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Abstract
Background Genotyping-by-Sequencing (GBS) provides affordable methods for genotyping hundreds of individuals usingmillions of markers. However, this challenges bioinformatic procedures that must overcome possible artifacts such as the biasgenerated by PCR duplicates and sequencing errors. Genotyping errors lead to data that deviate from what is expected from regularmeiosis. This, in turn, leads to difficulties in grouping and ordering markers resulting in inflated and incorrect linkage maps.Therefore, genotyping errors can be easily detected by linkage map quality evaluations.
Results We developed and used the Reads2Map workflow to build linkage maps with simulated and empirical GBS data of diploidoutcrossing populations. The workflows run GATK and freebayes for SNP calling and updog, polyRAD, and SuperMASSA for genotypecalling, and OneMap and GUSMap to build linkage maps. Using simulated data, we observed which genotype call software fails inidentifying common errors in GBS sequencing data and proposed specific filters to better handle them. We tested whether it ispossible to overcome errors in a linkage map using genotype probabilities from each software or global error rates to estimategenetic distances with an updated version of OneMap. We also evaluated the impact of segregation distortion, contaminant samples,and haplotype-based multiallelic markers in the final linkage maps. The results showed a low impact of segregation distortion inthe linkage map quality, improvements in ordering markers with haplotype-based multiallelic markers, and improved maps withexpected size using reliable genotype probabilities or a global error rate of 5%.
Conclusions The pipelines results in each scenario changed according to the data set used, indicating that optimal pipelines andparameters are dataset-dependent and cannot be generalized to all GBS data sets. The Reads2Map workflow can reproduce theanalysis in other GBS empirical data sets where users can select the pipeline and parameters adapted to their data context. TheReads2MapApp shiny app provides a graphical representation of the results to facilitate their interpretation.
Key words: genotyping error; haplotype; genetic maker; multiallelic

Introduction

Advances in sequencing technologies and the development of dif-ferent genome-reduced representation library protocols result inmillions of genetic markers from hundreds of samples in a singlesequencing run [1, 2, 3, 4]. Increasing the number of markers andindividuals genotyped can enhance the capacity of linkage mapsto locate recombination events that occur, resulting in higher mapresolution and better statistical power for the localization of QTL infurther analysis. This large amount of data and genotyping errorscommon with genotyping-by-sequencing approaches [5] increases

the need for computational resources and multiple bioinformatictools.Genotyping errors are frequent when high-throughput se-quencing technology is applied to reduced representation libraries.There are a variety of protocols to create these types of libraries[4], called Restriction-site Associated DNA sequencing (RADseq)or genotyping-by-sequencing (GBS) [6, 7]. Generally, one or morerestriction enzymes are used to digest the sample DNA. The result-ing DNA fragments are filtered by size, connected to adaptors andbarcodes, amplified by PCR, and sequenced. Consequently, mostsequences obtained are PCR duplicates of the regions around the
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enzyme cut site. By relying on duplicates to increase sequencingdepth, such methods introduce errors and a sequencing bias to-wards one of the alleles due to variabilities in the PCR amplification.These errors are hard to detect by bioinformatic tools [8, 9].To overcome genotyping errors coming from GBS meth-ods, genotype calling software model sequencing error, allelicbias, overdispersion, outlying observations, and the populationMendelian expected segregation [10]. Building a genetic map withgenotypes obtained using these methods can be a powerful tool tovalidate their efficiency. Wrong decisions or inefficient methodsin all steps before linkage map building can be identified in theresulting map as errors that dissociate the map properties from bio-logical processes. For example, genotyping errors generate inflatedmap sizes that show an excessive number of recombination break-points during meiosis [11]. The first genetic map studies by Morganand Sturtevant [12] discovered that crossing-overs are unlikely tohappen too close to each other, a phenomenon named interference.Later studies describing the meiotic molecular mechanisms con-firmed the low expected number of recombination breaks in a singleevent [13].Recently developed approaches to build linkage maps [14, 15, 16]were implemented in OneMap [17] 3.0 package. They use quantita-tive genotype probability measurements rather than the traditionalqualitative genotypic information from SNP and genotype call-ing methods to account for genotyping errors and provide higher-quality genetic maps. These probabilities can be applied in differentways: using the probability of each possible genotype (PL field inVCF format); using an error probability associated with the calledgenotype (GQ field in VCF format); or using a global error rate thatwill be applied to all genotypes. Nevertheless, even using these ap-proaches, building a linkage map will succeed only if the upstreamsoftware can identify the errors and provide reliable genotypes ortheir probabilities.The biallelic codominant nature of SNPs is another characteristicof high-throughput markers that can affect linkage map buildingof outcrossing species. Although biallelic markers can distinguishonly two haplotypes, the mapping population of outcrossing diploidspecies inherits two haplotypes with combinations of four differentparental haplotypes. With biallelic markers, the observed parentalgenotypes are limited to types ab × ab, ab × aa, and aa × ab. Whenone of the parents is homozygous (ab × aa and aa × ab), it is impos-sible to observe the crossing-over change for this uninformativeparent. So this is taken as missing information (non-measurablecrossing-overs) for linkage map building if only two-point infor-mation is considered. Therefore, building a linkage map with onlybiallelic markers requires a multi-point approach that uses lociinformation with both parents heterozygous (ab × ab) to estimatethe recombination of loci where one parent is homozygous, and therecombination information is missing for closely linked loci. Themulti-point approach applies likelihood computations involvingseveral loci and has been successfully used since the seminal publi-cation of Lander and Green [18]. The approach makes it possibleto identify the four different parental haplotypes by phasing thebiallelic information so that the SNPs can be used to identify all theallelic diversity.Other approaches to overcome the low informativeness of bial-lelic markers involve combining adjacent biallelic markers in thesame disequilibrium block (high LD) into a single multiallelic hap-lotype. These haplotype-based markers showed higher accuracy inassociation analysis than individual biallelic SNPs [19, 20, 21, 22,23, 24, 25]. N’Diaye et al. [21] and Jiang et al. [25] pointed out sev-eral advantages of haplotype-based markers, including the highercapacity to identify epistatic interactions, the presence of moreinformation to estimate identical-by-descent alleles and the reduc-tion of the number of statistical tests to perform.Despite many software available for estimating genotype prob-abilities [26, 2, 27, 26, 28, 29, 10] and haplotype-based multiallelicmarkers [26, 30], there are no recommendations yet about which

combination and choice of parameters are the best for buildinglinkage maps. Therefore, this work evaluates the consequences ofbuilding maps by applying genotype probabilities and haplotype-based markers from different software and parameters. To achievethese, we implemented new features in OneMap [17], a widely-usedsoftware for building maps, and developed the Reads2Map workflow.We were able to make recommendations to users to obtain betterlinkage maps in several situations, such as low and high-depthsequencing, with and without segregation distortion, contaminantsamples, and multiallelic markers, and using different bioinfor-matic software to perform the SNP and genotype calling.

Material and Methods

We built two workflows using Workflow Description Language(WDL) [31] to perform sequence alignment, SNP and genotypecalling, and linkage map building: EmpiricalReads2Map, for eval-uating empirical (real) data sets; and SimulatedReads2Map, toevaluate simulated data sets (figure 1). Both share the samesub-workflows for most of the steps, allowing users to evalu-ate software and parameters in an organized and efficient way.WDL workflows can be executed using Cromwell Execution En-gine [31], Docker [32], and Singularity [33] containers. We ranthe analysis testing workflows on two high-performance comput-ers (Texas A&M University HPRC, University of São Paulo ÁguiaCluster). The CPU and memory amount utilized by each work-flow task in the Texas A&M HPRC is shown in Supplementaryfigures 1-4. The workflows are available at https://github.com/
Cristianetaniguti/Reads2Map. For the linkage map building step,we implemented updates in OneMap package version 3.0 (https:
//CRAN.R-project.org/package=onemap) and used this version inthe workflows. We also developed the Reads2MapApp shiny app(https://github.com/Cristianetaniguti/Reads2MapApp). We usedit to upload the final workflow output and visualize summary statis-tics about the resulting linkage maps, intermediary steps, and work-flow performance.
Genotype probabilities in OneMap 3.0 Hidden Markov
Model

With a combination of a hidden Markov model (HMM) and theexpectation-maximization algorithm (EM) [18], OneMap [17] canperform multipoint estimation of map genetic distance for F2, back-cross, RILs, and outcrossing populations. For the multipoint esti-mation, OneMap algorithms use code adapted from R/QTL package[34].In short, the latent variable Gi, i = 1, ..., n, denotes the true under-lying genotypes for the individual at a set of n ordered loci; Oi is theobserved variable of the molecular phenotype (observed genotypes)for the locus i. The HMM can be represented as [35]:

P(O|Gi = gi) = ∑
g1

... ∑
gi–1

∑
gi+1

...∑
gn

π(g1) n–1∏
j=1

tj(gj, gj+1) n∏
j=1

e(gj, Oj)
(1)The initial probability π(g1) is the probability of having a givengenotype for the first locus (G1), and its value depends on the cross-type. For example, for an outcrossing population, this value will be0.25, assuming a uniform distribution of all four possible genotypes(AA, BA, AB, and BB). The same reasoning applies to backcross data,with probabilities of 0.5 since there are only two possible genotypes(AA and AB).The transition probability tj(gj, gj+1) is the probability of thegenotype in a locus (Gj=i+1) changing to the next locus genotype(Gj+1). The initial value for this probability is based on the phase,and recombination fraction estimated by a two-point approach
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Figure 1. A: Tasks of the two main Reads2Map workflows: EmpiricalReads.wdl and SimulatedReads.wdl. B: Tools to run the workflows on the Cloud (https://app.terra.bio/
platform) or in High-Performance Computing (HPC) environments. C: The Reads2Map shiny app has as input the outputs of the workflows. It builds several descriptive
graphics to evaluate the best upstream software combination for linkage map construction.
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using maximum likelihood estimators [36], and is updated afteriterations of the EM algorithm. The emission probability e(gj, Oj) isthe probability of the observed variable given the genotype. Thisprobability is defined by an associated genotyping error (see Sup-plementary file 1). The OneMap software previous to version 3.0considered this error probability as a single value of 10–5 for everygenotype. In version 3.0, this value is kept as default to maintainthe code reproducibility. But it is noteworthy that this probabilitycan be unreliable in several situations when the genotypes are moreprone to errors, especially for new genotyping technology (e.g. GBSdata). OneMap 3.0 allow users to provide individual values of errorprobabilities in the emission probability of the HMM for each geno-type or marker, having a potential impact on the results. Usingthe create_probs function, users can provide three types of values:one global value, which was the previous default (global_error); anerror probability for each inferred genotype (genotypes_error); orgenotype probabilities for each possible genotype in individuals(genotypes_probs). We tested the consequences of building mapsapplying different genotype probabilities coming from five differ-ent genotype caller software, a global error rate of 0.05, and the olddefault value of 10–5.
Here we used GATK [27], freebayes [26], polyRAD [28],

SuperMASSA [29] and updog [10] to estimate the genotypes and geno-types probabilities. For GATK and freebayes caller, we used the Phredscore genotype error (GQ FORMAT value) converted to probabilities.The software polyRAD, SuperMASSA and updog use the known popu-lation’s structure (in our case F1) as a priori information to increasethe accuracy of the estimated genotypes.
OneMap uses the forward-backward algorithm [37] to computethe HMM combined with the expectation-maximization algorithm(EM). Since version 3.0, OneMap presents the possibility to parallelizethe HMM using the approach described in [38]. It parallelizes theprocedure into a maximum of four cores. We used this new OneMapfeature to estimate the genetic distances. We also implementednew functions for linkage maps quality diagnostics such as interac-tive plots for recombination fraction matrices, progeny haplotypesrepresentation, and counts of the recombination breakpoints inprogeny. We compared OneMap 3.0 capacity of estimating accurategenetic distances with the GUSMap package estimations since it alsouses an HMM to account for errors present in sequencing data.

Empirical data analysis

We ran EmpiricalReads2Map workflow using two empirical data setsthat already have linkage maps built. They are GBS data sets from abi-parental diploid F1 full-sib mapping populations of aspen (Pop-
ulus tremula L.) [39] (BioProject PRJNA395596), and rose (Rosa
spp.) [40]. The aspen data set comes from an intraspecific cross oftwo Populus tremula genotypes. The GBS libraries were built using
HindIII and NalI enzymes and sequenced as 150 base pair single-endreads on an Illumina HiSeq2500. Eight library replicates were builtand sequenced for the parents and only one for each of the 116 F1offspring. The data set includes six samples erroneously sequencedas part of the progeny and later identified as contaminants. Anaverage read depth of approximately 6x for progeny and 58x forparental samples were observed from the sequencing process. The
Populus trichocarpa genome version 3.0 [41] was used as a referencefor the sequence’s alignment.

The diploid roses data set comprises 138 individuals from thecross between a Texas A&M breeding line J06-20-14-3 (J14-3) andcultivar Papa Hemeray (PH). GBS libraries were built with NgoMIVenzyme and sequenced as a 113 base pair single-end read on aHiSeq2500. The parent J14-3 was repeated twice, and the PH sam-ple three times. An average read depth of approximately 94x forprogeny and 528x for parental samples was observed from the se-quencing process. The Rosa chinensis v1.0 genome assembly [42]was used as a reference genome to align the sequences.

The sequencing reads of the two empirical data sets were filteredusing the Stacks plugin process_radtags [2] to filter sequences bythe presence of the restriction site and sequencing quality. Thereads were discarded if the average quality score of 50% of its lengthwas below the Phred score of 10 (or 90% probability of being correct).The software cutadapt [43] was used to remove adapters and filterby a minimum read length of 64 bp. The sequences were thenevaluated in our EmpiricalReads2Map workflow.
Each time the EmpiricalReads2Map workflow is executed, itconsiders all the pipeline combinations generating 34 maps withcombinations of SNP caller (GATK and freebayes), genotype caller(GATK/freebayes, polyRAD, updog, SuperMASSA), source of the readscounts (VCF and BAM files), and map builder packages (OneMap and

GUSMap). The output provides maps built with genotype call soft-ware genotype probabilities, with 5% and 0.001% of global errorrate in the HMM chain.
We executed the EmpiricalReads2Map workflows in the presenceand absence of haplotype-based multiallelic markers and appliedfour different marker filtering methods. For the aspen data set,we also executed the workflows for every scenario in the presenceof the contaminant samples. Therefore, the experiment has a to-tal of 3 (data sets: rose, aspen and aspen with contaminants) × 2(presence/absence of multiallelic markers) × 4 (filter methods -see details below) × 34 = 816 maps built for the first 8.426 Mb ofchromosome 10 of Populus trichocarpa genome and the first 25 Mb( 37%) of chromosome 1 Rosa chinensis reference genome. Table1 shows an overview of the notations used to refer to each evalu-ated scenario. It is important to mention that this represents whatusers will find in building maps for the whole genome; a samplewas required to reduce the computation burden.

GBS data simulation

The first step of the SimulatedReads2Map workflow is to performsimulations of a mapping population, GBS libraries, and sequences.The simulation is based on a given reference genome chromosomesequence. If a reference linkage map and a VCF file are provided,the workflow simulates the marker genetic distances and parentalgenotype frequencies based on them. A cubic spline interpolationwith the Hyman method [44] is applied to simulate the centimorganposition for each marker’s physical position based on this samerelation on the reference linkage map provided.
We based our simulation analysis on the first 37% of the chro-mosome 10 sequence of Populus trichocarpa version 3.0, which com-prehends a sequence with 8.426 Mb from a total chromosome sizeof about 23 Mb. This sequence comprises 38 cM (21%) of the linkagegroup 10 reference linkage map built using the aspen empirical data[39]. Due to the computational resources needed to build such ahigh number of maps, we used only a subset of the data to finishthe analysis in a reasonable time. Chromosome 10 was randomlychosen.
We simulated markers with different expected segregation pat-terns according to parental genotypes in each locus. Table 2 showsthe notation for each possible marker type in an outcrossing diploidpopulation. The SimulatedReads2Map workflow simulates parentalhaplotypes using the same proportion of marker types identifiedin the empirical VCF file. This approach overcomes the missingdata present in the empirical data set. The final VCF file used as areference to the simulations contains 810 markers (126 B3.7, 263D1.10, 278 D2.15, and 143 non-informative markers with both par-ents homozygous), which results from the aspen empirical data

GATK SNP calling, filtered by a maximum of 25% of missing dataand MAF of 5%.
PedigreeSim v2.1 software [46] is implemented in the work-flow to simulate the meiosis events and generate an F1 progenybased on the provided genetic map and simulated parental hap-lotypes. We did not consider the interference in meiotic events
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Table 1. Notation used to refer to each evaluation scenario in empiricaland simulated data sets.
Step Notation Description

Reads depth 10 Mean read depth usedto simulate the data setsimulations depth 20
SNP freebayes

Software used toidentify the variantscalling GATK

BAM Source files of alleledepth informationVCF
Genotype polyRAD

Software used toperform the estimation of
calling SuperMASSA

genotype for a givenallele depth information
updog

freebayes/
GATK

Software used togenotype calling is thesame that performedthe SNP calling
Map polyRAD

Maps built withgenotypes probabilitiesfrom polyRAD

building SuperMASSA
Maps built withgenotypes probabilitiesfrom SuperMASSA

updog
Maps built withgenotypes probabilitiesfrom updog

freebayes/
GATK

Maps built withgenotype probabilitiesfrom freebayes if freebayeswas used for SNPcalling or GATK if
GATK was.

polyRAD(5%)
Maps built withgenotypes from polyRADand global error of 0.05

SuperMASSA(5%)
Maps built withgenotypes from SuperMASSAand global error of 0.05

updog(5%)
Maps built withgenotypes from updog andglobal error of 0.05

freebayes/
GATK (5%)

Maps built withgenotypes from
freebayes or GATKand global error of 0.05

freebayes/
GATK (0.001%)

Maps built withgenotypes from freebayesor GATK andglobal error of 0.00001

(Haldane [47] mapping function). PedigreeSim output files wereconverted to VCF files using Reads2MapTools (available at https://
github.com/Cristianetaniguti/Reads2MapTools) R package func-tion pedsim2vcf.

While converting the files, the pedsim2vcf function can alsosimulate segregation distortion by applying a selection strength.For that, a high number of individuals in the progeny have to besimulated with the PedigreeSim software and one or more loci tobe under a given selection intensity. In our study, we targeted afinal population size of 200 individuals. For that, we simulated 50
× 200 individuals and applied a selection intensity of 50% in the30th marker, eliminating 50% of the genotypes containing oneof the alleles. Then, 200 individuals of the resulting populationare randomly selected to compose the mapping population. Weused this feature to compare software performance in segregation

Table 2. Marker types according to parental genotype combinationsand progeny segregation. The letters “a”, “b”, “c” and “d” representdifferent alleles and the letter “o” represents null alleles. Adapted from[45].
Parents Progeny

Marker type Cross Observed genotypes ExpectedsegregationA 1 ab x cd ac,ad,bc,bd 1:1:1:12 ab x ac a,ac,ba,bc 1:1:1:13 ab x co ac,a,bc,b 1:1:1:14 ao x bo ab,a,b,o 1:1:1:1B B1 5 ab x ao ab,2a,b 1:2:1
B2 6 ao x ab ab,2a,b 1:2:1
B3 7 ab x ab a,2ab,b 1:2:1C 8 ao x ao 3a,o 3:1D D1 9 ab x cc ac,bc 1:110 ab x aa a,ab 1:111 ab x oo a,b 1:112 bo x aa ab,a 1:113 ao x oo a,o 1:1
D2 14 cc x ab ac,bc 1:115 aa x ab a,ab 1:116 oo x ab a,b 1:117 aa x bo ab,a 1:118 oo x ao a,o 1:1

distortion.
The VCF file output by pedsim2vcf is used as input in RADinitiosoftware together with the reference genome sequence. RADinitioadds the VCF polymorphisms in the reference genome sequenceand simulates the GBS sequences. It uses the inherited efficiencymodel [48] to simulate a PCR-amplified pool of molecules. Themodel includes the heterogeneity of the PCR amplification and thepolymerase substitution errors. Next, RADinitio applies the user-defined ratio between DNA original molecules to be sequenced andPCR duplicates to create a distribution that will define the number oftimes the pool of loci is sampled, the number of duplicate moleculesthat are generated from a RAD locus template, and the distribu-tion of PCR errors in the resulting reads. We defined the defaultparameter with a proportion of 4:1. Besides the PCR errors insertedduring the pool sampling, the software also includes a commonlyobserved error pattern, where the 3’ end of the read accumulatesmore errors than the 5’ [49]. We tested different values of PCR cy-cles (5, 9, and 14) and mean depth (5, 10, and 20) to simulate theFASTA files. We set the other simulation parameters to obtain 150bases of read length, sequence size of 350, and restriction enzymes

HindIII and NalIII. The mean read depth parameter for the parentalsamples was eight times higher than the progeny. The combinationof RADinitio parameters that produced results closer to those ob-served in empirical data was selected to perform simulations withand without segregation distortion, five repetitions (five families),and two average sequencing depths (10 and 20) and 5 PCR cycles.
RADinitio does not output the sequence quality scores, so weconverted the FASTA file format to FASTQ format, including a Phredscore of 40 for every base simulated using seqtk [50] software. Af-ter obtaining the FASTQ files, the SimulatedReads2Map workflowfollowed the same tasks as the EmpiricalReads2Map, with align-ment, SNP and genotype calling, and linkage map build. The Simu-latedReads2Map workflow makes comparisons between real andestimated results within each step. The comparisons made duringthe workflow can be visualized in the shiny app Reads2MapApp.
Similarly to the EmpiricalReads2Map, the SimulatedReads2Mapworkflow generates maps for each combination of SNP and geno-type call and linkage map building software. However, the totalnumber of maps generated is multiplied by two because the work-flows build maps with and without loci that were wrongly identifiedas polymorphic due to sequencing errors (false-positive markers).We also execute the SimulatedReads2Map workflow in the presence
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and absence of haplotype-based multiallelic markers, segregationdistortion, and four methods for marker filtering. Therefore, theexperiment has a total of 5 (repetitions) × 2 (average depths) × 2(presence/absence of multiallelic markers)× 2 (with and withoutsegregation distortion) × 4 (filters method - see details below) ×68 = 10,880 maps built for the first 8.426 Mb of chromosome 10of Populus trichocarpa genome. Table 1 shows an overview of thenotations used to refer to each evaluated scenario.
SNP calling

First, the FASTQ sequences are aligned with BWA-MEM [51] to theirrespective reference genomes. The workflow uses samtools [52] tomerge the alignment of the same samples BAM files, keeping the li-braries identification on the BAM header and filtering out reads withMAPQ < 10. After the alignment, BAM files for each sample are usedas inputs for sub-workflows with GATK and freebayes approaches.One of the sub-workflow reproduces GATK joint genotyping via
HaplotypeCaller, GenomicsDBImport, and GenotypeGVCFs tools andapplies the suggested hard-filtering procedures [8]. The other sub-workflow runs freebayes parallelized by reference genome inter-vals. After obtaining the VCF files, indels marker positions are left-aligned and normalized with BCFtools, and multiallelic markersare separated into a new VCF file.

GATK and freebayes may introduce bias towards the referenceallele when used to process low-coverage sequence data. GATK in-serts the bias when reads are filtered in the local re-assembly stepto avoid sequencing errors [53]. To overcome the bias during thegenotype calling, the workflow applies two measures of allele depth,one from VCF and the other from BAM files. BCFtools is used to findthe read depths information for each allele in BAM files and updatethe allele depths information in the AD (allele depth) field of theVCF file. Therefore, each SNP calling method results in three VCFs:i) biallelic markers with read counts outputted by the SNP callers,ii) biallelic markers with counts from BAM files, iii) multiallelicmarkers.
Genotype calling

For the empirical data sets, the alignment and SNP calling stepswere performed with entire data sets, but for the next steps, weselected just a subset of markers (the first 8.426 Mb or 37%) of
Populus trichocarpa chromosome 10 and the first 25 Mb ( 37%) of
Rosa chinensis chromosome 1 reference genomes. The markers werefiltered by minor allele frequency (MAF) of 5%, and maximummissing data allowed of 25%. The VCF files with biallelic markersfrom freebayes and GATK, and with read counts source from VCF andBAM files were the input for the genotype caller software polyRAD,
SuperMASSA, and updog.To use the polyRAD approach, the VCF files were imported using
VCF2RADdata without applying any filters or considering phase infor-mation. The polyRAD model was run with PipelineMapping2Parentsdefault arguments which assume an F1 bi-parental population.The function Export_MAPpoly was used to export the genotypeprobabilities. The vcfR package [54] and custom R (function
polyRAD_genotype_vcf in Reads2MapTools package) code wereused to store outputted genotypes and their probabilities ina new VCF file. We also adapted SuperMASSA scripts to out-put the genotype probabilities information. The modified ver-sion is available in Reads2MapTools package. A wrapper func-tion called supermassa_genotype, available in the package, canrun the model in parallel and export the results to a newVCF file. The F1 SuperMASSA model was run with parameter
naive_porterior_reporting_threshold set to zero to not filter anygenotype. The updog F1 model was used in parallel using thefunction multidog through the Reads2MapTools wrapper function
updog_genotype which outputs the results in a new VCF file. In the

testing of scenarios in which we considered multiallelic markers,the VCF containing them are merged into the VCF files from polyRAD,
SuperMASSA, and updog. The merged VCF is the input for linkage mapbuilding in OneMap version 3.0.The software GUSMap performs the genotype calling and link-age map building with a single model. We used VCFtoRA functionto convert the outputted VCF files from GATK and freebayes ap-proaches into GUSMap format. A pedigree of the population anda list of filters (MAF = 0.05, MISS=0.25, BIN=0, DETPH=0 andPVALUE=0.05) was provided to the readRA function. The function
makeFS was used to create the full-sib population information. Func-tions infer_OPGP_FS and rf_est_FS were used to estimate the phaseand recombination fraction giving the genomic order of the mark-ers. In some situations, function rf_est_FS outputs infinite valuesof the recombination fraction. In these situations, our pipeline re-moves the respective marker and runs the function again. Thisworkaround code increased the time required to run GUSMap.
Linkage maps

Once imported to OneMap, markers were filtered again by maximummissing data of 25%. Because the VCF files include unexpectedgenotypes according to the loci segregation (e.g. in a cross “AA xAB”, genotype “BB” cannot exist), OneMap makes these genotypecalls missing. We also filtered markers with segregation distortionunder a global significance level of 0.05 with Bonferroni correctionand removed redundant markers. Markers were ordered accordingto the reference genome position. The genetic distances were esti-mated by the parallelized HMM multipoint [17, 38] approach usingas emission probability a global error rate of 10–5 (default in OneMapversion < 3.0, here referred to as “freebayes/GATK (0.001%)”), aglobal error rate of 0.05, and the genotypes probabilities estimatedby each genotype caller.In SimulatedReads2Map, the Haldane map function was used;in EmpiricalReads2Map, we used Kosambi’s map function. To testthe influence of the presence of the multiallelic markers in theordering procedure, we used the built map for the chromosome10 linkage group of aspen and ordered its markers using MDSMap[55] (wrapper function implemented in OneMap 3.0) and order_seqordering algorithms with and without multiallelic markers.
Performance comparison

We conducted performance comparisons for each combination ofSNP caller, genotype caller, and source of read counts, after whichthey were filtered by sequencing quality, MAF, segregation dis-tortion, redundancy, and missing data. Outlier markers breakingthe pattern of the recombination fraction matrix were removedonly for the ordering test with and without haplotype-based mul-tiallelic markers in the empirical data set. We evaluated the es-timated progeny genotype concordance by comparing the agree-ment between real and estimated heterozygous, reference allelehomozygous (homozygous-ref), and alternative allele homozy-gous (homozygous-alt) states. For that, we count the number ofgenotypes estimated as one type given that the true type was an-other, i.e., Est: homozygous | True: heterozygous. The methodsare the combination of each SNP caller, genotype caller, and readcount source. We expected that a good method would result in highprobabilities for the same estimated and real genotypes (i.e. Est:homozygous | True: homozygous) and low probabilities when theyare different (i.e. Est: homozygous | True: heterozygous). Thesewere summarized using receiver operating characteristic (ROC)
curves by plotting the sensitivity ( true positives

true positives+false negatives ) in the
vertical axis versus 1 – specificity ( false positives

false positives+true negatives ) on the
horizontal axis for all possible thresholds in a logistic regression[56].
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To test the capabilities of software correctly estimating theparental genotypes, we used the same conditional frequency, butinstead of measuring the similarities between individuals’ geno-types, we tested the combination of both parental genotypes. Todo that, we calculate the conditional frequency analysis betweenthe marker types (e.g. Est=B3.7 | True=B3.7). Based on Mollinariet al. [57], we compared the centiMorgan distances of markers inthe maps estimated by each method and the real map using theEuclidean distance (D):

D = [(m – 1)–1(d̂ – d)′(d̂ – d)]1/2

where m is the number of markers evaluated, d̂ is the vector ofestimated distances,d is the vector of real distances, and ′ indicatesvector transposition. A value of D = 1 means that the estimatedmap differs by an average of 1 cM from the built map regarding allgenomic positions. We also evaluated the orders provided by thedifferent ordering algorithms by computing the absolute value ofSpearman’s rank correlation between orders.

Read2Map Workflows App

The shiny app Reads2MapApp was built to display results from theworkflow analysis. It includes graphics and statistics about SNPcalling efficiency, the number of markers discarded by filteringsteps, marker types, computer resources and time spent by eachstep of the workflow, allele depth by genotype, genotype probabil-ities, ROC curves, map size, map phases, recombination fractionmatrix, progeny haplotypes, breakpoints count, and the correla-tion between linkage map and reference genome markers positions.Reads2MapApp is a modularized R package using the golem frame-work [58] that can be rendered and displayed locally or on a server.It can be installed from its GitHub repository and run with a singlecommand (run_app). Once uploaded the Reads2Map output filein the upload section of the app, all graphics will be automaticallygenerated.

Results and Discussion

RADinitio reads simulations

Allelic bias has been observed frequently in GBS data [10, 9]. Theprimary source of bias in GBS data is related to the PCR amplificationstep during library preparation [8, 9]. Duplicates can be generatedfrom the library preparation using the PCR or from erroneous detec-tion of a single amplification cluster as if multiplied by the opticalsensor of the sequencing instrument [59]. For Whole Genome Se-quence (WGS) and exome sequencing data, it is recommended thatduplicated sequences are filtered out because of their redundantinformation and the bias that they can bring to the statistical anal-ysis. In this context, we expect that most of the sequences havepartial overlap. Therefore, it is possible to identify the duplicates asthe ones that completely overlap with each other and have a lowerquality score of the sequence base. But, with GBS data, duplicatedsequences are expected to be common because all sequences havethe same starting point: the restriction enzyme cut site. Filteringduplicates, in this case, would reduce the read depth per loci toonly one read per allele and increase the uncertainties of genotypeestimation in the presence of sequencing errors [60]. Duplicates inGBS present advantages to sequencing depth. However, they alsobring more allelic bias and erroneous nucleotide substitutions fromPCR.
With the Reads2Map workflows, we simulated the read sequencesby testing several values of RADinitio parameters to try to be assimilar as possible to the empirical data and real scenarios. We

Figure 2. Venn diagrams show the number of markers identified by freebayes, GATK,
and simulated (true). The intersection between the data sets represents markers
with the same position in the reference genome Populus trichocarpa version 3.0. The
Empirical data sets include markers spread across the entire reference genome. The
simulations only include markers in the first 8.426 Mb of chromosome 10 (2.1% of
the genome). The mean and standard deviation of number markers are shown for
the simulated data set once the simulation and SNP calling are repeated 60 times.
Markers were filtered by 25% maximum missing data and MAF 5% in empirical and
simulated data. * Number of markers common to all 60 repetitions.

found that with low mean depths (5) and any of the number of PCRcycles tested (5, 9, and 14), almost all markers identified by GATK arefiltered out in the segregation distortion test, and maps cannot bebuilt. Setting the mean depth to 10 and a high number of PCR cycles(9 and 14) also kept a few markers in the GATK analysis. Therefore,we performed all the simulated scenarios using 5 PCR cycles withmean depths of 10 and 20.
The mean percentage of duplicated reads in the aspen empiricaldata set was 76% (SE 0.55%), while in the simulated data set withmean depths of 10 and 20 were, respectively, 88% (SE 0.00%) and92% (SE 0.00%), according to the Picard MarkDuplicates tool [61]results. It shows that RADinitio simulates more duplicates per cyclethan expected by the set proportion of 4:1 in the input parameters.Even with a lower number of PCR cycles (5), the simulated datapresents more PCR duplicates than the empirical PCR performedto generate the aspen data set, which had 14 cycles [39]. The ex-cessive number of PCR duplicates in the simulations may be why

GATK identified a few false positives markers with a mean numberof 0.49 for depth 10 and 0.48 for depth 20 (Figure 2).
Another difference between the simulated and empirical dataset is the number of markers identified by freebayes and GATK. Ifthe only filters applied to the identified markers are maximummissing data of 25% and MAF of 5%, freebayes identified 4.30xand 5.45x more markers than GATK in the rose and aspen data sets,respectively. This same proportion is not observed in the simulateddata sets, in which GATK identifies a mean number of markers of172.27 (SD 8.12) in depth 10 and 175.80 (SD 6.50) in depth 20, and

freebayes identify a mean number of 160.39 (SD 2.10) in depth 10and 157.33 (SD 2.47) in depth 20 (Figure 2). This shows that thesimulations are biased towards GATK because its markers were usedas references for the simulations.
In the simulated data, markers were close to the restriction en-zyme cut sites identified in P. tremula empirical data. However, thesimulations consider that the efficiency of the enzyme can varyacross libraries which may explain the high number of false nega-tives (about 77% of the simulated data). Measuring the commonmarkers across the simulated families, we observed a higher over-lap of marker positions when estimated by freebayes than GATK(Figure 2).
Once the markers are identified, the genotypes can be estimated
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according to the read count at each locus. Ideally, in a diploid indi-vidual, the homozygous would receive the same allele from bothparents. The heterozygous would have half of the reads containingone allele and half a different one. However, we can observe the de-viation of this ideal scenario in GBS empirical data (SupplementaryFigures 5-6).
The RADinitio simulation results in alleles read counts distri-bution (Supplementary Figures 7-10) were similar to the observedin the progeny of the empirical data in terms of dispersion and al-lelic bias [9]. However, it could not simulate the low-depth countsfor parents nor the outlier allele depth presented in the empiricaldata set. Thus, our simulations were not able to cover these twocharacteristics that can be found in empirical data sets.
In general, the evaluations of RADinitio simulations profileshows that we can expect fewer markers and genotyping errorsin the simulated compared to the empirical data. A smaller numberof markers should not reduce the built linkage map quality becausethe analysis was made in F1 populations, which have large disequi-librium blocks. However, the smaller number of genotyping errorsoverestimates the SNP and genotype calling software efficiency.This overestimation is commonly observed in simulation resultsonce the data cannot capture all biases and errors in the empiricaldata. If the software has low efficiency in simulated data, it willprobably underperform with empirical data. Thus, the simulationscan be used to understand specific software limitations but notultimately define the best performance [62].
With simulated data results, it is possible to identify the sourceof the errors causing the low efficiency and elaborate methods toovercome them because simulated data provide a clear comparisonbetween simulated (true) and estimated data. Therefore, the simu-lations were useful to optimize filters applied to identified markersand genotypes to obtain good quality linkage maps with simulatedmaps and improved maps with empirical data. We also used thesimulations to measure the effects of segregation distortion in thelinkage maps and to validate all code developed for the analysis.

Genotype calling efficiency

With the simulations, we could measure the number of wronglyestimated genotypes and the reliability of genotype probabilityprovided by each software (Supplementary figure 7-12). We ob-served three types of errors: when the genotype is estimated ashomozygous, but it is actually heterozygous (Est: homozygous |True: heterozygous); when the estimated genotype is heterozygousand the true genotype is homozygous (Est: heterozygous |True:homozygous); when the estimated genotype is alternative homozy-gous, and the true genotype is the reference or vice-versa (Est:homozygous-alt/ref | True: homozygous-ref/alt). The latter is onlyobserved in genotypes estimated by polyRAD, SuperMASSA, and updogusing GATK output VCF read counts (AD format) and had a maximumfrequency of 0.74% of the genotypes in SuperMASSA estimations insimulations with mean depth 20. We observed that in these situa-tions, the genotype is considered missing in the GATK output VCFGT format field, but it always reports the total read depth in thereference allele field of the AD format field (e.g. Estimated = GT:AD./.;22,0 | True = GT:AD 1/1;0,22). This same issue can also causeerrors of type Est: homozygous | True: heterozygous (Figure 3 andprogeny genotypes in Figure 4) in polyRAD, updog and SuperMASSAgenotypes generating an allele dropout scenario.
Using the allele counts from the BAM alignment file, assuggested by [53], removes these types of errors in polyRAD,

SuperMASSA, and updog genotype estimations with GATK markers.In contrast, by using the BAM counts, we lose the advantage of therobust filtering applied by GATK pipeline to maintain only the goodquality read counts in its VCF allele depth field. To keep the GATKallele depth accurate but still overcome the common error observedwhen the genotype is missing, we replaced the VCF allele count (AD

Figure 3. Example of error (Est: homozygous | True: heterozygous and Est: het-
erozygous | True: homozygous) in parental genotypes leading to a wrong marker
type (Est: D1.10 | True: D2.15). Estimated reference (x-axis) and alternative (y-axis)
allele count. Graphics on the left have colors according to estimated genotypes,
and on the right to the true genotypes. A) show counts from GATK VCF file and B)
from BAM file. In the VCF file outputted by GATK the P1 genotype is missing (GT
./.) because the reads did not pass the quality filters, but it reports the counts in
the reference AD field (149,0). The updog software use progeny segregation (1:1) to
estimate the parents, but it makes a mistake identifying which one is heterozygous.
Using counts from BAM file (B) fix this issue despite losing the GATK quality filters
that can be important in other situations.

and DP fields) with zero when the genotype information is missingbefore using it for polyRAD, SuperMASSA and updog genotyping. Inempirical data, allele dropout can happen for other reasons, suchas polymorphisms in the cut site or non-amplification of one of thealleles in the PCR step [9]. This requires another strategy to avoidwrong estimations.For genotypes called by polyRAD and updog, the error (Est: ho-mozygous | True: heterozygous) is more frequent than the error(Est: heterozygous | True: homozygous) in simulations with amean depth of 10. The opposite is observed in some scenariosof the simulations with a mean depth of 20. This difference be-tween simulations with mean depths 10 and 20 shows that updogand polyRAD are more susceptible to wrongly estimating homozy-gous genotypes in the presence of sequencing errors found morefrequently at higher depths. All incorrectly called genotypes pre-sented high differences in allele counts (e.g., 1 alternative allele: 23reference alleles).The scenarios with a higher number of correct genotypes werethose called by freebayes and GATK, or by updog and polyRAD usingmarkers from freebayes SNP calling, counts from VCF, and simu-lation mean of 20. The segregation distortion does not affect thefrequency of correct genotypes in most scenarios (Supplementaryfigures 7-10), despite affecting the reliability of the genotype prob-abilities provided by polyRAD (Supplementary figures 11-12).
Marker types

Combining information from both parental genotypes defines theexpected Mendelian segregation for each locus. The informative
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Figure 4. Example of error (Est: homozygous | True: heterozygous) in progeny
genotypes leading to wrong marker types in A) Est: B3.7 | True: non-informative and
in B) Est: D1.10 | True: non-informative. Graphics on the left have colors according
to estimated genotypes, and on the right to the true genotypes.

combinations for outcrossing species with biallelic codominantmarkers must have at least one heterozygous genotype in one of theparents, including the marker types B3.7, D1.10, and D2.15 (Supple-mentary figures 13-16). The haplotype-based multiallelic codomi-nant markers can also present types A.1, A.2, D1.9, and D2.14. OneMap3.0 does not consider the parental genotype probabilities in its HMMmulti-point approach. Thus, it is important to plan the sequencingexperiment with high-quality parental genotypes because, if thereare errors, they will not be corrected in downstream processing,and it will cause distortions in the resulting distances and haplo-types. To avoid map size inflation, erroneous parental genotypesmust be removed before the linkage map analysis.
Filtering the data set by segregation distortion is an efficient wayof removing markers with wrong parental genotypes. The software

updog, polyRAD, and SuperMASSA models consider the segregationpattern of the population to infer the genotypes, and, in some cases,they change the parental genotypes to fit in the observed popula-tion segregation pattern. If the progeny genotypes have low quality,it can lead to an erroneous estimation of the parental genotypes.We observed some cases in which non-informative markers areestimated as informative because of genotyping errors in progenygenotypes (Figure 4). In other cases, when alleles dropout in theheterozygous parent of a marker segregating 1:1, the models iden-tify that one of the parents should be heterozygous, but the predic-tive models make mistakes in identifying which of them should beheterozygous (Figure 3).
We tested three other filters to overcome this in updog, polyRAD,and SuperMASSA. One of them was filtering the genotypes by thegenotype probability. If the progeny genotype has a genotype prob-ability lower than 0.8, the genotype is considered missing data.The marker is discarded if the frequency of missing data acrossall progeny is higher than 25%. The other filter tested was re-moving non-informative markers from the VCF file coming from

GATK and freebayes before using it as input for updog, polyRAD and
SuperMASSA. We considered non-informative markers homozygous

in both parents or if at least one of the parental genotypes was miss-ing. The third filter was to replace the allele depth (AD) field inthe VCF file format by missing data when the genotype is missing.This avoids that updog, polyRAD, and SuperMASSA use the allele depthwhen GATK filtered out the genotype due to bad quality.

Removing the non-informative markers before the genotypecalling by updog, polyRAD, and SuperMASSA reduced the number ofwrongly identified marker types by that software, mainly in thesimulated scenarios with a mean depth of 20 (Figure 5 and Supple-mentary figure 17).

Figure 5. Mean number of wrongly identified biallelic markers in the simulated
data set (y-axis) while applying filters by minimum genotypes probability of 0.8,
by informativity and replacing AD and GQ VCF field by missing data when GT is
missing (x-axis). The numbers on the top of each graphic show the mean total
number of correct and wrong markers across the five repetitions. The markers
presented here were obtained with GATK as SNP and updog, polyRAD, and SuperMASSA
genotype calling, with mean depths 10 and 20, with segregation distortion, with
allele depth count from VCF. The notation of marker types follows table 2 notation.

We expect all multiallelic markers identified by freebayes tocome from combinations of biallelic marker types (Figure 6 andSupplementary figure 18). The simulations showed the amount ofB3.7, D1.10, D2.15, and non-informative markers converted to A.1,A.2, D1.9, and D2.14 markers. The D1.9 and D2.14 were convertedfrom D1.10 and D2.15 SNP combinations, respectively. Also, thehaplotyping approach could combine a few non-informative intoA.1, D1.9, and D2.14 markers.
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Figure 6. Mean number of multiallelic markers converted from biallelics (y-axis) and
how many of them are kept after applying filters by minimum genotypes probability
of 0.8, by informativity and replacing AD and GQ VCF field by missing data when
GT is missing (y-axis). The markers presented here were obtained using simulated
data, freebayes as SNP and updog, polyRAD and SuperMASSA genotype calling, with
mean depths 10 and 20, with and without segregation distortion, with allele depth
count from VCF. The notation of marker types follows table 2 notation.

Relation between map size and correct haplotypes

Before using the map size as a metric for map quality, we checkedif a map with the expected size always means good quality. A mapcan have the expected size but poor quality if the number of over-estimated and underestimated recombination breakpoints in theprogeny haplotypes is the same; in other words, if they cancel out.To test if this happens in our simulated data set, we compared theEuclidean relation of estimated and true genetic distances withthe total number of wrong (overestimated + underestimated) re-combination breakpoints in the progeny haplotypes (Figure 7 andSupplementary figures 19 and 20). For identifying a break as overes-timated or underestimated, we do not consider the expected breakposition but the total breaks expected for the evaluated haplotype.For example, if one haplotype for a specific progeny was simulatedwith one break and estimated with zero, then we count it as oneunderestimated break.
The comparison shows that overestimated breakpoints are gen-erally more frequent than underestimated ones. We observe thatwhen a map is inflated, it also has many wrong recombinationbreakpoints. However, in some cases, the map has the expectedmap size, but a high number of wrong haplotypes due to both over-estimated and underestimated breaks. A high number of underes-timated breaks can be observed in situations where the Euclideandistance is close to, or less than 1 (log100) and the number of wrongrecombination events is between 10 and 100 (log101–log102). Thesesituations are more frequent when a global error rate of 5% is used.

Effects of contaminant samples

In the empirical data results, we observed maps with expected sizeand excess recombination breakpoints in just a few individuals inthe progeny. This variation can be related to contaminant sam-ples. The study of Zhigunov et al. [39] identified six contaminantsin the aspen data set. When we ran the workflows, including thecontaminant samples, the maps built with freebayes markers and
updog, SuperMASSA, and polyRAD were smaller in size than withoutthe contaminant. This would (wrongly) suggest better quality ifmap size is the only metric used (Figure 8A and Supplementaryfigure 21A). Nevertheless, the maps presented higher differencesin the number of recombination breakpoints among individualswhen using the genotype probabilities relative to each genotypecall software (Figure 8B and Supplementary figure 21B). Some con-taminant samples presented more recombination events than therest of the progeny. Using 5% of global error reduces this differenceand can mask the presence of contamination (Figures 9).

Effects of filters

Another important characteristic to consider in a good-quality mapis the number of markers. The same data set will vary according tothe SNP and genotype call software and filters used. We filtered alldata sets by maximum missing data of 25%, segregation distortion,and redundancy. We tested the effects of three extra filters basedon common errors observed in the simulated data set genotypingevaluations (Figures 3 and 4): minimum genotype probability of0.8; removal of non-informative markers; replacing AD and GQ withmissing data when GT is considered missing in the VCF file (Figure10 and 11). These filters are applied before the segregation test filter,which reduces the number of tests and increases the permissibilityof the threshold corrected by multiple tests (Bonferroni correction).Thus, the built map can have more markers in some scenarios evenif more filters are applied.
Maps built with genotypes from GATK and a global error of 5%were smaller when filtering by a minimum genotype probability of0.8 in higher depths of empirical and simulated data (Supplemen-tary figures 22 and 23). The most significant effect of the filterscan be observed in maps built with updog, SuperMASSA and polyRADgenotypes and genotypes probability (Figures 11 and 10). In bothempirical and simulated data sets, higher-depth scenarios generatelinkage maps with sizes closer to the expected after the extra filtersare applied.

Effects of segregation distortion

The segregation distortion in the data does not affect the numberof wrong estimated genotypes by the genotype call software (Sup-plementary figures 7-10), but it can affect the reliability of updog,
SuperMASSA, and polyRAD in outputting genotype probabilities insome scenarios (Supplementary figure 11 and 12). Consequently,the map size can be inflated using genotype probabilities from thesesoftware (Figure 12 and Supplementary figure 24).

Comparison with GUSMap

We compared all maps built with OneMap combined with upstreamapproaches with maps built with the GUSMap [14] software (Fig-ures 13, 14 and Supplementary figures 25 and 26). We could notapply the extra filters to GUSMap genotypes as they are estimatedinternally in the software. In both simulated and empirical data,the maps generated by GUSMap presented greater map sizes.
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Figure 7. Relation between Euclidean distance (y-axis) and the number of recombination breakpoints (x-axis) in maps built with global error rates (0.001% and 5%), and
with probabilities outputted by the genotype call software (relative error). Each dot represents a map built with simulated data based on the first 37% of aspen chromosome 10.
The red squares highlight maps that do not present inflated size (1 or less Euclidean distance) but have from 10 to 100 wrong recombination breakpoints.

Figure 8. Effect of contaminant samples in the map size (A) and the number of estimated recombination breakpoints range among aspen empirical data set progeny individuals
(B). The data sets presented in this figure contain multiallelic markers, the allele counts from the VCF file, and were filtered by genotype probability higher than 0.8 and
contain only informative markers.
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Figure 9. The total number of recombination breakpoints (x-axis) estimated for
each progeny individual (y-axis) of the aspen full-sib population with and without
contaminant samples (cont) with selected pipelines. The red ellipses indicate the
contaminant samples.

Selected pipelines

The differences between simulated and empirical data discussedbelow also result in differences in the performances of software inthese two data set types (Figure 15 and Supplementary figures 27-29). We focused on selecting the best pipelines only for the empiricaldata. For those, we consider as promising approaches the ones thatresulted in linkage maps with a high number of markers, with no orfew outlier markers distorting the total map length (Figures 15 andSupplementary figure 27), and with the number of recombinationbreakpoints identified in each progeny individual closer to what isexpected for a 38 cM group according to meiotic properties (Figure9 and Supplementary figure 30).
The rose data set presents higher sequencing depth; thus, thequality of the genetic map is generally better than the aspen dataset. Using the filters by genotype probability and non-informativemarkers, it was possible to remove the majority of the outliers fromthe maps built and still keep a high number of markers by using

GATK markers, GATK and polyRAD genotypes, and a global error rate of5%. Despite presenting a higher number of markers, the approachusing freebayes markers and genotypes with a global error rate of5% resulted in a map with double the size (Figure 16). The numberof recombination breakpoints profiles in these three cases showsthat the individual 649-12 is a possible contaminant in this data set(Supplementary figure 30). The contaminant samples tend to havea higher number of breaks, as we saw in the comparison of aspenwith and without contaminant samples.
In the aspen data set, the best approach was to build the mapwith GATK markers, GATK genotypes and a global error of 5%, orwith updog genotype probabilities (Figure 17). Similar maps werealso built using markers from freebayes, genotypes from polyRADand a global error rate of 5%. All the maps built for the aspen data

set still presented some outlier markers. Removing these outliermarkers requires careful evaluation of diagnostic graphics, such asthe heatmaps of the recombination fraction matrix (Supplemen-tary Figures 31 and 32), which is not possible with the workflow’sstraightforward approach. It makes Reads2Map workflows a tool forselecting the SNP and genotyping calling and the genotype proba-bility to build the map, but further revisions to remove the outliersare required to obtain a good quality genetic map.

Haplotype-based multiallelic markers

The previous evaluations show that multiallelic markers do notpresent a unique effect on the genetic distances (Figures 19 and 18and Supplementary figures 33 and 34). Depending on the data setquality and combination of software used, it can decrease, increase,or even not affect the linkage map quality under these criteria. Wetarget approaches that can reduce or not affect the genetic map sizebecause the advantage of using multiallelic markers is not in thegenetic map distance estimation but in the ordering step of the link-age map building. Algorithms that use two-point recombinationfractions estimations to order only biallelic markers have difficultymissing linkage information between markers D1 and D2 (homozy-gous x heterozygous or vice-versa). These markers can only berelated to each other in the presence of more informative mark-ers, such as B3.7 (heterozygous x heterozygous) or the multiallelic.Yet, having few B7.3 markers compared to D1 and D2 can still bean issue for linkage map building. This characteristic was why thefirst methods for building genetic maps in this type of populationresulted in separate maps for each parent [63]. The non-integratedgenetic maps limit further QTL analysis of multiallelic traits [64].
The ordering step was not considered in the previous evalua-tions once the workflows used genomic order to build the maps.To test the effect of multiallelic markers in the ordering, we builta linkage map for the entire chromosome 10 of the aspen data setusing markers called by freebayes, an error rate of 5%, and twoof the OneMap order_seq and MDS algorithms to order the markers.The genetic distances were estimated by HMM multipoint approach.Figure 20 B shows the impact of including the multiallelic markersin the two-points-based MDS algorithm [55]. Multiallelic mark-ers slightly increase the Pearson correlation and drastically reducethe Euclidean distance between the estimated ordering and thegenomic order. The order_seq algorithm is a strategy developedto apply HMM in the ordering procedure. First, it estimates theorder of the markers using a two-point approach (the default isthe RECORD [65] algorithm). Based on the two-point ordering,a subset (default of five markers) of equally distributed markersis selected and ordered by exhaustive search (compare function).Next, the algorithm adds all the other markers sequentially, test-ing each possible position using the HMM multi-point approachin the already established sequence. The RECORD algorithm hassteps where markers are randomized, which makes the result non-deterministic in the sense that each run can result in a (normallyslightly) different order. This strategy used to be very accuratewhen dealing with a few informative markers (such as SSRs) but ismore prone to errors if only biallelic markers are available. Resultsshow that, with haplotype-based multiallelic markers, the strategyreturns a high-quality order, reproducing almost entirely the ge-nomic order and the correct pattern of the recombination fractionmatrix (Figure 20 A).

Final considerations

The Reads2Map workflows have a robust structure to generateproduction-level results with simple inputs and optimized usageof computational resources. The structure allowed us to test thequality of genetic maps built with the following scenarios: i) using
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Figure 10. The relation between filters applied (x-axis) and the mean Euclidean genetic distances (A y-axis) and the number of markers (B y-axis) for genotype calling
software. The data set shown in the figure contains multiallelic markers and segregation distortion.
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Figure 11. The relation between filters applied (x-axis), the map size (A y-axis), and the number of markers (B y-axis) for genotype calling software used in the empirical data
sets. The data sets shown in the figure contain only biallelic markers. The horizontal red line indicates the expected map size (38 cM) for the subset of the genomes used.
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Figure 12. The effect of the simulated segregation distortion in the maps Euclidean distance by genotype calling software. The x-axis shows the mean of the Euclidean distance
between estimated and simulated maps built for the data set with simulated segregation distortion, and the y-axis shows with data set simulated without the segregation
distortion. The lines crossing the symbols indicate the standard deviation across the five repetitions. The data sets contain only biallelic markers and allele depth count from
the VCF file. The markers were filtered by genotype probability higher than 0.8 and only informative markers.

Figure 13. Comparison of Euclidean distance (y-axis) and the number of markers in maps built with OneMap 3.0 and GUSMap for the simulated data. The lines crossing the
symbols indicate the standard deviation across the five repetitions. The maps built with OneMap are represented by the name of the genotype calling software that provided the
genotypes and their probabilities for OneMap multipoint approach of genetic distance estimation. The markers inputted in OneMap included multiallelic markers filtered by
genotype probability higher than 0.8, included only informative markers, and the AD and GQ fields were replaced by missing data when GT is missing.
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Figure 14. Comparison of map size (y-axis) and the number of markers in maps built with OneMap 3.0 and GUSMap for the empirical data. The maps built with OneMap are
represented by the name of the genotype call software that provided the genotypes and their probabilities for OneMap multipoint approach of genetic distance estimation. The
data sets shown here contain only biallelic. Markers inputted in OneMap had a genotype probability higher than 0.8, included only informative markers, and the AD and GQ
fields were replaced by missing data when GT was missing. The horizontal red line indicates the expected map size (38 cM) for the subset of the genomes used.

Figure 15. Comparison of map size (y-axis) and the number of markers in maps built with OneMap 3.0 using different upstream software for estimating genotypes and
genotypes probabilities. Markers inputted in OneMap included multiallelic markers filtered by genotype probability higher than 0.8, included only informative markers, and
the AD and GQ fields were replaced by missing data when GT is missing. The horizontal red line indicates the expected map size (38 cM) for the subset of the genomes used.
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Figure 16. The figure shows the linkage maps built for 37% of rose chromosome 1
(38 cM) with selected pipelines.

different SNP calling software (GATK and freebayes); ii) using dif-ferent genotype calling software (GATK, freebayes, updog, polyRAD,
SuperMASSA); iii) using different linkage map building software(OneMap 3.0 and GUSMap); iv) establishing different error probabil-ities (relative to genotype call software, 5%, and 0.001% globalerror); v) applying different marker filtering; vi) with or withoutmultiallelic markers; vi) in empirical and simulated data; vii) withand without segregation distortion; viii) with and without contam-inant samples; ix) with different library preparation; and x) withdifferent sequencing depths. These scenarios are commonly foundby researchers trying to produce high-quality linkage maps usingsequencing technologies. The Reads2Map and Reads2MapApp are thefirst tools to guide best practices for building linkage maps withsequencing data pointing software, parameters and marker filtersto be used in diverse scenarios.

We elaborated and limited the scenarios explored according toour experiences as developers of OneMap. OneMap first version was re-leased in 2007, and since then it has been used to build linkage mapsin a diversity of species. Its strategies and structure also served as abase for more complex software such as MAPpoly [15] for buildinglinkage maps in polyploid species. With time, new methods for ge-netic marker identification using sequencing data emerged, chang-ing the context where OneMap was used. We included updates in thisversion 3.0 to resolve issues with inflated genetic maps and markerordering. Two major changes allow users to read and build geneticmaps with the genotype probabilities and haplotype-based mul-tiallelic markers information from the input files (OneMap formator VCF file). However, the success of genetic map building will beproportional to the quality of the information provided by upstreamprocedures such as library preparation, SNP and genotype calling,genotype probabilities estimation, and the combination of SNPsinto haplotype-based markers. With Reads2Map and Reads2MapApp,we provide users tools to select the best approaches before using
OneMap 3.0 to guarantee that it will result in the best quality geneticmap possible with the data available.

For the rose data, the best pipelines filtered the markers usingall extra filters (minimum 0.8 of genotype probability, removal ofnon-informative markers, and replacing AD and GQ field by miss-ing if GT is missing in VCF file), and used the combinations: GATKas SNP and genotype calling with a global error of 5%; GATK as SNPcalling and polyRAD as genotype calling with a global error rate of

5%; freebayes as SNP and genotype calling with multiallelic mark-ers and a global error rate of 5%. The aspen had a lower sequencingdepth. Thus, none of the methods could provide maps with theexpected size. Even using the selected methods, further markerfiltering was required to obtain a good-quality final map. For theaspen data set, we obtained the best pipelines by also filtering themarkers with all extra filters and using the combinations: GATK asSNP and genotype calling with a global error rate of 5%; GATK asSNP calling and updog as genotype calling using updog genotypeprobabilities or freebayes as SNP and polyRAD as genotype callingusing a global error rate of 5%.
Most of the selected pipelines for both empirical data sets useda global error of 5% to estimate the genetic distances because theygave map sizes closer to the expected. We also observed the sameresults when applying a 5% error rate in the simulated data. Withthose, we could relate the map size with the number of wronglyestimated haplotypes. The evaluation showed that inflated mapsmostly reflect a high number of wrongly estimated haplotypes,but there were some cases where the map was estimated with theexpected size but presented a high number of wrong haplotypes,mostly when a 5% global error rate was applied. Using a 5% errorrate can also mask the presence of contaminant samples among theprogenies. For these reasons, we intend to update Reads2Map withgenotype calling software that adapt the genotype probabilities forthis specific usage and result in map sizes closer to the expected.
The diversity in the pipelines suggested for both empirical datasets highlights that pipelines perform differently with data setswith different properties. We can see this diversity in the effects ob-served while testing filters, software, and conditions. This meansthat the pipelines presented here as the best cannot be consideredthe best for every data set. Thus, users should reproduce all testspresented here using the Reads2Map workflows with their empiricaldata set and select the best pipelines for their specific conditions.The workflows were built using WDL and containers to ensure highreproducibility. This guarantees that different results running dif-ferent data sets is due to the data set’s properties and not to bioin-formatic pipeline changes. Also, as the upstream procedures forgenotyping and identifying haplotype-based multiallelic markersare improved, updates can be easily made in the workflows.
Every Reads2Map workflow run returns a large amount of infor-mation. Every step of the workflow, from the reads’ alignment tothe completed linkage map, provides quality measurements forusers to evaluate each scenario. The Reads2MapApp shiny app re-ceives all this information compressed in a single workflow out-put file and converts it into comprehensive interactive graphics.Through the app interface, users can evaluate the performance ofeach combination of software and parameters in each step. If re-sults show issues in any of them, users can re-run the workflowwith adapted parameters or include new filters that make sense intheir context. Once established the upstream steps based on theapp graphics for the built linkage map subset, users can reproduceit for the complete data set, inputting the VCF files from Reads2Mapinto OneMap.

Availability of source code and requirements

• Project name: Reads2Map• Project home page: https://github.com/Cristianetaniguti/
Reads2Map• Operating system(s): Platform independent• Programming language: WDL and R• Other requirements: docker or singularity• License: GNU GPL
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Figure 17. The figure shows the linkage maps built for 37% of aspen chromosome 10 (38 cM) with (ct) and without the presence of 6 contaminant samples and selected
pipelines.

Figure 18. Comparison between empirical data sets with and without multiallelic markers. A: relationship of map size between data set with (x-axis) and without (y-axis)
multiallelic markers. B: Number of multiallelic markers present in data sets represented in the x-axis of graphic A. The data sets shown in this figure have allele depth counts
from the VCF file, were filtered by a minimum genotype probability of 0.8, included only informative markers and AD and GQ VCF fields were replaced by missing when GT
was missing.
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Figure 19. Comparison between simulated data sets with and without multiallelic markers. A: relationship of mean map size between data set with (x-axis) and without
(y-axis) multiallelic markers. B: Number of multiallelic markers present in data sets represented in the x-axis of graphic A. The lines crossing the symbols indicate the
standard deviation across the five repetitions. The data sets shown in this figure have allele depth counts from the VCF file, segregation distortion, were filtered by a minimum
genotype probability of 0.8, and only informative markers.

Figure 20. Comparison between ordering algorithms performance in the aspen data set entire linkage group 10 with only biallelic markers, and with biallelic and haplotype-
based multiallelic markers. The heatmaps represent the recombination fraction matrix between markers positioned at both axes. In well-ordered linkage groups, we expect a
gradient from hot colors in the diagonal (adjacent markers) to cold colors in the upper left and lower right corners. The figure also presents the Spearman rank correlation
(ρ) and the Euclidean distances (D) between the estimated map and the map built with markers ordered by the genomic positions. The represented result from order_seq
algorithm is only one of the possible results as the procedure is non-deterministic
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Additional files

Supplementary File 1. Emission function for outcrossing.
Supplementary Figure S1. The log10 of the CPU time (blue) andthe log10 of the amount of memory utilized (red) by each task of theReads2Map workflows when running the simulations with a meandepth of 10. The CPU time is measured with the number of CPUsused times the wall-clock time used.
Supplementary Figure S2. The log10 of the CPU time (blue) andthe log10 of the amount of memory utilized (red) by each task of theReads2Map workflows when running the simulations with a meandepth of 20. The CPU time is measured with the number of CPUsused times the wall-clock time used.
Supplementary Figure S3. The log10 of the CPU time (blue) andthe log10 of the amount of memory utilized (red) by each task ofthe Reads2Map workflows when running the aspen empirical data.The CPU time is measured with the number of CPUs used times thewall-clock time used. The filters and linkage map steps were madejust with a subset of the data (37% of chromosome 10).
Supplementary Figure S4. The log10 of the CPU time (blue) andthe log10 of the amount of memory utilized (red) by each task ofthe Reads2Map workflows when running the rose empirical data.The CPU time is measured with the number of CPUs used times thewall-clock time used. The filters and linkage map steps were madejust with a subset of the data (37% of chromosome 1).
Supplementary Figure S5. Reference (x-axis) and alternative(y-axis) allele depth distribution for all progeny individuals anda subset of 5% of the markers in rose and aspen data consideringthe read counts from VCF and from BAM files. Colors represent theestimated genotype by the genotype calling methods. Percentagesof each genotype in the entire data set are shown for progeny andparental genotypes in the top right of each graphic.
Supplementary Figure S6. Supplementary figure S5 continued.
Supplementary Figure S7. Reference (x-axis) and alternative(y-axis) allele depth distribution for all progeny individuals and asubset of 25% of the markers from a single simulated family datawithout segregation distortion, with mean depth of 10 and 20 andconsidering the read counts from VCF and from BAM files. Colorsblue and green show genotypes called correctly by the genotypecalling methods, and the colors yellow, orange, and red shows theones that were called incorrectly. Percentages of correctly and in-correctly genotypes for the entire data set are shown for progenyand also parental genotypes at the top of each graphic.
Supplementary Figure S8. Supplementary Figure S7 continued.
Supplementary Figure S9. Reference (x-axis) and alternative(y-axis) allele depth distribution for all progeny individuals and asubset of 25% of the markers from a single simulated family datawith segregation distortion, with mean depth of 10 and 20 and con-sidering the read counts from VCF and from BAM files. Colors blueand green show genotypes called correctly by the genotype callingmethods, and the colors yellow, orange, and red shows the onesthat were called incorrectly. Percentages of correctly and incorrectlygenotypes for the entire data set are shown for progeny and parentalgenotypes at the top of each graphic.
Supplementary Figure S10. Supplementary Figure S9 contin-ued.
Supplementary Figure S11. ROC curves with the true and esti-mated genotypes from the five families simulated with mean depth10 and 20 and the first 8.426 Mb of the chromosome 10 (37% or 38cM). Here only biallelic markers are considered. The specificity andsensitivity profiles consider different thresholds in the genotypeprobabilities for each scenario. Higher is the area under the curve,the higher is the genotypes probability reliability. Genotype proba-bilities thresholds closer to the left superior corner have a highercapacity to differentiate right and wrong genotypes.
Supplementary Figure S12. Supplementary Figure S11 contin-ued.

Supplementary Figure S13. Mean number of corrected identi-fied biallelic by marker types (y-axis) while applying filters by min-imum genotypes probability of 0.8, by informativity and replacingAD and GQ VCF field by missing data when GT is missing (x-axis).The markers presented here were obtained using simulated data,
GATK as SNP and updog, polyRAD, and SuperMASSA genotype calling,with mean depths 10 and 20, with segregation distortion, with alleledepth count from VCF. The notation of marker types follows table 2notation.

Supplementary Figure S14. Supplementary Figure S13 contin-ued. The same information is shown for freebayes and GATK asgenotype call software.
Supplementary Figure S15. The number of markers (y-axis)identified in the first 37% of aspen chromosome 10 while applyingfilters by minimum genotypes probability of 0.8, by informativityand replacing AD and GQ VCF field by missing data when GT ismissing (y-axis). Colors distinguish the marker types according totable 2.
Supplementary Figure S16. The number of markers (y-axis)identified in the first 37% of rose chromosome 1 while applyingfilters by minimum genotypes probability of 0.8, by informativityand replacing AD and GQ VCF field by missing data when GT ismissing (y-axis). Colors distinguish the marker types according totable 2.
Supplementary Figure S17. Mean number of wrongly identi-fied biallelic markers (y-axis) while applying filters by minimumgenotypes probability of 0.8, by informativity and replacing AD andGQ VCF field by missing data when GT is missing (x-axis). Thenumbers on the top of each graphic show the mean total number ofcorrect and wrong markers across the five repetitions. The markerspresented here were obtained using simulated data, GATK as SNPand genotype calling, with mean depths 10 and 20, segregationdistortion, and allele depth count from VCF. The notation of markertypes follows table 2 notation.
Supplementary Figure S18. Mean number of multiallelic mark-ers converted from biallelics (y-axis) and how many of them arekept after applying filters by minimum genotypes probability of 0.8,by informativity and replacing AD and GQ VCF field by missing datawhen GT is missing (y-axis). The markers presented here wereobtained using simulated data, freebayes as SNP and genotype call-ing, with mean depths 10 and 20, with and without segregationdistortion, with allele depth count from VCF. The notation of markertypes follows table 2 notation.
Supplementary Figure S19. The base 10 logarithm of the meanof underestimated and overestimated recombination breakpointsidentified in the progeny simulated with a mean depth of 10 andlinkage maps built using genotypes and genotypes probabilitiescoming from different approaches and filters applied. Colors distin-guish the simulations with and without segregation distortion andmultiallelic markers and the source of read counts by allele. Theblue horizontal line cuts infinite values generated by the logarith-mic of zero when there are no wrong breakpoints. The closer thetriangles are to the blue line better the method could reproduce therecombination breakpoints number.
Supplementary Figure S20. The base 10 logarithm of the meanof underestimated and overestimated recombination breakpointsidentified in the progeny simulated with a mean depth of 20 andlinkage maps built using genotypes and genotypes probabilitiescoming from different approaches and filters applied. Colors distin-guish the simulations with and without segregation distortion andmultiallelic markers and the source of read counts by allele. Theblue horizontal line cuts infinite values generated by the logarith-mic of zero when there are no wrong breakpoints. The closer thetriangles are to the blue line better the method could reproduce therecombination breakpoints number.
Supplementary Figure S21. Effect of contaminant samples inthe map size and in the number of estimated recombination break-points range among progeny individuals. The empirical aspen data
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sets presented in this figure contain multiallelic markers, the allelecounts from the VCF file and was filtered by genotype probabilityhigher than 0.8 to keep only informative markers.
Supplementary Figure S22. The relation between filters applied(x-axis) and the mean Euclidean genetic distances (A y-axis) andthe number of markers (B y-axis) of the built linkage maps. Thesimulated data set shown here contains multiallelic markers andsegregation distortion.
Supplementary Figure S23. The relation between filters (x-axis) applied and the map size (A y-axis) and the number of markers(B y-axis) of the built linkage maps. The empirical data sets shownhere contain multiallelic markers and segregation distortion. Thehorizontal red line indicates the expected map size (38 cM) for thesubset of the genomes used.
Supplementary Figure S24. The effect of the simulated segre-gation distortion in the maps Euclidean distance. The x-axis showsthe Euclidean distance between estimated and simulated maps builtfor the data sets with simulated segregation distortion. The y-axisshows data sets simulated without the segregation distortion. Thelines crossing the symbols indicate the standard deviation acrossthe five repetitions. The data sets contain only biallelic markers andallele depth count from the VCF file; the markers were filtered bygenotype probability higher than 0.8 and only informative markers.
Supplementary Figure S25. Comparison of Euclidean distance(y-axis) and the number of markers in maps built with OneMap 3.0and GUSMap for the simulated data. The lines crossing the sym-bols indicate the standard deviation across the five repetitions. Themaps built with OneMap are represented by the name of the genotypecall software that provided the genotypes and their probabilitiesfor OneMap multipoint approach of genetic distance estimation. Themarkers inputted in OneMap included multiallelic markers, werefiltered by genotype probability higher than 0.8 to keep only infor-mative markers, and the AD and GQ fields were replaced by missingdata when GT is missing.
Supplementary Figure S26. Comparison of map size (y-axis)and the number of markers in maps built with OneMap 3.0 and GUSMapfor the empirical data. The maps built with OneMap are representedby the name of the genotype call software that provided the geno-types and their probabilities for OneMap multipoint approach of ge-netic distance estimation. The data sets shown here contain onlybiallelic. Markers inputted in OneMap were filtered by genotype prob-ability higher than 0.8 to keep only informative markers. The ADand GQ fields were replaced by missing data when GT was missing.The horizontal red line indicates the expected map size (38 cM) forthe subset of the genomes used.
Supplementary Figure S27. Comparison of map size (y-axis)and the number of markers in maps built with OneMap 3.0 using em-pirical data and different upstream software for estimating geno-types and genotypes probabilities. Markers inputted in OneMap in-cluded multiallelic markers, were filtered by genotype probabilityhigher than 0.8, kept only informative markers, and the AD andGQ fields were replaced by missing data when GT was missing. Thehorizontal red line indicates the expected map size (38 cM) for thesubset of the genomes used.
Supplementary Figure S28. Comparison of Euclidean distance(y-axis) and the number of markers in maps built with OneMap 3.0using simulated data and different upstream software for estimat-ing genotypes and genotypes probabilities. Markers inputted in

OneMap included multiallelic markers and segregation distortion,were filtered by genotype probability higher than 0.8, kept onlyinformative markers, and the AD and GQ fields were replaced bymissing data when GT is missing.
Supplementary Figure S29. Comparison of Euclidean distance(y-axis) and the number of markers in maps built with OneMap 3.0using simulated data and different upstream software for estimat-ing genotypes and genotypes probabilities. Markers inputted in

OneMap included multiallelic markers and segregation distortion,were filtered by genotype probability higher than 0.8, kept only

informative markers, and the AD and GQ fields were replaced bymissing data when GT is missing.
Supplementary Figure S30. The total number of recombinationbreakpoints estimated for each progeny individual of the rose full-sib population with selected pipelines.
Supplementary Figure S31. Recombination fraction matrix heatmap obtained for 37% of chromosome 10 of aspen data set by se-lected pipelines. The heat maps represent the recombination frac-tion matrix between markers positioned at both axes.
Supplementary Figure S32. Recombination fraction matrix heatmap obtained for 37% of chromosome 1 of rose data set by selectedpipelines. The heat maps represent the recombination fractionmatrix between markers positioned at both axes.
Supplementary Figure S33. A: relation of the Euclidean distancebetween simulated data set with (x-axis) and without (y-axis) mul-tiallelic markers. B: Number of multiallelic markers present in datasets represented in the x-axis of graphic A. The lines crossing thesymbols indicate the standard deviation across the five repetitions.The data sets shown in this figure have allele depth counts fromthe VCF file, segregation distortion, were filtered by a minimumgenotype probability of 0.8, and only informative markers.
Supplementary Figure S34. A: relation of map size betweenempirical data set with (x-axis) and without (y-axis) multiallelicmarkers. B: Number of multiallelic markers present in data setsrepresented in the x-axis of graphic A. The data sets shown in thisfigure have allele depth counts from the VCF file, were filtered by aminimum genotype probability of 0.8, and only informative mark-ers and AD and GQ VCF fields were replaced by missing when GT ismissing.

Abbreviations

GBS: Genotyping-by-Sequencing; PCR: polymerase chain reaction;RADSeq: Restriction-site associated; DNA sequencing; VCF: variantcall format; GQ: genotyping quality; GT: genotype; GWAS: genome-wide association; SNP: single nucleotide polymorphism; LD: link-age disequilibrium; QTL: quantitative trait loci; WDL: workflowdescription language; HPRC: high performance research comput-ing; CPU: central processing unit; HMM: hidden Markov model;EM: expectation-maximization; MAF: minor allele frequency; NGS:Next Generation Sequencing.
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