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Abstract 59 

Characterization of genetic regulatory variants acting on the livestock gene expression is 60 

essential for interpreting the molecular mechanisms underlying traits of economic value and 61 

for increasing the rate of genetic gain through artificial selection. Here we build a Cattle 62 

Genotype-Tissue Expression atlas (CattleGTEx) as part of the pilot phase of Farm animal 63 

GTEx (FarmGTEx) project for the research community based on publicly available 7,180 64 

RNA-Seq samples. We describe the transcriptomic landscape of over 100 tissues/cell types 65 

and report hundreds of thousands of genetic associations with gene expression and 66 

alternative splicing for 23 distinct tissues. We evaluate the tissue-sharing patterns of these 67 

genetic regulatory effects, and functionally annotate them using multi-omics data. Finally, 68 

we link gene expression in different tissues to 43 economically important traits using both 69 

transcriptome-wide association and colocalization analyses to decipher the molecular 70 

regulatory mechanisms underpinning such agronomic traits in cattle.   71 
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Main text 72 

 73 

Introduction 74 

Genome-wide association studies (GWAS) have identified thousands of genetic 75 

variants associated with complex traits in human and livestock populations1,2. As the 76 

majority of these variants are non-coding, the characterization of molecular mechanisms by 77 

which such variants affect complex traits has been extremely challenging. Indeed, in human 78 

genetics, projects such as the Genotype-Tissue Expression (GTEx) project that have 79 

characterized genetic effects on the human transcriptome and paved the way to 80 

understanding the molecular mechanisms of human variation3.  81 

However, livestock genomic resources lag behind human genomic resources, and to 82 

date, no study has systematically explored the regulatory variants of transcriptome across a 83 

wide range of tissues. GWAS signals of agronomic traits are significantly enriched in 84 

regulatory regions of genes expressed in trait-relevant tissues in cattle4-6, but studies of 85 

genetic variation in gene expression have generally been small, both in terms of the number 86 

of individuals and tissues. For instance, previous studies have explored the 87 

expression/splicing quantitative trait loci (e/sQTL) in blood7, milk cells7, muscle8 and 88 

mammary gland in cattle9.  89 

There has been a recent exponential growth in the number of RNA-Seq samples 90 

made publicly available in cattle (Extended Data Figure 1a), but these data have never been 91 

uniformly processed and jointly analyzed before. Here, we present a pipeline to uniformly 92 

integrate 7,180 public RNA-Seq samples, representing over 100 different tissues and cell 93 

types, and identify eQTLs and sQTLs for 23 distinct cattle tissues with sufficient sample 94 

sizes (n > 40). The latter is facilitated by calling variants directly from the RNA-Seq reads 95 

and imputing to sequence level using a large multi-breed reference panel10, in a similar 96 

process to that used with human data11. Next, we conducted in silico analyses to annotate 97 

eQTLs and sQTLs with a variety of omics data in cattle, including DNA methylation, 98 

chromatin states, and chromatin conformation characteristics. Finally, we integrated gene 99 
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expression with a large GWAS of 27,214 dairy bulls and 43 cattle traits via both 100 

transcriptome-wide association study (TWAS) and colocalization analyses to detect genes 101 

and variants associated with these economically important traits. We make the results freely 102 

and easily accessible to the research community through a web portal 103 

(http://cgtex.roslin.ed.ac.uk/). This Cattle Genotype-Tissue Expression (CattleGTEx) atlas as 104 

part of the Farm animal GTEx (FarmGTEx) project will serve as a primary reference for 105 

cattle genomics, breeding, adaptive evolution, veterinary medicine, and comparative 106 

genomics.  107 

Results  108 

Data summary 109 

We analyzed 8,653 public RNA-Seq samples, yielding ~200 billion clean reads. The 110 

details of data summary are shown in Extended Data Figure 1b-i and Supplementary Table 1. 111 

We kept 7,180 samples with sufficient quality (see Methods) for subsequent analyses, 112 

representing 114 tissues from 46 breeds and breed combinations. Holstein was the most 113 

represented breed (35.5% of all samples), reflecting its global economic value. A total of 114 

1,831 samples (21%) had no breed records, but that information could be inferred from the 115 

genotypes called from RNA-Seq data. We grouped the 114 tissues into 13 categories based 116 

on known biology and the 46 breeds into six ancestry groups, with Bos taurus representing 117 

87% of all samples (Supplementary Table 1). To investigate the tissue-specificity of DNA 118 

methylation for functionally annotating QTLs, we also uniformly analyzed 144 whole-119 

genome bisulfite sequence (WGBS) samples from 21 cattle tissues, producing ~73 billion 120 

clean reads with an average mapping rate of 71% (Supplementary Table 2).  121 

General characteristics of transcriptome across samples 122 

As expected, the number of expressed genes (Transcripts per Million, TPM > 0.1) 123 

increased with the number of clean reads across samples. However, we observed a plateau at 124 

50 million clean reads (Extended Data Figure 2a) where we only detected ~60% of 27,607 125 
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Ensembl annotated genes. Only 61 genes were not expressed in any of the samples, and 33 of 126 

them (54.10%) were located in unplaced scaffolds, with significantly shorter gene length, 127 

fewer exons, higher CG density, and lower sequence constraints than expressed genes 128 

(Extended Data Figure 2b-f). Similarly, we detected more alternative splicing events with 129 

increasing numbers of clean reads across samples (Extended Data Figure 2g). However, we 130 

did not detect splicing events for 874 genes in any sample, which also exhibited significantly 131 

shorter gene length, fewer exons, lower expression, and lower sequence constraints than 132 

spliced genes (Extended Data Figure 2h-k). Furthermore, 27% of them were snRNAs, 133 

snoRNAs and rRNAs that play important roles in RNA splicing12 (Extended Data Figure 2l). 134 

Genes without splicing events were significantly enriched in the integral component of 135 

membrane and G-protein coupled receptor signaling pathways (Extended Data Figure 2m). 136 

We found that ~25% of CpG sites in the entire genome were not covered at 5× in any of the 137 

WGBS samples, even if these had more than 300 million clean reads, partially due to 138 

bisulfite treatment and PCR amplification bias (Extended Data Figure 3a). These CpG sites 139 

were enriched in gene deserts (e.g., telomeres) with significantly higher CG density than the 140 

CpG sites captured by the WGBS (Extended Data Figure 3b-c). 141 

We called a median of 21,623 SNPs from all RNA-Seq samples (Extended Data Figure 142 

4a), and then imputed each sample up to 3,824,444 SNPs using a multi-breed reference 143 

population of 3,310 animals10. We validated the imputation accuracy by comparing SNPs 144 

derived from RNA-Seq with those called from whole-genome sequence (WGS) in the same 145 

individuals, including Holstein, Limousin and Angus breeds, and the concordance rates were 146 

over 99% (Extended Data Figure 4b, and Supplementary Table 3). We also compared the 147 

imputed genotypes from RNA-Seq data with those imputed using 50K SNP array genotypes 148 

in 109 Holstein animals. Although there was a depletion of high-quality (DR2 > 0.80) 149 

imputed intergenic variants amongst SNPs imputed from RNA-Seq only (Extended Data 150 

Figure 4c), the imputation accuracy of SNPs from RNA-Seq were similar to those from 151 

SNP-array along 1Mb up-/down- stream of gene body (Extended Data Figure 4d). In 152 
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addition, the correlation of genotype counts between imputed SNPs from RNA-Seq data and 153 

those from SNP array was around 0.80 (Extended Data Figure 4e). For the subsequent cis-154 

QTL mapping, we focused on 23 distinct tissues with greater than 40 individuals after 155 

removing duplicated samples within each tissue (Extended Data Figure 4f), and this 156 

encompassed 4,889 samples.  157 

We found that clusters of samples derived from both gene expression and alternative 158 

splicing could accurately recapitulated tissue types (Figure 1a, b), reinforcing the quality and 159 

therefore their utility for our follow-up analysis. For instance, all the muscle samples from 160 

over 40 projects clustered together. Similar to expression and splicing, DNA methylation 161 

profiles also recapitulated tissue types (Figure 1c). When clustering based on imputed 162 

genotypes, as expected, samples clustered by ancestry (Figure 1d).  163 

Tissue specificity of transcriptome and methylome  164 

Tissue-specificity of gene expression was significantly conserved between cattle and 165 

humans (Figure 2a), and the function of genes with tissue-specific expression accurately 166 

reflected the known biology of tissues. For instance, brain-specific genes were significantly 167 

enriched for synapse and neuron function, and testis-specific genes for spermatogenesis and 168 

reproduction (Extended Data Figure 5a). We also calculated tissue-specificity of promoter 169 

DNA methylation and gene alternative splicing. Similarly, the function of genes with tissue-170 

specific promoter hypomethylation and splicing reflected the known biology of tissues 171 

(Extended Data Figure 5b-c). We found that, based on tissue-specificity, the gene expression 172 

level was significantly and negatively correlated with DNA methylation level in promoters 173 

(Figure 2b), and positively correlated with splicing ratios of introns (Figure 2c). For 174 

example, CELF2, a brain-related gene, had a significantly higher expression, lower promoter 175 

DNA methylation, and higher splicing ratio of first intron in brain than in other tissues 176 

considered (Figure 2d). Tissue-specific genes exhibited distinct patterns of sequence 177 

constraints (Extended Data Figure 5d), supporting the hypothesis of tissue-driven genome 178 

evolution4. We found that while brain-specific genes evolve slowly, blood or testis-specific 179 
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ones evolve rapidly. This trend was also observed within tissue-specific hypomethylated 180 

regions (Extended Data Figure 5e-f).  181 

Discovery of expression and splicing QTLs 182 

We identified cis-e/sQTLs for 23 distinct tissues with 40 or more individuals, while 183 

accounting for relevant confounding factors and multiple testing (Extended Data Figure 6a-184 

b). The number of eGenes (genes with significant cis-eQTLs) discovered ranged from 172 in 185 

ileum to 10,157 in blood, with 19,559 (83% of all 23,523 tested genes) classed as eGenes in 186 

at least one tissue (Supplementary Table 4). The number of sGenes (genes with significant 187 

cis-sQTLs) discovered ranged from four in the salivary gland to 7,913 in macrophages, with 188 

15,376 (70.8%) classed as sGenes in at least one tissue. Genes with no cis-eQTLs or -sQTLs 189 

in any of the tissues were significantly enriched in hormone activity, regulation of receptor 190 

activity, neuropeptide signaling pathway, and reproduction (Supplementary Table 5-7). In 191 

general, the larger the number of samples for the tissue, the larger the number of cis-192 

e/sGenes detected (Figure 3a-b). As expected, with a larger sample size, we had more power 193 

to detect cis-eQTLs with smaller effect sizes (Extended Data Figure 6c-d). Consistent with 194 

findings in humans13, significant variants (eVariants) centered around transcript start sites 195 

(TSS) of measured genes (Extended Data Figure 6e-f). Across 23 distinct tissues, an average 196 

of 46% (range 25.5 - 76.6%) of eVariants were found within 100 kb around TSS of target 197 

genes. In non-eGenes, there was also an enrichment of SNPs with the smallest P-values (but 198 

not statistically significant at FDR of 0.05) around TSS, suggesting a lack of power to detect 199 

such associations for those genes (Extended Data Figure 6e). Furthermore, we fine-mapped 200 

eGenes to assess whether the identified signals could be attributed to one or more causal 201 

SNPs. We found that an average of 46% (range 14.5 - 73.9%) of eGenes across 23 tissues 202 

had more than one independent cis-eQTLs (Figure 3c), indicating the complex genetic 203 

control of gene expression. SNPs with larger effects within a locus tended to be closer to the 204 

TSS (Figure 3d). To complement and validate the cis-eQTL analysis within individuals, we 205 

conducted an allele-specific expression (ASE) analysis, and found that cis-eQTLs were 206 
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significantly overrepresented in loci with significant (FDR < 0.05) ASE (Figure 3e), and 207 

effect sizes of cis-eQTLs was significantly correlated with those of ASEs (Figure 3f, 208 

Extended Data Figure 6g).  209 

To investigate whether cis-eQTLs are conserved among breeds, we conducted cis-eQTL 210 

mapping for muscle samples from Bos indicus, Bos taurus, and their hybrids separately, 211 

yielding 86, 2,766, and 800 eGenes, respectively. We observed that cis-eQTLs were more 212 

conserved across breeds than across tissues (Figure 3g). For example, the expression of 213 

NMRAL1 in muscle was consistently and significantly regulated by a cis-eQTL 214 

(rs208377990) among Bos indicus, Bos taurus, and their hybrids (Figure 3h). Combining the 215 

summary statistics of each breed in a meta-analysis showed that eGene-eVariant associations 216 

identified in one breed are potentially transferable to other breeds, particularly for SNPs with 217 

larger effect size (Extended Data Figure 6h-i). Combining samples from different breeds will 218 

increase statistical power for detecting shared eQTLs, and enable more accurate mapping of 219 

the causal variants via reducing the linkage disequilibrium (LD) patterns. In total, 131 out of 220 

437 eGene-eVariant pairs that were specifically discovered in Bos indicus showed significant 221 

(FDR < 0.05) genotype × breed interactions (Supplementary Table 8). For instance, the 222 

expression of an immune-related gene, SSNA1, was regulated by a cis-eQTL (rs110492559) 223 

in Bos indicus but not in Bos taurus or the hybrids, showing a significant genotype × breed 224 

interaction (Figure 3i). In addition, we found that breed-specific cis-eQTLs had lower minor 225 

allele frequency (MAF) than breed-common cis-eQTLs, consistent in both Bos indicus and 226 

Bos taurus (Extended Data Figure 7a-b). This may indicate that the difference in cis-eQTLs 227 

between breeds could be partially due to their difference in the frequency of segregating 228 

variants, provided that there are no epistatic/environmental/developmental effects. 229 

The tissue-sharing patterns of cis-QTLs could provide novel insights into molecular 230 

regulatory mechanisms underlying complex phenotypes3. We applied the π1 statistics to 231 

measure the sharing patterns of cis-e/sQTLs between tissues (Figure 4a and Extended Data 232 

Figure 7c). In general, we observed that both cis-eQTLs and cis-sQTLs tended to be tissue-233 
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specific or ubiquitous across tissues (Figure 4b). We also calculated the tissue-sharing 234 

patterns of gene expression and alternative splicing (Extended Data Figure 7d-e), and found 235 

that the tissue-sharing patterns of the four core data types (i.e., gene expression, alternative 236 

splicing and cis-e/sQTLs) were similar (Figure 4c and Extended Data Figure 7f). This result 237 

suggests that tissues with similar transcriptional profiles shared the genetic regulatory 238 

mechanisms of transcription. Further analysis on the expression of eGenes across tissues 239 

revealed that effect sizes of eVariants decreased with the increasing number of tissues where 240 

target eGenes were expressed, indicating that, on average, tissue-specific genes might be 241 

regulated by SNPs with larger genetic regulatory effects than widely-expressed genes (Figure 242 

4d). Due to limitations and challenges of trans-eQTLs analysis in this study, which include: 243 

insufficient statistical power, the relatively lower imputation accuracy of distant intergenic 244 

SNPs, and complex inter-chromosomal LD in cattle (which could lead to increased type I 245 

error rates)14, we only conducted an exploratory trans-e/sQTL mapping for 15 tissues with 246 

over 100 individuals. We detected an average of 1,058 and 84 trans-eGenes and trans-247 

sGenes (FDR < 0.05) across tissues, respectively (Supplementary Table 9). We summarized 248 

the details of trans-eQTL mapping, including LD patterns of trans-eQTLs and cis-eQTLs, 249 

tissue-sharing patterns of trans-eQTLs and their validations, in Extended Data Figure 8.  250 

Functional annotation of QTLs 251 

We employed multiple layers of biological data to better define the molecular 252 

mechanisms of genetic regulatory effects. As expected, cis-e/sQTLs were significantly (P < 253 

0.05, the 1,000 times permutation test) enriched in functional elements, such as 3’UTR and 254 

open chromatin regions by ATAC-Seq data in cattle rumen epithelial primary cells15 (Figure 255 

5a-b). The cis-sQTLs had a higher enrichment in splice donors/acceptors than cis-eQTLs. 256 

The cis-eQTLs associated with stop gains had larger effect sizes than other cis-eQTLs 257 

(Figure 5c). The cis-e/sQTLs were enriched in hypomethylated regions of the matching 258 

tissues across 13 tissues (Figure 5d-e). For instance, the liver exhibited the highest 259 

enrichment of cis-e/sQTL in liver-specific hypomethylated regions. Consistent with the brain 260 
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having distinct abundance of alternative splicing, related to the development of the nervous 261 

system13, cis-sQTLs in the hypothalamus and pituitary had the highest enrichments in their 262 

specific hypomethylated regions (Figure 5e).  263 

Topologically associated domains (TADs) enable chromatin interactions between 264 

distant regulatory regions and target promoters16. By examining Hi-C data of lung tissue in 265 

cattle17, we obtained TADs and significant Hi-C contacts, which were likely to be conserved 266 

across tissues16. By comparing with random eGene-SNP pairs with matched distances, we 267 

observed significantly (FDR < 0.01, 5,000 bootstrapping test) higher percentages of eGene-268 

eVariant pairs within TADs across the majority of tissues, except for ileum and skin 269 

fibroblast (Figure 5f). For instance, APCS and its cis-eQTL peak (144kb upstream of its TSS) 270 

were encompassed by a TAD and linked by a significant Hi-C contact, which allowed the 271 

regulation of its expression by a distant eVariant (rs136092944) (Figure 5g-h).  272 

cis-QTLs and complex trait associations 273 

The primary goal of this study is to provide a resource for elucidating the genetic and 274 

biological mechanisms involved in cattle complex traits. We thus evaluated cis-e/sQTLs 275 

detected in each tissue for associations with four distinct agronomic traits as examples, i.e., 276 

ketosis, milk yield, age at first calving (AFC) and somatic cell score (SCS). The top SNPs 277 

associated with ketosis from GWAS were significantly (P < 0.05, the 1,000 times 278 

permutation test) enriched for liver cis-e/sQTLs (Figure 6a). Similarly, milk yield associated 279 

SNPs were significantly overrepresented in cis-e/sQTLs from mammary gland (Figure 6b). 280 

Compared to other tissues, mammary gland, milk cells and liver were the tissues with highest 281 

enrichment of milk yield associated SNPs amongst cis-eQTLs (Figure 6c). Additionally, 282 

SNPs associated with AFC were significantly enriched for monocytes cis-eQTLs, and SCS 283 

for mammary gland (Extended Data Figure 9a). We observed that a larger sample size of a 284 

cis-eQTL tissue resulted in a higher enrichment of GWAS loci and cis-eQTLs, potentially 285 

explaining the associations of complex traits with non-matching tissues (Extended Data 286 

Figure 9b).  287 
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We detected 854 significant gene-trait pairs for 43 agronomic traits (Supplementary 288 

Table 10) in cattle via single-tissue TWAS (S-PrediXcan), representing 337 unique genes 289 

(Supplementary Table 11). Out of 319 fine-mapped genes18,19, we validated 54, including 290 

linking expression of DGAT1 in liver and mammary gland, and expression of MGST1 in milk 291 

cells, as well as expression of CLN3 in liver to milk yield (Figure 6d). The expression of 292 

ZNF613 in hypothalamus was the most significant association for many reproduction and 293 

body conformation traits, including daughter-still-birth and stature (Supplementary Table 294 

11), supporting our previous finding that ZNF613 is significantly associated with gestation 295 

length possibly through its influence on embryonic development20. Furthermore, we 296 

conducted a colocalization analysis of cis-eQTLs and GWAS loci, and detected 115 unique 297 

eGenes that were colocalized (regional colocalization probability, rcp > 0.5) with 260 GWAS 298 

loci associated to 25 out of the 43 complex traits analyzed. These represented 235 significant 299 

gene-trait pairs (Figure 6e; Supplementary Table 12). For instance, TIGAR, a muscle cis-300 

eGene, playing roles in the phosphatase activity, energy storage and consuming, was 301 

colocalized (rcp = 0.529) with one of independent GWAS signals of strength on chromosome 302 

5 (Extended Data Figure 9c). GWAS loci of milk yield were colocalized with ARHGAP39 in 303 

hypothalamus, TEF in embryo, SYT11 in blood, CCDC166 in oviduct and ASPHD1 in 304 

jejunum (Supplementary Table 12). We also took sire calving ease, which GWAS loci were 305 

colocalized with 21 eGenes in at least one tissue, as an example in Extended Data Figure 9d. 306 

In addition, we further employed Coloc and S-MultiXcan to conduct the colocalization and 307 

multi-tissue TWAS analysis, and detected 110 and 590 significant gene-trait pairs, 308 

respectively (Supplementary Table 13-14). By comparing results from TWAS and 309 

colocalization, we found an overlap of seven gene-trait pairs (Figure 6f, Extended Data 310 

Figure 10). For instance, we found that cis-eQTLs of DGAT1 in liver were colocalized (rcp = 311 

0.78) with GWAS signals of protein yield, and the p-values from GWAS were highly (r = 312 

0.91) correlated with those from cis-eQTL (Figure 6g-h).  313 

Discussion 314 
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The CattleGTEx atlas represents one of the most comprehensive reference resources of 315 

the cattle transcriptome to date. It provides a detailed characterization of genetic control of 316 

gene expression and splicing across 23 distinct tissues in cattle. This study demonstrates that 317 

it is possible to discover gene expression regulatory variants by deriving and imputing 318 

genetic variants from livestock RNA-Seq data alone. We established a in silico protocol to 319 

generate a livestock GTEx atlas in a timely manner and show the value of reanalyzing 320 

published data to find novel biology, avoiding the significant costs of data generation. 321 

Although we have provided a comprehensive view of the genetic regulatory variants in 322 

cattle, we are also mindful that this resource can be further improved with the inclusion of 323 

more individuals/breeds and further data types. The imputation accuracy for breeds that are 324 

very under-represented in the reference panel might be relatively low. Additionally, 325 

generating SNP genotypes or WGS for individuals with RNA-Seq data can provide 326 

additional information for distal intergenic variants as compared to RNA-Seq data only. The 327 

FarmGTEx consortium is currently extending the bioinformatics pipeline developed here to 328 

other livestock species (e.g., pig, sheep, goat and chicken).  329 

 The CattleGTEx also provides a resource to explore tissue-sharing patterns of the 330 

transcriptome and its genetic regulation in cattle. In contrast to the human GTEx3, where 331 

RNA-Seq samples across tissues were collected from the same individuals, the CattleGTEx 332 

used public data, where individuals or even breeds were different from tissue to tissue. This 333 

might explain why there is a lower proportion of cis-e/sQTLs shared across tissues compared 334 

to the human GTEx. In addition, the difference in the cell-type composition of tissues can 335 

also affect the tissue-sharing patterns of cis-QTLs3. When single-cell RNA-Seq data is 336 

available for multiple tissues in the near future21, it will be of interest to computationally 337 

estimate the cell-type proportions in the bulk-tissue samples to uncover the cellular 338 

specificity of genetic regulatory effects22.  339 

This CattleGTEx atlas provides an important tool for studying the mechanisms 340 
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underlying complex traits through systematically linking SNPs, genes, tissues, and complex 341 

traits. The e/sQTLs detected here provide a rich set of functional variants for agronomic 342 

traits in cattle, as we found that top GWAS associations of traits were significantly enriched 343 

for regulatory QTLs in their relevant tissues. Our TWAS and colocalization analyses further 344 

provide a list of promising candidate genes/variants for functional follow-ups. We noted the 345 

relatively small overlap of results from TWAS and colocalization. This might be because 346 

these methods assume the genetic architecture of both the trait of interest and the tissue gene 347 

expression differently. In addition, we observed the discrepancy between high rcp values and 348 

lack of correlation of raw P-values of GWAS and eQTL in the entire region of each 349 

colocalized locus. This may be due to 1) the allelic heterogeneity and complex LD in each 350 

locus; 2) the imperfect LD match between GWAS (only Holstein population) and eQTLs 351 

populations (multiple breeds); 3) the currently commonly used colocalization methods based 352 

on GWAS summary statistics might not work well in highly related individuals in livestock. 353 

We therefore suggest focusing analyses on loci where colocalization and TWAS methods 354 

agree. 355 

Further integration of these QTLs with functional annotations from the Functional 356 

Annotation of Animal Genomes (FAANG) project will provide opportunities to understand 357 

transcriptional/post-transcriptional regulatory mechanisms underpinning GWAS hits for 358 

agronomic traits23. The multi-tissue e/sQTLs generated here will also enable the exploration 359 

of molecular mechanisms underlying the extensive pleiotropic effects identified in 360 

livestock24. This information will allow the understanding of mechanisms of response to 361 

intended selection as well as disentangling negative correlated responses to this same 362 

selection (e.g. increasing mastitis or deteriorating fertility when selection for increased milk 363 

production). Furthermore, this resource will assist in the development of genomic selection 364 

methods and tools to improve animal health and wellbeing. For instance, a better 365 

understanding of the genetic architecture underpinning agronomic traits will benefit genetic 366 

improvement programs by incorporating biological knowledge into genomic prediction 367 
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models, which has been shown to improve prediction accuracy across populations and 368 

breeds10,24. 369 
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Figure legend 410 

 411 

Figure 1. Hierarchical clustering and principal component analysis of samples. (a) 412 

Sample (n = 7,180) hierarchical clustering based on expression levels of all transcribed genes 413 

(Transcripts Per Million, TPM > 0.1). (b) Sample (n = 7,180) hierarchical clustering based on 414 

alternative splicing value (Percent Spliced-In, PSI) of spliced introns. (c) Sample (n = 144) 415 

clustering using t-distributed SNE coordinates based on DNA methylation levels of CpG sites 416 

(coverage ≥ 5×). (d) Principal component analysis of samples (n = 7,180) based on imputed 417 

genotypes.  418 

 419 

Figure 2. Tissue-specificity of gene expression, alternative splicing and DNA 420 

methylation. (a) Pearson correlation of tissue-specificity (measured as t-statistics) of 22,752 421 
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orthologous genes between cattle and human tissues (GTEx v8)3. The multiple testing is 422 

corrected for using Benjamini-Hochberg method (i.e., FDR). * denotes FDR < 0.001. (b) 423 

Pearson correlation of tissue-specificity between gene expression (x-axis) and promoter DNA 424 

methylation levels (y-axis). WBC is for white blood cells. The color code of tissues in x-axis 425 

is the same as that in (a). (c) Pearson correlation of tissue-specificity between gene 426 

expression (Transcripts per Million, TPM, x-axis) and alternative splicing (Percent Spliced-427 

In, PSI, y-axis). The color code of tissues is the same as that in (a). (d) CELF2 shows lower 428 

DNA methylation levels in splice sites (right), higher gene expression (middle), and higher 429 

PSI value of spliced introns (left) in brain tissue (n = 15) compared to the rest of tissues. 430 

TSM is for tissue-specific methylation.  431 

 432 

Figure 3. Discovery and characterization of cis-eQTLs and cis-sQTLs. (a) Relationship 433 

between the percentages of eGenes over all tested genes and sample size (Pearson r = 0.85; 434 

the two-sided Student’s t-test: P = 1.30×10−7) across 23 distinct tissues. (b) Relationship 435 

between the percentage of sGenes over all tested genes and sample size (Pearson r = 0.63; 436 

the two-sided Student’s t-test: P = 1.06×10−3) across 23 distinct tissues. Tissues are colored 437 

according to their tissue categories. (c) Distribution and average number of conditionally 438 

independent eQTLs per gene across tissues. Tissues are ordered by sample size. (d) The 439 

distance to Transcription Start Site (TSS) increases from the 1st to 4th independent eQTLs. 440 

Only 7276 gene-tissue pairs with at least 4 independent eQTLs were chosen. Significant 441 

differences (denoted as *) were observed between 1st vs. 2nd (P = 2.4×10−3), 2nd vs. 3rd (P = 442 

3.0 ×10−26) and 3rd vs. 4th (P = 1.9×10−27) independent eQTLs based on the two-sided paired 443 

sample t-test. (e) cis-eQTLs are significantly (P < 1.0×10−14, denoted as *, Fisher Exact test) 444 

overrepresented in the loci with allelic specific expression (ASE). The y-axis indicates the 445 

percentage of cis-eQTLs that are also ASEs over all tested SNPs in the ASE analysis. (f) 446 

Correlation of effect sizes (FastQTL slope) of cis-eQTLs and allelic fold change (aFC) of 447 

ASEs (Spearman’s rho = 0.74, the two-sided Student’s t-test: P = 5.2×10−246) in liver. (g) 448 

Pairwise cis-eQTL sharing patterns (π1 value) of muscle tissue across three breeds (Bos 449 

indicus, Bos taurus and their crosses) and other tissues. Rows are discovery tissues, and 450 

columns are validation tissues. Muscle (Cesar et al.) is for 160 skeletal muscle samples of 451 

Bos indicus downloaded from Cesar et al. 20188. (h) A cis-eQTL (rs208377990) of NMRAL1 452 

in muscle is shared across Bos indicus (n = 51), Bos taurus (n = 505) and their crosses (n = 453 

108). (i) A cis-eQTL (rs110492559) of SSNA1 in muscle is specific in Bos indicus (MAF = 454 

0.25 and 0.37 in Bos taurus and Bos indicus, respectively), and has a significant (the two-455 

sided t-test, P = 5.61×10-3) genotype × breed interaction. The samples are the same as in (h).   456 

 457 

Figure 4. Tissue-sharing patterns of cis-QTLs. (a) Pairwise cis-eQTL sharing patterns (π1 458 

value) across 23 distinct tissues. (b) Tissue activity of cis-eQTLs and cis-sQTLs, where a cis-459 

QTL is considered active in a tissue if it has a mashr local false sign rate (LFSR, equivalent to 460 

FDR) of < 5%. (c) The similarity of tissue clustering across four data types (cis-eQTL, cis-461 

sQTL, gene expression and splicing) based on the π1 values3,13. The k-means clustering is 462 
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performed based on 2-22 clusters with 100,000 iterations. For each pairwise data types, we 463 

report the median Pairwise Rand index across all clusters. (d) Median (line) and 95% 464 

confidence interval (shading) of cis-eQTL effect size (y-axis, measured as the absolute log2 465 

transformed allele Fold Change, |aFC(log2)|), as a function of the number of tissues in which 466 

the eGene is expressed (x-axis; TPM > 0.1). Pearson correlation between |aFC(log2)| and 467 

number of tissues with eGene expression is −0.27 (the two-sided Student’s t-test: df = 43,721; 468 

P < 2.2×10−308).  469 

 470 

Figure 5. Functional annotation of cis-QTLs. (a) Enrichment (fold change, the two-sided 471 

permutation test with 1,000 times) of cis-eQTLs and cis-sQTLs of 23 distinct tissues in 472 

sequence ontology. The data are presented as Mean ± SD. (b) Enrichment (fold change, the 473 

two-sided permutation test with 1,000 times) of cis-eQTLs and cis-sQTLs of 23 distinct 474 

tissues in 15 chromatin states predicted from cattle rumen epithelial primary cells in Holstein 475 

animals15. The data are presented as Mean ± SD. (c) Effect sizes (measured as |aFC(log2|) of 476 

cis-eQTLs of 23 distinct tissues across sequence ontology. (d) and (e) Enrichment of cis-477 

eQTLs and cis-sQTLs of 13 tissues in tissue-specific hypomethylated regions, respectively. 478 

These 13 tissues have both DNA methylation and cis-QTL data. The numbers are P-values 479 

for enrichments of matched tissues (highlighted dots) based on the permutation test (the two 480 

sided, 1,000 times). (f) Percentages of eGene-eVariant pairs that are located within 481 

topologically associating domains (TADs) are significantly (FDR < 0.01, one-sided) higher 482 

than those of random eGene-SNP pairs with matched distances, except for ileum, 483 

macrophage and skin fibroblast. The null distributions of percentages of eGene-SNP pairs 484 

within TADs are obtained by doing 5,000 bootstraps. The TADs are obtained from the lung 485 

Hi-C data. (g) An eGene (APCS) and its eVariant (rs136092944) are located within a TAD, 486 

and linked by a significant Hi-C contact (10kb bins, position 9985,000 is linked to 487 

10,135,000 in chr3 with Benjamini-Hochberg corrected P = 1.4×10−6. The P-value is 488 

obtained based on the binominal distribution model. The Manhattan plot shows the P-values 489 

of all tested SNPs in the cis-eQTL mapping analysis of APCS. The linkage disequilibrium 490 

(LD, r2) values between eVariant (rs136092944) and surrounding SNPs are shown in colors. 491 

(h) The boxplot shows the PEER-corrected expression levels of APCS across the three 492 

genotypes of eVariant (rs136092944), i.e., AA (n = 237), AG (n = 245), and GG (n = 94), 493 

respectively.  494 

 495 

Figure 6. Relationship between complex traits and cis-QTLs. (a) cis-eQTLs (P = 0.001) 496 

and cis-sQTLs (P = 0.02) in liver show significantly higher enrichments for top SNPs 497 

associated with ketosis compared to genome-wide SNPs (shown in grey). (b) cis-eQTLs (P = 498 

0.001) and cis-sQTLs (P = 0.03) in mammary gland show higher enrichments for top SNPs 499 

associated with milk yield compared to genome-wide SNPs (shown in grey). All the P values 500 

above are obtained by the two-sided permutation test with 1,000 times. (c) Enrichment of 501 

cis-eQTLs for genetic associations with milk yield is tissue-dependent. The cis-eQTLs in 502 

mammary gland, milk cells and liver exhibit higher enrichments for genetic associations with 503 
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milk yield compared to those in other tissues. (d) Manhattan plots of transcriptome-wide 504 

association study (TWAS) for milk yield across all 23 distinct tissues. (e) The number of 505 

genes that were colocalized (regional colocalization probability, rcp > 0.5 in fastENLOC) 506 

between GWAS significant loci of complex traits and cis-eQTLs across tissues. The size of 507 

point indicates the number of genes, while the color of point indicates the average rcp of 508 

each trait-tissue pair. The abbreviations of GWAS traits are explained in Supplementary 509 

Table 10. (f) The overlaps of significant gene-trait pairs from TWAS with S-PrediXcan 510 

(Bonferroni corrected P < 0.05) and S-MultiXcan (Bonferroni corrected P < 0.05) and 511 

colocalization with fastENLOC (rcp > 0.5) and Coloc (posterior probability of the shared 512 

single causal variant hypothesis H4 (PP.H4) > 0.8). (g) An example of a colocalization (rcp = 513 

0.78) of cis-eQTLs of DGAT1 gene in liver and GWAS loci of protein yield in cattle on 514 

chromosome 14. The top colocalized SNP (rs133257289) is the top cis-eQTL of DGAT1 and 515 

the second top GWAS signal of protein yield. (h) A high Pearson correlation (r = 0.91, the 516 

two-sided Student’s t-test: df = 2,933; P < 2.2×10−308) between P-values from cis-eQTLs of 517 

DGAT1 in liver and GWAS of protein yield. 518 
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Online Methods 579 

Ethics 580 

The ethical approval for this project was obtained from the US Department of Agriculture, 581 

Agricultural Research Service, Beltsville Agricultural Research Center’s Institutional Animal 582 

Care and Use Committee (Protocol 16-016). 583 

Quantification of gene expression  584 

We downloaded 11,642 RNA-Seq datasets (by June 24th, 2019) from SRA (n = 11,513, 585 

https://www.ncbi.nlm.nih.gov/sra/) and BIGD databases (n = 129, 586 

https://bigd.big.ac.cn/bioproject/) by searching the ‘Organism’ for ‘Cattle’ and the ‘Strategy’ 587 

for ‘RNA seq’. We merged multiple datasets from single samples, yielding 8,536 unique 588 

RNA-Seq samples. We applied a stringent and uniform pipeline to filter and analyze all the 589 

data. Briefly, we first removed adaptors and low quality reads using Trimmomatic (v0.39)25 590 

with parameters: adapters/TruSeq3-SE.fa:2:30:10 LEADING:3 TRAILING:3 591 

SLIDINGWINDOW:4:15 MINLEN:36. We filtered out samples with clean read counts ≤ 592 

500K, resulting in 7,680 samples, and mapped clean reads to the ARS-UCD1.2 cattle 593 

reference genome17 using single or paired mapping modules of STAR (v2.7.0) with 594 

parameters of outFilterMismatchNmax 3, outFilterMultimapNmax 10 and 595 

outFilterScoreMinOverLread 0.66. We kept 7,264 samples with uniquely mapping rates ≥ 596 

60% (mean, 91.07%; range, 60.44%-100%; mapping details in Supplementary Table 1). We 597 

then obtained normalized expression (TPM) of 27,608 Ensembl (v96) annotated genes using 598 

Stringtie (v2.1.1)26, and extracted raw read counts of them with featureCounts (v1.5.2)27. We 599 

finally clustered 7,264 samples based on log2(TPM +1) using a hierarchical clustering 600 

method, implemented in R (v3.4.1) package dendextend, with distance = (1-r), where r is the 601 

Pearson correlation coefficient.  602 

Quantification of alternative splicing  603 

We used Leafcutter (v0.2.9)28 to identify and quantify variable alternative splicing events 604 
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of genes by leveraging information of junction reads (i.e., reads spanning introns) that were 605 

obtained from the STAR alignment. The Leafcutter enables the identification of splicing 606 

events without relying on existing annotations that are typically incomplete, especially in the 607 

setting of large genes or individual- and/or population-specific isoforms28. We first converted 608 

bam files from STAR alignment into junction files using the script “bam2junc.sh”, and then 609 

performed intron clustering using the script “leafcutter_cluster.py” with default settings of 50 610 

reads per cluster and a maximum intron length of 500 kb. We employed the 611 

“prepare_genotype_table.py” script in Leafcutter to calculate intron excision ratios and to 612 

remove introns used in less than 40% of individuals or with no variation. Ultimately, we 613 

standardized and quantile normalized intron excision ratios as Percent Spliced-In (PSI) 614 

values across samples. We clustered 7,180 samples based on PSI using the same method as 615 

used in gene expression. 616 

Genotyping and imputation 617 

We called genotypes of known genomic variants in the 1000 Bull Genomes Projects10 for 618 

7,180 high-quality RNA-Seq samples individually, following the recommended best 619 

practices pipeline in Genome Analysis Toolkit, (GATK) (v4.0.8.1)29 with default settings. We 620 

filtered out low quality SNPs using --filter-expression “FS > 30.0 & QD < 2.0”. We then 621 

imputed the filtered SNPs on autosomes to sequence level using Beagle (v5.1)30 based on a 622 

multiple-breed reference population consisted of 3,103 individuals from run7 of the 1000 623 

Bull Genomes Project10 and 207 public individuals from Bos taurus (n = 101), Bos indicus 624 

(zebu, n = 20), and Bos grunniens (yak, n = 86) (Supplementary Table 15). Finally, we 625 

obtained 6,123 samples that were genotyped and imputed successfully. We filtered out 626 

variants with MAF < 0.05 and dosage R-squared (DR2) < 0.8, resulting in 3,824,444 SNPs 627 

used for QTL mapping. To evaluate the accuracy of imputation, we called genotypes (~6 M 628 

SNPs) from WGS (average read depth > 10×) of Holstein (n = 4), Limousin (n = 3) and 629 

Angus (n = 5) animals, which had RNA-Seq data as well. We then measured the genotype 630 

concordance rates between WGS-SNPs and RNA-Seq/imputed SNPs. We extracted 153,913 631 
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LD-independent SNPs using plink (v1.90)31 (--indep-pairwise 1000 5 0.2), and conducted 632 

PCA analysis for all 6,123 samples using these SNPs in EIGENSOFT (v7.2.1)32. We 633 

calculated the identity-by-state (IBS) distance among samples by using these independent 634 

SNPs to remove duplicate individuals. IBS distance = (IBS2 + 0.5*IBS1) / (IBS0 + IBS1 + 635 

IBS2), where IBS0 is the number of IBS 0 non-missing variants, IBS1 is the number of IBS 636 

1 non-missing variants and IBS2 is the number of IBS 2 non-missing variants. We set an IBS 637 

distance cutoff of 0.85 to deem two samples as duplicates and kept one of them. When 638 

conducting QTL mapping, we removed an average of 43 duplicate samples within each 639 

tested tissue (ranging from one in salivary gland and leukocyte to 132 in muscle), resulting in 640 

4,889 samples. 641 

Allele specific expression (ASE) 642 

We conducted ASE analysis using the GATK ASEReadCounter tool (v4.0.8.1) with the 643 

following settings: --U ALLOW_N_CIGAR_READS -minDepth 10 –minMappingQuality 644 

255 --minBaseQuality 10. SNPs for ASE detection fulfilled the following criteria: 645 

heterozygous in at least five samples, at least 10 reads per allele, and at least 2% of all reads 646 

supporting the minor allele. We then calculated a binominal P-value by comparing to the 647 

expected ratio under the null hypothesis, followed by multiple-test correction with the 648 

Benjamini–Hochberg approach (FDR). SNPs with FDR < 0.05 were considered as 649 

significant ASE. We estimated the effect size (allele fold change, aFC) of regulatory variants 650 

at ASE loci using a haplotype-based approach implemented in phASER (v1.1.1)33.  651 

Bioinformatics analysis of WGBS data 652 

For WGBS data analysis, we first used FastQC (v0.11.2) and Trim Galore v0.4.0 (--653 

max_n 15 --quality 20 --length 20 -e 0.1) to determine read quality and to filter reads with 654 

low quality, respectively. We then mapped clean reads to the same reference genome (ARS-655 

UCD1.2) using Bismark software (v0.14.5)34 with default parameters. After deduplication of 656 

reads, we extracted methylation levels of cytosines using the bismark_methylation_extractor 657 
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(--ignore_r2 6) function. The coverages of all WGBS data were calculated using clean reads 658 

with an average of 27.6-fold coverage (range: 5-47 ×). Ultimately, we kept CpG sites that 659 

were represented by at least five reads for subsequent analyses. We visualized sample 660 

clusters based on DNA methylation levels of shared CpGs using t-SNE approaches. 661 

Identification of TAD and significant Hi-C contacts 662 

To find potential chromatin interactions between distant eVariants and target eGenes, we 663 

identified TADs and Hi-C contacts from Hi-C data from lung tissue in cattle that was 664 

retrieved from NCBI Sequence Read Archive (SRA) under accessions: SRR5753600, 665 

SRR5753603, and SRR5753606. We used Trim Galore (v0.4.0) to trim adapter sequences 666 

and low-quality reads (--max_n 15 --quality 20 --length 20 -e 0.1), resulting in ~820 million 667 

clean reads. We then mapped clean reads to the reference genome (ARS-UCD1.2) using 668 

BWA(v0.7.17)35. We applied HiCExplorer v3.4.136 to build a Hi-C contact matrix with 10kb 669 

resolution and identified TAD with hicFindTAD. We kept TADs with FDR less than 0.01 to 670 

link eQTLs to eGenes. We further employed HiC-Pro (v2.11.4)37 to call Hi-C contacts with 671 

10 kb resolution from Hi-C data. Briefly, HiC-Pro aligned clean reads to the reference 672 

genome with Bowtie2 (v2.3.5)35,38. After building a contact matrix, HiC-Pro generated intra- 673 

and inter-chromosomal maps and normalized them using the ICE normalization algorithm. 674 

We converted Hi-C contact matrix in HiC-Pro format to FitHiC format using 675 

HiCPro2FitHiC.py in FitHiC (v2.0.7) and applied statistical confidence estimates to 676 

determine the significant intra-chromosome contacts (Benjamini-Hochberg corrected P < 677 

0.05).   678 

Tissue-specificity analysis of gene expression, alternative splicing and DNA methylation 679 

To quantify tissue-specific expression of genes, we computed a t-statistics for each gene 680 

in each of the 114 tissues. We grouped 114 tissues into 13 categories (Supplementary Table 681 

1). We scaled the log2-transformed expression (i.e., log2TPM) of genes to have a mean of 682 

zero and variance of one within each tissue. We then fitted a linear model as described in15 683 
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for each gene in each tissue using the least squares method. When constructing the matrix of 684 

dummy variables (i.e., design matrix) for tissues, we denoted samples of the target tissue/cell 685 

type (e.g., CD4 cells) as ‘1’, while samples outside the target category (e.g., non-686 

blood/immune tissues) as ‘-1’. We excluded samples within the same category (e.g., CD8 687 

cells and lymphocytes) to detect genes with specific expression in each particular category, 688 

even if they were not specific to the target tissue within this category. We obtained t-statistics 689 

for each gene to measure its expression specificity in a given tissue. We considered the top 690 

5% of genes ranked by largest t-statistics as genes with high tissue-specific expression. In 691 

order to explore the conservation of tissue-specific expression between cattle and humans, 692 

we employed the same method to quantify the tissue-specific expression of all orthologous 693 

genes in each of 55 human tissues using GTEx (v8) data3. 694 

To detect tissue-specific alternative splicing, we used leafcutter to analyze the differential 695 

intron excision by comparing the samples from the target tissue to the remaining tissues28, 696 

while excluding samples from tissues of the same category as the target tissue. We used the 697 

Benjamini-Hochberg method (FDR) to control multiple testing. 698 

For DNA methylation, we focused on gene promoters (from upstream 1500bp to 699 

downstream 500bp of TSS based on the ARS-UCD1.2 from Ensembl v99), the methylation 700 

levels of which were calculated with a weighted methylation method using the roimethstat 701 

function in MethPipe (v3.4.3)39. We computed a t-statistic for the promoter of each gene 702 

using the same method as in tissue-specific expression analysis. We considered the bottom 703 

5% of genes ranked by t-statistics as genes with tissue-specific promoter hypomethylation. 704 

We also detected tissue-specific methylation regions in a genome-wide mode using SMART2 705 

(v2.2.8)40 with parameters of -t DeNovoDMR -MR 0.5 -AG 1.0 -MS 0.5 -ED 0.2 -SM 0.6 -706 

CD 500 -CN 5 -SL 20 -PD 0.05 -PM 0.05. 707 

Covariate analysis for QTL discovery 708 

To account for hidden batch effects and other technical/biological sources of 709 
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transcriptome-wide variation in gene expression, we estimated latent covariates in each 710 

tissue using the Probabilistic Estimation of Expression Residuals (PEER v1.3) method41. In 711 

each tissue, we estimated 75 PEER factors first. The posterior variances of factor weights 712 

dramatically decreased and reached or nearly reached plains when 10 PEER factors were 713 

included (Extended Data Figure 6a). Therefore, we used 10 PEER covariates to account for 714 

the effects of confounding variables on gene expression in all following QTL analyses. For 715 

instance, the variance of gene expression among samples in adipose captured by 9 out of 10 716 

PEER factors were significantly (FDR < 0.05) correlated with known technical and 717 

biological covariates like clean data size, mapping rate, project, breeds, sub-species, sex and 718 

age (Extended Data Figure 6b). To further control the effect of population structure on the 719 

discovery of QTLs, we included genotype PCs based on sample size bins: three PCs for 720 

tissues with < 150 samples, five PCs for tissues with ≥ 150 and < 250 samples, and ten PCs 721 

for tissues with ≥ 250 samples.  722 

cis-eQTL mapping 723 

We conducted cis-eQTL mapping for 23 distinct tissues with at least 40 individuals 724 

each, while adjusting for corresponding PEER factors and genotype PCs. Detailed 725 

information about these 23 distinct tissues is in Supplementary Table 4. As the majority of 726 

cis-eQTLs are shared across sub-species/breeds (Figure 3g), we combined, adjusting for 727 

species/breed, all of the datasets from the same tissue to perform cis-eQTL mapping in order 728 

to increase the statistical power. We kept genes with TPM > 0.1 in ≥ 20% samples in each 729 

tissue. Gene expression values of all samples in a given tissue were quantile normalized to 730 

the average empirical distribution and expression values for each gene then inverse normal 731 

transformed (INT) across samples. The cis-eQTL mapping was done using a linear 732 

regression model, implemented in FastQTL (v2.184)42, to test associations of the normalized 733 

expression level of genes with genetic variants in 1Mb of TSS of target genes. We only 734 

considered imputed variants with MAF > 0.05 and at least four minor alleles across samples 735 

within the target tissue. We first conducted cis-eQTL mapping in a permutation mode with 736 
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the setting --permute 1000 10000, to identify genes with at least one significant cis-eQTL 737 

(eGene). We considered FDR ≤ 0.05 as significant, which was calculated with the 738 

Benjamini-Hochberg method based on the beta distribution-extrapolated empirical P-values 739 

from FastQTL. To identify a list of significant eGene-eVariant pairs, we applied the nominal 740 

mode in FastQTL. A genome-wide empirical P-value threshold  was defined as the 741 

empirical P-value of the gene closest to the 0.05 FDR threshold3. We then calculated the 742 

nominal threshold as ( ), where  is the binominal inverse cumulative distribution, 743 

of which parameters for genes were obtained from the above permutation mode of FastQTL 744 

analysis. We considered variants with nominal P-values below the nominal threshold as 745 

significant, and included them into the list of eGene-eVariant pairs. We calculated the aFC, 746 

defined as the ratio of the expression level of the haplotype carrying the alternative allele 747 

over the one carrying the reference allele, to measure effect sizes of cis-eQTLs using the aFC 748 

(v0.3) tools43. We further applied the statistical fine-mapping method, dap-g (v1.0.0)44, to 749 

infer multiple independent casual cis-eQTLs of a gene in a tissue. The dap-g approach 750 

employed a Bayesian variable selection model, using a signal-level posterior inclusion 751 

probability (SPIP) to measure the strength of each association signal (SNPs in LD). We set a 752 

cutoff of 0.1 (i.e., SPIP > 0.9) as the inclusion threshold to detect representative/independent 753 

eQTLs for the target eGene. To analyze pairwise tissue similarity in QTLs, we calculated π1 754 

statistics, defined as the proportion of true positive QTLs identified in first tissue (Discovery 755 

tissue) amongst all tested gene-variant pairs in second tissue (Validation tissue), using the 756 

Storey and Tibshirani qvalue approach, as described in13. 757 

Meta-analysis of cis-eQTLs of muscle samples from three sub-species 758 

Data from muscle samples were available from three sub-species: Bos indicus (n = 51), 759 

Bos taurus (n = 505), and their crosses (n = 108). To explore the similarity and variability of 760 

cis-eQTLs among sub-species, we conducted cis-eQTL mapping using muscle samples from 761 

each of the sub-species separately. We then conducted a meta-analysis to integrate cis-eQTL 762 

results from three sub-species using the METAL (v2020-05-05) tool45. We obtained Z-scores 763 
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(the sum of weighted effect sizes) of SNPs from the meta-analysis. Weights were 764 

proportional to the square-root of the number of individuals in each sub-species45. We 765 

employed plink (v1.90)31 to test the SNP × breed interaction in muscle samples, and adjusted 766 

the p-values to FDR using Benjamini-Hochberg procedure. We took FDR < 0.05 as the 767 

significant threshold.  768 

cis-sQTL mapping and tissue-sharing patterns 769 

In each of the 23 distinct tissues, we applied a linear regression model, implemented in 770 

FastQTL42, to test for associations of genotypes within 1 Mb up- and down-stream of target 771 

intron clusters and their corresponding intron excision ratios. We used the first five genotype 772 

PCs to account for the effect of ancestry, and 10 PEER factors to adjust for the effect of 773 

unknown confounding variables. We applied the permutation pass mode (--permute 1000 774 

10000) in FastQTL42 to obtain beta approximated permutation P values, followed by 775 

multiple test correction with the FDR method. We considered sQTL-intron pairs with FDR < 776 

0.05 as significant, and defined sGene as genes containing a significant sQTL in any introns. 777 

We employed MashR (v0.2.57)46 to analyze tissue-sharing patterns of QTLs3, and considered 778 

the local false sign rate (LFSR) < 0.05 as significant.  779 

trans-QTL mapping 780 

We conducted trans-eQTLs for 15 tissues with at least 100 samples each. We filtered 781 

genomic variants using a more stringent threshold than cis-eQTL mapping to partially 782 

account for the reduction in statistical power. We obtained mappability of variants based on 783 

k-mer lengths of 36 and 75 following the procedure described in 784 

https://wiki.bits.vib.be/index.php/Create_a_mappability_track. Briefly, we calculated the 785 

mappability of variants with 36 and 75 k-mer based on ARS-UCD1.2 using a fast mapping-786 

based algorithm47, allowing for 2 mismatches. For each gene, we averaged the mappability 787 

across exons with 72 k-mer length and UTRs with 36 K-mer length. We excluded any 788 

variants within repeats (Repeatmasker and simple repeats), and further removed variants 789 
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with mappability < 1, based on k-mer length of 75. After filtering, we kept SNPs with 790 

MAF > 0.05 and at least 10 minor alleles within each tissue for association testing.  791 

We applied two methods to detect trans-eQTLs for protein-coding genes with an average 792 

mappability ≥ 0.8. Firstly, we associated the normalized expression of target genes with 793 

genotypes on other autosomal chromosomes using a linear regression model in MatrixQTL 794 

(v2.3)48, while adjusting for the same covariates as in cis-eQTL analysis. We further removed 795 

trans-eQTL-gene pairs that were cross-mappable to reduce false positives49. Secondly, we 796 

employed a linear mixed model (by fitting a polygenic effect with the genetic relationship 797 

matrix to further account for the complex relatedness among individuals) in the GCTA 798 

(v1.93.3beta)50 for trans-eQTL and trans-sQTL mapping. For both methods, we adjusted P-799 

values for multiple testing using the Benjamini-Hochberg method to obtain FDR. We 800 

considered gene-variant pairs with FDR < 0.05 as significant. To conduct an internal validation 801 

of trans-eQTL mapping, we randomly and evenly divided blood and muscle samples into two 802 

groups. We conducted trans-eQTL mapping in the first group using the linear mixed model to 803 

detect significant trans-eQTL-gene pairs, and then repeated in the second group.  804 

TWAS and Colocalization of cis-eQTLs and GWAS loci 805 

To associate gene expression in a tissue with complex traits, we conducted a single-806 

tissue TWAS analysis using S-PrediXcan (v0.6.1)51 by prioritizing GWAS summary statistics 807 

for 43 agronomic traits of economic importance in cattle (Supplementary Table 10), 808 

including reproduction (n = 11), production (milk-relevant; n = 6), body type (n = 17), and 809 

health (immune/metabolic-relevant; n = 9). For body conformation (type), reproduction, and 810 

production traits, we conducted a single-marker GWAS by fitting a linear mixed model in 811 

27,214 U.S. Holstein bulls18. For health traits, we conducted GWAS using the same method 812 

in a subset (ranging from 11,880 for hypocalcemia to 24,699 for livability) of the 27,214 813 

available bulls19. We constructed a Nested Cross Validated Elastic Net prediction model 814 

using genotype and expression data. We included sub-species, 10 PEER factors and 815 

corresponding genotype PCs in the model to adjust for unknown confounding variables and 816 
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underlying population structure. For each trait, we conducted TWAS in each of the same 23 817 

distinct tissues as in cis-eQTL mapping. We considered genes with Bonferroni-corrected P < 818 

0.05 as significant. We visualized the Manhattan plots of P-values of all tested genes using 819 

ggplot2 (v3.3.2) in R (v3.4.1). In addition, we further employed S-MultiXcan (v0.6.1)52 to 820 

conduct multi-tissue TWAS analysis, and considered gene-trait pairs with Bonferroni 821 

threshold P < 4×10-6 (0.05/13,024) significant.  822 

To detect the shared causal variants of gene expression and complex traits, we conducted a 823 

colocalization analysis of cis-eQTLs from 23 distinct tissues and GWAS loci of 43 824 

agronomic traits using fastENLOC (v1.0)53. Briefly, we split the imputed GWAS summary 825 

statistics into approximately LD-independent regions, and each region was considered as a 826 

GWAS locus. The LD-independent regions were generated from genotypes of 886 Holstein 827 

animals from run7 of 1000 bull Genomes project, as the GWAS summary statistics were 828 

from the U.S. Holstein population. In each GWAS locus of a trait with suggestive significant 829 

SNPs (P < 10-5), we considered a gene with regional colocalization probability (rcp) > 0.5 as 830 

significant. We further conducted the colocalization analysis using Coloc (v5.1.0)54 with the 831 

function coloc.abf. We obtained posterior probability values for H4 case (PP.H4), i.e., both 832 

traits (GWAS trait and eQTLs) are associated and share a single causal variant. We kept the 833 

tissue-trait-gene triples with PP.H4 > 0.8 for downstream analysis.  834 

Other downstream bioinformatics analysis 835 

We used Genomic Association Tester (GATv1.3.4)55 1,000 permutations to estimate the 836 

functional enrichment of QTLs in particular genomic regions, e.g., chromatin states and 837 

methylation elements. We considered enrichments with FDR < 0.05 as significant. We used 838 

the R package, ClusterProfiler (v3.0.4)56, to annotate the function of genes based on the Gene 839 

Ontology database from Bioconductor (org.Bt.eg.db v3.11.4). We considered GO terms with 840 

FDR < 0.05 as significant. 841 

Statistics & Reproducibility 842 
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 No statistical method was used to predetermine sample size. We used all data passing 843 

standard quality controls, resulting in 7180 samples. For RNA-seq samples, we filtered out 844 

samples with clean read counts ≤ 500K or uniquely mapping rates < 60%, resulting in 7,180 845 

samples. For genotypes, we filtered out SNPs with MAF < 0.05 or imputation dosage R-846 

squared (DR2) < 0.8, resulting in 3,824,444 SNPs used for QTL mapping. For the QTL 847 

mapping in each tissue, we set an identity-by-state (IBS) distance cutoff of 0.85 to deem two 848 

samples as duplicates and kept one of them for analysis. The details of data exclusions are 849 

available in the Methods section. For all the boxplots, horizontal lines inside the boxes show 850 

the medians. Box bounds show the lower quartile (Q1, the 25th percentile) and the upper 851 

quartile (Q3, the 75th percentile). Whiskers are minima (Q1 − 1.5 × IQR) and maxima 852 

(Q3 + 1.5 × IQR), where IQR is the interquartile range (Q3-Q1). Outliers were not shown in 853 

the boxplots. The experiments were not randomized, as all the datasets are publicly available 854 

and from observational studies. The Investigators were not blinded to allocation during 855 

experiments and outcome assessment, as the data are not from controlled randomized 856 

studies.  857 

Data Availability  858 

 All raw data analyzed in this study are publicly available for download without 859 

restrictions from SRA (https://www.ncbi.nlm.nih.gov/sra/) and BIGD 860 

(https://bigd.big.ac.cn/bioproject/) databases. Details of RNA-Seq, WGBS and WGS can be 861 

found in Supplementary Table 1, 2 and 15, respectively. All processed data, the full summary 862 

statistics of QTL mapping are available at https://cgtex.roslin.ed.ac.uk/.  863 

 864 

Code Availability  865 

 All the computational scripts and codes for RNA-seq and DNA methylation data 866 

quantification, quality control, gene expression normalization, genotype imputation, QTL 867 
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mapping, functional enrichment, TWAS and colocalization are available at both the web 868 

portal of CattleGTEx (https://cgtex.roslin.ed.ac.uk/) and the github website 869 

(https://github.com/shuliliu/cattleGTEx, DOI: 10.5281/zenodo.6510550)57.   870 
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