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Key message The inclusion of multiple traits and multiple environments within a partially separable factor
analytic approach for genomic selection provides breeders with an informative framework to utilise genotype by

environment by trait interaction for efficient selection across multiple traits.
Abstract This paper develops a single-stage genomic selection (GS) approach which incorporates information
on multiple traits and multiple environments within a partially separable factor analytic framework. The factor
analytic linear mixed model is an effective method for analysing multi-environment trial (MET) datasets, but is
yet to be extended to GS for multiple traits and multiple environments. The advantage of incorporating all three
sources of information is that breeders can utilise genotype by environment by trait interaction (GETI) to obtain
more accurate predictions across correlated traits and environments. The partially separable factor analytic linear
mixed model (SFA-LMM) developed in this paper is based on a three-way separable structure, with a factor analytic
model for traits, a factor analytic model for environments and a genomic relationship matrix for genotypes. This
structure is then modified to enable a different genotype by environment interaction (GEI) pattern for each trait,
and a different genotype by trait interaction (GTI) pattern for each environment. The SFA-LMM is demonstrated
on a multi-trait MET dataset from The Australian Rice Breeding Program. Selection within the rice breeding
program is demonstrated using a selection index based on measures of genotype performance and stability. This
approach represents an important continuation in the advancement of plant breeding analyses, particularly with
the advent of high-throughput phenotypic datasets involving a very large number of traits and environments.

Keywords Factor analytic model · Multi-environment trial data · Multi-trait data · Genotype by environment
by trait interaction · Genomic selection · Selection index · Rice breeding

J. Bancic �
The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG,
United Kingdom
E-mail: jon.bancic@ed.ac.uk



2 J. Bancic, B. Ovenden , G. Gorjanc, D.J. Tolhurst

1 Introduction

This paper develops a single-stage genomic selection

(GS) approach which incorporates information on mul-

tiple traits and multiple environments within a partially

separable factor analytic framework. The single-trait

approach of Smith et al. (2001) is an effective method

for analysing multi-environment trial (MET) datasets

which includes a factor analytic model for genotype

by environment interaction (GEI). The factor analytic

model has already been applied to multi-trait datasets

to model genotype by trait interaction (GTI), but is yet
to be extended to multiple traits as well as multiple en-
vironments (Meyer, 2007, 2009). The GS approach de-

veloped in this paper extends the factor analytic model

to incorporate information on multiple traits and multi-

ple environments. Selection is then demonstrated using

an index based on measures of genotype performance

and stability (Smith and Cullis, 2018).

In plant breeding, selection is based on genotype
performance across a set of production environments for

multiple traits of commercial importance. Traditionally,

independent culling has been used by setting thresh-

olds for each trait and selecting genotypes that meet

the thresholds for all traits. However, it does not take

into account the genetic correlations between traits and
may also exclude genotypes that could serve as poten-
tial parents (e.g. high-yielding genotypes that are too

tall for release). A more efficient approach is using a se-

lection index, which takes into account the genetic cor-

relations between traits and weights their importance

based on the breeding objectives (Bernardo, 2010). Se-

lection indices have become a popular approach to ad-
vance material through the breeding pipeline for com-
mercial release as well as selecting potential parents.

Genomic selection is a form of marker-assisted selec-

tion that can improve the genetic gain in plant breeding
programs (Meuwissen et al., 2001). GS has already been

used in the context of a selection index (e.g., Slavov

et al., 2019; Michel et al., 2019), however, many of the

current applications only use information on multiple
environments for a single trait or multiple traits for

a single environment, and this may limit the poten-
tial genetic gain. The advantage of incorporating all
three sources of information is that breeders can utilise
genotype by environment by trait interaction (GETI),

which is an impediment to efficient selection and re-

flects the differential response of genotypes to different

environments and different traits. Another advantage

is that breeders can obtain more accurate predictions
across correlated traits and environments, regardless
of whether there is phenotypic data available or not.

This is especially appealing for i) traits and environ-

ments with low heritability or ii) traits that are difficult

and/or expensive to phenotype.

Information on multiple traits and multiple environ-

ments was first considered for GS by Montesinos-López

et al. (2016a). They presented a three-way separable

model for GETI, which is represented by the Kronecker

product of three variance matrices (see Appendix A).
Their separable model includes an unstructured vari-

ance matrix for traits, a diagonal matrix for environ-

ments and a genomic relationship matrix for genotypes.

Montesinos-López et al. (2019) extended this approach
to include an unstructured variance matrix for envi-

ronments as well as traits, however, they did not ad-
dress spatial variation and other non-genetic sources
(Gilmour et al., 1997). They also used a restrictive

model for GETI which assumes the same GEI pat-

tern for each trait and the same GTI pattern for each

environment. These examples highlight the limitations

of current approaches for analysing multi-trait MET

datasets.

The approach of Smith et al. (2007) includes a model

for GETI as well as non-genetic sources of variation.
Their three-way separable model includes an unstruc-

tured variance matrix for traits and a factor analytic
variance matrix for environments, but they only con-
sider a diagonal matrix for genotypes. The factor ana-

lytic model provides a parsimonious alternative to the

unstructured matrix, and has been widely adopted in

many plant breeding programs (Ukrainetz et al., 2018).
Recently, Smith et al. (2019) extended the approach of

Smith et al. (2007) to include a less restrictive model for
GETI which captures a different GEI pattern for each

trait (treatment) and a different GTI pattern for each

environment. They also demonstrated the application

of plant breeding selection tools, where genotypes with

high overall performance and stability are of high inter-

est to breeders (Smith and Cullis, 2018). There are two

limitations of their approach: i) the unstructured vari-
ance matrix becomes computationally prohibitive for a
large number of traits and ii) they do not consider GS.

The aim of this paper is to extend the approach

of Smith et al. (2019) for GS using a partially sepa-
rable factor analytic model across multiple traits and

multiple environments. This new approach is hereafter

referred to as the partially separable factor analytic lin-

ear mixed model (SFA-LMM). The SFA-LMM was mo-

tivated by the need for:

1.Dimension reduction of high-throughput phenotypic
datasets involving a very large number of traits and/or

environments.

2.Interpretability of genotype by environment and geno-

type by trait interaction patterns.

3.Efficient selection using an index based on measures
of genotype performance and stability, with com-

mon information shared across multiple traits and
multiple environments.

The SFA-LMM is demonstrated on a multi-trait MET

dataset from The Australian Rice Breeding Program.
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2 Material and methods

2.1 Data description

The Australian Rice Breeding Program evaluates the
commercial merit of test genotypes by annually con-
ducting multi-environment field trials for multiple traits.

There are four late-stages of field evaluation, which

are pooled into S1-S2 and S3-S4 joint field trials. Note
that only genotypes from stages S3-S4 are considered

in this paper. Grain yield (YLD; t/ha), days to flower-

ing (DTF) and plant height (PHT; cm) are the primary

agronomic traits of commercial importance. The multi-

trait MET dataset for stages S3-S4 and years 2017-18

is detailed below.

Experimental design

Table 1 presents a summary of the multi-trait MET

dataset. A total of 291 rice genotypes were evaluated in

12 field trials across environments in the Murrumbidgee

and Murray Valley rice growing regions of Australia

(Figure 1). Each environment comprised a single trial,
and is indexed by one of two years (2017 or 2018), one

of two regions (Murrumbidgee or Murray Valley) and

one of three growing seasons (early, mid or late). Each

trial was designed as a randomised complete or incom-

plete (17MBE) block design with 2-4 blocks of 36-84

genotypes for a total of 108-252 plots. Four check cul-

tivars were evaluated in all 12 trials with phenotypes

on 36 plots. Test genotypes were evaluated in 1-12 tri-

als (mean of 3) with phenotypes recorded on 2-36 plots

(mean of 8). The multi-trait MET dataset is therefore

highly unbalanced between trials, and thence environ-

ments. Lastly, the mean yield and generalised narrow-

sense heritability (Oakey et al., 2006) varied substan-
tially between traits and environments.

Figure 2 presents a summary of the connectivity in

the multi-trait MET dataset. The number of genotypes
in common between environments ranged from 5 to 84,
with mean of 19. The number of genotypes in common

between years (102), regions (255) and seasons (27-36)

produced good connectivity across these factors.

Multi-trait data

Table 2 presents a summary of the three agronomic

traits; YLD, DTF and PHT. This table summarises

the phenotypes for each year, region and season. All

traits were recorded for all 291 genotypes in all 12 envi-

ronments, except for missing plots. There are consider-

able differences between years, regions and seasons for

all traits, but especially between regions for DTF and
PHT and between seasons for YLD and DTF. The phe-
notypes for each trait were then scaled to unit variance

for model fitting, with model parameters transformed

back to their original scale for interpretation.

Marker data

Marker data were available for 266 (of the 291) geno-

types and generated from DArTseq (Sansaloni et al.,

2011), coded according to a high confidence set of 14,800
single-nucleotide polymorphisms (SNPs). The frequency

of heterozygous markers was low given the level of self-

ing accumulated up to the S3-S4 stages. Monomorphic

markers were then removed and missing markers were

imputed using the k-nearest neighbour approach of Troy-

anskaya et al. (2001) with k = 10.

The genomic relationship matrix was constructed

using the pedicure package (Butler, 2019) in R (R Core

Team, 2021) according to VanRaden (2008) method

1. The default settings in pedicure were used as fil-

ters, with minor allele frequency > 0.002% and missing

marker frequency < 0.998%. A total of 11, 845 markers
were retained using this criteria. The diagonal elements

of the genomic relationship matrix ranged from 0.861

to 6.590, with mean of 1.825. The off-diagonals ranged

from -0.822 to 2.492, with mean of -0.007.

2.2 Statistical models

Preliminaries

Assume the multi-trait MET dataset comprises s = 3

traits, p = 12 field trials (environments), v = 266 geno-
types and r = 11, 845 markers for n = 2, 358 plots

in total. Also assume the ns-vector of scaled pheno-
typic data is given by y = (y⊤

1 ,y
⊤

2 , . . . ,y
⊤

s )
⊤, where

yi = (y⊤

i;1,y
⊤

i;2, . . . ,y
⊤

i;p)
⊤ is the n-vector of scaled data

for trait i and yi;j is the nj-vector of data for trait i
and environment j. The length of y is therefore given

by:

ns =
s

∑

i=1

p
∑

j=1

nj =
s

∑

i=1

n,

where nj is the length of yi;j and n is the length of yi.

Linear mixed model

The linear mixed model for y can be written as:

y = Xτ + (Is ⊗ Z)u+ (Is ⊗ Zp)up + e, (1)

where τ is a vector of fixed effects with associated de-

sign matrix X (assumed to have full column rank); u

is a vps-vector of random genotype by environment by
trait (GET) effects with n×vp design matrix Z, up is a

vector of random non-genetic (peripheral) effects with

design matrix Zp and e is the ns-vector of residuals.

Note that ⊗ is the Kronecker product operator used to

construct separable structures (see Appendix A).

The vector of fixed effects, τ , includes the mean
parameter for each trait, environment and their inter-

action. The vector of random non-genetic effects, up,
includes the plot structures of each environment within



4 J. Bancic, B. Ovenden , G. Gorjanc, D.J. Tolhurst

each trait (Bailey, 2008). Further effects in τ and up

may relate to genotypes without marker data (Tolhurst
et al., 2019) and spatial modelling (Gilmour et al., 1997),

respectively.

It is assumed that:




u

up

e



 ∼ N









0

0

0



 ,





G 0 0

0 Gp 0

0 0 R







 , (2)

where Gp = ⊕
ps
h=1Gph

is diagonal with a separate vari-

ance component model for each trait by environment

combination and ⊕ is the direct sum operator. More

parsimonious forms of Gp can be used, including those

which assume separability between traits and environ-
ments. The form of G and R is developed below.

2.3 Models for the residuals

The two models considered for the residuals are based

on either a non-separable or separable structure (see

Appendix A). The non-separable residual model is given

by R = ⊕
ps
h=1Rh, which is block diagonal with a sepa-

rate spatial model for each trait by environment com-

bination. The separable residual model is given by:

R = Rt ⊗Re (3)

where Rt is a s × s unstructured variance matrix be-

tween traits and Re = ⊕
p
j=1Rej

is a n× n block diag-

onal variance matrix with a separate spatial model for

each environment. More parsimonious forms of Rt can

be used, including reduced rank factor analytic models

(Faveri et al., 2017). The spatial model for environment
j is given by (Gilmour et al., 1997):

Rej
= σ2

rjΣcj
(ρcj )⊗Σrj (ρrj ), (4)

where Σcj
and Σrj are cj × cj and rj × rj correla-

tion matrices which comprise a single column and row

auto-correlation parameter for the jth environment, re-

spectively.

The model in Equation 3 is restrictive since it as-

sumes the same residual correlation between traits for
all environments. This model can be modified to enable
a different correlation between traits, with:

R = Rt ⊗Re +Σt ⊗ In + Is ⊗Σe, (5)

where Σt = ⊕s
i=1σ

2
ti and Σe = ⊕

p
j=1σ

2
eiInj

are s × s
and n × n diagonal variance matrices between traits

and plots within environments, respectively. The vari-

ances, σ2
ti and σ2

ej , capture any remaining random error

specific to individual traits and environments, respec-

tively. Note that the model in Equation 5 is no longer
completely separable.

2.4 Model for the GET effects

Extending Oakey et al. (2007), the GET effects are
partitioned into additive and non-additive GET effects,

with:

u = ua + un and G = Ga +Gn. (6)

The form of the additive genetic variance matrix, Ga,

is developed below. The non-additive genetic variance

matrix is given by Gn = ⊕
ps
h=1Gnh

, which is diagonal

with a separate variance component for each trait by

environment combination. Other forms of Gn can be
used where appropriate.

Model for the additive GET effects

Extending Stranden and Garrick (2009), the additive
GET effects are modelled using marker data, with:

ua = (Ips ⊗M)um and Ga = Gte ⊗MM⊤/m

= Gte ⊗Gg (7)

where M = [m1 m2 . . . mr] is a v × r design ma-

trix with columns given by the centred genotype scores

for each marker, um is a rps-vector of additive marker
by environment by trait effects, Gte is a ps × ps vari-

ance matrix between environments within traits and

Gg = MM⊤/m is the v×v genomic relationship matrix

between genotypes (VanRaden, 2008). The two forms

of Gte considered below are based on either a non-

separable or separable factor analytic model (see Ap-
pendix A).

2.5 Non-separable factor analytic (NFAk) model

The non-separable factor analytic model postulates the

covariances between additive GET effects in terms of a

small number, k, of latent common factors. The NFAk

model for the additive GET effects is given by:

ua =
(

λ1 ⊗ Iv
)

f1 + . . .+
(

λk ⊗ Iv
)

fk + δ

=
(

Λ⊗ Iv
)

f + δ, (8)

where Λ =
[

λ1 λ2 . . . λk

]

is a ps× k matrix of trait by

environmental loadings, f =
(

f⊤1 , f
⊤

2 , . . . , f
⊤

k

)

⊤

is a vk-

vector of genotype scores in which f l is the v-vector for

the lth latent factor and δ = (δ⊤

1;1, δ
⊤

1;2, . . . , δ
⊤

p;s)
⊤ is a

vps-vector of residual GET effects in which δi;j is the

v-vector specific to the ith trait and jth environment.

It is assumed that:
[

f

δ

]

∼ N

([

0

0

]

,

[

Ik 0

0 Ψ

]

⊗Gg

)

,

where Ψ = ⊕s
i=1 ⊕

p
j=1 ψi;j is a ps× ps diagonal matrix

in which ψi;j is the additive specific variance for the ith

trait and jth environment.

The NFAk variance matrix is therefore given by:

Ga =
(

ΛΛ⊤ +Ψ
)

⊗Gg. (9)

This variance matrix is an extension of the conventional
factor analytic variance matrix of Smith et al. (2001)

for GS for multiple traits and multiple environments.
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2.6 Partially separable factor analytic models

Two partially separable models are also considered for
the additive GET effects. These models are initially

based on a separable variance structure between traits

and environments, that is Gte = Gt ⊗ Ge. The vari-

ance matrix in Equation 7 can therefore be written as

a three-way separable structure, with:

Ga = Gt ⊗Ge ⊗Gg, (10)

where Gt is a s × s variance matrix between traits

and Ge is a p × p variance matrix between environ-

ments. The two models then modify Equation 10 so that

they cannot be represented by the Kronecker product

of three variances matrices, and is thence referred to

as partially separable. The main difference between the

two partially separable models is that the trait dimen-
sion is based on either an unstructured model or factor
analytic model.

Unstructured factor analytic (UFAke) model

Smith et al. (2019) proposed an unstructured variance

model for traits and a factor analytic model for envi-
ronments based on ke latent factors. The UFAke model

for the additive GET effects is given by:

ua = (Is ⊗ λe1
⊗ Iv)fe1

+ . . .+ (Is ⊗ λeke
⊗ Iv)feke

+ δt

= (Is ⊗Λe ⊗ Iv)fe + δt (11)

where Λe =
[

λe1
λe2

. . . λeke

]

is a p× ke matrix of en-

vironmental loadings, fe =
(

f⊤e1
, f⊤e2

, . . . , f⊤eke

)

⊤

is a vke-
vector of genotype scores in which fel

is the v-vector for

the lth latent factor and δt = (δ⊤

t1
, δ⊤

t2
, . . . , δ⊤

ts
)⊤ is the

vps-vector of residual GET effects in which δti is the

vp-vector across environments specific to the ith trait.

It is assumed that:
[

fe
δt

]

∼ N

([

0

0

]

,

[

Σt ⊗ Ike
0

0 Ψt ⊗ Ip

]

⊗Gg

)

,

where Σt is a s×s unstructured variance matrix across
traits and Ψt = ⊕s

i=1ψti is a diagonal matrix in which
ψti is the additive specific variance for the ith trait.

The UFAke variance matrix is therefore given by:

Ga =
(

Σt ⊗ΛeΛe
⊤ +Ψt ⊗ Ip)⊗Gg. (12)

Partially separable factor analytic (SFAkt-ke) model

The partially separable factor analytic model devel-

oped below is a parsimonious alternative to the UFAke
model. This model postulates the covariances between

additive GET effects in terms of a small number, kt
and ke, of latent trait and environmental factors, re-

spectively. The SFAkt-ke variance matrix is given by:

Ga = (ΛtΛ
⊤

t +Ψt)⊗ (ΛeΛ
⊤

e +Ψe)⊗Gg, (13)

with trait and environmental loadings given by:

Λt = [λt1 λt2 . . . λtkt
] and Λe =

[

λe1
λe2

. . . λeke

]

,

which are s×kt and p×ke matrices, respectively, where

λtl is an s-vector for the ltht trait factor and λel
is a

p-vector for the lthe environmental factor. Note that this

formulation enables a different order for the trait and
environmental factors, that is kt and ke.

The specific variances are given by:

Ψt = ⊕
s
i=1ψti and Ψe = ⊕

p
j=1ψej , (14)

which are s × s and p × p diagonal matrices for traits

and environments, respectively, where ψti is the addi-

tive specific variance for the ith trait and ψej is the

additive specific variance for the jth environment.

The model in Equation 13 is restrictive since it as-

sumes the same GEI pattern for each trait and the same

GTI pattern for each environment (see Appendix A).

This model can be modified to enable different GEI

and GTI patterns, with:

Ga = (ΛtΛ
⊤

t ⊗ΛeΛ
⊤

e +Ψt ⊗ Ip + Is ⊗Ψe)⊗Gg.(15)

The SFAkt-ke model for the additive GET effects is
therefore given by:

ua = (λt1 ⊗ λe1
⊗ Iv)f te1

+ . . .+

(λtkt
⊗ λeke

⊗ Iv)f tektke
+ δt + δe

= (Λt ⊗Λe ⊗ Iv)fte + δt + δe (16)

where [Λt ⊗ Λe] is a ps × ktke matrix of joint fac-

tor loadings across traits and environments and fte =
(

f⊤te1;1
, f⊤te1;2

, . . . , f⊤tekt;ke

)

⊤

is a vktke-vector of genotype

scores in which f telt;le
is the v-vector for the ltht trait

and lthe environmental factor. The vps-vectors of resid-

ual GET effects are given by:

δt = (δ⊤

t1
, δ⊤

t2
, . . . , δ⊤

ts
)⊤ and δe = (δ⊤

e1
, δ⊤

e2
, . . . , δ⊤

ep
)⊤,

where δti is a vp-vector across environments specific to
the ith trait and δej

is a vs-vector across traits specific

to the jth environment.

Lastly, it is assumed that:




fte
δt

δe



 ∼ N









0

0

0



 ,





Ikt
⊗ Ike

0 0

0 Ψt ⊗ Ip 0

0 0 Is ⊗Ψe



⊗Gg



 ,

where Ψt and Ψe are defined in Equation 14.

2.7 Model estimation

All models presented above were implemented within a

linear mixed model obtained by substituting Equation 6

into Equation 1, which gives:

y = Xτ + (Is ⊗ Z)(ua + un) + (Is ⊗ Zp)up + e. (17)

The non-separable factor analytic linear mixed model

(NFA-LMM) is then obtained by substituting Equation
8 into Equation 17, which gives:

y = Xτ + ZΛf + (Is ⊗ Z)δ + (Is ⊗ Z)un +

(Is ⊗ Zp)up + e, (18)
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where ZΛ = (Is⊗Z)[Λ⊗ Iv]. In this model, the covari-

ances between GET effects are based on a non-separable
factor analytic model between traits and environments.

The unstructured factor analytic linear mixed model

(UFA-LMM) is obtained by substituting Equation 11

into Equation 17, which gives:

y = Xτ + ZΛe
fe + (Is ⊗ Z) δt + (Is ⊗ Z)un +

(Is ⊗ Zp)up + e, (19)

where ZΛe
= Is⊗Z[Λe⊗ Iv]. In this model, the covari-

ances between GET effects are based on an unstruc-

tured factor analytic model between traits and envi-

ronments.

The partially separable factor analytic linear mixed

model (SFA-LMM) is obtained by substituting Equa-

tion 16 into Equation 17, which gives:

y = Xτ + ZΛte
fte + (Is ⊗ Z) (δt + δe) + (Is ⊗ Z)un +

(Is ⊗ Zp)up + e, (20)

where ZΛte
= Λt ⊗ Z[Λe ⊗ Iv]. In this model, the co-

variances between GET effects are based on a partially

separable factor analytic model between traits and en-
vironments.

All linear mixed models were fitted in R (R Core

Team, 2021) using ASReml-R (Butler et al., 2017). ASReml-R

obtains residual maximum likelihood (REML) estimates

of the variance parameters using an extension of the

average information algorithm (Gilmour et al., 1995).

The REML estimates of the key variance parameters

are given by
[

Λ̂t ⊗ Λ̂e

]

, Ψ̂t and Ψ̂e. Note that con-

straints are required to ensure a unique solution for
[

Λ̂t ⊗ Λ̂e

]

(see Appendix B). The empirical BLUPs of

the key random effects are then given by f̃ te, δ̃t and
δ̃e. Lastly, note that the phenotypes for each trait were

scaled to unit variance during estimation to assist con-
vergence. The variance parameters and random effects
were then transformed back to their original scale after

estimation.

2.8 Model selection

Model selection was achieved using a combination of

formal and informal criteria. Formal assessment was

achieved using the Akaike Information Criterion (AIC).

Informal assessment was achieved using the percentage

of additive genetic variance explained by the trait and

environmental factors. There are three measures for the

SFAkt-ke model:

1.The percentage of additive genetic variance explained
for individual trait by environment combinations is:

v = 100 diag
(

Λ̂Λ̂⊤

)

⊘ diag
(

Λ̂Λ̂⊤ + Ψ̂t ⊗ Ip + Iq ⊗ Ψ̂e

)

,(21)

where Λ̂ = [Λ̂t⊗Λ̂e] and ⊘ is the Hadamard element-

wise division operator. The overall percentage of
variance explained across all traits and environments

is v̄ = 1⊤

psv/ps.

2.The percentage of additive genetic variance explained

for individual traits is:

vt = 100 diag
(

Λ̂tΛ̂
⊤

t tr
[

Λ̂eΛ̂
⊤

e

]

/p
)

⊘ ḡt , (22)

where ḡt is the s-vector of variances for individ-

ual traits defined in Equation 26. The percentage of

variance explained across all traits is v̄t = 1⊤

svt/s.

3.The percentage of additive genetic variance explained

for individual environments is:

ve = 100 diag
(

tr
[

Λ̂tΛ̂
⊤

t

]

Λ̂eΛ̂
⊤

e/s
)

⊘ ḡe , (23)

where ḡe is the p-vector of variances for individual

environments defined in Equation 26. The percent-

age of variance explained across all environments is

v̄e = 1⊤

pve/p.

The final model order is typically chosen such that v̄,

v̄t and v̄e are sufficiently high and the number of traits

and environments with low variance explained in vt and

ve is small. Similar measures can be obtained for the

NFAk and UFAke models.

2.9 Genetic correlations between traits and
environments

The additive genetic variance matrices between traits

for environment j and between environments for trait i

are given by:

Gtj = Λ̂tΛ̂
⊤

t [Λej
Λ⊤

ej
] + Ψ̂t + ψ̂ejIs, (24)

and

Gei
= [Λ̂tiΛ̂

⊤

ti
]Λ̂eΛ̂

⊤

e + ψ̂tiIp + Ψ̂e, (25)

which are s× s and p× p matrices, respectively, where

Λ̂⊤

ej
= (λ̂j;1, . . . , λ̂j;ke

)⊤ and Λ̂⊤

ti
= (λ̂i;1, . . . , λ̂i;kt

)⊤.
The overall additive genetic variance matrices are

given by:

Ḡt =

p
∑

j=1

Gtj/p and Ḡe =
s

∑

i=1

Gei
/s, (26)

where ḡt = diag(Ḡt) and ḡe = diag(Ḡe) are the vec-
tors in Equations 22 and 23, respectively. The variance

matrices above are then converted to correlation matri-
ces for interpretability (see Cullis et al., 2010). Similar

correlation matrices can be obtained for the NFAk and

UFAke models.

2.10 Selection tools

This section extends the selection tools of Smith and
Cullis (2018) to the SFA-LMM. This extension requires

rotation of the loadings and scores to a principal compo-
nent solution, such that the rotated factors are orthog-
onal and sorted in decreasing order (see Cullis et al.,

2010). A separate rotation is used for trait i, with:

Λ̂∗

i = ciΛ̂eVe and f̃∗i =
(

Λ̂ti ⊗V⊤

e ⊗ Iv

)

f̃ te/ci,(27)
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where ci = ±

√

Λ̂tiΛ̂
⊤

ti
and Λti is defined in Equa-

tion 25. The sign of ci is chosen as either -1 or 1 to en-

sure the correlations between traits are preserved within
the loadings. The ke×ke rotation matrix Ve is obtained

via the singular value decomposition Λ̂e = UeD
1/2
e V⊤

e .

Overall performance and stability

The overall performance vector for trait i is given by:

OPi = (λ̄∗

i;1 ⊗ Iv)f̃
∗

i;1, (28)

where λ̄∗

i;1 = 1⊤

pλ̂
∗

i;1/p is the estimated mean loading for

the first rotated factor and f̃∗i;1 is the corresponding v-

vector of predicted scores. OPi can therefore be viewed

as the expected genotype performance for the ith trait

in an average (typical) environment.

The stability vector for trait i is given by:

RMSDi =

√

diag(Ẽ⊤

i Ẽi)/p, (29)

where Ẽi = F̃∗

i Λ̂
∗⊤

i − f̃∗i;1λ̂
∗⊤

i;1 is a v × p matrix of addi-

tive GET effects associated with rotated factors le ≥ 2

and F̃∗

i = [f̃∗i;1 f̃∗i;2 . . . f̃∗i;ke
] is a v × ke matrix of pre-

dicted genotype scores. RMSDi can therefore be viewed

as the variance in genotype performance across all en-

vironments.

The measures of OPi and RMSDi can be used for

selection, and can be visualised using latent regression
plots or scatter plots. The latent regression plots used in
this paper are an extension of Cullis et al. (2014), while

the scatter plots are an extension of Smith and Cullis

(2018). Lastly, OPi and RMSDi can be supplemented

with two measures of variance explained for trait i:

1.The percentage of additive genetic variance explained

by individual rotated factors is:

vi = 100 diag
(

Λ̂∗⊤

i Λ̂∗

i

)/

tr
(

Ḡei

)

, (30)

where Ḡei
is defined in Equation 26. The measure

in Equation 22 for the ith trait is then given by

vti = 1⊤

ke
vi.

2.The percentage of additive genetic variance explained

within individual environments is:

vei
= 100 diag

(

Λ̂∗

i Λ̂
∗⊤

i

)

⊘ ḡei
, (31)

where ḡei
= diag

(

Ḡei

)

.

Selection index

The separate OPi and RMSDi measures can be com-

bined across traits to form a selection index. The selec-

tion index for overall performance is given by:

I = ω1ŌP1 + ω2ŌP2 + . . .+ ωsŌPs

= (ω⊤
⊗ Iv) ŌP (32)

where ω = (ω1, ω2, . . . , ωs)
⊤ is an s-vector of user sup-

plied weights for each trait and ŌP = (ŌP⊤

1 , ŌP⊤

2 , . . . , ŌP⊤

s )
⊤

is a vs-vector of standardised overall performances in

which ŌPi = f̃∗i;1 is the v-vector for the ith trait.

The selection index can be supplemented with a

measure of (model-based) accuracy for each genotype,

with:

acc(I) =
√

1vs − diag
[

PEV(I)⊘ var(I)
]

. (33)

The prediction error variance matrix is given by:

PEV(I) =
(

Ω⊤
⊗ v⊤

e1
⊗ Iv

)

PEV
(

f̃
) (

Ω⊗ ve1
⊗ Iv

)

,(34)

where Ω = Λ⊤

tC
−1ω, with C = ⊕s

i=1ci, ve1
is the first

column of Ve in Equation 27 and PEV(f̃) is the pre-

diction error variance matrix of f̃ .

The variance matrix is given by:

var(I) = Ω⊤Ω⊗Gg. (35)

Note that accuracies for the separate OPi measures can

be obtained using a similar approach. These accura-

cies will be particularly useful for incomplete multi-trait

MET datasets where some traits are measured in some

environments but not others.

3 Results

This section presents the results from fitting the sep-

arable and non-separable linear mixed models to the

multi-trait MET dataset. The dataset comprises 262

test genotypes and four check cultivars that were eval-

uated for three agronomic traits (YLD, DTF, and PHT)

across 12 environments in the south-eastern rice grow-

ing region of Australia. The important results from each

model are detailed below, along with application of the

selection tools to the Australian Rice Breeding Pro-

gram.

3.1 Baseline diagonal model

The analyses began by fitting a non-separable diago-
nal model, which assumes the additive GET effects for

each trait by environment combination are indepen-
dent (Table 3). This process resembles initial single-

trait single-environment analyses that should be per-

formed on multi-trait MET datasets before more com-

plex models are considered. These analyses are used to

examine genetic and non-genetic sources of variation,

identify potential outliers and address spatial variations

(see the Supplementary Material).

The non-separable diagonal model was also used to

compare the two residual spatial models, that is diag∗

and diag in Table 3. The two spatial models have very

similar AIC (-6519.0 compared to -6515.1), but have

different numbers of residual parameters (108 compared

to 55). This indicates that the spatial model in diag

provides a comparably good fit with fewer parameters,

and was thence used in all subsequent analyses.
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3.2 Non-separable factor analytic linear mixed model

(NFA-LMM)

The analyses then proceeded by fitting a series of NFA-

LMMs (Table 3). The distinguishing feature of the NFA-

LMM is that the additive GET effects for different trait

by environment combinations are now assumed to be

correlated. These models provide a much better fit to

the multi-trait MET dataset compared to the baseline

diagonal models. The final order was selected using the

formal and informal measures similar to those in Sec-
tion 2.8. Only k = 3 factors were required to achieve

an adequate fit and sufficient percentage of additive ge-

netic variance explained across traits (v̄t = 86.2%), en-

vironments (v̄e = 86.8%) and overall (v̄ = 87.1%). The

latter measure reflects the percentage of GETI com-

mon to multiple (at least two) trait by environment

combinations. The remaining 12.9% not explained by

the common factors then reflects residual GETI spe-

cific to individual trait by environment combinations.

Higher order models were fitted, but proved unneces-

sarily complicated (Table 3).

3.3 Unstructured factor analytic linear mixed model
(UFA-LMM)

The analyses then proceeded by fitting a series of UFA-
LMMs (Table 4a). The distinguishing feature of the

UFA-LMM is that it has a separable model between

traits and environments, and thence has much fewer

variance parameters than the NFA-LMM. Only ke = 2

environmental factors were required to achieve an ad-

equate fit and sufficient percentage of additive genetic

variance explained across traits (v̄t = 83.3%), environ-
ments (v̄e = 78.1%) and overall (v̄ = 81.5%). The lat-

ter measure reflects the percentage of GETI common

to multiple environments. The remaining 18.5.4% not

explained by the environmental factors reflects residual

GETI specific to individual traits.

3.4 Partially separable factor analytic linear mixed

model (SFA-LMM)

The analyses concluded by fitting a series of SFA-LMMs

(Table 4b). The distinguishing feature of the SFA-LMM

is that it includes a partially separable factor analytic

model between traits and between environments. The

SFA-LMM therefore has much fewer variance parame-

ters than the NFA-LMM, and will have much fewer pa-

rameters than the UFA-LMM as the number of traits
increases. Only kt = 3 and ke = 2 factors were re-

quired to reach an adequate fit and sufficient percent-

age of additive genetic variance explained across traits

(v̄t = 76.2%), environments (v̄e = 77.5%) and overall

(v̄ = 80.8%). The latter measure reflects the percentage

of GETI common to multiple traits and multiple envi-

ronments. The remaining 18.9% not explained by the

trait and environmental factors reflects residual GETI

specific to individual traits and/or environments.

3.5 Model comparison

Formal model selection criteria was used to compare

the selected SFA3-2 and UFA2 models (Table 4). The

SFA3-2 model has more additive genetic variance pa-

rameters (42 compared to 31), but has a much lower

AIC (-6,982.0 compared to -6970.9). This indicates that

the SFA3-2 model provides a superior fit than the UFA2

model with three traits, and suggests that it will pro-

vide a superior fit with fewer variance parameters as

the number of traits increases. The NFA3 model does

have a better AIC than the SFA3-2 model, however,

note that it estimates ∼ 3.5 times more additive ge-

netic variance parameters with only three traits and

12 environments (141 compared to 42). This difference

will become even more apparent for a larger number of

traits and environments.

3.6 Model summaries

Table 5 presents a summary of the three agronomic
traits and 12 rice growing environments for the SFA3-2

model. Note that these summaries correspond to the
scaled phenotypes. The additive genetic variance for
traits, ḡt, was 0.36 for YLD, 3.03 for DTF and 16.06

for PHT . The additive genetic variance for environ-
ments, ḡe, was highest for 18MBE (14.25) and low-

est for 17MBL (2.43). By design, the overall variance

across traits and environments is the same, and equal
to ḡ = 6.48. The percentage of variance explained for
traits, vt, was highest for PHT (95.3%) and then DTF

(73.7%), but note that only 60.0% was explained for

YLD. The percentage of variance explained for envi-

ronments, ve, was highest for 17MBE (92.3%) while

all other environments were >60% explained except for

17MVE (48.4%). Lastly, Table 5 presents the REML es-

timates of the unrotated factor loadings. These matri-
ces demonstrate the structure of G, and the constraints

required during estimation (Section 2.7).

Genetic correlations between traits and environments

Table 6 presents the REML estimates of the additive ge-

netic correlations between traits for each environment,

while Figure 3 presents the additive genetic correlations

between environments for each trait. These matrices are

used to examine GETI from the perspective of the traits

and the environments.

Table 6 shows that the additive genetic correlations

between traits are different for each environment. These

correlations were obtained from Ḡtj in Equation 24.
The correlations between YLD and DTF were almost

zero for all environments, with -0.02 overall. In terms
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of YLD and PHT, the correlations were highest for

17MVE (-0.23) and lowest for 17MBE (-0.42) with -
0.36 overall. In terms of DTF and PHT, the correla-

tions were highest for 17MVE (-0.09) and lowest for six

environments (-0.23), with -0.20 overall. This indicates

substantial dissimilarity in genotype rankings between

YLD and DTF, and a reversal of rankings between PHT

and each of these traits.

The heatmaps in Figure 3 show that the additive

genetic correlations between environments are different
for each trait. These correlations were obtained from

Ḡei
in Equation 25 and ordered based on a dendrogram

applied to YLD (see Cullis et al., 2010). There are three

important features of the heatmaps:

1.The GEI patterns are substantially different for each

trait, especially YLD. The correlations for YLD range
from 0.30 to 0.70 (mean of 0.52), for DTF they range
from 0.26 to 1.00 (mean of 0.73) and for PHT they

range from 0.66 to 0.98 (mean of 0.88). This in-

dicates considerable dissimilarity in genotype rank-

ings between environments for YLD and thence con-

siderable crossover GEI. The opposite is true for

DTF (except 17MVE and 18MBM) and PHT.
2.There is little structure to the overall GEI patterns

across traits, that is GEI is not aligned with year,

region or season.

3.The lowest correlations correspond to 17MVE and

18MBM, especially for YLD and DTF. These two

environments also have the lowest variance explained

(Table 5).

Table 6 and Figure 2 provide summaries of GETI
from the perspective of the traits and environments.

The selection tools demonstrated below enable GETI to
be summarised from the perspective of the genotypes.

3.7 Selection tools

The selection tools were applied to the SFA3-2 model in

terms of the additive GET effects. These tools provide

breeders with measures of overall performance (OPi)
and stability (RMSDi) for each trait. Selection will be

demonstrated separately for each trait and then to-

gether using a selection index.

Overall performance and stability

Table 7 presents the REML estimates of the rotated

factor loadings for each trait, while Figure 4 presents

latent regression plots and OPi vs RMSDi plots for each

genotype. This information is used to demonstrate se-

lection within each trait. YLD is the primary trait of

economic importance, and thence the focus in the fol-

lowing.

The OPi measure for YLD is a function of the first

rotated factor, which explains v1;1 = 57.3% of the ad-

ditive genetic variance (Table 7a). Since all loadings for

this factor are positive, the fitted GET effects capture

non-crossover GEI only (see Smith and Cullis, 2018).
This feature can be visualized using the latent regres-

sion plot in Figure 4a for reference genotypes G1-G4,

where the regression lines diverge and never crossover.

OPi is therefore given by the fitted GET effect at the

mean loading of 0.44 (vertical dotted line), that is 0.96

for G1, 0.37 for G2, -0.40 for G3 and -1.79 t/ha for G4.

This measure reflects the expected YLD performance

for G1-G4 in an average environment.

The RMSDi measure for YLD is a function of the
second rotated factor, which only explains v1;2 = 3.7%

of the additive genetic variance (Table 7a). Since this
factor comprises both positive and negative loadings,

the regression lines crossover (not shown) and the fitted

GET effects predominately capture crossover GEI only.

The RMSDi measure can also be visualised using the

latent regression plot in Figure 4a. RMSDi is equal to
the root mean square of the deviations around the first

factor regression line, that is 0.03 for G1, 0.01 for G2,

0.02 for G3 and 0.14 for G4 t/ha. This measure reflects

the variance in YLD performance across environments

for G1-G4.

Selection across all genotypes for YLD can then be

achieved using the OP vs RMSD plot in Figure 4a. Con-

sistently high performing (yielding) genotypes occur at

the top left of this figure. For example, G1 is high yield-

ing and stable since it has high OP and low RMSD.

By comparison, poor yielding and unstable genotypes

which have low OP and high RMSD occur at the bot-

tom right (see, for example, G4). The remaining high-

lighted genotypes are high (G2, Kyeema and Langi),

average (Topaz) or low (G3) yielding but stable. Sim-

ilar interpretation can be made for DTF and PHT in

Figures 4a and b, but note that the first rotated factor

explains 69.5 and 90.5 % of the additive genetic vari-
ance in these traits (Tables 7b and c). Also note that

genotypes of high interest occur at the bottom left for
these traits, such as G3 which flowers consistently early
and G2 which grows consistently short.

Selection Index

Figure 5 presents a parallel coordinate plot with stan-

dardised OP for each trait, as well as a selection in-
dex. The weights used in this index were 0.7, -0.2 and
-0.1 for YLD, DTF and PHT, respectively. Note that

the weights are arbitrary and are used to illustrate the

concepts and methods developed in Section 2. The ex-

tension to economic weights is straightforward. The se-
lection index is used to achieve simultaneous selection

across all traits. For example, G1 is higher yielding and
has a similar flowering time to G2, however, they have
the same index value since G2 is much shorter than G1.

Both genotypes also have a higher index than the four

check culitvars and G3. By comparison, G4 is much

lower yielding and much taller than all other test geno-

types, and thence has a much lower index value. Lastly,
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note that the patterns observed in the standardised OP

measures for YLD, DTF and PHT reflect the observed

variances for these traits (Table 5), as well as the ob-

served correlations between traits (Table 6).

4 Discussion

This paper developed a single-stage GS approach which

incorporates information on multiple traits and mul-

tiple environments within a partially separable factor

analytic framework. The factor analytic linear mixed
model of Smith et al. (2001) is an effective method

for analysing MET datasets, but is yet to be extended

to GS for multiple traits and multiple environments.

The advantage of incorporating both sources of infor-

mation is that breeders can utilise GETI to obtain more

accurate predictions of the GET effects across both

factors. The partially separable factor analytic linear
mixed model (SFA-LMM) developed in this paper is
based on a three-way separable structure, with a factor

analytic model for traits, a factor analytic model for en-

vironments and a genomic relationship matrix for geno-

types. This approach is a natural extension of the fac-

tor analytic linear mixed model, which has been widely

adopted in most major Australian plant breeding pro-

grams (Smith et al., 2015).

Plant breeders select superior genotypes with re-

gards to performance across a set of production envi-

ronments for multiple traits of commercial importance.

Plant breeding datasets are therefore naturally gener-
ated as multi-trait MET datasets. Many of the current

statistical approaches, however, only include models for

GEI within single traits or models for GTI within sin-

gle environments, but very few have considered appro-

priate models for GETI across multiple traits and en-

vironments. Recently, Montesinos-López et al. (2018)

demonstrated a restrictive model for GETI which as-
sumes the same GEI pattern for each trait and the same
GTI pattern for each environment. They also did not

address spatial variation and other non-genetic sources

(also see Montesinos-López et al., 2016b; Volpato et al.,

2019).

The approach of Smith et al. (2019) includes a less
restrictive model for GETI and accommodates non-

genetic sources of variation. Their approach includes
an unstructured variance matrix for traits (treatments)
and a factor analytic variance matrix for environments,
but they only consider a diagonal matrix for genotypes.

There are two limitations of their approach: i) the un-

structured matrix becomes computationally prohibitive

for a large number of traits and ii) they do not consider

GS. Meyer (2009) did previously suggest that a separa-

ble factor analytic model could be used for traits as well

as environments, but this was never put into practice.

The SFA-LMM developed in this paper extends the ap-

proach of Smith et al. (2019) for GS using a partially

separable factor analytic model across multiple traits

and multiple environments.
There are three appealing features of the SFA-LMM

which address the limitations of current statistical ap-

proaches:

1.Dimension reduction: The SFA-LMM includes a par-

tially separable factor analytic model for GETI in
terms of a small number of trait and environmen-
tal factors. This enables common information to be

shared across both factors while simultaneously re-

ducing their dimension.

2.Interpretability: The SFA-LMM captures a different

GTI pattern for each environment and a different

GEI pattern for each trait. This provides an appro-

priate framework to summarise GETI in multi-trait

MET datasets.

3.Efficient selection: The SFA-LMM provides a natu-

ral framework for applying plant breeding selection

tools. This enables breeders to obtain measures of

OPi and RMSDi for each trait as well as an overall
selection index.

The SFA-LMM was demonstrated on a multi-trait

MET dataset from The Australian Rice Breeding Pro-

gram. The dataset comprises 262 test genotypes and

four check cultivars that were evaluated for three agro-
nomic traits across 12 environments in the south-eastern
rice growing region of Australia. This dataset was used

to illustrate the concepts and methods developed in

Section 2. Note, however, it only includes a very small

number of traits and therefore does not exploit the po-

tential of the SFA-LMM to analyse a large number of

traits. The practical implication of this will be discussed
further below.

There are three important results from fitting the

SFA-LMM which highlight its practicality for analysing
multi-trait MET datasets:

1.The selected SFA3-2 model provides a better fit

than the UFA2 model in terms of AIC, and is more
parsimonious than the NFA3 model (Tables 3 and 4).

The SFA model will also be more parsimonious than

the UFA model when the number of traits increases.

This highlights the advantage modelling GETI in

terms of a small number of trait and environmental

factors.
2.The additive genetic correlations between traits are

higher for 17MVE and 18MBM compared to all other

environments (Table 6). The correlations between

environments are much higher for DTF and PHT

compared to YLD (Figure 3). This highlights the

ability of the SFA-LMM to capture a different GTI

pattern for each environment and a different GEI

pattern for each trait.

3.The selection index was demonstrated for 262 test

genotypes and four check cultivars in the multi-trait

MET dataset. This index enables breeders to make

efficient selections for multiple traits based on geno-

type performance across multiple environments.



Genomic selection using information on multiple traits and multiple environments 11

Each point will now be discussed further.

With regards to point 1, Meyer (2009) warned about

the challenges of using factor analytic models when the
covariances between traits cannot be attributed to a
small number of common factors. This is often the case

when the correlations between traits are low and/or the

number of traits is small, which restricts the maximum

number of factors that can be fitted. This issue was ob-

served for the current multi-trait MET dataset which
only includes three traits. The additive genetic variance
explained for YLD was only 60.4% and this will likely
increase with additional (correlated) traits. The appli-

cation of the SFA-LMM to a larger multi-trait MET

dataset with more traits is the topic of current research.

With regards to point 2, understanding the genetic

correlations between environments provides valuable in-

formation for making selection decisions. The correla-

tions for YLD show no clear year, location or seasonal
pattern (Figure 3). This is consistent with the com-

plex nature of GEI in the south-eastern Australian rice

growing region, which is driven by complex environ-

mental factors such as reproductive cold damage from

infrequent cool weather periods during microspore de-

velopment (Williams and Angus, 1994). By comparison,

the correlations between environments for DTF and

PHT are high, which reflects their generally high line-

mean heritability in the breeding program and in rice

germplasm more broadly (Wei et al., 2020). This also

demonstrates that there is little crossover GEI in these
traits. The only exceptions are 17MVE and 18MBM

for DTF which are not well correlated with the re-

maining environments. The trials in these environments

may have experienced different management practices

or extreme growing conditions. Regardless, the SFA-

LMM has a natural way of accommodating such envi-

ronments, where their low variance explained also re-

flects their low contribution to the model.

Understanding the genetic correlation between traits
also provides valuable information for making selec-

tion decisions. The lack of correlation between YLD
and DTF (-0.02) indicates that the current breeding
germplasm could be subject to selection for DTF with-
out impacting YLD. For example, there is a need to de-

velop high yielding cultivars for both short season (early

flowering time) and full season (late flowering time),

and the low correlation suggests that both breeding tar-

gets could be pursued with the current germplasm. The

negative correlation between YLD and PHT (-0.36) in-

dicates that shorter genotypes tend to be higher yield-

ing. This could be due to the interaction between lodg-

ing and yield. Generally, taller genotypes in the south-
eastern growing region are more prone to lodging at
maturity (Lewin and Heenan, 1987). This makes har-

vest more difficult and results in lower yields (Ookawa

et al., 2010). Harvest index (grain yield as a fraction

of total above ground biomass) may also explain the

negative correlation between YLD and PHT. Breeding

programs across a range of cereals have manipulated

harvest index to increase yields, most notably through

indirect selection for the semi-dwarfing trait since this

is easier than selecting for biomass directly (Hay, 1995;

Sinclair, 1998). Lastly, the negative correlation between

DTF and PHT (-0.20) indicates that taller genotypes

tend to flower early. This correlation may be a result

of the breeding objectives where selection is primarily

for high yielding and short genotypes, and secondarily
for early flowering genotypes. The observed correlation
between DTF and PHT could be an indirect result of

this selection strategy.

With regards to point 3, rice breeders select geno-

types that are high yielding, early flowering and short.
These selections can be made using the OP vs RMSD
plots in Figure 4 for each trait separately. For example,

genotype G1 would be selected for YLD, G3 would be

selected for DTF and G2 would be selected for PHT.

This approach is similar to traditional threshold selec-

tion, with the exception that genotypes are now selected

based on their overall performance as well as their sta-

bility (Smith and Cullis, 2018). With more than one

trait, however, this approach is inefficient and ignores

the genetic correlations between traits. The selection

index in Figure 5 weights the importance of individ-
ual traits based on the breeding objectives. This in-

dex utilises the common information across the traits
and environments within the SFA-LMM, and thence en-
ables breeders to make efficient selections across multi-
ple traits. Note that the selection index demonstrated

in this paper was based on OP alone since the variance

explained by the higher order factors is very small. The

importance of RMSD will likely increase as the number

of traits increases.

The selection index provides important information

on the overall merit of test genotypes compared to the

check cultivars. The check cultivars provide a baseline

for the three traits under selection. For example, Langi

is a high yielding and soft cooking long grain culti-
var which is broadly adapted across the Australian rice
growing area. Doongara is a semi-dwarf japonica long

grain variety that flowers late and can be high yield-

ing under favourable conditions, being susceptible to

reproductive cold damage at all growth stages. Kyeema

is a tall jasmine style cultivar that does not have the

semi-dwarf trait. Kyeema was superseded by Topaz,
which is a semi-dwarf jasmine style cultivar with no-
tably later flowering time than the other three check

cultivars. The selection index highlights numerous test

genotypes which have a higher overall merit than the

check cultivars (e.g. G1 and G2). This demonstrates the

immediate genetic gain that can be made in the Aus-

tralian rice breeding program. The parallel coordinate

plot in Figure 5 also highlights numerous test genotypes

that should be retained in the programme as parents

to maintain genetic variation in the traits under selec-

tion, although they may not be candidates for release.

For example, G1 is a high-yielding and early flowering

genotype which may be too tall for commercial release.
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The inclusion of multiple traits and multiple en-

vironments within a single-stage SFA-LMM provides
breeders with an informative framework to utilise GETI

for GS. This approach represents an important continu-

ation in the advancement of statistical analyses of plant

breeding datasets, particularly with the advent of high

throughput phenotypic data involving a very large num-

ber of traits and environments. It also represents an

appropriate approach to handle incomplete data where

some traits are measured in some environments but not

others.
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Table 1: The multi-trait MET dataset, Part 1: Summary of growing environments. Presented is the number of genotypes (with two, three or four replicates) and
total number of plots. Also presented for grain yield (YLD), days to flowering (DTF) and plant height (PHT) is the mean, number of missing plots and generalised

narrow-sense heritability (h2). The data are presented such that the white and grey blocks represent the △ Murrumbidgee and × Murray Valley growing regions,
respectively.

Genotypes Plots YLD (t/ha) DTF (days) PHT (cm)

Region Env Total 2rep 3rep 4rep Total Mean NAs h2 Mean NAs h2 Mean NAs h2

17MBE 72 24 0 48 240 8.6 2 0.73 98.3 8 0.61 80.5 1 0.81

17MBM 60 0 0 60 240 8.5 5 0.64 91.7 0 0.51 80.3 0 0.66
17MBL 60 0 0 60 240 6.7 4 0.08 83.7 5 0.23 82.3 0 0

18MBE 84 0 84 0 252 11.5 18 0.56 110.2 0 0.60 92.3 0 0.79

18MBM 84 0 84 0 252 8.8 5 0.04 95.9 0 0.68 84.8 1 0.32

△ Murrumbidgee 18MBL 84 0 84 0 252 10.0 27 0.25 90.2 4 0.24 84.7 0 0.52

17MVE 36 0 36 0 108 9.6 0 0.47 120.3 1 0.94 75.7 0 0.50

17MVM 45 0 45 0 135 10.3 1 0.38 117.9 0.00 0.65 68.7 1 0.36

17MVL 45 0 45 0 135 7.9 1 0.20 106.4 10 0.74 71.0 1 0.79

18MVE 84 84 0 0 168 9.6 10 0.41 124.0 17 0.44 75.6 0 0.61

18MVM 84 84 0 0 168 10.3 2 0.75 115.4 5 0.41 73.5 0 0.70

× Murray Valley 18MVL 84 84 0 0 168 6.7 5 0.31 104.3 20 0.24 63.7 1 0.40

Overall - 291 - - - 2358 9.0 80 0.40 104.9 70 0.48 77.7 5 0.54

*Each environment is a unique year-region-season combination.
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Table 2: The multi-trait MET dataset, Part 2: Summary of agrnomic traits. Presented for grain yield (YLD), days

to flowering (DTF) and plant height (PHT) is the minimum, mean and maximum for each year, region and season.

Values presented are prior to scaling phenotypes to unit variance.

YLD (t/ha) DTF (days) PHT (cm)

Min Mean Max Min Mean Max Min Mean Max

2017 2.0 8.4 12.5 68.0 99.2 128.0 56.0 77.8 140.0

Year 2018 1.6 9.6 15.6 73.0 104.8 127.0 49.0 80.7 129.0

△ Murrumbidgee 2.0 9.0 15.6 68.0 95.1 122.0 62.0 84.2 140.0

Region × Murray Valley 1.6 9.0 12.5 86.0 114.7 128.0 49.0 71.2 99.0

Early 2.0 10.5 15.6 99.0 116.4 128.0 65.0 83.6 129.0

Mid 2.0 9.3 12.5 84.0 104.5 123.0 56.0 78.4 140.0

Season Late 1.6 8.1 12.8 68.0 93.2 112.0 49.0 77.9 109.0
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Table 3: Summary of the non-separable linear mixed models fitted to the multi-trait MET dataset. Presented is

the number of estimated additive variance parameters, residual log-likelihood, AIC and percentage of variance

explained across all traits (v̄t), environments (v̄e) and overall (v̄).

Non-separable factor analytic linear mixed models

Model Params Loglik AIC v̄t v̄e v̄

diag∗ 36 3493.5 -6519.0 - - -

diag 36 3438.6 -6515.1 - - -

NFA1 72 3626.6 -6819.1 37.8 60.0 57.7

NFA2 107 3764.5 -7025.0 69.3 72.8 71.2

NFA3 141 3820.3 -7068.5 86.2 86.8 87.1

NFA4 174 3853.9 -7069.9 93.1 93.4 94.0

Note: 145 non-additive, non-genetic and residual variance parameters

estimated in all models, except diag∗ which includes a non-separable

residual model with 198 parameters. The selected NFA3 model is dis-

tinguished with bold font.
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Table 4: Summary of the a. unstructured and b. partially separable factor analytic linear mixed models fitted to the multi-trait MET dataset. Presented is the number

of estimated trait and environmental variance parameters, residual log-likelihood, AIC and percentage of variance explained across all traits (v̄t), environments (v̄e)

and overall (v̄).

a. Unstructured factor analytic linear mixed models b. Partially separable factor analytic linear mixed models

Model Params Loglik AIC v̄t v̄e v̄ Model Params Loglik AIC v̄t v̄e v̄

diag:diag 2-12 3379.3 -6440.7 - - - SFA1-1 5-23 3571.4 -6796.6 32.9 51.8 53.4

us:diag 5-12 3392.3 -6462.7 - - - SFA1-2 5-34 3579.4 -6790.7 33.3 52.9 54.9
UFA1 8-12 3634.0 -6938.0 80.3 74.6 78.6 SFA2-1 7-23 3639.8 -6929.5 54.4 57.9 60.6

UFA2 8-23 3661.4 -6970.9 83.3 78.1 81.5 SFA2-2 7-34 3648.7 -6925.4 55.6 60.3 63.9

UFA3 8-33 3668.2 -6964.3 85.1 80.9 83.8 SFA3-1 8-23 3667.4 -6982.7 68.1 72.7 76.1

SFA3-2 8-34 3678.2 -6982.0 76.3 77.6 81.1

SFA3-3 8-44 3685.3 -6976.4 77.4 79.8 82.8

Note: 145 non-additive, non-genetic and residual variance parameters estimated in all models. The selected UFA2 and SFA3-2 models are distin-

guished with bold font.
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Table 5: The SFA3-2 model, Part 1: Summary of a. traits and b. environments. Presented is the REML estimates

of additive genetic variance (ḡt and ḡe), percentage of variance explained for individual traits and environments

(vt and ve) and the estimates of unrotated factor loadings (λ̂tlt
and λ̂ele

). The traits are grain yield (YLD), days

to flowering (DTF) and plant height (PHT).

a. Traits ḡt vt λ̂t1 λ̂t2 λ̂t3 b. Envs ḡe ve λ̂e1
λ̂e2

YLD 0.36 60.0 1 0 0 17MBE 11.88 92.2 0.66 0

DTF 3.03 73.7 -0.08 3.21 0 17MBM 4.94 74.3 0.36 0.17
PHT 16.06 95.3 -4.00 -2.07 7.10 17MBL 2.43 69.9 0.27 0.10

Overall 6.48 76.3 - - - 17MVE 4.55 47.5 0.30 0.04

17MVM 5.77 85.0 0.40 0.22

17MVL 5.61 83.8 0.34 0.28

18MBE 14.25 89.4 0.63 0.30

18MBM 5.14 60.0 0.36 0.04
18MBL 7.70 83.2 0.42 0.29

18MVE 3.21 75.6 0.24 0.24

18MVM 6.54 86.6 0.41 0.26

18MVL 5.75 84.2 0.39 0.22

Overall 6.48 77.6 - -

Note: The overall additive genetic variance (ḡ) and the percentage of variance explained across all
traits and environments (v̄t and v̄e) is presented in the final row.
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Table 6: The SFA3-2 model, Part 2: Additive genetic correlations between grain yield (YLD), days to flowering

(DTF) and plant height (PHT) for each environment.

Env YLD-DTF YLD-PHT DTF-PHT

17MBE -0.02 -0.42 -0.23

17MBM -0.02 -0.33 -0.18

17MBL -0.02 -0.29 -0.23

17MVE -0.01 -0.23 -0.09

17MVM -0.02 -0.38 -0.23
17MVL -0.02 -0.37 -0.21

18MBE -0.02 -0.41 -0.21

18MBM -0.01 -0.28 -0.12

18MBL -0.02 -0.37 -0.19

18MVE -0.02 -0.33 -0.23

18MVM -0.02 -0.38 -0.23
18MVL -0.02 -0.37 -0.23

Overall -0.02 -0.36 -0.20
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Table 7: The SFA3-2 model, Part 3: Summary of rice growing environments for a. grain yield (YLD), b. days to

flowering (DTF) and c. plant height (PHT). Presented for each trait is the REML estimates of additive genetic

variance (ḡei
), percentage of variance explained for individual environments (vei

) and the rotated factor loadings

(λ̂∗

i;le).

a. YLD (t/ha) b. DTF (days) c. PHT (cm)

Env ḡe1
ve1

λ̂
∗

1;1 λ̂
∗

1;2 ḡe2
ve2

λ̂
∗

2;1 λ̂
∗

2;2 ḡe3
ve3

λ̂
∗

3;1 λ̂
∗

3;2

17MBE 0.56 77.5 0.60 -0.27 4.43 100.0 1.92 -0.86 30.66 99.2 -5.04 2.24

17MBM 0.30 51.6 0.40 0.01 2.59 61.5 1.27 0.03 11.93 92.6 -3.32 -0.09

17MBL 0.21 39.5 0.29 -0.02 0.87 100.0 0.93 -0.08 6.22 96.0 -2.44 0.20

17MVE 0.30 31.4 0.29 -0.09 4.47 21.4 0.93 -0.28 8.89 72.6 -2.42 0.73

17MVM 0.33 62.8 0.45 0.04 2.13 100.0 1.45 0.14 14.85 98.4 -3.80 -0.38
17MVL 0.33 60.7 0.43 0.12 2.16 86.4 1.38 0.39 14.35 97.0 -3.61 -1.01

18MBE 0.65 76.6 0.70 0.02 6.28 81.0 2.25 0.06 35.83 97.2 -5.90 -0.16

18MBM 0.32 40.8 0.34 -0.11 4.05 32.4 1.09 -0.36 11.05 82.0 -2.86 0.93

18MBL 0.41 63.3 0.50 0.10 3.55 71.1 1.61 0.31 19.14 95.2 -4.21 -0.80
18MVE 0.24 47.6 0.31 0.12 1.16 100.0 1.01 0.38 8.22 97.1 -2.64 -1.01

18MVM 0.36 65.6 0.48 0.07 2.42 100.0 1.54 0.24 16.85 98.6 -4.03 -0.63
18MVL 0.33 62.2 0.45 0.04 2.20 100.0 1.44 0.13 14.73 98.4 -3.78 -0.34

Overall 0.36 60.0 57.3 3.1 3.03 73.7 69.5 3.7 16.06 95.3 90.5 4.8

Note: The overall additive genetic variance (ḡti), percentage of variance explained across all environments (vti) and by
individual rotated factors (vi) is presented in the final row.
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Fig. 1: Map of rice growing areas in the multi-trait MET dataset. Regions are distinguished by shape.
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Fig. 2: Connectivity in the multi-trait MET dataset in terms of the number of genotypes in common between pairs
of a. environments, b. years, c. regions and d. seasons. The diagonal elements in all figures represent the number

of unique genotypes, while the lower diagonal in a is shown as a heatmap with supporting colorkey.
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Fig. 3: Heatmaps of the additive genetic correlation matrices between rice growing environments for a. grain yield

(YLD), b. days to flowering (DTF) and c. plant height (PHT) and d. overall. All matrices are ordered using

the dendrogram applied to a. The colourkey ranges from 1 (agreement in rankings) through zero (dissimilarity in
rankings) to -1 (reversal of rankings).
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Fig. 4: Latent regression and OP vs RMSD plots for a. grain yield (YLD), b. days to flowering (DTF) and c.

plant height (PHT). The latent regression plots are demonstrated using reference genotypes G1-G4 while the OP

vs RMSD plots include all 262 test genotypes and four check cultivars. The labels on the latent regression plots

represent the OP of G1-G4 taken at the mean loading of the first rotated factor (vertical dotted line). Growing

regions are distinguished by shape. The variance explained by the first and second rotated factors (vi;1 and vi;2)

is labelled on the OP vs RMSD plots. Values presented are after transforming parameters back to their original
scale.



26 J. Bancic, B. Ovenden , G. Gorjanc, D.J. Tolhurst

Fig. 5: Parallel coordinate plot with standardised OP for grain yield (YLD), days to flowering (DTF) and plant
height (PHT) as well as the selection index. The weights used in the index are 0.7, -0.2 and -0.1 for YLD, DTF

and PHT, respectively. The plot includes all 262 test genotypes and four check cultivars (distinguished by colour).
The labels on the plot correspond to the reference genotypes G1-G4.
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Appendix A Model Separability

This appendix demonstrates the difference between non-
separable, separable and partially separable structures.

The examples below are demonstrated using a environ-

ment by trait variance matrix, with s traits and p en-

vironments.

A.1 Non-separable models

Let A denote a general ps × ps non-separable trait by

environment variance matrix. Consider s = 2 traits and

p = 2 environments as an example, the non-separable
variance matrix can therefore be written as:

A =









a11 a11;12 a11;21 a11;22
a12;11 a12 a12;21 a12;22
a21;11 a21;12 a21 a21;22
a22;11 a22;12 a22;21 a22









,

where aij is the variance for the ith trait and jth envi-

ronment combination, aij;kl is the covariance between

the ith trait and jth environment combination and the
kth trait and lth environment combination. This vari-

ance matrix is non-separable since it cannot be repre-
sented by the Kronecker product of two matrices.

A.2 Separable models

When A has a separable structure, it can be written

as the Kronecker product of two matrices. In this case,

A = B ⊗ C, where B is a s × s variance matrix for

traits, C is a p × p variance matrix for environments

and ⊗ is the Kronecker product operator. The separable
variance matrix can therefore be written as:

B⊗C =

[

b11 b12
b21 b22

]

⊗

[

c11 c12
c21 c22

]

=









b11c11 b11c12 b12c11 b12c12
b11c21 b11c22 b12c21 b12c22
b21c11 b21c12 b22c11 b22c12
b21c21 b21c22 b22c21 b22c22









, (36)

where biicjj is the variance for the ith trait and jth envi-

ronment combination, bijckl is the covariance between

the ith trait and jth environment combination and the

kth trait and lth environment combination. Lastly, note
that separable structures are favourable since they in-

volve far fewer variance parameters than non-separable

models as the number of traits and environments in-

crease, that is (p + s) parameters compared to ps pa-

rameters.

A.3 Partially separable models

When A has a partially separable structure, it can be

written as A = B⊗C+D, where B and C are defined

above and D is a ps × ps diagonal variance matrix.

The partially separable variance matrix can therefore
be written as:

B⊗C+D =

[

b11 b12
b21 b22

]

⊗

[

c11 c12
c21 c22

]

+









d11 0 0 0

0 d12 0 0

0 0 d21 0

0 0 0 d22









=









b11c11 + d11 b11c12 b12c11 b12c12
b11c21 b11c22 + d22 b12c21 b12c22
b21c11 b21c12 b22c11 + d33 b22c12
b21c21 b21c22 b22c21 b22c22 + d44









,

where biicjj and bijckl are defined in Equation 36 and

dij is an additional variance for the ith trait and jth en-

vironment combination. Partially separable structures

are favourable since they involve far fewer variance pa-

rameters than non-separable models and are less re-

strictive than completely separable models. This feature

is demonstrated below.

A.4 Application to the SFAk model

The SFAk model is based on a three way separable
structure, which is given by:

Ga = Gt ⊗Ge ⊗Gg

= (ΛtΛ
⊤

t +Ψt)⊗ (ΛeΛ
⊤

e +Ψe)⊗Gg, (37)

where Gt is a s× s factor analytic variance matrix be-

tween traits based on kt factors, Ge is a p × p factor
analytic variance matrix between environments based

on ke factors and Gg is the v × v genomic relation-

ship matrix between genotypes. Note that the separable

structure in Equation 37 is restrictive since it assumes

the same genotype by environment interaction (GEI)

pattern for each trait and the same genotype by trait

interaction (GTI) pattern for each environment. This

can be demonstrated using s = 2 traits and p environ-

ments, with:

Ga =

[

(Λt1Λ
⊤

t1
+ ψt1) Λt1Λ

⊤

t2

Λt2Λ
⊤

t1
(Λt2Λ

⊤

t2
+ ψt2)

]

⊗ (ΛeΛ
⊤

e +Ψe)⊗Gg,(38)

where Λ⊤

ti
= (λi;1, λi;2, . . . , λi;kt

)⊤ is a kt-vector in which

λi;l is the ith trait loading for the lth latent factor, such
that Λt = [Λ⊤

t1
Λ⊤

t2
. . . Λ⊤

ts
]⊤. The GEI pattern for each

trait is the same, that is (ΛeΛ
⊤

e +Ψe), which is scaled

by (Λt1Λ
⊤

t1
+ ψt1) and (Λt2Λ

⊤

t2
+ ψt2) for traits 1 and

2, respectively. This also the case for the GTI pattern

for each environment.

The partially separable factor analytic (SFAk) model
is obtained by modifying Equation 38 to enable a dif-

ferent GEI pattern for each trait and a different GTI

for each environment. This can also be demonstrated

using s = 2 traits and p environments, with:
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Ga =

[

Λt1Λ
⊤

t1
Λt1Λ

⊤

t2

Λt2Λ
⊤

t1
Λt2Λ

⊤

t2

]

⊗ΛeΛ
⊤

e +

[

ψt1 0

0 ψt2

]

⊗ Ip +

[

1 0

0 1

]

⊗Ψe,

The GEI pattern for each trait is now different, that

is [Λt1Λ
⊤

t1
]ΛeΛ

⊤

e + ψt1Ip + Ψe and [Λt2Λ
⊤

t2
]ΛeΛ

⊤

e +

ψt2Ip+Ψe for traits 1 and 2, respectively. This also the
case for the GTI pattern for each environment.

Appendix B Model identifiability

when k > 1, [kt(kt − 1) + ke(ke − 1) + 2]/2 constraints

are required to ensure identifiability of G during esti-
mation. There are three types of constraints required:

1.When kt ≥ 1, the kt(kt − 1)/2 elements are con-
strained to zero in the upper right triangle of Λt.

The first element in the upper left is also constrained

to one due to the separable parametrisation of [Λt ⊗Λe].

2.When ke > 1, the ke(ke − 1)/2 elements are con-
strained in the upper right of Λe.

3.One element in either Ψt or Ψe is constrained to

zero since δt and δe are linear combinations of each

other. Preliminary analysis revealed no residual ad-

ditive variation specific to 18MVE, so that ψe10 was

set to zero in all subsequent analyses.

There are also two constraints required to ensure

identifiability of R during estimation:

1.The first element in the upper left of Rt is con-
strained to one due to the separable parametrisation

of
[

Rt ⊗Re

]

.

2.One element in either Σt or Σe is constrained to

zero since the associated effects are linear combina-

tions of each other. Preliminary analysis revealed no

random error specific to DTF, so that σ2
t2 was set

to zero in all subsequent analyses.
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