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To complement our previous analysis of interactions of large-scale turbulence with

strong detonations, the corresponding theory of interactions of small-scale turbu-

lence is presented here. Focusing most directly on the results of greatest interest,

the ultimate long-time effects of high-frequency vortical and entropic disturbances

on the burnt-gas flow, a normal-mode analysis is selected here, rather than the

Laplace-transform approach. The interaction of the planar detonation with a

monochromatic pattern of perturbations is addressed first, and then a Fourier

superposition for two-dimensional and three-dimensional isotropic turbulent fields

is employed to provide integral formulae for the amplification of the kinetic energy,

enstrophy, and density fluctuations. Effects of the propagation Mach number and

of the chemical heat release and the chemical reaction rate are identified, as well

as the similarities and differences from the previous result for the thin-detonation

(fast-reaction) limit.
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I. INTRODUCTION

In previous work1 we analyzed the interaction of a strong detonation with inhomo-

geneous density fields. The motivation was to improve the descriptions of the influence

of compressible turbulence on detonation propagation and, in particular, to determine

how passage of a planar detonation modifies the turbulence. In that respect, the work

complemented the analyses of Jackson et al.2,3, who addressed interactions of detonations

with constant-density vorticity fields. It is well known4 that, excluding acoustic pertur-

bations, which propagate with respect to the fluid, inhomogeneities that travel with the

fluid can be decomposed into vortical and entropic components. The earlier work2,3 had

explored the influences of the vortical component, but at high Mach numbers those in-

fluences are dominated by influences of the entropic component5, which therefore was in

need of study. The previous investigation1 provided the additional information that was

needed for strong detonations that could be treated as discontinuities.

General reasons for interest in interactions between detonations and turbulence have

been discussed and referenced earlier1, and, since the present paper relies on knowledge of

the previous paper, those reasons will not be repeated here. One motivation is improve-

ment in the performance of detonative propulsion devices for hypersonic aircraft, where

limited times for fuel-air mixing can pose problems that could be attacked through shock-

wave-enhanced mixing6,7. In such situations, detonation thicknesses may be larger than

the most important representative turbulence scales. The earlier analysis1 then become

inaccurate, and turbulence effects on the evolution of the finite-rate heat release in the

interior of the detonation become relevant. The present investigation offers a step towards

removing this deficiency.

It is worth observing that numerical studies by Massa et al.8,9 have shown enhanced

interactions between turbulence and detonations associated with there being compara-

ble sizes of the inhomogeneities and the unperturbed reaction zones. This increases the

interest in pursuing analytical investigations in which turbulence scales are not large com-

pared with reaction-zone thicknesses, for example for testing scaling hypotheses and to

determine whether effects of systematic variations of parameters can be derived. Such

investigations become quite difficult when the reaction zones and inhomogeneities are of

comparable size, but they can be performed accurately when the dimensions of all dis-
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turbances are small compared with reaction-zone thicknesses. This is the limit to be

addressed here. Inferences concerning behavior at intermediate scales may be derived

from resulting functional dependences and comparisons with previous thin-detonation re-

sults. Since neither vortical nor entropic fluctuations have yet been considered in this

limit, both will be analyzed in the present work.

II. THE STEADY, PLANAR DETONATION

The analysis is a perturbation of the steady, planar ZND detonation structure, a shock

followed by an inviscid reaction zone10–12, for an ideal gas with a constant specific heat at

constant pressure. The formulation will be entirely in terms of nondimensional variables.

For simplicity, we assume that the rate of energy release per unit volume behind the lead

shock ˙̄q is uniformly distributed over the thickness of the reaction region, which ends once

the fuel is depleted at a finite distance from the shock. This thickness (l̄) is taken as

the unit of length in the analysis, and the sound velocity āN at the Neumann state (just

behind of the shock) is taken as the unit of velocity, overbars identifying dimensional

quantities. All velocities, both streamwise ū and transverse v̄, as well as sound speeds ā

are nondimensionalized with respect to this same sound velocity, and the conditions at

the Neumann state (identified by the subscript N) are also used to normalize the other

variables, so that the density ρ̄ is normalized by ρ̄N, the pressure p̄ with ρ̄Nā
2
N, and the

temperature T by T̄N. The subscripts o and b will identify conditions in the fresh mixture

and in the burnt gas behind the detonation, respectively, and subscripts l and s will

distinguish quantities in the laboratory reference frame in which the fresh mixture is at

rest and in the frame moving with the unperturbed detonation, respectively. The three

nondimensional parameters that appear in the problem are then the propagation Mach

number Mo = D̄/āo of the undisturbed detonation, where D̄ is the propagation velocity,

the (constant) ratio of specific heats γ, and the total energy released per unit mass of the

mixture multiplied by (γ2− 1)/(2ā2o), denoted by q. That is, q = q̄(γ2− 1)/(2ā2o), where q̄

is the heat released per unit mass of mixture, which is related to the heat-release rate by

˙̄q = ρ̄NūNq̄/l̄, with ūN representing the Neumann streamwise velocity relative to the shock.

The nondimensional streamwise and transverse coordinates are x and y, respectively.

Figure 1, in which D denotes the nondimensional propagation velocity of the detona-

3



tion, illustrates the particle paths and velocity profiles in the laboratory frame of reference.

The upstream conditions can be expressed in units of their corresponding Neumann values

FIG. 1. Schematic fluid particle paths in the laboratory reference frame.

by means of the Rankine-Hugoniot equations, which lead to

ρo =
ρ̄o
ρ̄N

=
(γ − 1)M2

o + 2

(γ + 1)M2
o

, ao =
āo
āN

=
(γ + 1)Mo√

(2γM2
o − γ + 1)[(γ − 1)M2

o + 2]
. (1)

The Neumann Mach number, defined as the nondimensional velocity at which the particles

leave the shock front is

MN =

√
(γ − 1)M2

o + 2

2γM2
o − γ + 1

. (2)

For strong detonations, Mo is appreciably greater than its Chapman-Jouget value,

Mcj =
D̄cj

āo
=
√

1 + q +
√
q , (3)

where D̄cj is the Chapman-Jouget detonation propagation velocity. Behind the shock

front, the combustion process takes place, and the thermodynamic quantities vary in

accordance with the type of heat-deposition involved. To calculate the steady-state profiles

of the thermodynamic quantities, it is convenient to write the conservation equations in

the shock-fixed reference frame xs = Dt−xl, where the fluid particles travel with velocity

us = D − ul. Here t = t̄ l̄/āN. After some straightforward algebra, for a constant heat-

release rate, the undisturbed pressure profile as a function of the distance from the shock

xs = [0, 1] is found to be

p =
1 + γM2

N

γ(γ + 1)
+

1

γ + 1

√
(1−M2

N)2 − (2MNao)
2 q xs , (4)

which is related to the velocity profile according to p = γ−1 + M2
N − usMN and to the

density profile, since ρ = MN/us. The temperature profile is obtained directly from the
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perfect-gas equation T = γp/ρ, and the dimensionless local speed of sound is then given

by a2 = T . At the end of the reaction zone (xs = 1) there is a weak discontinuity that

separates the burning and the burnt flow regions; beyond this point, the unperturbed

fluid properties remain constant.

III. FORMULATION OF THE PERTURBATION PROBLEM

Complex notation is employed in the normal-mode analysis, with the physical values

represented by the real parts. The upstream vortical velocity field is defined in terms

of the nondimensional longitudinal u′o and transverse v′o perturbations in the laboratory

frame of reference as

u′o(xl, y) = εraoe
i(kxxl+kyy) , v′o(xl, y) = −kx

ky
εraoe

i(kxxl+kyy) (5)

where the divergence-free condition kxu
′
o = −kyv′o has been applied. The factor εr repre-

sents the amplitude of the upstream velocity disturbances, and it is assumed to be much

smaller than unity to remain within the limits of linear theory. Here the wave-number

vector ~k, with x and y components kx and ky, is scaled with the inverse of the detonation

thickness 1/l̄, in accord with our nondimensionalization, so that, in the present analysis,

kx and ky are large parameters of expansion. Similarly, the density perturbation field is

ρ′o(xl, y) = εeρoe
i(kxxl+kyy) (6)

where εe is the nondimensional amplitude, assumed to be small, like εr. Since the linear

responses are independent, no phase angle is imposed between the rotational (subscript

r) and entropic (subscript e) perturbations.

Incoming waves from behind the detonation are excluded. When the lead shock encoun-

ters the perturbations in (5) and (6), it develops a time-dependent response proportional

to eiωst, where the nondimensional frequency is defined as ωs = MNkx/ρo. The linearized

Rankine-Hugoniot relationships then yield for the coefficients of the factor ei(ωst+kyy) in

the nondimensional perturbations

i
ωs
ky
ξs =

γ + 1

4MN

p′s +
2εr −Moεe

2
ao , (7a)

u′s =
M2

o + 1

2M2
oMN

p′s +
2εr −Mo(1− ρo)εe

2
ao , (7b)

5



ρ′s =
1

M2
oM

2
N

p′s + εe , (7c)

v′s = −iMN

1− ρo
ρo

ξs −
ωs
ky

aoρo
MN

εr , (7d)

where ξs = ky [xl,s(t)−Dt] is the amplitude of the perturbation of the shock position. An

equation will be derived for p′s which determines pressure perturbations just behind the

shock.

For a given harmonic excitation, such as that considered in (5) and (6), the linear

disturbances following the shock front also must be harmonic. At leading order, the

perturbations are adiabatic so an acoustic wave form describes the post-shock perturbation

field, the acoustic frequency and wave number being related to the shock frequency by

the expression ωa = ωs −MNka,N. Evaluating the linear reactive Euler equations at the

shock front then yields

iωsρ
′ + ika,Nu

′ + ikyv
′ = − q̇

1−M2
N

(u′ +MNρ
′) , (8a)

iωsu
′ + ika,Np

′ = − q̇MN

1−M2
N

(u′ −MNρ
′) , (8b)

iωsv
′ + ikyp

′ = 0 , (8c)

iωsp
′ − iωsρ′ =

q̇

1−M2
N

[(
1−M2

N

)
u′ +MNρ

′ − γMNp
′] , (8d)

where the dimensionless acoustic wavenumbers ka,N and ky come from the streamwise

and lateral derivatives, respectively, and the dimensionless frequency ωs is obtained from

the material derivative following the shock front. At leading order, q̇ = 0, the well-known

adiabatic dispersion relationship is recovered, ω2
a,N = k2a,N+k2y. The dimensionless acoustic

wavenumber ka,N and the associated frequency are

ka,N =
MNωs −

√
ω2
s − (1−M2

N) k2y

1−M2
N

, ωa,N =
ωs −MN

√
ω2
s − (1−M2

N) k2y

1−M2
N

. (9)

The effect of the chemical reaction enters through the dimensionless rate of heat release

q̇ =
2a2oq

γ + 1
=

˙̄ql̄(γ − 1)

ρ̄NūNā2N
, (10)

which is scaled with use made of the detonation thickness l̄ and the unperturbed enthalpy

flux at the Neumann state ρ̄NūNā
2
N/(γ − 1).
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There can be stable acoustic radiation right behind the shock wave if ωs > (1 −
MN)1/2ky, but if ωs < (1 − MN)1/2ky then these pressure perturbations are evanescent

(waves whose amplitudes exponentially decay behind the shock front)13. The latter con-

dition corresponds to the square roots in (9) becoming imaginary, contributing exponential

rather than oscillatory behavior, which must decay to satisfy the boundary conditions.

The shock oscillation frequency is conveniently described in terms of a dimensionless fre-

quency ζ,

ζ =
MN

ρo
√

1−M2
N

kx
ky

=
MN

ρo
√

1−M2
N

1

tan θ
=

1√
1−M2

N

ωs
ky

, (11)

θ being the angle between the incident wavenumber ~k and the direction of propagation of

the unperturbed detonation. It is useful to define ζ in this manner here because acoustic

radiation can then occur for ζ ≥ 1 but the acoustics is evanescent for ζ < 1. The

wavelength of the downstream disturbances are long for ζ < 1 and short ζ ≥ 1, and

therefore solutions for ζ ≥ 1, the high-frequency solutions that appear for small angles

θ, are called short-wavelength solutions, while those corresponding to the low-frequency,

large-θ range ζ < 1 are called long-wavelength solutions. By introducing an expansion up

to terms of order k−1y , equations (7) and (8) can be combined to yield

−ω2
aa20 + ωakaa11 − k2aa02 + k2ya00

k2y
p′s︸ ︷︷ ︸

O(ε)

+ i
ωs
k2y
aRq̇ p

′
s︸ ︷︷ ︸

O(ε k−1
y )

=
(M2

Nk
2
y − ρoω2

s)

k2y
b2︸ ︷︷ ︸

O(ε)

− iωs
k2y
bRq̇︸ ︷︷ ︸

O(ε k−1
y )

(12)

plus terms of order εk−2y , where

a20 =
M2

o + 1 + 2M2
NM

2
o

2MNM2
o

, a11 =
M2

o (2 +M2
N) + 1

M2
o

, a02 =
(3M2

o + 1)MN

2M2
o

,

aR =
[(M2

o + 1) (1 +M2
N)− 2 (1− γM2

oM
2
N)]

2M2
o (1−M2

N)
, a00 =

MN(1− ρo)(γ + 1)

4ρo
, (13)

b2 =
ao(1− ρo)(Moεe − 2εr)

2ρo
, bR =

[(ao − ρoao − 2)MNεe − aoεr]MN

2(1−M2
N)

.

Equation (12) is the generalization of the well-known expression for the response of the

pressure behind the shock wave, accounting for the exothermic finite-rate chemistry in

the heat-release zone of the detonation that follows the shock. The present contribution

analyzes the influences of the terms involving aR and bR which describe this effect. It

is worthwhile to note that these influences depend only on the local effect caused by

the rate of heat release ˙̄q right behind the shock. The profile of the heat-release rate
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downstream becomes irrelevant. These results thus will be general in the sense that they

are independent of the particular model that produced (4). All that is required is that

there be no regions of rapid heat-release rate. With the length l̄ defined in terms of the

average rate of heat release, the parameter k−1y must be small.

Although the formulation leading to (12) is then independent of the heat-release pro-

cesses occurring downstream, those processes do affect the disturbances that occur within

the thick detonation and downstream therefrom. As is well known from the earlier investi-

gations, those disturbances can be considered to be of two general types, namely acoustic

fluctuations that propagate downstream with respect to the fluid locally and fluctuations

that remain fixed with respect to the fluid particles. In the present notation, the former

are proportional to ei(ωst+kaxs+kyy), and the latter are proportional to ei[ωst−(ρ/ρo)kxxs+kyy].

Here

ka =
Mωs −

√
ω2
s − a2 (1−M2) k2y

a (1−M2)
(14)

for the acoustic component, and the corresponding acoustic frequency experienced by a

fluid element moving with the local fluid speed is

ωa =
ωs −M

√
ω2
s − a2 (1−M2) k2y

1−M2
. (15)

The results to be given below pertain to the coefficients of these disturbances, in par-

ticular as the fluctuations emerge into the burnt gas. There are contributions to theses

modification associated with passage through the heat-release region at order ε as well

as order εk−1y . The former, however, turn out to be of the same functional form in the

burnt gas as those derived in previous studies of thin detonations, but with coefficients

corresponding instead to passage through the lead shock only. Unlike the thin detonation,

the thick detonation does not modify the amplitudes from those of the lead shock. Aside

from this difference, the results are identical in the two limits. Attention therefore will be

focused on the fluctuations of order εk−1y .

IV. RESULTS OF THE PERTURBATION ANALYSIS

In terms of the expansions in (12), the results are quite different, depending on whether

the acoustics is radiating (ζ ≥ 1) or evanescent (ζ < 1). For radiating conditions, there is
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no contribution at order k−1y , and so the first correction that involves the heat release q

directly is of order k−2y , beyond the range of the current analysis. The perturbations to be

derived here that explicitly involve q therefore are restricted to the evanescent conditions

that occur at the larger angles θ that produce ζ < 1. Otherwise the results from (12) are

the same as those for nonreacting shocks.

The aforementioned indirect effect of the heat release in the detonations on the acoustic

perturbations at leading order do, however, influence the final radiation condition. As a

consequence of the variation of the quantities M and a with the distance behind the shock,

the condition for the detonation to be radiating at its downstream boundary is ζ > ζb,

where

ζb =

√
1−M2

b

1−M2
N

ab , (16)

which is plotted in Fig. 2 as a function of f−1 (where f = M2
o /M

2
cj is the overdrive factor),

showing that it can be greater or less than unity. For sufficiently weak overdrive, ζb is less

than unity, and so, when ζ < 1, radiating conditions are encountered at some point within

the detonation, but the exponential decay of the evanescent wave from the shock before

that will render the amplitude of the radiated wave negligible small for thick detonations,

whence it is not considered here. On the other hand, especially at the higher values of

the heat release parameter q, above a critical overdrive ζb becomes greater than unity, in

which case an evanescent shock will always correspond to an evanescent detonation. The

relevant parameter therefore in every case is ζ, and the perturbations calculated here are

all for downstream conditions that are effectively evanescent

10−3 10−2 10−1 100 101 102

f − 1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ζb

q = 0.1

q = 1.0

q = 10

FIG. 2. Frequency ζb for γ = 1.2 as a function of Mo for different heat releases q = 0.1, 1, 10.
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Because of the dominance of the lead shock for thick detonations, the amplitudes of

the perturbation at order ε are the same as those derived previously for shock-vorticity

interactions (εe = 0)13,14 and for shock-density interactions (εr = 0)15. Since there are

no perturbations at order εk−1y for radiating acoustics (ζ ≥ 1) the exothermicity does not

affect the amplitudes of the radiated acoustic fields at this order. The amplitudes of the

evanescent fields are, however, affected. To describe such effects, the acoustic pressure

fluctuations in the burnt gas at this order can be represented as εq̇k−1y Cpe
i(ωst+ka,bxs+kyy),

where ka,b, having a positive imaginary part in this case, is given by (14) with M = Mb

and a = ab. The factor q̇ is included here because these corrections are proportional to q̇.

Since overall phase angles are irrelevant for subsequent statistical averages, the complex

coefficients Cp will not be given here; instead only Ap = ±|Cp| will be given, with the

positive sign selected for contributions that increase the amplitude of the perturbation of

order ε and the negative sign for perturbations that decrease that amplitude. With this

convention, it is found that

Apr =
Bpr [(M2

o + 1) (1 +M2
N)− 2 (1− γM2

oM
2
N)]− aoM2

oMN[
4M4

oM
2
Nζ

2(1− ζ2) + [(M2
o + 1)ζ2 −M2

o ]2
]3/2 ×

× 4M2
oM

2
Nζ

2
√

1− ζ2 [(M2
o + 1)ζ2 −M2

o ]

(1−M2
N)3/2

(17a)

and

Ape = −Bpe [(M2
o + 1) (1 +M2

N)− 2 (1− γM2
oM

2
N)] +M2

oM
2
N(ao − aoρo − 2)[

4M4
oM

2
Nζ

2(1− ζ2) + [(M2
o + 1)ζ2 −M2

o ]2
]3/2 ×

× 4M2
oM

2
Nζ

2
√

1− ζ2 [(M2
o + 1)ζ2 −M2

o ]

(1−M2
N)3/2

, (17b)

where the subscripts r and e identify the rotational and entropic contributions to ε, re-

spectively. The factors Bpr and Bpe refer to the pressure disturbances generated by the

inert shock (see appendix for details) and are given by

Bpr =
2MoM

2
N(1− ρo) [(M2

o + 1)ζ2 −M2
o ] [M2

N − ρo (1−M2
N) ζ2]

ρ2o (1−M2
N)
[
4M4

oM
2
Nζ

2(ζ2 − 1) + ((M2
o + 1)ζ2 −M2

o )2
] (18)

and

Bpe = −M
2
oM

2
N(1− ρo) [(M2

o + 1)ζ2 −M2
o ] [M2

N − ρo (1−M2
N) ζ2]

ρ2o (1−M2
N)
[
4M4

oM
2
Nζ

2(ζ2 − 1) + ((M2
o + 1)ζ2 −M2

o )2
] . (19)

In a similar manner, if the contributions to the density and vorticity fluctuations in the

burnt gas at order εk−1y are denoted by εq̇k−1y Cρe
i[ωst+

ρb
ρo
xs+kyy] and εq̇k−1y Cωe

i[ωst+
ρb
ρo
xs+kyy],
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respectively, then results are given for Aρ = ±|Cρ| and Aω = ±|Cω|, the signs similarly

being selected according to the influence on the perturbations of order ε. It is then found

that

Aρr =
(1−M2

oM
2
N)

M2
oM

2
N

Apr , (20a)

Aρe =
(M2

oM
2
N − 1) [M2

oM
2
N + 2 (1−M2

oM
2
N)Bpe]

2M4
oM

4
NBρe

×

×

√
4M4

oM
2
Nζ

2(1− ζ2) + [(M2
o + 1)ζ2 −M2

o ]2

[(M2
o + 1)ζ2 −M2

o ]
Ape, (20b)

and, with the Ω’s defined in the appendix,

Aωr =
Ω2 (Ω1 + 2Ω2Bpr)

√
4M4

oM
2
Nζ

2(1− ζ2) + [(M2
o + 1)ζ2 −M2

o ]2

2 [(M2
o + 1)ζ2 −M2

o ]Bωr

Apr , (21a)

Aωe = −
Ω2 (Ω3 + 2Ω2Bpe)

√
4M4

oM
2
Nζ

2(1− ζ2) + [(M2
o + 1)ζ2 −M2

o ]2

2 [(M2
o + 1)ζ2 −M2

o ]Bωe

Ape , (21b)

where Bρe, Bωr, and Bωe are the order ε contributions for the long-wavelength entropic

and vorticity perturbations (see appendix for details) and are given by

Bρe =

[(
1−M2

oM
2
N

M2
oM

2
N

Bpe + 1

)2

+

(
1−M2

oM
2
N

M2
oM

2
N

B′pe

)2
]1/2

, (22)

Bωr =
[
(Ω1 + Ω2Bpr)

2 +
(
Ω2B

′
pr

)2]1/2
, Bωe =

[
(Ω3 + Ω2Bpe)

2 +
(
Ω2B

′
pe

)2]1/2
. (23)

The velocity field is also modified at order εk−1y as a consequence of the associated

vorticity perturbations. The corresponding A(u,v)r and A(u,v)e are provided in (A10) and

(A12), respectively.

V. PREDICTIONS FOR MONOCHROMATIC DISTURBANCES

In viewing the corrections proportional to εq̇k−1y it is helpful to plot the results in

Eqs. (20) and (21) for selected values of Mo and γ, because the formulas are too com-

plicated for simple conclusions to be readily drawn directly from them. Since the results

vary strongly with θ as the critical orientation is approached, their characteristics are

seen most clearly on a log scale of 1 − ζ. In Fig. 3 such plots for the coefficients Aρ and
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FIG. 3. Exothermic contribution for the density Aρ and vorticity Aω fields as a function of 1− ζ

for Mo = 5 and γ = 1.2.

Aω therefore are shown for the representative values Mo = 5 and γ = 1.2. The general

characteristics of the results are the same for other values of these parameters.

All the curves have certain attributes in common. For example, all of the corrections

approach zero as 1 − ζ approaches zero and unity, which, according to (11), correspond,

respectively, to the critical angle θ and to the detonation encountering the perturbation

field edge-on. It is understandable that an edge-on encounter will not have any effect,

and since the corrections are of higher order for the angles of encounter between normal

and the critical angle (that is, at the higher frequencies), considerations of continuity

suggest that the approach to zero at the critical angle is reasonable. In addition, all

of the curves achieve both negative and positive values, although, for purely entropic

initial perturbations, the range and extent of the negative segment are very small. The

curves, in general, exhibit oscillations, in that they pass through zero once or twice. This

complicates the task of drawing general conclusions.

Since the logarithmic scale in Fig. 3 accentuates the range as the critical angle is

approached, in determining the dominant overall effect, the scale variation must be con-

sidered. With this in mind, it may be inferred from the curves that the corrections are

mainly positive for entropic upstream disturbances and mainly negative for rotational

upstream disturbances. It was found that the heat release in thin detonations tends to

reduce fluctuations for entropic upstream fluctuations1. Although the curves in the ear-

lier paper2 at first glance suggest otherwise, in fact, with the current scaling, the same is

true for rotational fluctuations2. Hence, the present thick-detonation results are in oppo-

site directions from the thin-detonation results for entropic upstream disturbances but in
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the same direction for rotational disturbances. This suggests that entropic disturbances,

which tend to be dominant at high Mach numbers, may experience enhanced responses

at intermediate sizes.

VI. STATISTICAL AVERAGES FOR INTERACTIONS WITH

ISOTROPIC TURBULENCE

Statistical averages for turbulent flows are generated from the preceding results by

integrating the square amplitudes of the perturbations over the spectrum of wave numbers.

As in previous work1,3, the upstream flow is assumed to be homogeneous and isotropic so

that the wave-number vector ~k is uniformly distributed over the unit sphere (or around

the unit semicircle in two dimensions). Therefore, the analyses consists of a superposition

of linear perturbations whose amplitudes are functions only of the wave-number amplitude

|~k|16. Averaged quantities of interest include the kinetic energy K, the enstrophy W , and

the density G.

When considering the interaction with a two-dimensional isotropic vorticity field, the

velocity field is represented by divergence-free velocity disturbances v′o = εkao(sin θ, cos θ),

whose associated wave-number vector is ~k = k(− cos θ, sin θ). The mean square of the

longitudinal and transverse velocity perturbations are3,14,17,18

〈u′2o 〉2D = 〈v′2o 〉2D =
π

2
a2o

∫ ∞
0

εk(k)2kdk . (24)

Thanks to isotropy upstream, the spectrum contribution
∫∞
0
εk(k)2kdk is factored out.

It then becomes possible to eliminate this factor in expressing results as ratios of post-

detonation intensities to upstream intensities. The three-dimensional problem is con-

veniently formulated in spherical polar coordinates, so the upstream velocity field is

v′o = aoεk(sin θ, cos θ cosϕ, cos θ sinϕ) and the associated wave-number vector is ~k =

k(− sin θ, cos θ sinϕ, cos θ cosϕ). The upstream mean-square disturbances are expressed

as 3,14,17,18

〈u′2o 〉3D =
8π

3
a2o

∫ ∞
0

εk(k)2k2dk , 〈v′2o 〉3D = 〈w′2o 〉3D =
2π

3
a2o

∫ ∞
0

εk(k)2k2dk (25)

in that case. If there are only density disturbances ahead of the detonation wave, then

13



the statistical averages under the same isotropy assumptions are1,15,19

〈ρ′2o 〉2D = ρ2oπ

∫ ∞
0

εe(k)2kdk , 〈ρ′2o 〉3D = ρ2o4π

∫ ∞
0

εe(k)2k2dk , (26)

where εe(k) represents the normalized internal-energy spectrum. In all cases results are

given as ratios of final to initial normalized intensities, independent of the particular

spectral distributions.

Consistent with the monochromatic perturbations to the inert lead-shock results being

proportional to q̇k−1y with respect to the order-ε base-case perturbations, for isotropic tur-

bulence the corresponding relative perturbations to the statistical averages will be of order

q̇|k|−1. The interest here therefore focuses on corrections of order εq̇|k|−1 to the order-ε

base-case predictions of the changes in the statistical averages. With KB denoting the

order-unity ratio of the normalized post-detonation turbulent kinetic energy (normalized

by the sound speed at the Neumann state) to the normalized upstream turbulent kinetic

energy (normalized by the sound speed in the fresh mixture) and KA denoting the order-

unity coefficient of the correction to this ratio of order q̇|k|−1, interest then rests on the

fractional correction q̇|k|−1∆K, where ∆K = KA/KB is a quantity of order unity that is in-

dependent of q̇ and depends only on Mo and γ. While this definition is useful for rotational

turbulent fluctuations, it clearly cannot be applied if the upstream fluctuations are purely

entropic. In that case, as in earlier work1, KB is defined as a normalized post-detonation

turbulent kinetic energy divided by the mean-square fresh-mixture density fluctuations

normalized by the average density of the fresh mixture. However, instead of employing

the burnt-gas sound speed for normalizing the post-detonation turbulent kinetic energy,

as earlier1, now the Neumann-state sound speed is used for that purpose, because oth-

erwise and additional dependence on q̇ arises. With this revised normalization and KB

again denoting the order-unity ratio for the post-detonation turbulent kinetic energy and

KA the order-unity coefficient of the correction of order q̇|k|−1, the order-unity measure

∆K = KA/KB is to be exhibited here. The additional subscripts r and e will distinguish

whether rotational or entropic fluctuations are considered, as before.

There are similar breakdowns for enstrophy and density. Here, too, to avoid introducing

an additional dependence on q̇, the post-detonation enstrophy and density fluctuations

are normalized by properties at the Neumann state, while the upstream perturbations are

normalized , as always, by the upstream mean properties. In this way, the associated order-

14



unity corrections are ∆W = WA/WB and ∆G = GA/GB. Even though the initial turbulence

is isotropic, the interaction with the shock induces anisotropy, and there may be interest

separately in longitudinal velocity fluctuations (velocities in the direction of detonation

propagation) and transverse velocity fluctuations (velocities transverse to the propagation

direction). The longitudinal and transverse contributions to the kinetic-energy ratio for

K are denoted by L and T , respectively, and results for ∆L = LA/LB and for ∆T = TA/TB

also will be given. Specific definitions appear in the following sub-sections.

A. Turbulent kinetic-energy amplification

For rotational upstream disturbances, following Refs.3,13,14, amplification factors for

turbulent kinetic energy are defined as

K =
〈v̄′2b 〉2D
〈v̄′2o 〉2D

=
2

πa2o

∫ π/2

0

(
|u′b|2 + |v′b|2

)
sin2 θdθ =

1

2a2o

∫ ∞
0

(
|u′b|2 + |v′b|2

)
Prdζ (27a)

and

K =
〈v̄′2b 〉3D
〈v̄′2o 〉3D

=
1

2a2o

∫ π/2

0

(
|u′b|2 + |v′b|2

)
sin3 θdθ +

1

2
=

1

3a2o

∫ ∞
0

(
|u′b|2 + |v′b|2

)
Prdζ +

1

2
,

(27b)

for two-dimensional and three-dimensional disturbances, respectively, where the functions

|u′b| and |v′b| refer to the longitudinal and transverse velocity perturbation amplitudes in

the burnt gas, and the normalized probability-density distributions are

Pr(ζ) =
4

π

M3
Nρo
√

1−M2
N

[M2
N + ζ2ρ2o (1−M2

N)]2
, Pr(ζ) =

3

2

M4
Nρo
√

1−M2
N

[M2
N + ζ2ρ2o (1−M2

N)]5/2
, (28)

for the two-dimensional and three-dimensional cases, respectively. The factors M2
N +

ζ2ρ2o (1−M2
N), which appear throughout, arise through Eq. (11) in converting integrations

over θ to integrations over ζ. The breakdown K = KB + q̇|k|−1KA may also be divided

into the longitudinal and transverse components, according to K = (1/2)(L + T ) in two

dimensions andK = (1/3)(L+2T ) in three dimensions. The three-dimensional case can be

simplified so as to deal with an equivalent two-dimensional problem by choosing a reference

frame that leaves one of the velocity contributions invariant. The base-component terms,

which account for the rotational and acoustic contributions at order ε, are provided in the

appendix in (A13) and (A14) and also in literature13,14. The corresponding quantities at

15



order εq̇|k|−1 are

LAr =
2

a2o

∫ 1

0

|Bur|Aur
[
1 + ζ2ρ2o

(
M−2

N − 1
)]1/2Prdζ (29a)

for both two and three dimensions, and

TAr =
2

a2o

∫ 1

0

|Bvr|Avr
[
1 + ζ2ρ2o

(
M−2

N − 1
)]1/2Prdζ , (29b)

TAr =
1

a2o

∫ 1

0

|Bvr|Avr
[
1 + ζ2ρ2o

(
M−2

N − 1
)]1/2Prdζ , (29c)

for two dimensions and three dimensions, respectively. The factor [1 + ζ2ρ2o (M−2
N − 1)]

1/2
,

which does not appear for the base-contribution factors, arises from the equality |k|/ky =

(sin θ)−1. The amplitudes of the base velocity fluctuations Bur and Bvr that appear here

are provided in (A9a), and the corrections Aur and Avr are given in (A10).

As explained above, when the upstream perturbations are purely entropic the ratio K

is normalized as in Ref.1, which results in

K =
〈v′2b 〉2D

π
∫∞
0
εe(k)2kdk

=

∫ ∞
0

(
|u′b|2 + |v′b|2

)
Pedζ (30a)

and

K =
〈v′2b 〉3D

4π
∫∞
0
εe(k)2k2dk

=

∫ ∞
0

(
|u′b|2 + |v′b|2

)
Pedζ (30b)

for the two-dimensional and three-dimensional cases, where the corresponding normalized

probability density functions are

Pe(ζ) =
2

π

MNρo
√

1−M2
N

M2
N + ζ2ρ2o (1−M2

N)
, Pe(ζ) =

M2
Nρo
√

1−M2
N

[M2
N + ζ2ρ2o (1−M2

N)]3/2
. (31)

Here K is unity when the integrand functions equal unity. Splitting (30) into longitudinal

and transverse kinetic-energy contributions with the definition K = L + T for both two-

dimensional and three-dimensional cases results at order εq̇|k|−1 in

LAe = 2

∫ 1

0

|Bue|Aue
[
1 + ζ2ρ2o

(
M−2

N − 1
)]1/2Pedζ (32a)

and

TAe = 2

∫ 1

0

|Bve|Ave
[
1 + ζ2ρ2o

(
M−2

N − 1
)]1/2Pedζ . (32b)

The amplitudes Bue and Bve are provided in (A11a), and the components Aue and Ave in

given in (A12).
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Since the normalization of the turbulent kinetic energy is different for upstream vor-

ticity KAr and upstream density KAe disturbances, to facilitate comparisons use is made

of the exothermic deviation factor ∆K = KA/KB defined previously, which holds for both

KAr and KAe, as does ∆L = LA/LB and ∆T = TA/TB. It can be seen in Fig. 4 that

the upstream entropic disturbances (gray curves) produce positive deviations for ∆L, ∆T,

and ∆K, while the upstream rotational fluctuations (black curves) generate negative de-

viations, except for the longitudinal ∆L at high Mach numbers. Since the effect of the

heat-release rate q̇ is factored out, the results are universal and valid for any q. They

are, however, meaningful only if Mo ≥ Mcj, and since Mcj increases with q according to

(3), the range of relevance decreases with increasing q. To provide an indication of the

ranges, the curves are shown dashed in the figure for Mo . 2.4, which corresponds to

Mo = Mcj for q = 1. For strong overdrive, the effect of heat-release rate on the turbulent

kinetic energy reaches a constant value. As a representative indication of the magnitudes

of the effects, it may be observed that a detonation with Mo = 3 will modify the kinetic

energy by ± 10q̇|k|−1 %, negative if rotational and positive if entropic. As expected from

the results for monochromatic disturbances, the heat release decreases the turbulent ki-

netic energy of rotational disturbances for both thick and thin detonations, while with

purely entropic initial fluctuations, the heat release in the detonation decreases it for thin

detonations but increases it for thick detonations

B. Downstream enstrophy

The effect of the inert shock front on the enstrophy levels is given in (A15) and

agrees with previous results in shock-turbulence interactions14,18. The two-dimensional

and three-dimensional contributions of order εq̇|k|−1 are, respectively,

WAr =
1

a2o

∫ 1

0

|Bωr|AωrPr[
1 + ζ2ρ2o

(
M−2

N − 1
)]1/2dζ , WAr =

2

3a2o

∫ 1

0

|Bωr|AωrPr[
1 + ζ2ρ2o

(
M−2

N − 1
)]1/2dζ

(33)

for rotational disturbances. For entropic disturbances, there is generation of vorticity, and

following the same reasoning as in (30), we normalize the enstrophy downstream as in1,15,

so the contribution for both two and three dimensions become

WAe =

∫ 1

0

2|Bωe|AωePe[
1 + ζ2ρ2o

(
M−2

N − 1
)]1/2dζ . (34)
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FIG. 4. Turbulent kinetic-energy deviations as functions of the shock Mach number Mo for two-

dimensional (left panel) and three-dimensional (right panel) cases. The black and gray curves

correspond to purely rotational (εe = 0) and purely entropic (εr = 0) disturbances upstream,

respectively.

Figure 5 shows the enstrophy deviation ∆W = WA/WB for γ = 1.2 as a function of the

shock strength Mo, in the same fashion as in Fig. 4. It is seen that ∆W grows unbounded

for very weak shocks when there are no vorticity perturbations upstream. This occurs

because, although both WAe and its base contribution WBe (see Fig.5 in Ref.1) approach

zero when Mo
∼= 1, the base contribution does so faster, but it is unimportant because

weak-shock limits are not relevant to the Mach-number domains of common detonations.

The general conclusions to be drawn from Fig. 5 are the same as those drawn from Fig. 4.
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FIG. 5. Enstrophy deviation as a function of the shock Mach number Mo for two-dimensional

(left panel) and three-dimensional (right panel) cases. The black and gray curves correspond to

purely rotational (εe = 0) and purely entropic (εr = 0) disturbances upstream, respectively.

C. Downstream density

The average of the downstream square-density perturbations is denoted by 〈ρ′2b 〉, and

for rotational upstream disturbances, following the same approach as for K, the factor G

is defined as

G =
2〈ρ′2b 〉2D

π
∫∞
0
εk(k)2kdk

=

∫ ∞
0

|ρ′b|2Prdζ , G =
3〈ρ′2b 〉3D

8π
∫∞
0
εk(k)2k2dk

=

∫ ∞
0

|ρ′b|2Prdζ , (35)

for two-dimensional and three-dimensional cases, respectively, and the breakdown G =

GB + q̇|k|−1GA is introduced. The base contribution from rotational disturbances contains

the entropic and acoustic fluctuations shown in (A17), and the contribution at order

εq̇|k|−1 is

GAr = 2

∫ 1

0

|Bρr|Aρr
[
1 + ζ2ρ2o

(
M−2

N − 1
)]1/2Prdζ (36)

for both two and three dimensions. For purely entropic fluctuations, the contribution at

order εq|k|−1 is

GAe = 2

∫ 1

0

|Bρe|Aρe Pedζ . (37)

Figure 6 shows the associated average-density deviation factor ∆G = GA/GB as a function

of the shock Mach number for γ = 1.2. It is observed that upstream entropic disturbances

generate relative small contributions for the downstream density field at order q̇|k|−1, but

the relative contribution of the upstream rotational disturbances is much greater because

GB is very small in that case. As in the previous Figs. 4 and 5, the factor ∆G is in

qualitative agreement with the thin-detonation limit for rotational perturbations, but in

the opposite direction for entropic perturbations.
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FIG. 6. Density deviation as a function of the shock Mach number Mo for two-dimensional

(left panel) and three-dimensional (right panel) cases. The black and gray curves correspond to

purely rotational (εe = 0) and purely entropic (εr = 0) disturbances upstream, respectively.

VII. CONCLUSIONS

To complement previous analyses of interactions of detonation with turbulence that

treated all turbulence scales as being large compared with the thickness of the detonation,

in the present work the turbulence scales were taken to be small compared with the thick-

ness of the reaction zones that follow the lead inert shock in the detonation. Disturbances

in the fresh mixture that involve only velocity fluctuations without any fluctuation of

thermodynamic properties (rotational disturbances), and disturbances that involve fluc-

tuations of the density of the fresh mixture without any velocity fluctuation (entropic

disturbances) were considered separately, although results for cases in which both types

of disturbances were present simultaneously are given in the appendix. It was found

that, unlike the previous results for thin detonations, where the jump conditions across

the complete detonation determined how the initial fluctuations were modified, for these

thick detonations the modifications are affected mainly by the jump conditions across

the leading inert shock. The wavelengths, frequencies, and phases of the disturbances

vary as they pass through the heat-release zones, but the amplitudes do not, to leading

order in the perturbations. Moreover, the effect of the rate of heat release q̇ makes itself

felt only right behind the lead shock, so that reaction-rate distributions are irrelevant, so

long as they do not produce appreciable enthalpy changes over distances comparable with

the disturbance wavelengths. Since real detonations often have endothermic pyrolysis re-

gions behind the lead shock, before the heat release sets in, the fluctuations actually may

respond as if the detonation were to absorb energy rather than releasing heat.
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A finding that was not unexpected is that the influences on monochromatic fluctua-

tions are strongest when the interaction occurs near the critical angle of incidence that

separates downstream disturbances behind the lead shock that are supersonic from those

that are subsonic. This motivated exhibiting results in a variable stretched about the

critical angle, to maximize the efficiency of presentation. The expansion parameter of

the analysis q̇|k|−1, essentially the product of the disturbance wavelength |k̄|−1 and the

rate of heat release right behind the lead shock ˙̄q, divided by the unperturbed enthalpy

flux at the Neumann state ρ̄NūNā
2
N/(γ − 1), then factors out, and by normalizing quanti-

ties by their values at the Neumann state, parametric results can be presented with only

the propagation Mach number Mo and the ratio of specific heats γ as parameters. A

finding that was unexpected is that when the lead shock encounters the monochromatic

fluctuations at an angle more head-on than the critical angle, and angle that results in

generating propagating rather than evanescent acoustic perturbations, the influence of

the heat-release rate on the disturbances is of second order in this small parameter. The

leading-order results presented here, then, reflect only the influences of the interactions

occurring at the larger angle θ, the encounters being more glancing than the critical angle.

This is a peculiar result for thick detonations that does not have a counterpart for thin

detonations.

For purely rotational disturbances (those without fluctuations of thermodynamic prop-

erties) in the fresh mixture, the heat release in the detonation reduces the relative fluctua-

tion intensities downstream below the levels that would exist behind the inert lead shock,

in both thin-detonation and thick-detonation limits. But for purely entropic disturbances

in the fresh mixture (those without any velocity fluctuation), the effects of the heat release

are the opposite in the two limits, the intensities being decreased for thin detonations but

increased for thick detonations. This clearly suggests that when density fluctuations are

dominant over velocity fluctuations, a situation thought to arise in turbulent flows at

high Mach numbers5, the influence of the passage of the detonation on the fluctuation

field is affected qualitatively by the ratio of the detonation thickness to the range of sizes

of the initial fluctuations. Smaller-scale fluctuations may be amplified, while longer-scale

fluctuations are damped. The associated enhancement of smaller-scale disturbances may

improve mixing rates and thereby promote combustion.
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Appendix A: Appendix: More detailed and additional results

As indicated is Section 4, the base perturbations of order ε were obtained in previ-

ous work, namely in14 for rotational fluctuations and in15 for entropic fluctuations. The

formulas are different for short-wavelength (ζ ≥ 1) and long-wavelength (ζ < 1) cases,

and only the latter appears in Section 4. In addition, the base pressure perturbations are

affected by a second long-wavelength contribution that is orthogonal to the contribution

in Section 4 and that therefore does not appear there. This second long-wavelength con-

tribution will be identified by a prime, and the short-wavelength base perturbations will

be identified by a double prime. Both of these influence later results, and therefore both

are summarized here.

Addressing first the rotational contributions, it was found that14

Bpr =
2MoM

2
N(1− ρo) [(M2

o + 1)ζ2 −M2
o ] [M2

N − ρo (1−M2
N) ζ2]

ρ2o (1−M2
N)
[
4M4

oM
2
Nζ

2(ζ2 − 1) + ((M2
o + 1)ζ2 −M2

o )2
] , (A1a)

B′pr = − 4M3
oM

3
N(1− ρo)ζ

√
1− ζ2 [M2

N − ρo (1−M2
N) ζ2]

ρ2o (1−M2
N)
[
4M4

oM
2
Nζ

2(ζ2 − 1) + ((M2
o + 1)ζ2 −M2

o )2
] , (A1b)

and

B′′pr =
2MoM

2
N(1− ρo) [M2

N − ρo (1−M2
N) ζ2]

ρ2o (1−M2
N)
[
2M2

oMNζ
√
ζ2 − 1 + (M2

o + 1)ζ2 −M2
o

] . (A1c)

The resulting amplitude of the asymptotic vorticity field generated by the upstream ro-

tational mode is then

Bωr =
[
(Ω1 + Ω2Bpr)

2 +
(
Ω2B

′
pr

)2]1/2
, B′′ωr = Ω1 + Ω2B

′′
pr (A2)

where Ω1 is the direct amplification contribution generated by compression effects, and

Ω2 is the associated shock-curvature effect, here given by

Ω1 =
ao [M2

N + (1−M2
N) ρ2oζ

2]

ρoM2
N

, Ω2 =
M2

o (γ + 1) (1− ρo)− 2 (M2
o + 1)

4ρoM2
oMN

. (A3)

The associated density perturbations are

Bρr =
1−M2

oM
2
N

M2
oM

2
N

(
B2
pr +B′2pr

)1/2
, B′′ρr =

1−M2
oM

2
N

M2
oM

2
N

B′′pr . (A4)
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For the entropic contributions it was found that15

Bpe = −M
2
oM

2
N(1− ρo) [(M2

o + 1)ζ2 −M2
o ] [M2

N − ρo (1−M2
N) ζ2]

ρ2o (1−M2
N)
[
4M4

oM
2
Nζ

2(ζ2 − 1) + ((M2
o + 1)ζ2 −M2

o )2
] , (A5a)

B′pe =
4M4

oM
3
N(1− ρo)ζ

√
1− ζ2 [M2

N − ρo (1−M2
N) ζ2]

ρ2o (1−M2
N)
[
4M4

oM
2
Nζ

2(ζ2 − 1) + ((M2
o + 1)ζ2 −M2

o )2
] , (A5b)

B′′pe = − M2
oM

2
N(1− ρo) [M2

N − ρo (1−M2
N) ζ2]

ρ2o (1−M2
N)
[
2M2

oMNζ
√
ζ2 − 1 + (M2

o + 1)ζ2 −M2
o

] . (A5c)

The resulting the vorticity-disturbance coefficients are

Bωe =
[
(Ω3 + Ω2Bpe)

2 +
(
Ω2B

′
pe

)2]1/2
, B′′ωe = Ω3 + Ω2B

′′
pe (A6)

where Ω3 is the baroclinic contribution (i.e., it accounts for the vorticity caused by the

streamwise pressure jump across the shock and transverse density fluctuations) and is

given by

Ω3 = −MN (1− ρ2o)
2ρ2o

. (A7)

The corresponding amplitudes of the steady density perturbations are

Bρe =

[(
1−M2

oM
2
N

M2
oM

2
N

Bpe + 1

)2

+

(
1−M2

oM
2
N

M2
oM

2
N

B′pe

)2
]1/2

, B′′ρe =
1−M2

oM
2
N

M2
oM

2
N

B′′pe + 1 .

(A8)

Besides velocity fluctuations associated with the vorticity fluctuations addressed here,

there are also acoustic contributions to the velocity perturbations, which will be identified

with the superscript a. For rotational disturbances, the associated amplitudes of the x

and y components are

Bur =
M2

N

M2
N + (1−M2

N) ζ2
Bωr , Bvr =

ζMN

√
1−M2

N

M2
N + (1−M2

N) ζ2
Bωr , (A9a)

while the acoustic contributions are

Ba
ur =

ka
ωaρb

B′′pr , Ba
vr =

ky
ωaρb

B′′pr . (A9b)

The relationships in (A9a), written there for the long-wavelength cases, also apply for

the short-wavelength cases. The corresponding contributions to the velocity field at order

εq̇k−1y are

Aur =
M2

N

M2
N + (1−M2

N) ζ2
Aωr , Avr =

ζMN

√
1−M2

N

M2
N + (1−M2

N) ζ2
Aωr , (A10)
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where the factor Aωr is defined in (21). For entropic disturbances the amplitudes are

Bue =
M2

N

M2
N + (1−M2

N) ζ2
Bωe , Bve =

ζMN

√
1−M2

N

M2
N + (1−M2

N) ζ2
Bωe , (A11a)

and

Ba
ue =

ka
ωaρb

B′′pe , Ba
ve =

ky
ωaρb

B′′pe , (A11b)

for the rotational and acoustic contributions, respectively. Similarly, the vortical contri-

butions to the velocity field at order at order εq̇k−1y are found to be

Aue =
M2

N

M2
N + (1−M2

N) ζ2
Aωe , Ave =

ζMN

√
1−M2

N

M2
N + (1−M2

N) ζ2
Aωe , (A12)

where the factors Aωe are also provided in (21).

The longitudinal LB kinetic energy generated by the inert shock when traveling through

an isotropic rotational field is

LBr =
1

a2o

∫ 1

0

(Bur)
2Prdζ +

1

a2o

∫ ∞
1

(B′′ur)
2 Prdζ +

1

a2o

∫ ∞
ζ∗

(Ba
ur)

2 Prdζ , (A13)

and the transverse TB contributions to kinetic energy in two and three dimensions are,

respectively

TBr =
1

a2o

∫ 1

0

(Bvr)
2 Prdζ +

1

a2o

∫ ∞
1

(B′′vr)
2 Prdζ +

1

a2o

∫ ∞
ζ∗

(Ba
vr)

2 Prdζ (A14a)

and

TBr =
1

2a2o

∫ 1

0

(Bvr)
2 Prdζ +

1

2a2o

∫ ∞
1

(B′′vr)
2 Prdζ +

1

2a2o

∫ ∞
ζ∗

(Ba
vr)

2 Prdζ +
3

4
.

(A14b)

When the upstream flow consists of isotropic solenoidal perturbations, the amplification

of those perturbations in two and three dimensions is, respectively,

WBr =
1

2a2o

∫ 1

0

(Bωr)
2M2

N Pr
M2

N + ζ2ρ2o (1−M2
N)

dζ +
1

2a2o

∫ ∞
1

(B′′ωr)
2M2

N Pr
M2

N + ζ2ρ2o (1−M2
N)

dζ , (A15a)

and

WBr =
1

3
+

1

6ρ2o
+

1

3a2o

∫ 1

0

(Bωr)
2M2

N Pr
M2

N + ζ2ρ2o (1−M2
N)

dζ +
1

3a2o

∫ ∞
1

(B′′ωr)
2M2

N Pr
M2

N + ζ2ρ2o (1−M2
N)

dζ ,

(A15b)
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where the three-dimensional contribution can be split into WBr = 1/3 + 2/3W⊥, W⊥

being the transverse contribution, W⊥ = 1/4ρ−2o + 3/4Wz. The behavior of the transverse

vorticity W⊥ can be found in Fig. 4 of Ref.18 and Fig. 26 of Ref.14. If there is no vorticity

perturbations upstream, the enstrophy downstream is redefined as15

WBe =

∫ 1

0

(Bωe)
2M2

NPe
M2

N + ζ2ρ2o (1−M2
N)

dζ +

∫ ∞
1

(B′′ωe)
2M2

NPe
M2

N + ζ2ρ2o (1−M2
N)

dζ , (A16)

and detailed study of the enstrophy generated by shock-entropy interaction may be found

in Refs.15,20. The inert base contribution to the square-density perturbations behind the

detonation, defined by (35), is1

GBr =

∫ 1

0

(Bρr)
2Pdζ +

∫ ∞
1

(B′′ρr)
2P(ζ)dζ +

1

a4b

∫ ∞
1

(Ba
pr)

2Pdζ , (A17)

where P stands for Pe or Pr depending on whether rotational or entropic perturbations

are considered.

When there are both rotational and entropic fluctuations upstream, phase shifts in-

troduce interferences that prevent results from being obtained by simply adding the sep-

arate contributions. Previous work21,22 has addressed the two cases εe = εrM
−1
o and

εe = −εrM−1
o with the same spectral density distribution for each type of fluctuations.

Corresponding results from the present formulation are shown in Fig. 7, where it is seen

that, for the moderate-to-strong shocks of interest, all of the deviation factors are nega-

tive, irrespective of the sign of the correlation. This may be expected from Figs. 4-6, in

view of the domination of the rotational fluctuations at high Mo for the selected combi-

nation of εr and εe. The negative correlation does show a positive peak at lower Mo, but

this is unlikely to lie in the range of realistic detonations. If εe had been chosen to be

proportional to εrMo instead of εrM
−1
o , as it would be for the disturbances suggested by

Morkovin5, then the entropic contribution would be much more important at high Mach

numbers. The choice made for Fig. 7 was to facilitate comparison with corresponding

results in the literature21,22.

REFERENCES

1C. Huete, A.L. Sánchez, and F.A. Williams. Theory of interactions of thin strong

detonations with turbulent gases. Physics of Fluids, 25:076105, 2013.

25



1 1.5 2 3 5 7 10 15 20
Mo

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

∆K

2D

positive

negative

1 1.5 2 3 5 7 10 15 20
Mo

−0.20

−0.15

−0.10

−0.05

0.00

0.05

∆K

3D

positive

negative

1 1.5 2 3 5 7 10 15 20
Mo

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

∆W

2D

positive

negative

1 1.5 2 3 5 7 10 15 20
Mo

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

∆W

3D

positive

negative

1 1.5 2 3 5 7 10 15 20
Mo

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

∆G

2D positive

negative

1 1.5 2 3 5 7 10 15 20
Mo

−0.4

−0.3

−0.2

−0.1

0.0

0.1

∆G

3D positive

negative

FIG. 7. Turbulent kinetic-energy, enstrophy and density deviations as functions of the shock

Mach number Mo for two-dimensional (left panel) and three-dimensional (right panel) cases.

The black and gray curves correspond to purely rotational (εe = 0) and purely entropic (εr = 0)

disturbances upstream, respectively.

2T.L. Jackson, A.K. Kapila, and M.Y. Hussaini. Convection of a pattern of vorticity

through a reacting shock wave. Physics of Fluids A: Fluid Dynamics, 2:1260, 1990.

3T.L. Jackson, M.Y. Hussaini, and H.S. Ribner. Interaction of turbulence with a deto-

nation wave. Physics of Fluids A: Fluid Dynamics, 5(3):745–749, 1993.

4B.T. Chu and L.S.G. Kovásznay. Non-linear interactions in a viscous heat-conducting

compressible gas. Journal of Fluid Mechanics, 3(05):494–514, 1958.

5M. V. Morkovin. Effects of compressibility on turbulent flows. In Mechanique de la

Turbulence, A. Favre (Ed.), CNRS, Paris, pages 367–380, 1962.

26



6K. Kailasanath. Review of propulsion applications of detonation waves. AIAA journal,

38(9):1698–1708, 2000.

7G. Fusina. Numerical investigation of oblique detonation waves for a shcramjet combus-

tor. PhD thesis, 2003.

8L. Massa, M. Chauhan, and F.K. Lu. Detonation-turbulence interaction. Combustion

and Flame, 158:1788–1806, 2011.

9L. Massa and F.K. Lu. The role of the induction zone on the detonationation-

turbulencelinear interaction. Combustion Theory and Modelling, 15(3):347–371, 2011.

10Y.B Zel’dovich. On he theory of the propagation of detonations in gaseous systems.

Zhur. Eksp. Teor. Fiz., 10:542.568, 1940.

11J. von Neumann. Theory of detonation waves. Prog. Rept. No. 238, (Report 549,

O.S.R.D, National Defense Research Committee Div. B, 1942.

12W. Doring. On the detonation process in gases. Ann. Physik, 43:421–436, 1943.

13H. S. Ribner. Convection of a pattern of vorticity through a shock wave. NACA Report,

1164, 1954.

14J.G. Wouchuk, C. Huete Ruiz de Lira, and A.L. Velikovich. Analytical linear theory for

the interaction of a planar shock wave with an isotropic turbulent vorticity field. Phys.

Rev. E, 79(6):066315, 2009.

15C. Huete Ruiz de Lira, A.L. Velikovich, and J.G. Wouchuk. Analytical linear theory for

the interaction of a planar shock wave with a two- or three-dimensional random isotropic

density field. Phys. Rev. E, 83(5):056320, 2011.

16G.K. Batchelor. The theory of homogeneous turbulence. Cambridge university press,

1953.

17H. S. Ribner. Shock-turbulence interaction and the generation of noise. NACA Report,

1233, 1955.

18S Lee, S. K. Lele, and P. Moin. Interaction of isotropic turbulence with shock waves:

effect of shock strength. Journal of Fluid Mechanics, 340:225–247, 1997.

19C. Huete, J.G. Wouchuk, B. Canaud, and A.L. Velikovich. Analytical linear theory for

the shock and re-shock of isotropic density inhomogeneities. Journal of Fluid Mechanics,

700:214–245, 2012.

20BM Johnson and O Schilling. Reynolds-averaged navier–stokes model predictions of

linear instability. i: Buoyancy-and shear-driven flows. Journal of Turbulence, (12), 2011.

27



21K. Mahesh, S. K. Lele, and P. Moin. The influence of entropy fluctuations on the

interaction of turbulence with a shock wave. Journal of Fluid Mechanics, 334:353–379,

1997.

22V. K. Veera and K. Sinha. Modeling the effect of upstream temperature fluctuations on

shock/homogeneous turbulence interaction. Physics of fluids, 21:025101, 2009.

28


	Linear Theory for the Interaction of Small-Scale Turbulence with Overdriven Detonations
	Abstract
	Introduction
	The Steady, Planar Detonation
	Formulation of the Perturbation Problem
	Results of the Perturbation Analysis
	Predictions for monochromatic disturbances
	Statistical averages for interactions with isotropic turbulence
	Turbulent kinetic-energy amplification
	Downstream enstrophy
	Downstream density

	Conclusions
	Acknowledgements
	Appendix: More detailed and additional results
	References


