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Abstract

In this paper, a modified convex optimization technique is used for radiation

pattern correction in a cylindrical-shaped conformal microstrip array antenna.

The technique uses numerical simulations to optimize the amplitude and

phase excitations, with the goal to decrease the Euclidean distance between

the desired field pattern and the obtained (simulated/measured) field pattern

while maintaining the main beam direction, null's location, and side lobe

levels under control. Two prototypes of 1�4 and 2�4 conformal microstrip

antenna array deformed from linear/planar structure to the prescribed cylin-

drical shape, with different radii of curvature, are studied to demonstrate the

performance of the proposed technique. The proposed convex optimization

model when applied to conformal antenna array possesses fast computing

speed and high convergence accuracy for radiation pattern synthesis, which

can be a valuable tool for engineering applications.
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1 | INTRODUCTION

Conformal antenna arrays1 with efficient beam forming
capabilities are highly anticipated for future 5G technol-
ogy in many applications such as avionics,2 high-speed
vehicles,3 wearable body area networks,4 conformal

antenna arrays,5 conformal Ultra Wide Band (UWB)
antennas,6 and special purpose devices that require the
antenna to operate on a curved surface.7 A conformal
array is designed to follow or conform to any prescribed
shape, for example, circular, elliptical, cylindrical or
spherical. When compared to linear or planar arrays, the
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conformal antenna arrays have several advantages,
including: (i) flexibility of structural integration ability on an
arbitrary non-flat surface, (ii) lower radar cross section (RCS),
(iii) andwide angular coverage capabilities.8–10

However, antenna surface deformation seriously
affects the radiation performance.11 For example, it will
lead to broadside beam deviation, null's depth and posi-
tion transformation, reduced antenna gain and side lobe
level (SSL) elevation. This surface deformation may occur
due to intentional (static prescribed shape) and/or unin-
tentional (vibrations, severe weather conditions, external
mechanical load) forces that physically change the shape
of antenna. Therefore, it is important that the conformal
antenna arrays have an adaptive capability system for
pattern correction with flexible controlled beams to miti-
gate the deterioration of the field pattern. This paper
investigates the effect of cylindrical static deformations of
various radii of curvature when curved from planar con-
figuration. We describe a technique based on convex opti-
mization for the compensation of mutual coupling and
radiation pattern correction.

Array pattern synthesis requires electromagnetic
(numerical or analytical or both) optimization with flexi-
ble controlled beams assisted by advanced signal proces-
sing systems, in order to restrain the parameters that
satisfy a set of specifications to precisely control the beam
pattern.12 In the literature, various techniques and algo-
rithms have been developed to achieve the desired radia-
tion pattern characteristics in antenna arrays. Several
probabilistic or evolutionary optimization techniques
such as Particle Swarm Optimization (PSO),13 Genetic
Algorithm (GA),14 Taguchi algorithm,15 and Differential
Evolution (DE) algorithm16 have been used to control
and correct the radiation pattern. These optimization
methods iteratively search, evaluate and improve the
parameters to determine the best-fitted results. In Refer-
ence 17, a hybrid evolutionary optimization algorithm
using Improved Genetic Algorithm (IGA) along with
Improved Particle Swarm Optimization (IPSO) is used for
the pattern synthesis in conformal microstrip antenna
array to minimize the side lobe levels by adjusting the
amplitude and phase weights of the array elements. A
comparative analysis of DE, PSO, and GA is evaluated to
optimize the amplitude and phase excitations across the
antenna elements for the design of scannable circular
antenna arrays.18 In Reference 19, the Differential Evolu-
tion (DE) algorithm is applied to aperiodic spherical
arrays in order to achieve the optimum angular position
of each element for attaining the maximum performance
of array antenna in terms of radiation pattern, beam
scanning and directivity. In Reference 20, the perfor-
mance of several gradient based adaptive beam forming
techniques such as traditional LMS (Least mean square),

NLMS, Hybrid LMS, VSS-LMS, and so forth have been
investigated for beam-steering the main lobe and side
lobes level suppression.

Researchers have taken keen interest in calculating
and mitigating the collective effect of the surface defor-
mity and Mutual Coupling (MC) in conformal antenna
arrays. Since MC affects the input impedance of antenna
elements in the array, the concept of modeling the MC
using impedance matrix in antenna arrays is used to
reduce the effect of MC in a dipole array.21 This MC
Matrix is also used for adaptive nulling of interference in
phased arrays22 and for Direction of Arrival (DOA) esti-
mation in dipole arrays.23 An assimilation technique that
uses port currents to model the MC is proposed in Refer-
ence 24 to compensate for the effect of MC in radiation
pattern correction. In Reference 25, the redundant sur-
face current that moves between the array elements is
controlled for MC compensation and radiation pattern
recovery, by employing the complementary split ring res-
onators (CSRR) in a four-element microstrip patch array
for 5G beam forming application.

In radiation pattern synthesis of the conformal arrays,
the major concern is to estimate the appropriate weights
(amplitude and phase excitations) to compensate the
mutual coupling and correct the desired radiation pattern
without compromising the radiation characteristics of the
array. In Reference 26, a projection method is described to
compute accurate values of amplitude and phase excitations
and providing low side lobe level patterns in a conformal
array. Similar approach of using the projection method to
correct the field pattern in conformal arrays has been used
in References 24–26. In Reference 27, a pattern synthesizing
technique based on Least Square Method (LSM) algorithm
is developed to form the desired field pattern for Equally
Spaced Linear Array (ESLA). A compensation technique28

and iterative weight-correction method29 based on Con-
straint Least-Squares Optimization are used to recompen-
sate the mutual coupling effects and to control the side lobe
level for phase correction of conformal arrays. In Reference
30, a novel approach using Hybrid Spatial Distance Reduc-
tion Algorithm (HSDRA) with particular null's placement,
is used for radiation pattern correction in 4 � 4 spherical-
shaped conformal antenna array. To summarize, it is found
that various optimization approaches along with appropri-
ate signal processing techniques can be utilized for adjust-
ing the amplitude and phase excitation of an individual
element of the array in order to accurately restrain the radi-
ation properties of conformal phased arrays.31-33

In this paper, convex optimization is modified for
radiation pattern synthesis in order to mitigate the effect
of antenna surface deformation by finding the correct
weight excitation (amplitudes and phases) of array ele-
ments in cylindrically-shaped conformal array antenna.
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The optimization technique is designed to decrease the
Euclidean distance between the obtained (simulated/
measured) field patterns and the desired field patterns
while maintaining the main beam direction, null's
location and side lobe levels (SSL) under control. The
technique is also used to resolve the loss in radiation
characteristics due to the surface change from desired
linear/planar shape to prescribed cylindrical shape. In
particular, two prototypes of a 1 � 4 and a 2 � 4 array
are deformed from linear/planar structure to the pre-
scribed cylindrical shape with various radii of curvature,
and examined to demonstrate the performance of
proposed optimization technique.

2 | ARRAY FACTOR
FORMULATION

The system model of a i� j microstrip patches fixed at
half wavelength placed on a cylindrical surface of radius
r with broadside beam along z-axis, is shown in Figure 1.
Each microstrip patch is fabricated on a “Lossy Roger
RT-6002” substrate having a relative dielectric value
εr ¼ 2:95, and the substrate thickness is 1:52mm having
width Sw¼ 37mm and length Sl¼ 41mm. The conformal
array is designed for 2:50GHz and inter-element spacing
between patches is kept at 0.5λ.

The design and measurements of a single fabricated
microstrip patch in the i� j conformal array are given in
Figure 2 and Table 1, respectively.

The position of each antenna element in an array is
determined by the following equation

CPn d, rð Þ¼ r sin � N�1ð Þ d
2r

þd
r
n�1ð Þ

� �� �
, ð1Þ

where, N represents the number of radiating elements in
the array, d is the inter-element spacing in terms of λ
(lambda) and r is the radius of the cylinder. To analyti-
cally calculate the compensated radiation field pattern
and verify it with the simulation results, based on the
location of the radiating patches, the following array fac-
tor (AF) is used

AF¼
XN
n¼1

wn E0 θ,φð Þj jejk in sinθþjn cosφ½ �, ð2Þ

where, E0 θ,φð Þj j is the electrical field pattern of the indi-
vidual element, k is the free space wave number, the vec-
tor wn ¼ InejΔϕ represents the complex weighting function
need to guide nth element at the in, jnð Þ location of the
conformal array, Δϕ represents progressive phase shifts
between adjacent antenna elements, while θ and φ are
the elevation and azimuthal angles, respectively.

The Array Pattern AP θ,φð Þ is calculated by the Kro-
necker product of AF θin ,φjn

� �
and a matrix K, which is

FIGURE 1 Compensation method for cylindrical deformation

FIGURE 2 Prototype of single patch

TABLE 1 Dimension of a single microstrip patch

Parameter Length (mm) Description

Wp 37 Width of the patch

Lp 30 Length of the patch

Wf 2.5 Width of the feed line

Li 8 Length of the inset feed

Lf 11 Length of the feed line

Gp 1 Gap between the patch and feedline

KHAN ET AL. 3 of 11
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compiled by concatenating the individual element pat-
tern vectors. It is given by

AP θ,φð Þ¼AF θin ,φjn

� �
�K: ð3Þ

For the analysis of the algorithm, the azimuthal angle φ
is assumed to be fixed and the results are taken for the
elevation angle θ only.

3 | PROPOSED SOLUTION

The approach adopted for the correction of the radiation
field pattern in cylindrical configuration is presented as a
flow chart in Figure 3.

The convex optimization model is chosen as the basic
method for radiation pattern synthesis, the electric field
pattern of the conformal array is selected as an objective
function, and a model is transformed into convex optimi-
zation problem. The algorithm aims to iteratively update
the complex weights (amplitude and phase excitations)
while searching for the maximum likelihood between the

obtained field pattern in the deformed cylindrical array
Emeas and desired field Edes of a linear/planar array.
MATLAB and Computer Simulation Technology (CST)
are integrated together in a loop for the algorithm imple-
mentation and verification, respectively.

The process is divided in the following steps:

a. The individual array pattern is imported from CST
software for particular radius r and a correction
matrix K is found by Least Square Estimation (LSE)
method. Using the correction matrix, the desired cor-
rected weights wc for deformed array are found from

ArgminimizeK
X
θ,φ

APmeasK�APdesj j2: ð4Þ

Solving the above equation for K

K ¼Fdes Fmeasð Þ† ¼FdesF
H
meas FmeasF

H
meas

� 	�1
: ð5Þ

The compensated/corrected weights wc are found by mul-
tiplying correction matrix K with desired weights wdes as
follows

wc ¼K �wi: ð6Þ

In (5) the symbol † indicates the pseudo inverse and
Fmeas �Ci�j is the matrix that contains the simulated/
measured field pattern of an individual element of the
array that contains the initial weights wi ¼wdes, which
shape the desired array pattern.

a. The goal is to decrease the Euclidean distance between
the obtained (simulated/measured) field pattern and
the desired field pattern while not disturbing the main
beam direction, null's location and side lobe levels
(SLL). Therefore, constraints are taken first at those
positions (null's location, side lobe positions, the peak
and �3 dB points of the main beam) on the pattern
that must be accurately recovered to estimate the com-
pensated weights wc as shown in Equation (1). The per-
formance of the optimizing algorithm is improved with
increasing number of constraints applied evenly over
the radiation pattern at the extremum points. However,
the maximum number of constraint points has an
upper limit (q≤N). Therefore, in Equation (1), Convex
Optimization is introduced within the loops after con-
straining the pattern in order to allow the corrected/
measured field to track the desired field pattern. This
more closely ensures that the desired null's location,
direction of main beam and side lobe levels are accu-
rately achieved.

FIGURE 3 Proposed technique for the pattern correction of

cylindrical deformation

4 of 11 KHAN ET AL.
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minimizewc

X
θ

APmeaswc�APdeswij j2

ið Þ subject toRq�NK wc ¼ bq�1

iið Þ subject to Rq�Nwc�bq�1



 

2 ≤ β

ð7Þ

Rq�N ¼ APmeas θ1ð ÞAPmeas θ1ð Þ� � �APmeas θtð Þ½ �T
bq�1 ¼ Fdes θ1ð ÞFdes θ2ð Þ� � �Fdes θtð Þ½ �T
wc ¼ pinv R�Kð Þb
β¼ 20 dBs

ð8Þ

Here Rq�N �Cq� Nð Þ is a matrix containing the q con-
straint points of the deformed array at desired con-
strained angles, whereas b�Cq� Nð Þ is the vector of q
constraint positions on thearray pattern of linear/planar-
structure. The value of β defines the constraining factor

of the search space and an iterative approach is adopted
for the convergence to evaluate the minimum value of
the objective function. The method descends in each step
until the minimum is achieved, and the measured pat-
tern follows the desired pattern more closely. The analyti-
cal approximation for the above-mentioned optimization
problem has been solved using the Newton–Raphson
method and the value of wc is found using the Karush–
Kuhn–Tucker (KKT) conditions.

3.1 | Computational cost of the
algorithm

The maximum cylindrical deformation of r = 20 cm for
2 � 4 array bent from linear/planar configuration, is
analyzed to find the computational complexity of

FIGURE 4 1�4 conformal array mounted on a cylindrical configuration with radius (A) 30 cm, (B) 25 cm, and (C) 20 cm

FIGURE 5 2�4 conformal array mounted on a cylindrical configuration with radius (A) 30 cm, (B) 25 cm, and (C) 20 cm
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optimization algorithm. The optimization algorithm
uses 10 levels of iterations to satisfy the accurate
weight excitations for the individual array element.
The total computational time of the algorithm for the
pattern synthesis is 2.74 s, whereas the average execu-
tion time between each iteration is approximately

0.19 s. A 6th Generation Intel Core i7-6700 Processor
having 3.40 GHz Processor Base Frequency and 8 GB
of RAM is used for the simulation. MATLAB 2018a
version is used for the algorithm simulation whereas
the 3D EM analysis software (CST Studio Suite 2019)
is used for the validation of results.

FIGURE 6 Results for 1�4 conformal array mounted on a

cylindrical configuration with radius (A) 30 cm, (B) 25 cm, and

(C) 20 cm

FIGURE 7 Results for 2�4 conformal array mounted on a

cylindrical configuration with radius (A) 30 cm, (B) 25 cm, and

(C) 20 cm

6 of 11 KHAN ET AL.
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4 | MEASUREMENT RESULTS

Two prototypes of 1�4 and 2�4 conformal microstrip
antenna arrays with inter-element spacing equal to 0.5λ
have been used in order to show the performance of opti-
mization algorithm. Both structures are deformed from
linear/planar configuration to the prescribed cylindrical
configuration with radiuses equal to r¼ 30 cm, r¼ 25 cm,
and r¼ 20 cm. A broadside radiation pattern having first
nulls at 25� and �25� has been taken for the analysis. To
validate the simulation results, the test platform of 1�4
and 2�4 array configuration is fabricated for both planar
array and cylindrical array with r¼ 30 cm, r¼ 25 cm, and
r¼ 20 cm as depicted in Figures 4 and 5.

The proposed experimental setup consists of a high gain
power amplifier (PE15A4018) connected to 8 � 1 power
combiner/splitter (ZN8PD1-63W+) feed network. The feed-
ing network is further connected to 8 RF Variable Attenua-
tors (ZX73-2500+), each coupled with voltage controlled
phase shifters (DBVCPS02000400A). The amplitude and
phase values are given to the phase shifter and attenuators
through variable power supplies. First, the position vector of
each individual array unit is obtained. Thereafter, the array
factor is computed using the method discussed in section III.

Preliminary simulations are done in CST to achieve the elec-
tric field intensity for all the units. Second, MATLAB-based
optimization algorithm as described in Equation (7), is used
to find the weight excitation (amplitudes and phases) for
each array element in deformed configuration. After receiv-
ing the required weight calculation and phase results, the
data are sent to CST again to obtain the final simulated radi-
ation pattern of the optimized array antenna.

Finally, the simulation model of corrected radiation
pattern of the deformed array is measured in a fully cali-
brated Anechoic Chamber.

The results show that the proposed optimization tech-
nique computes appropriate values of complex weights,
which restore the field pattern in the conformal array
with cylindrical deformation up to a radius of 20 cm. It
can be observed that when 1 � 4 and 2 � 4 arrays are
deformed from the linear/planar geometry to the pre-
scribed cylindrical deformation, a significant distortion is
observed in the radiation pattern. The null's location and
side lobe level are completely removed and a remarkable
decrease in the gain of the main beam is noticed. How-
ever, after applying the optimization algorithm to the
deformed array, the distorted pattern is recovered suc-
cessfully with a main lobe nearly at the same position as

TABLE 2 Measured excitation weights of 1 � 4 cylindrical array

No. Desired pattern
Measured pattern for cylindrical configuration of 1�4 array

i� j

Linear structure r¼ 30 cm r¼ 25 cm r¼ 20 cm

Amplitude Phase Amplitude Phase Amplitude Phase Amplitude Phase

1�1 0.6614 7.4412 0.7200 9.0579 0.7140 �169.75 0.6696 4.8333

1�2 0.3576 �25.643 0.3830 137.2300 0.4047 139.166 0.2927 22.3877

1�3 0.3681 �24.876 0.3971 138.3013 0.4163 140.607 0.2901 25.0516

1�4 0.6479 6.2514 0.7059 �171.74 0.6998 �170.86 0.6678 176.803

TABLE 3 Measured excitation weights of 2 � 4 cylindrical array

No. Desired pattern
Measured pattern for cylindrical configuration of 2�4 array

i� j

Planar structure r¼ 30 cm r¼ 25 cm r¼ 20 cm

Amplitude Phase Amplitude Phase Amplitude Phase Amplitude Phase

1�1 0.1208 173.2463 0.1474 �150.099 0.1958 107.394 0.6971 167.184

2�1 0.2505 79.5654 0.2690 86.4104 0.2440 �41.169 0.5150 �137.69

1�2 0.4615 16.2119 0.5008 23.1285 0.4806 �147.38 0.1465 �19.790

2�2 0.6232 �9.5821 0.6608 165.858 0.6662 171.688 0.2102 148.620

1�3 0.6193 �10.0388 0.6609 165.5638 0.6672 171.574 0.2103 148.956

2�3 0.4599 15.1888 0.5013 �157.57 0.4795 �148.05 0.1484 161.728

1�4 0.2533 78.8695 0.2676 �95.258 0.2433 �40.950 0.5157 42.227

2�4 0.1239 170.0651 0.1499 27.806 0.1998 105.668 0.6968 �13.032
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that of the linear array. At the same time, the desired
nulls and sidelobe levels are achieved. After deformation
of the array to the particular cylindrical configuration,
the optimization algorithm calculates the optimum
weights to overcome the mutual coupling effect and dete-
rioration of the radiation pattern. Figures 6 and 7 show
the comparison between the electric field pattern of the
flat array and the electric field pattern of the deformed
configuration for 1 � 4 array and 2 � 4 array, respec-
tively. The complex weights given to each array element
of the 1 � 4 and 2 � 4 array to obtain the optimized radi-
ation pattern for various radii of curvature are tabulated
in Tables 2 and 3.

The optimization model produces suitable results in
terms of main lobe reconstruction, at the nulls' locations,
and has side lobe levels approximating the desired ones.
However, it is obvious that the optimization model fairly
recovers the radiation pattern for more deformation
(r = 20 cm). On the other hand, when the radii of curva-
tures of cylindrical array decreases that is the conformal
array is less deformed (r = 30 cm), the optimization algo-
rithm gives a good agreement, allowing the measured
radiation pattern to more closely follow the desired radia-
tion pattern.

5 | CONCLUSION

In this paper, a convex optimization model is proposed
for radiation pattern correction on a cylindrically
shaped conformal microstrip antenna array. The opti-
mization model is developed to compute the appropri-
ate amplitude and phase excitations in order to
decrease the Euclidean distance between the simu-
lated/ measured field patterns and the desired field pat-
terns. Two prototypes of 1�4 and 2�4 cylindrical
arrays with various radii of curvature are studied, and the
results are compared to those of linear/planar antenna
arrays. The analytical investigation and simulation/
measurement findings are in good agreement in terms of
main lobe reconstruction, side lobe levels and nulls' posi-
tion recovery. The proposed convex optimization model
when applied to conformal antenna arrays has fast com-
putational speed and high convergence accuracy for radi-
ation pattern synthesis, which can be a valuable tool for
engineering applications.
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