ground compacts after the water is removed, which can lead to collapse21. We evaluated the land subsid-
ence in LUB for the 2015 to 2020 timeframe based on the available Synthetic Aperture Radar (SAR) dataset. 
Figure 4h compares the 2015 and 2020 SAR images used to compute the land subsidence ratio in the LUB. Based 
on the results, the maximum and minimum land subsidence velocity in the study area were − 2.26 mm/year 
and − 8.13 mm/year, respectively. The number of legal and illegal wells in the LUB was estimated to be 87,242. 
The spatial distribution of subsidence areas shows a meaningful correlation with the density of the excavated 
wells in the western and eastern plains of Lake Urmia22. This implies that water extraction for drinking and 
agricultural- and industrial demands play an essential role in the progressive land subsidence in the study area. 
Patterns of intensive land subsidence have also been reported by other studies in different parts of the LUB23–26 
(see Supplementary Fig. 3 as an example).

Groundwater salinization.  Earlier research indicated that the intensive groundwater extraction resulted 
in a negative balance in the aquifer. Nowadays, the tangible results of this can be observed as groundwater 
salinization, and land subsidence take hold in the LUB21–27. Based on the groundwater level simulation, the 
intensive groundwater extraction for agricultural and industrial activities has resulted in at least 5–15  m of 

Figure 2.   Observed changes of the Urmia Lake area from 1990 to 2020 based on the satellite images: (a) shows 
how the area of the lake has decreased over time, and (b) shows the periods of increased water body from 
1990–1995 and 2015–2019 based on the increase the annual precipitation. Figure created in Arc GIS 10.7 ESRI, 
https://​www.​esri.​com/.

https://www.esri.com/
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groundwater drawdown, which is a decline of about 50–60% over the past three decades28–30. Figure 5 shows 
the results of spatiotemporal groundwater quality modeling for 2000–2020 based on available monitoring data, 
including samples and chemical analysis, from 856 wells in the LUB. Results show that the extraction from 
adjacent aquifers has changed the groundwater level balance and increased the interaction of saltwater and fresh 
groundwater. The groundwater quality in the surrounding area, especially in the southern and western areas, has 
been impacted by the hyper-salinity of the lake water and the processes of saltwater encroachment and intru-
sion (Fig. 1d). The excessive discharge of aquifers and the disruption of the groundwater resources can supplant 
the interphase threshold and lead to saltwater intrusion into adjacent aquifers, which is also acknowledged by 
previous studies30 (see Supplementary Figs. 4 and 5 for spatial distribution of the wells and trend of groundwater 
discharge).

The anthropogenic sources of contaminants, such as chemical fertilizers, industrial waste, and untreated 
sewage water, might also be significant factors contributing to the excessive degradation of the groundwater 
quality. The principal component analysis (PCA) identified two main factors in almost all the aquifers and three 
main factors in the shore of the lake that explained more than 80% of the total variance. From a hydrodynamic 
perspective, it can be assumed that, based on the hyper-saline nature of Lake Urmia, the total hardness and salin-
ity of the groundwater is related to the interaction of the salt water and freshwater aquifers and the dissolution 
of bedrock material, which are the dominant processes affecting the groundwater quality in the surrounding 
areas. The degradation can result from a combination of natural and anthropogenic processes, but these can be 
closely related. Based on the water quality index (WQI) values, computed to assess the groundwater quality of the 
LUB for drinking water purposes, approximately 48% of the groundwater samples were identified to have poor 
quality and be unsuitable for drinking and agricultural purposes, according to the World Health Organization 
standards31. Based on this, we conclude that the combined approach of a multivariate statistical technique and 

Figure 3.   Results of the land use/cover changes monitoring and time series assessment in the Lake Urmia basin 
from 1990–2020, which show the increase in the area of farmlands, and the reduction of the rangelands over the 
past three decades. Figure created in Arc GIS 10.7 ESRI, https://​www.​esri.​com/.

https://www.esri.com/
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spatial analysis is effective in helping us understand the factors determining the groundwater quality. According 
to the results, the WQI has essentially increased from 2000 to 2015 (6920.06, 11,660.09 and 13,456.02), indicating 
a reduction in the quality of water used for drinking and agricultural activities. However, from 2015–2020 there 
is a slight reduction (11,470.8), which may be attributed to the increase in the AAP and the policies for control-
ling the groundwater extraction as part of Lake Urmia Restoration Program. The WQI analysis results illustrate 
the impacts of the hyper-saline water and the distribution of the salt from the lake bed to the farmlands, which 
makes them unsuitable for FP.

Prediction of the environmental impacts of lake drought on FP.  After identifying the trend of 
environmental changes from 1990 to 2020, we identified the current limitations and opportunities for FP in the 
LUB. Soil and aquifer salinization forecasting maps can be used to optimize management practices and prevent 
FP from being compromised in the future. We used the CA-Markov method (see “Methods” section) to predict 
the future development for the years 2030, 2040 and 2050 (Fig. 6). As Fig. 6 shows, the Lake Urmia drought will 
continue in the coming decades, and by 2050 only the northern part of the lake will remain while all other parts 
will be covered by salt and dust. As shown in Fig. 6a–c, the groundwater quality will be fundamentally impacted 
by the lake saltwater intrusion due to the extensive water extraction from the aquifers. The groundwater saliniza-
tion will impact almost all aquifers around the lake, which will, in turn, intensify the water scarcity and affect the 
water supply for drinking as well as for industrial- and agricultural activities. Figure 6d–f also show the predicted 
soil salinization resulting from the lake drought. Based on these maps, the soil salinization will extend to the 

Figure 4.   Results of the soil salinization from 1990–2020 (a–g) and land subsidence from 2915–2020 (h). Red 
indicates the propagation of saline flows that have significantly impacted the productivity of farmlands. Figure 
created in Arc GIS 10.7 ESRI, https://​www.​esri.​com/.

https://www.esri.com/
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eastern and southern parts of LUB where the most productive farmlands are located and produce several million 
tons of food annually (see Supplementary Table 1).

Based on the climate change trend, land degradation, water salinity, LUCC, and environmental issues, we 
developed FP scenarios for the LUB using a GIS-based multiple spatial analysis to prioritize and compute the 
degree of sustainability of agricultural farmlands under the impacts of the lake drought. Figure 7 shows the 
computed spatial distribution of the results of the scenario-based FP analysis. The productivity of the agricul-
tural lands is expected to be reduced substantially due to the impact of soil and aquifer salinization. Results of 
this simulation indicated that the farmland areas for FP are likely to be reduced significantly by both soil and 
aquifer salinization. Table 2 represents the computed farmland areas expected to be impacted by both aquifer 
and soil salinization. The farmlands of LUB cover an area of about 500,000 hectares, of which about 375,000 
hectares currently contribute to FP according to the environmental and land suitability assessment (Fig. 7). Based 
on the simulation, about 29,100 hectares and 20,600 hectares will be impacted by aquifer and soil salinization, 
respectively. These numbers are anticipated to increase to 248,000 and 52,000 hectares by 2040. The simulation 
shows even worse environmental conditions for 2050 when about 260,200 hectares (69.4%) of highly productive 
farmland will be affected by aquifer salinization. It is also anticipated that by 2050 132,420 hectares (35.4%) of 
the highly productive farmlands will be directly impacted by soil salinization and lose their fertility and, thus, 
suitability for crop development. In addition, land subsidence will also increase significantly and affect the infra-
structure and farmlands. Scenario-based results indicate that the LUB is going to face critical environmental 
conditions. While the LUB area currently produces 8.4% of the total food produced in Iran and feeds 7.3 million 
people, it is now clear that the region will face severe challenges in the coming decades. Figure 8 shows the results 
of the spatial uncertainty analysis for the predicated soil salinity and groundwater salinization for 2030, 2040 

Figure 5.   Results of monitoring the trend of groundwater resources salinization (GRS) and the way it has 
spread to the farmlands (red colors) due to the over discharge of aquifers. Figure created in Arc GIS 10.7, ESRI, 
https://​www.​esri.​com/.

https://www.esri.com/
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and 2050, as well as the FP degree computed based on the CA-Markov method. The computed maps represent 
high levels of confidence, which confirm the validity of the results.

Discussion
The results of this research indicate that degrading environmental conditions in the LUB will significantly impact 
the FP. Our investigations show that mismanagement of water resources, the extension of the agricultural farm-
lands, and the excessive water extraction from aquifers have contributed to the lake drought and have led to 
problems, such as extensive land degradation and soil- and water salinity, which threaten the FP. The lack of 
sustainable development strategies and the mismanagement of the fragile ecosystem has contributed to these 
problems over the past three decades. Thus, plans and programs based on a sustainable development agenda are 
urgently needed to mitigate the anticipated food security crisis and associated socioeconomic and environmental 
problems. Such plans and programs should be designed and implemented according to the scientific evidence 
of environmental and socioeconomic factors and under consideration of the local characteristics of the LUB. 
They should be based on specific, realistic, measurable, practical, and time-bound actions to bring about actual 
changes. It is also critical to develop decision-making approaches that can be optimized and improved by estab-
lishing feedback mechanisms to determine the valuable insights from unfulfilled outcomes31.

According to the results of our land use/cover mapping and field work, the agriculture system in the LUB 
is characterized by family farming (in small land lots) and is sustained based on the traditional irrigation sys-
tem. A wide variety of high-water demand crops (e.g., onions, tomatoes, potatoes, watermelons, grapes, etc., 
see Table 1 in the Supplementary Appendix for a complete list of the crops) have been produced on this basis 
over the past decades based on farmers’ choices and market demand. Promoting precision agriculture with low 
water demand crops could be a great opportunity to counteract the lake drying and, at the same time, maintain 
agricultural productivity. The modification of cropping patterns towards low water demand crops could be a 
cheap and efficient solution for reducing the overall agricultural water consumption, but this requires verification 
through future studies in this area. The main objective of this study was to analyze the environmental impacts 
of the Urmia Lake drought on food production. The obtained results are intended to be employed as input for 

Figure 6.   Results of simulation using a CA-Markov: aquifer salinization for 2030 (a), 2040 (b), 2050 (c) and soil 
salinization for 2030 (d), 2040 (e) and 2050 (f). Red color indicates the extension of soil and aquifer salinization 
and significant limitation for food production. Figure created in Arc GIS 10.7, ESRI, https://​www.​esri.​com/.

https://www.esri.com/
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future policy making and analysis programs. While crop modification to suit the environmental conditions and 
water availability may be an effective option for reducing the over-use of aquifers, this suggestion is based on the 
opinion of the authors and the feasibility of this idea must be verified by future studies that consider the specific 
aspects of ecology, land suitability, and socioeconomic implications to select the appropriate low water demand 
crops and promote their adoption in the area. In addition, potential land readjustment and aggregation of small 
farms, through participatory and democratic approaches, to develop a modern agriculture system would benefit 
farmers and reduce the irrigation water demand. Developing a land suitability analysis under specific policy 
making programs for low water demand and horticultural crops shall support decision-makers and authori-
ties in the agriculture sector in deciding on the presence or absence of a specific plant in the optimal cropping 
pattern32. It should, however, be mentioned that a transition to horticulture requires dedicated upgrades to the 
existing infrastructure (including roads and cold chains) to ensure efficient delivery of products to consumers. 
The ULB is one of the major agro-industrial areas of Iran and has an efficient transport network that facilitates 
the development of a dedicated program for the mitigation of the lake drought impacts on FP.

Sustainability is one of the most critical global initiatives of the human lifetime33. Thus, considering the 
political circumstances (i.e., international sanctions), the rate of population growth, as well as the importance 
of the LUB for the national food production (8.4%) and the progressive land degradation and water shortage, 
plans and programs for sustainable development in the LUB are urgently needed. In accordance with other 
studies, we consider changes to the FP to be one of the most effective measures to mitigate the environmental 
impacts of lake drought. Sustainable agriculture development also requires suitable strategies for balancing 
the environmental, economic, and social dimensions of food and agriculture governance31. In this context, 

Figure 7.   Results of the scenario-based food production for 2050 and its spatial correlation with aquifer 
salinization (a) and soil salinity (b). The FP degree was computed based on the CA-Markov method. The green 
color shows the farmlands and red color indicates how the expansion of the soil and aquifer salinization has 
impacted the productivity of the farmlands. Figure created in Arc GIS 10.7 ESRI, https://​www.​esri.​com/.

Table 2.   Results of scenario-based Lake Urmia drought impacts on the productivity of farmlands in LUB. 
Numbers and percentages indicate aquifer and soil salinization impacts on the current farmlands, with an area 
of about 375,000 hectares.

 Hectares  2030 2040 2050 

Farmlands impacted by 

aquifer salinization 

29,100 7.8 % 248,000 66 % 260,200 69.4 % 

Farmlands impacted by 

soil salinization 

20,600 5.4% 52,000 13.8 % 132,420 35.4 % 

https://www.esri.com/
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international policy guidelines such as ‘agenda 2030’, with its guidelines for ensuring FP in light of the increas-
ing global environmental challenges, shall support the decision-makers in improving the environmental and 
socioeconomic status of the LUB32.

Methods
In this research, we applied an integrated geoinformation approach comprising a fuzzy-object-based image 
analysis (FOBIA) and spectral analysis to obtain a LUCC and soil salinization time series. We used the SAR satel-
lite images to detect the land subsidence from 2015 to 2020. We applied an integrated GIScience spatiotemporal 
analysis to analyze the trends of climate indicators, soil characteristics, and water resources to develop the food 
production map. The central aspect of the research methodology is explained in the following:

Land use/cover mapping and trend assessment.  We processed Landsat time series satellite images 
for LUCC and soil salinization monitoring. To detect changes, we obtained the satellite images for July of 1990, 
1995, 2000, 2005, 2010, 2015 and 2020. To obtain the most accurate results, we applied the integrated FOBIA 
approach to LUCC monitoring and mapping. Therefore, we applied a multi-resolution segmentation to obtain 
image objects. For a FOBIA classification, segmentation parameters are critical since they directly impact the 
size of image objects and the final classification results. We estimated the scale parameter34 and performed the 
segmentation with a scale of 20, a shape index of 0.6, and a compactness value of 0.4. We identified the primary 
land use/cover pattern of the LUB based on field work and a comprehensive discussion with the local authorities 

Figure 8.   Results of the spatial uncertainty analysis based on the DST for the predicted soil salinization (a–c) 
and groundwater salinization (d–f), and the food production degree map that was generated based on the 
CA-Markov method (g). The values from 0 to 100 show the confidence level and the reliability of results based 
on the DST technique. Figure created in Arc GIS 10.7 ESRI, https://​www.​esri.​com/.

https://www.esri.com/
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and decision-makers. We employed a FOBIA classification to derive the characteristics of the LUCC subclasses. 
The training data were collected in field operations and from existing and historical LUCC and cadaster maps 
and aerial photography, which were provided by the Agricultural Resource Organization. We used a total of 
21,000 points (3000 points for each study year) to identify the characteristics of each LUCC subclass and as 
training data for the FOBIA classification. We were able to identify the relevant object features based on the 
spectral and spatial characteristics of each LUCC subclass and evaluated their effectiveness for deriving each 
LUCC subclass by comparing the training data with the fuzzy membership value of each object feature based on 
the following equations:

•	 Spectral attributes/brightness

where B is the mean brightness of an object and Ci(vis) is the sum of all the mean brightnesses in the visible 
bands divided by the corresponding number of bands nvis.

•	 Normalized Difference Vegetation Index (NDVI)
	   Tv = mean NDVI

T ′
v is an average of the mean NDVI values for the candidate object of LUCC class and vegetated areas (VA). 

The NDVI, which has a value between − 1.0 and + 1.0
	   Green Normalized Difference Vegetation Index (GNDVI)

	 
•	 Modified Normalized Differenced Water Index (MNDWI)

•	 Soil Water Content Index (InfraRed Index)/ Soil Color Index

•	 Normalized Built-up Index (NDBI)

Salinity Index (SI)

•	 Normalized Difference Salinity Index

•	 Shape Rectangular

�min is the minimal eigenvalue. �max is the maximal eigenvalue

[0,1]; where 1 is a perfect rectangle.
•	 Shape Index
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After identifying the relevant object-based features for LUCC classification, we exported the computed mem-
bership values for all objects in LUB to Python for the deep learning classification and to produce the final LUCC 
map. To validate the results, we applied an accuracy assessment based on the fuzzy synthetic evaluation (FSE), 
which was proposed by Feizizadeh35 and acknowledged for its effectiveness in FOBIA classifications by several 
studies33–35. Technically, the FSE makes use of two sets of data, namely reference data (ground truth data) and 
the results of the OBIA-based classification map. The FSE is used to compute the confidence ratings, which give 
the classification confidence and observed level of error for each class36 (see Supplementary Table 2). 30% of all 
ground control points (6300 out of 21,000) were used as references data, and the overall accuracy for the study 
period of 1990–2020 with 5-year intervals was computed to be 0.94, 0.93, 0.98, 0.95, 0.96, 0.93 and 0.97, respec-
tively (see Supplementary Table 3 for results of accuracy assessment based on the FSE).

Land degradation monitoring (soil salinity and land subsidence).  We used the obtained Landsat 
images to carry out a LUCC classification to monitor and map soil salinization. According to earlier studies, the 
spectral properties of Landsat allow us to compute the soil salinization rate based on the soil salinity indices37,38. 
The soil characteristics are impacted by various factors (e.g., vegetation cover, moisture, texture, parent mate-
rial, etc.), which must be considered in soil salinity mapping39,40. Therefore, we applied the Combined Spectral 
Response Index (CSRI) technique to compute the soil salinity ratio for each study year. The CSRI method was 
developed by Fernandez-Buces et al.41 and is an efficient method for determining soil salinity41–43. The CSRI is 
based on the spectral information of RGB and the near-infrared bands, and it is computed as follows:

NIR: Near-infrared and NDVI: Normalized Differences Vegetation Index.
We used the field observation data together with the soil electrical conductivity (SEC) data to validate the 

results. Time series SEC data were obtained from the Agricultural Resource Organization. In order to validate the 
results, a linear regression analysis was applied to compute the spatial correlation between the reference data and 
the results of the CSRI method for each study year. The result of the linear regression analysis from 1990–2020 
in 5-year intervals was computed to be 0.93, 0.92, 0.90, 0.92, 0.96, 0.97 and 0.95, respectively, which represents 
a very high spatial correlation between the reference data and the obtained soil salinization maps.

We also monitored the land subsidence in the LUB. Therefore, we applied differential interferometric syn-
thetic aperture radar analysis (DInSAR) for the 2015–2020 period to create a land subsidence map. The DInSAR 
technique is a reliable and fast approach to derive long- and short-term deformations. The technique mainly 
relies on the ‘master’ and ‘slave’ SAR image processing of the same part of the earth from the same satellite orbit. 
In the repeated pass, the difference of phase value correlation of two SAR images can be used to estimate the 
ground subsidence. Generally, the phase correlation or coherence ( γ ) of two acquisitions in DInSAR analysis 
contains various sources. After reducing non-deformation phases, such as the atmospheric phase, topographic 
phase, and noises, the multi-temporal DInSAR can be implemented. In the multi-temporal analysis, images are 
taken at different times (T1, T2, …, Tn), and the phase value of the image is a simple way to measure the changes 
in satellite-to-target direction (R1, R2, …,Rn) across the same study area44–46. For the DInSAR analysis, we used 
6 single look complex (SLC) images of descending orbits (T 79) of Sentinel-1 to cover the study area. The images 
were taken on the 2015.11.11, 2017.11.12, and 2020.11.02, and cover the upper and lower parts of the Lake Urmia 
Basin (6 images in total) in interferometric wide (IW) mode. The images are in VV (vertical–vertical) and VH 
(vertical–horizontal) polarizations, and the incidence angle of the images is 39.08°. The incidence angle differ-
ences of the first pair (2015.11.11 and 2017.11.12) and the second pair (2017.11.12 and 2020.11.02) are 0.009° and 
0.01°, respectively. Due to the semi-arid to arid climate in the study area, the large temporal baseline (~ 2 years) 
is not a serious problem for the interferometric analysis, as confirmed by similar studies23–26.

Water salinization spatiotemporal analysis.  The significance of freshwater for agricultural-, indus-
trial-, and residential purposes is beyond debate. Due to the semi-arid climate in the LUB, agricultural activi-
ties were traditionally based on surface run-off water and groundwater. The LUCC results reveal a substantial 
increase in croplands and farmland over the past 30 years, which depend heavily on groundwater. The regional 
water organization has monitored the LUB water quality parameters annually since 2000. We made use of obser-
vations from deep- and semi-deep wells, springs, and Qanats during the rainy season. Since the number of 
observation wells has increased every year since the Lake Urmia drought, the groundwater observation data 
used in the spatiotemporal modeling of the groundwater quality assessment was limited to 630 in 2005, 684 in 
2010, 751 in 2015, and 859 in 2020. We obtained and analyzed the following water quality parameters for the 
studied time period (2000–2020): electrical conductivity, power of hydrogen (pH), potassium (K+), total hard-
ness, sulfate (SO4

2−), magnesium (Mg2+), chloride (Cl−), sodium (Na+), total dissolved solids, calcium (Ca2+), 
carbonate (CO3

2−), and bicarbonate (HCO3
−). We obtained groundwater physicochemical data and evaluated 

the water status using the water quality index (WQI), Spearman correlation, principal component analysis 
(PCA), and agglomerative hierarchical clustering based on the GIS spatial analysis for determining the hydro-
geochemical attributes. The statistical evaluation of the physicochemical groundwater parameters is essential to 
understand the main factors controlling water quality variations over time47.

Multivariate statistical techniques such as the PCA are effective data visualization and mining approaches. 
We applied a PCA technique to identify correlations between physical and chemical characteristics in the aquifer 
and to elucidate complicated patterns in data matrices47,48. Squared cosines with absolute values of more than or 
equal to 0.4 were used for the exploration of the observed ions49,50. We used the Spearman correlation coefficient 
to identify the sources of different elements in the groundwater samples. High coefficients reveal the significance 

(14)CSRI =
B+ G

R+NIR
×NDVI and (B+ G)/(R+NIR)×NDVI
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of the relationship between two parameters. A positive coefficient indicates that the associated parameters are 
similar and harmonious, while a negative coefficient indicates that the variables are moving in opposite directions. 
We carried out an agglomerative hierarchical cluster analysis of the groundwater data to identify a specific pattern 
of similar observations within the studied variables48. The hierarchical clustering allowed us to identify suitable 
structures in chaotic and complex data and thus simplify the explanation of observations51. We obtained the 
distribution characteristics and created the groundwater quality maps using a GIS spatial analysis. While many 
interpolation methods are available, we choose to use the inverse distance weighted interpolation technique, 
which is the most frequently used deterministic modeling tool52. The model is based on the hypothesis that a 
node shares more similarities with nearby points and that it is influenced more strongly by the surrounding data 
values. We used 856 points and derived the node values by averaging their combined weighted total.

Environmental food production mapping.  We applied a GIS-based multi criteria decision analysis 
(GIS-MCDA) to multiple factors of FP in the LUB to examine food production under the impact of the Lake 
Urmia drought. Food production in a fragile ecosystem such as the LUB must consider the interaction of several 
causal spatial indicators. The GIS-MCDA is an effective approach for dealing with the spatial decision problems 
and patterns based on the concept of ‘spatial thinking’53,54. The GIS-MCDA allows us to consider the relevant 
spatial indicators and their characteristics as attributes, under consideration of the decision maker’s preferences, 
to analyze the spatial problems54. We analyzed food production in the LUB by considering relevant climate 
indicators affecting agricultural production, namely annual average precipitation, temperature, sunshine hours, 
and humidity. In the context of soil characteristics, the soil degradation, fertility, texture, and depth were also 
considered as indicators. From the land characteristics perspective, the salt scattering spots, and land use/cover 
were also included as relevant indicators for FP (see Supplementary Fig. 6). The selection of these indicators is 
based on expert opinions, data availability, and relevant research literature31,54,55.

After finalizing the environmental indicators, the initial data were collected from the relevant governmental 
departments, satellite images, and the Spatial Data Infrastructure (SDI) of LUB. All data were gathered, relevant 
geometric edits were applied, and the indicators were developed into a spatial GIS dataset. Since the spatial GIS 
data were collected from heterogeneous resources with different scales, we used the fuzzy standardization pro-
cess to standardize the indicators in the same scale for criterion weighting. This approach considers the degree 
of fuzzy membership values on a scale of 0–1 based on the benefit/ cost context of the indicators52. In the GIS-
MCDA analysis, the significance of each criterion is computed as part of the decision analysis. We employed 
the Fuzzy Analytical Network Analysis (FANP) to determine the significance of each indicator. The FANP is 
an efficient GIS-MCDA weighting tool53. We included the knowledge of 35 experts from different departments 
of the University of Tabriz and the University of Urmia. We asked these experts from agricultural-, natural 
resource-, and food security departments to initially rank the provided indicators. Then, based on the FANP 
method, we yielded the following criteria weights: precipitation (0.098), temperature (0.096), sunshine hours 
(0.075), humidity (0.058), groundwater depth (0.071), water quality (0.095), soil degradation (0.069), soil fertil-
ity (0.098), soil texture (0.099), soil depth (0.098), salt scattering spots (0.086), and land use/cover (0.098). The 
FANP compression matrix is provided in Supplementary Table 4. For the criteria weighting, it is necessary to 
compute the consistency ratio (CR) to validate the obtained weights. According to Saaty56, a CR < 0.1 indicates 
an acceptable level of consistency among the experts and that the results can be employed for a spatial aggrega-
tion. Our study yielded an acceptable CR value of 0.065.

Criteria weighting in GIS-MCDA significantly influences the uncertainty and reliability of the results57. 
Therefore, we applied a global sensitivity analysis (GSA) to determine the validity of the computed weights 
using the FANP method. The GSA approach is used to compute the two critical indexes of S (first order) and 
St (total effect). The letters S and St denote that the FANP’s weights were assigned in a semantic manner. Any 
discrepancy in the value and order of the S and St indices, as well as the reference weights (e.g., FANP’s weights), 
can be regarded as uncertainty associated with the criteria weights58. Accordingly, we used a ‘weighted overlay’ 
spatial aggregation function to produce the food production capability map.

Environmental prediction based on the CA‑Markov.  We used a combination of a Markov model and 
a Cellular Automaton model (CA-Markov) to predict the land degradation and water salinity based on the trend 
observed in the past 3 decades (1990–2020). Both techniques are considered effective for GIScience prediction 
problems59. A typical CA–Markov model separates the discrete cellular, finite state, neighbor, and rule features 
into four categories while analyzing the trend as follows:

Z(I) = the first map in year A l, Z(l + 1) = the second map year B, l + 1, Q = state transition matrix, and Z can be 
described as the following matrix: 

Zi (i = 1, 2, 3) represents the changes between the classes of map A and B, Q can be described as an [n, n] matrix 
in the following, where n = total number of changes between map A and B, Qij = transition probability for any 
changes between map A and B from the timeline of i to j, and the sum of each row of the matrix should be equal 
to 1.

(15)Z(I+1) = Z(I) × Q

(16)Z = [Z1 Z2 Z3]
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According to a transformation function, the next state cell is decided by the current state and its 
surroundings59,60. This method is based on the generation of a transition probability matrix between two maps 
in different timelines. The transition probability matrix enables an assessment that indicates the likelihood of 
each pixel in class A of the first map class converting to another class (e.g., B, C, D, …) or remaining in class A 
in the second map class61. The Markov chain, which is technically a separate random process, uses transition 
probability to forecast the next state and all future states based on the current state62. Except for some of the after-
effect occurrences, it is a viable method for predicting regional characteristics. We used CA-Markov to predict 
the land use/cover, soil, and water salinization maps for 2030, 2040, and 2050 based on the trend obtained for 
each environmental indicator.

Spatial uncertainty analysis.  Understanding the spatial uncertainty is critical in geospatial analysis and 
modeling. Data quality, correctness, inaccuracy, vagueness, fuzziness, and imprecision are all referred to as 
spatial uncertainty in GIScience35. Uncertainty in GIS-based modeling is inevitable due to the variety caused 
by a heterogeneous dataset, expert opinions, and model error, which has forced the GIScience community to 
develop spatial and statistical approaches to understand and quantify uncertainty62. The Dempster Shafer The-
ory (DST) is an efficient technique for modeling the imprecision and computing the spatial uncertainty62. It is 
based on mathematical operations employing Bayesian probability theory2. The DST can be used to compute 
the epistemic uncertainty that affects expert knowledge of the probability P (M_) within the alternative model 
M_, = 1,…,n. This is also known as the ‘theory of evidence’, which aims to compute the BBA m (A) on sets A 
(the focal sets) of the power set P(Z) of the event space Z, i.e., on sets of outcomes rather than single elementary 
events62. The belief function is used to compute the lower limit value for a (known) probability to determine 
the spatial uncertainty. The plausibility function additionally predicts the upper bound value for an (unknown) 
probability. The geographic uncertainty can be calculated using the difference between the plausibility (Pl) and 
belief (Bel) functions. We employed the Belief function in Idrisi software to calculate DST and to define the spa-
tial uncertainty of the predicted soil and water salinization maps for 2030, 2040, 2050, as well as the computed 
food production map (see Fig. 8).

Data availability
The data that support the findings of this study are available on request from the corresponding author.
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