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Abstract

Support Vector Machines (SVMs), originally proposed for classifications of two classes, have be-
come a very popular technique in the machine learning field. For multi-class classifications, various
single-objective models and multi-objective ones have been proposed. However, most of the single-
objective models consider neither the different costs of different misclassifications nor the users’
preferences. Although multi-objective models have taken this drawback into account, they result
in large and hard second-order cone programs (SOCPs), from which we get weakly Pareto-optimal
solutions. In this paper, we propose a Projected Multi-objective SVM (PM), which is a multi-
objective technique that works in a higher dimensional space than the object space. For PM,
we can characterize the associated Pareto-optimal solutions. Additionally, it significantly allevi-
ates the computational bottlenecks for classifications with large numbers of classes. From our
experimental results, we can see PM outperforms the single-objective multi-class SVMs (based
on an all-together method, one-against-all method and one-against-one method) and other multi-
objective SVMs. Compared to the single-objective multi-class SVMs, PM provides a wider set
of options designed for different misclassification, without sacrificing training time. Compared to
other multi-objective methods, PM promises the out-of-sample quality of the approximation of
the Pareto frontier, with a considerable reduction of the computational burden.

Keywords: Multiple objective programming, Support vector machine, Multi-class
multi-objective SVM, Pareto-optimal solution

1. Introduction

Data mining has become a crucial application area in modern science industry and society, due
to the growing size of available databases. One of the main applications in this area is supervised
classification: to obtain a model that predicts the value of one categorical variable (class) based
on the information from other variables. SVM is a popular approach to solve this problem. Cortes
and Vapnik (1995) proposed the classical SVM for classifications of two classes. The main idea is
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to generate a discriminant hyperplane which separates the input objects. Besides good theoretical
properties Vapnik (1998, 2000); Lin (2002), hundreds of applications have shown that SVM can
achieve high classification accuracy e.g. Brown et al. (2000); Guyon et al. (2002); Tong and Koller
(2002).

In real life, many classification problems involve more than two classes. Researchers have
proposed several methods to use SVMs for multi-class classifications. These methods can be
roughly grouped into two families. The first family constructs and combines several binary (two
classes) classifications, such as one-against-one, one-against-all and directed acyclic graph (DAG)
SVMs, e.g. Vapnik (1998); Kreßel (1999); Platt et al. (1999); Hsu and Lin (2002). Alternatively, all-
together methods directly find a discriminant function by solving a single optimization problem,
which attempts to classify all patterns into the corresponding classes, e.g. Bredensteiner and
Bennett (1999); Weston and Watkins (1999); Crammer and Singer (2002); Hsu and Lin (2002).

The aforementioned methods are based on solving single-objective optimization problems. The
main drawback of these methods is that, they consider neither the different costs for different
misclassifications nor a priori information. This difference is important in many applications.
For example, in medical diagnosis, it is known that the cost of misdiagnosing a patient with early
gastric cancer as having gastritis is significantly different from the cost of misdiagnosing the patient
as healthy. Besides, asymmetries in different misclassifications (the cost of misclassifying a healthy
patient as ill is different from that of misclassifying an ill patient as healthy) are widespread.
In medical diagnosis, as in many other applications, this asymmetry needs to be considered. For
instance, an investor may need an SVM which can separate high volatility shares from low volatility
shares as accurately as possible, while it might be acceptable to misclassify some of the low
volatility shares as high volatility ones. To overcome this drawback, a simple way is to introduce
a weighted single-objective function combining all criteria. These weights are rough indexes for
the importances of misclassification costs, although in practice it may be difficult to come up
with specific numbers to weigh these importances. An alternative way is using a multi-objective
approach.

A bi-objective SVM method for classifications of two classes was proposed in Carrizosa and
Martin-Barragan (2006). In that paper, they characterized all the Pareto-optimal solutions to
the bi-objective SVM. Tatsumi et al. (2007a) used a multi-objective multi-class SVM method for
pattern recognition. Based on all-together, one-against-all and one-against-one methods, they
proposed a series of multi-objective SVMs to solve multi-class classification problems, e.g. Ishida
et al. (2012); Tatsumi et al. (2007b, 2009, 2010, 2011); Tatsumi and Tanino (2014), using the
ε−constraint method. These multi-objective multi-class SVMs have some limitations: First, the
ε−constraint method is limited to computing weakly Pareto-optimal solutions Ehrgott (2005).
Second, computational cost increases dramatically when we classify a large number of classes.
Specifically, these multi-objective SVM methods need to solve a large-scale quadratic programming
(QP) problem to select the values of a large number of parameters before applying the ε−constraint
method. Consequently, each of these multi-objective approaches needs to solve a large-scale SOCP
to get the classifiers. These computational problems result in very slow training procedures, which
may not be efficient for large-scale real-life problems. Finally, these models ignore the costs of
asymmetries: although they consider that the importance of misclassifications between classes 1
and 2 may be different from those between classes 2 and 3, the importance of misclassifying a class
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1 object into class 2 is considered to be equal to that of misclassifying a class 2 object into class 1.
In this paper, we propose a Projected Multi-objective SVM (PM), which is a practical multi-

objective multi-class SVM that works in a higher dimensional space than the object space. Our
aim is to address the main limitations that we have identified in the existing multi-class SVM
methods. First, by taking the different misclassification costs (including the costs of asymmetries)
into account, we providePM with a greater degree of flexibility and thus with a wider set of options.
Second, instead of directly solving the corresponding large-scale multi-objective programming, we
characterize the Pareto-optimal solutions to PM. Specifically, the Pareto-optimal solutions to PM
can be constructed based on the optimal solution of a QP which can be decomposed into smaller
subproblems in an efficient manner. Thus, the computational burden is significantly reduced.
Finally, from our experimental results, we can see that our proposal provides an approximation of
the Pareto frontier with high out-of-sample quality, using limited computational cost. As a result,
PM is both efficient and effective.

This paper is organized as follows: In Section 2, we briefly review some multi-class SVMs
including some single-objective and multi-objective approaches. In Section 3, we describe the
proposed method PM and characterize the Pareto-optimal solutions to it. In Section 4, we describe
and comment experimental results showing that PM outperforms the state of the art. Finally,
conclusions are presented in Section 5.

2. Multi-class classification

In what follows we assume that we have a training set I = {xi}ki=1 ⊆ Rl corresponding to
m (m ≥ 3) different classes, and let yi ∈ G = {1, ...,m} denote the class membership of vector xi.
The aim of the multi-class SVMs is to generate decision functions which helps to predict the class
memberships of new objects with high accuracy.

For multi-class classification, the all-together method, one-against-all method and one-against-
one method are the most commonly used single-objective methods, e.g. Vapnik (1998); Breden-
steiner and Bennett (1999); Kreßel (1999); Weston and Watkins (1999); Crammer and Singer
(2002); Hsu and Lin (2002). The single-objective all-together method needs to solve a large-scale
optimization problem, so it is limited to small data sets Weston and Watkins (1999); Hsu and Lin
(2002). The one-against-all method constructs m binary SVMs, where each SVM classifies one of
the classes versus the rest. Unbalances associated to the large quantitative difference of class objects
in these binary SVMs may affect their classification accuracy and generalization abilities Tatsumi
et al. (2010, 2011). In this regard, some experimental results show that the one-against-all method
may have a worse accuracy for some problems compared to the all-together and one-against-one
methods Hsu and Lin (2002). As suggested in Hsu and Lin (2002), the one-against-one method,
which constructs m(m − 1)/2 classifiers (discriminant hyperplanes), is a more suitable approach
for multi-class classification, compared to the all-together and one-against-all methods.

Multi-objective multi-class SVMs have also been proposed for multi-class classifications. Based
on the all-together, one-against-all and one-against-one method, a series of multi-objective SVMs
were introduced in Tatsumi et al. (2007b, 2009, 2010, 2011); Ishida et al. (2012); Tatsumi and
Tanino (2014). These multi-objective SVMs share many common features. They use the same
classification rule: (ωp)Tx+ bp, p ∈ G is used as a measure of the degree of confidence that object
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x belongs to class p. Then, x is assigned to the class with the highest degree of confidence. Also,
their m(m − 1) objective functions and (m − 1)k constraints share the same spirit. In general,
the main properties sought in the definition of an SVM-based procedure are a high generalization
ability and low training classification errors. In order to achieve a higher generalization ability,
geometric margins were used in the previous multi-objective SVM proposals instead of functional
ones Tatsumi and Tanino (2014). In addition, they minimized certain penalty functions (defined as
weighted proportions of the sums of the auxiliary variables over the geometric margins) instead of
each of the auxiliary variables for the sake of high classification accuracy. In this way, they avoided
optimizing a very large number of objective functions. As for the constraints, all the objects are
required be correctly classified by all the associated discriminant hyperplanes, taking into account
the auxiliary variables.

Tatsumi et al. (2009) introduced a multi-objective SVM based on an all-together method (MS2)
with m(l+1)+(m−1)(k+ m

2
) variables. To reduce this large number of variables, they introduced

two modified versions of this method: SM-OA (a multi-objective SVM based on a one-against-all
method) Tatsumi et al. (2010), and M-OAO (a multi-objective SVM based on a one-against-one
method) Ishida et al. (2012). Ishida et al. (2012) presented a hard-margin version of this method
(misclassification was not allowed), which can be easily extended to a soft-margin version (SM-
OAO) that allows some misclassifications. SM-OA (SM-OAO) proceeds in two phases: The first
phase applies a one-against-all (one-against-one) method to obtain initial estimates ω̄p (ω̄pq) for
the parameters ωp, p ∈ G (ωpq, q > p, p, q ∈ G). In the second phase, a problem similar to MS2
is solved, after replacing ωp with αpω̄p (or

∑
q 6=p,q∈G α

pqω̄pq), p ∈ G. The number of variables in
SM-OA is 1

2
m(m+ 3) + (m− 1)k, while for SM-OAO we have 1

2
m(3m− 1) + (m− 1)k variables.

We can see that SM-OA has the smallest number of variables among these three multi-objective
SVMs. And if l > m − 1, SM-OAO has m(l + 1 − m) fewer variables than MS2. Thus, both
SM-OA and SM-OAO should be more computationally efficient than MS2. However, the optimal
coefficients (ω∗, b∗) obtained from SM-OA (SM-OAO) are also feasible to MS2, so their solutions
will be no better than those provided by MS2.

The goal of solving multi-objective optimization problems is to identify their Pareto-optimal
solutions. Following Deb (2001); Ehrgott (2005); Chinchuluun and Pardalos (2007), we define the
Pareto-optimal solutions and weakly Pareto-optimal solutions as follows: Given a general multi-
objective problem,

max
µ∈C

(f1(µ), f2(µ), · · · , fh(µ)).

• A feasible solution µ∗ is Pareto-optimal iff there does not exist another feasible solution
µ ∈ C such that fi(µ) ≥ fi(µ

∗) for all i ∈ {1, 2, · · · , h}, and fj(µ) > fj(µ
∗) for at least one

j ∈ {1, 2, · · · , h}.
• A feasible solution µ∗ is weakly Pareto-optimal iff there does not exist another feasible

solution µ ∈ C such that fi(µ) > fi(µ
∗) for all i ∈ {1, 2, · · · , h}.

Practically, it is often difficult and expensive to compute the complete set of Pareto-optimal
solutions in many cases (e.g., large-scale optimization problems, complex structure of the Pareto-
optimal solutions). Consequently, the most common approach is to build an approximation of the
Pareto-optimal solutions based on a limited number of solution values. For the above mentioned
multi-objective SVMs Tatsumi et al. (2007b, 2009, 2010, 2011); Ishida et al. (2012); Tatsumi and
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Tanino (2014), Tatsumi et al. suggested to use the ε−constraint method to transform the problem
into a single-objective one, by selecting one of the objective functions while transforming the rest
into constraints by setting limits to their values. As these multi-objective SVMs have m(m − 1)
objectives, we have to introduce m(m − 1) − 1 parameters to define the constraints. Each of the
solutions approximating the Pareto-optimal set would be associated with a given set of values for
these parameters. The use of an ε−constraint method introduces significant limitations in the
solutions to these multi-objective SVMs. From Ehrgott (2005), we know that the ε−constraint
method only guarantees weakly Pareto-optimal solutions. When m is large, to obtain a reasonable
approximation of the Pareto-optimal solutions, after the values of the m(m − 1) parameters are
obtained by solving a number of large-scale QPs (e.g. OS in Tatsumi et al. (2010)), we still need
to solve several computationally-expensive large-scale SOCPs (e.g. εSMOA2 in Tatsumi et al.
(2010)).

3. Projected multi-objective SVM

For simplicity, we will consider the case of a linear classifier, given that a nonlinear classifier can
be considered as a linear one embedded in a richer object space. As discussed in Section 2, among
the all-together, one-against-all and one-against-one methods, the most efficient single-objective
method for multi-class classification is the one-against-one method. We construct the discriminant
hyperplanes as follows:
• The discriminant hyperplane to separate class p data against class q data is given by:

Lpq : ωpqx+ bpq = 0, q > p, p, q ∈ G,

where ωpq ∈ Rl, q > p, p, q ∈ G are row vectors.
Ideally, we would like to have all class p objects lying above hyperplane Lpq, and all class q objects
lying below Lpq. If there exist hyperplanes such that the training objects satisfy this ideal situation,
we say that the training objects are linearly separable.

Considering the costs of different classification errors and any asymmetries in the misclassifica-
tion costs, we construct the following single-objective SVM, which tries to classify all the classes
simultaneously and is based on using a quadratic loss function:

min
ω,b,ξ

‖ω‖2 +
m∑
p=1

∑
q 6=p

cpq
∑
x∈Ip

(ξpqx )2,

s.t. ωpqx+ bpq + ξpqx ≥ 1, x ∈ Ip, q > p, p, q ∈ G,
− ωpqx− bpq + ξqpx ≥ 1, x ∈ Iq, q > p, p, q ∈ G,
ξpqx ≥ 0, x ∈ Ip, q 6= p, p, q ∈ G,

(1)

where ω = (ω12, ω13, · · · , ω(m−1)m) and Ip = {x ∈ I|x ∈ class p}. Note that Eq. (1) is separable by
pairs of classes. Hence, we have:

Property 3.1. (ω∗, b∗, ξ∗) is optimal for Eq. (1) if and only if the sub-vectors (ωpq∗ , b
pq
∗ , ξ

pq
∗ , ξ

qp
∗ ), q >

p, p, q ∈ G are optimal for the binary problems:

min
ωpq ,bpq ,ξpq ,ξqp

1

2
‖ωpq‖2 + cpq

∑
x∈Ip

(ξpqx )2 + cqp
∑
x∈Iq

(ξqpx )2,
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s.t. ωpqx+ bpq + ξpqx ≥ 1, x ∈ Ip, q > p, p, q ∈ G, (2)
− ωpqx− bpq + ξqpx ≥ 1, x ∈ Iq, q > p, p, q ∈ G,
ξpqx ≥ 0, x ∈ Ip, q 6= p, p, q ∈ G.

However, even if estimates of the misclassification costs are available, it is not easy to find
appropriate values for the weights (cpq, p 6= q, p, q ∈ G) in the objective function of Eq. (1). In
practice, decision makers prefer to have different options so that they can choose the most suitable
one. This approach implies solving many single-objective problems, and it can be made more
efficient if appropriate multi-objective SVMs are used. In this paper, for multi-class classification,
we propose an efficient multi-objective model for which we can characterize all its Pareto-optimal
solutions. It is based on projecting the object space onto a higher dimensional space, in which we
can define the geometric margins in a tractable way. The projection of interest is defined as:

∆pq
x =

(
(δ12x )T , (δ13x )T , · · · , (δ(m−1)mx )T

)T
, p < q, p, q ∈ G, with δijx =

{
x, if (i, j) = (p, q);

0, otherwise.

Note that we have ω∆pq
x = ωpqx.

We are interested in a SVM formulation whose objective functions integrate both the maxi-
mization of the geometric margins and the minimization of the classification errors. We incorporate
the classification errors into our model by redefining the geometric margins after embedding the
slack variables (as measures of misclassification) into them. We consider the following additional
projection:

∆pq
ξx =

(
(δ12ξx)

T , (δ21ξx)
T , · · · , (δm(m−1)

ξx )T
)T

, q > p, p, q ∈ G,

where
δijξx =

{
1√
cpq
en, if (i, j) = (p, q) and x is the n-th object in class p,

0, if (i, j) 6= (p, q), i 6= j, i, j ∈ G,
and en is the n-th unit vector.

In the projected space we can construct the hyperplane classifying class p objects against class
q objects as:

PLpq :
(
ω,
√
Cξ
) (

(∆pq
x )T , (∆pq

ξx)
T
)T

+ bpq = 0, q > p, p, q ∈ G,

where,
√
Cξ =

(√
c12ξ12,

√
c21ξ21, · · · ,

√
cm(m−1)ξm(m−1)

)
and ξpq, q 6= p, p, q ∈ G is the row vector

which contains all the ξpqx , x ∈ Ip.
We define the geometric margin from object x to hyperplane Lpq as the Euclidean distance

from point Γpqx =
(
(∆pq

x )T , (∆pq
ξx)

T
)T to hyperplane PLpq in the projected space.

• The geometric margin from object x ∈ Ip to hyperplane Lpq is:

%pqx (ω,
√
Cξ, b) =

∣∣∣(ω,√Cξ) ((∆pq
x )T , (∆pq

ξx)
T
)T

+ bpq
∣∣∣∥∥∥(ω,√Cξ)∥∥∥ =

ωpqx+ ξpq + bpq∥∥∥(ω,√Cξ)∥∥∥ , q > p, p, q ∈ G,

while for q < p we have %pqx (ω,
√
Cξ, b) = (−ωqpx+ ξpq − bqp)/‖(ω,

√
Cξ)‖, p, q ∈ G.

• The geometric margin for class p objects with respect to hyperplane Lpq is:
%pq(ω,

√
Cξ, b) = min

x∈Ip
%pqx (ω,

√
Cξ, b), p 6= q, p, q ∈ G.
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We maximize all the geometric margins %pq, q 6= p, p, q ∈ G by solving the following multi-
objective problem:

max
ω,b,ξ

(
%12(ω,

√
Cξ, b), %21(ω,

√
Cξ, b), · · · , %(m−1)m(ω,

√
Cξ, b), %m(m−1)(ω,

√
Cξ, b)

)
,

s.t. ωpqx+ bpq + ξpqx > 0, x ∈ Ip, q > p, p, q ∈ G,
− ωpqx− bpq + ξqpx > 0, x ∈ Iq, q > p, p, q ∈ G,
ξpqx ≥ 0, x ∈ Ip, p 6= q, p, q ∈ G.

(3)

We refer to the above multi-objective optimization problem Eq. (3) as PM (Projected Multi-
objective SVM). As in Hsu and Lin (2002), we use majority voting (also known as ’Max Wins’)
to define our classification rule: For object x, if ωpqx + bpq > 0, then the vote for the p-th class is
increased by one. Otherwise, the vote for the q-th class is increased by one. After this procedure
is completed, x is assigned to the class with the largest vote. In the case that two classes have
identical votes, the one with smaller index is selected.

To find the Pareto-optimal solutions to Eq. (3), we define the following single-objective minimax
weighted problem:

max
ω,b,ξ

min
(
%12(ω,

√
Cξ, b), θ21%21(ω,

√
Cξ, b), · · · , θm(m−1)%m(m−1)(ω,

√
Cξ, b)

)
,

s.t. ωpqx+ bpq + ξpqx > 0, x ∈ Ip, q > p, p, q ∈ G,
− ωpqx− bpq + ξqpx > 0, x ∈ Iq, q > p, p, q ∈ G,
ξpqx ≥ 0, x ∈ Ip, q 6= p, p, q ∈ G.

(4)

Eq. (4) is an intermediate step in the computation of the weakly Pareto-optimal solutions to PM,
where the values θpq can be seen as the proportions of the geometric margin %12 over each of the
geometric margins %pq. The following lemma establishes the relationship between Eq. (4) and
PM.

Lemma 3.2. (1) The optimal solution of Eq. (4) is weakly Pareto-optimal to PM;
(2) Every weakly Pareto-optimal solution of PM is optimal to Eq. (4), for some specific values of
θθθ = (θ21, · · · , θ(m−1)m, θm(m−1)) > 0.

The proof can be found in AppendixA. The close relationship between Eq. (4) and PM
promises us an efficient way to find the set of weakly Pareto-optimal solutions for PM. Specifically,
we analyze the form of the optimal solutions to Eq. (4) rather than directly solving PM. The
following theorem describes the set of weakly Pareto-optimal solutions to PM.

Theorem 3.3. The set of weakly Pareto-optimal solutions for PM is :
{(ω, b, ξω, b, ξω, b, ξ) = (µωθ, µbθ, µξθ) | µ > 0, θpq > 0, p < q, p, q ∈ G} ,

where θ12 = 1, ωpqθ = θpq+θqp

2θpqθqp
ωpq1 , bpqθ = θqp−θpq

2θpqθqp
+ θpq+θqp

2θpqθqp
bpq1 and ξpqθ = θpq+θqp

2θpqθqp
ξpq1 , for all q > p, p, q ∈

G, with (ω1, b1, ξ1) being an optimal solution for Eq. (1).

Proof. Using Lemma 3.2, we only need to prove that the optimal solutions to Eq. (4) have the
form (µωθ, µbθ, µξθ) , µ > 0. First, using the definition of geometric margins, we can rewrite Eq.
(4) as:
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min
ω,b,ξ

∥∥∥(ω,√Cξ)∥∥∥
min

{
min
x∈I1

[ω12x+ b12 + ξ12x ], · · · , θm(m−1) min
x∈Im

[−ω(m−1)mx− b(m−1)m + ξm(m−1)
x ]

} ,
s.t. ωpqx+ bpq + ξpqx > 0, x ∈ Ip, q > p, p, q ∈ G,

− ωpqx− bpq + ξqpx > 0, x ∈ Iq, q > p, p, q ∈ G,
ξpqx ≥ 0, x ∈ Ip, p 6= q, p, q ∈ G.

(5)

As the objective function of Eq. (5) is homogeneous in (ω, b, ξ), we can standardize the value of
denominator of the objective function, and solve the following problem to get the optimal solution
to Eq. (5):

min
ω,b,ξ

∥∥∥(ω,√Cξ)∥∥∥ ,
s.t.min

{
min
x∈I1

[ω12x+ b12 + ξ12x ], · · · , θm(m−1) min
x∈Im

[−ω(m−1)mx− b(m−1)m + ξm(m−1)
x ]

}
= 1,

ξpqx ≥ 0, x ∈ Ip, q 6= p, p, q ∈ G.

(6)

Eq. (6) is equivalent to

min
ω,b,ξ

∥∥∥(ω,√Cξ)∥∥∥ ,
s.t. θpq[ωpqx+ bpq + ξpqx ] ≥ 1, x ∈ Ip, q > p, p, q ∈ G,

θqp[−ωpqx− bpq + ξqpx ] ≥ 1, x ∈ Iq, q > p, p, q ∈ G,
ξpqx ≥ 0, x ∈ Ip, q 6= p, p, q ∈ G,

(7)

and to its quadratic version:

min
ω,b,ξ

∥∥∥(ω,√Cξ)∥∥∥2 ,
s.t. θpq[ωpqx+ bpq + ξpqx ] ≥ 1, x ∈ Ip, q > p, p, q ∈ G,

θqp[−ωpqx− bpq + ξqpx ] ≥ 1, x ∈ Iq, q > p, p, q ∈ G,
ξpqx ≥ 0, x ∈ Ip, q 6= p, p, q ∈ G.

(8)

As the objective function of Eq. (8) is strictly convex for (ω, ξ), its optimal solution (ωθ, ξθ) is
unique. Besides, as the objective of Eq. (8) is quadratic (positive semidefinite) and the constraints
are affine functions, its KKT conditions are necessary and sufficient for optimality. These KKT
conditions for Eq. (8) are:

2ωpqθ = θpq
∑
x∈Ip

λpqθxx
T − θqp

∑
x∈Iq

λqpθxx
T , q > p, p, q ∈ G,

∑
x∈Ip

θpqλpqθx − θ
qp
∑
x∈Iq

λqpθx = 0, q > p, p, q ∈ G,

2cpqξpqθx = θpqλpqθx + τpqθx , x ∈ Ip, p 6= q, p, q ∈ G,
λpqθx[θ

pqωpqθ x+ θpqbpqθ + θpqξpqθx − 1] = 0, x ∈ Ip, q > p, p, q ∈ G,
λqpθx[−θ

qpωpqθ x− θ
qpbpqθ + θqpξqpθx − 1] = 0, x ∈ Iq, q > p, p, q ∈ G,

ξpqθx ≥ 0, λpqθx ≥ 0, τpqθx ≥ 0, x ∈ Ip, p 6= q, p, q ∈ G,

8



θpq[ωpqθ x+ bpqθ + ξpqθx] ≥ 1, x ∈ Ip, q > p, p, q ∈ G,
θqp[−ωpqθ x− b

pq
θ + ξqpθx] ≥ 1, x ∈ Iq, q > p, p, q ∈ G,

τpqθx [−ξ
pq
θx] = 0, x ∈ Ip, q 6= p, p, q ∈ G.

From these KKT conditions, we can see that (λpqθ , λ
qp
θ ) 6= 0, q > p, p, q ∈ G.Without loss of generality

we have that, for each p, q ∈ G with q > p, there exists some xpqθ ∈ Ip such that λpq
θxpqθ
6= 0. Then we get

bpqθ =
1

θpq
− ωpqθ x

pq
θ − ξ

pq
θxpqθ

, q > p, p, q ∈ G. (9)

Thus, the set of optimal solutions for Eq. (8) is nonempty. From the uniqueness of (ωθ, ξθ) and Eq.
(9), we have that Eq. (8) has a unique optimal solution. Also, note that for θ = (1, . . . , 1), problems Eq.
(8) and Eq. (1) coincide.

Suppose (ω1, b1, ξ1) is optimal to Eq. (1) and (λ1, τ1) are the corresponding KKT multiplier vectors.
Then letting

ωpqθ =
θpq + θqp

2θpqθqp
ωpq1 , q > p, p, q ∈ G,

bpqθ =
θqp − θpq

2θpqθqp
+
θqp + θpq

2θpqθqp
bpq1 , q > p, q, p ∈ G,

ξpqθx =
θpq + θqp

2θpqθqp
ξpq1x, x ∈ Ip, p 6= q, p, q ∈ G,

λpqθx =
θpq + θqp

2θpqθqp
1

θpq
λpq1x, x ∈ Ip, p 6= q, p, q ∈ G,

τpqθx =
θpq + θqp

2θqpθpq
τpq1x , x ∈ Ip, p 6= q, p, q ∈ G,

(10)

it holds that (ωθ, bθ, ξθ) is the unique optimal solution of Eq. (8), since it satisfies the KKT conditions.
Then, for any µ > 0 we have that (µωθ, µbθ, µξθ) is optimal to Eq. (4).

We now show that these weakly Pareto-optimal solutions are also Pareto-optimal to PM.

Corollary 3.4. The Pareto-optimal solution set of PM will be given by:

{(ω, b, ξω, b, ξω, b, ξ) = (µωθ, µbθ, µξθ) | µ > 0, θpq > 0, p < q, p, q ∈ G} ,

where θ12 = 1, ωpqθ = θpq+θqp

2θpqθqp
ωpq1 , bpqθ = θqp−θpq

2θpqθqp
+ θpq+θqp

2θpqθqp
bpq1 and ξpqθ = θpq+θqp

2θpqθqp
ξpq1 , for all q > p, p, q ∈

G, with (ω1, b1, ξ1) being optimal to Eq. (1).

Proof. We need to prove that the weakly Pareto-optimal solutions to PM are also Pareto-optimal.
Let (ω∗, b∗, ξ∗) be a weakly Pareto-optimal solution to PM. Then, there exist some θ > 0 and

µ > 0 such that (µω∗, µb∗, µξ∗) will be optimal to Eq. (8). Suppose (ω∗, b∗, ξ∗) is not Pareto-optimal
to PM. For any µ > 0, we have %pq(ω,

√
Cξ, b) = %pq(µω,

√
Cµξ, µb). So (µω∗, µb∗, µξ∗), ∀µ > 0

will not be Pareto-optimal to PM either. Then, there exists (ω0, b0, ξ0), feasible to PM, such that:

%pq(ω0,
√
Cξ0, b0) ≥ %pq(µω∗,

√
Cµξ∗, µb∗), p 6= q, p, q ∈ G, (11)

with at least one (i, j), i 6= j, i, j ∈ G, such that %ij(ω0,
√
Cξ0, b0) > %ij(µω∗,

√
Cµξ∗, µb∗).

Without loss of generality, we can take ‖(ω0,
√
Cξ0)‖ = ‖µ(ω∗,

√
Cξ∗)‖. We have from Eq.

(11):
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ωpq0 x+ bpq0 + ξpq0x ≥ µω
pq
∗ x+ µbpq∗ + µξpq∗x, x ∈ Ip, p 6= q, p, q ∈ G. (12)

From Eq. (12) and (µω∗, µb∗, µξ∗) satisfying the constraints of Eq. (8), we have that (ω0, b0, ξ0) is
feasible to Eq. (8). As ‖(ω0,

√
Cξ0)‖ = ‖(µω∗,

√
Cξ∗)‖, it follows that (ω0, b0, ξ0) is optimal to Eq.

(8). Since Eq. (8) has a unique optimal solution, then ω0 = µω∗, b0 = µb∗, ξ0 = µξ∗. Thus, we
have:

%pq(ω0,
√
Cξ0, b0) = %pq(µω∗,

√
Cξ∗, µb∗), ∀p 6= q, p, q ∈ G.

This contradicts our assumption that Eq. (11) holds with at least one strict inequality. We then
conclude that (ω∗, b∗, ξ∗) is Pareto-optimal to PM.

From Corollary 3.4, we can see that the Pareto-optimal solutions to PM are based on the
solutions to the quadratic optimization problem Eq. (1). This problem has the added advantage
of being decomposable into binary classification problems, with the corresponding computational
advantages when the problem size increases.

4. Computational experiments

To gauge the performance of the proposed PM, we have conducted several experiments. We
provide comparison with several alternative multi-class SVMs that have been described in the lit-
erature. These experiments have been conducted on the following datasets: IRIS, WINE, SEEDS,
VEHICLE, CAR (Car Evaluation), GLASS, SCC (Synthetic Control Chart Time Series) and CTG
(Cardiotocography, raw data). All of them are available in the UCI Machine Learning Repository.
A summary of the information for these data sets is listed in Table 1.

Table 1. Data set description

Data set size of the data set No. of Dim. No. of classes

IRIS 150 4 3
WINE 178 13 3
SEEDS 210 7 3

VEHICLE 846 18 4
CAR 1728 16 4

GLASS 214 9 6
SCC 600 60 6
CTG 2126 35 10

The first group of experiments compares PM with other multi-class SVMs (both the single-
objective and multi-objective methods) in terms of their training classification accuracy, testing
classification accuracy and training time. We consider that one method is superior to another when
it has higher accuracy and lower computational costs. In this paper, we compare the performances
of the all-together method (AT)Vapnik (1998), one-against-all method (OAA)Hsu and Lin (2002),
one-against-one method (OAO)Kreßel (1999), MS2, SM-OA, SM-OAO and PM.

Table 2 shows these measures averaged over 100 replications of random splittings of the dataset
into a training sample (80%) used to compute the classifiers and a testing sample (20%) used to
compute their testing accuracy.

We have chosen the parameters required by the different methods in the following way: for AT,
OAA and OAO, we set the trade-off parameter c = 1; for MS2, SM-OA and SM-OAO, we take
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crs = 10, (r, s) = (1, 2) and fix (ε−rs, µ) as suggested in Tatsumi et al. (2007b, 2009, 2010, 2011);
Tatsumi and Tanino (2014); for PM, we take cpq = 1, q 6= p, p, q ∈ G. For every replication of
each dataset, we solve all the SVM methods (AT, OAA, OAO, MS2, SM-OA and SM-OAO) once
and record the corresponding training classification accuracy, testing classification accuracy and
training time. For PM, we solve Eq. (1) once and choose the best performance (accuracy) from
100 Pareto-optimal solutions to PM obtained randomly using Corollary 3.4.

Table 2. Mean results to compare the performances of the multi-class SVMs

AT OAA OAO MS2 SM-OA SM-OAO PM

IRIS
tr.ac 0.9859 0.9513 0.9871 0.6667 0.9845 0.9838 0.9902
te.ac 0.9773 0.9387 0.9753 0.6667 0.9750 0.9723 0.9870
tr.t(s) 1.0001 3.0293 3.0435 2.0449 4.0132 4.0770 1.2147

WINE
tr.ac 0.9865 0.9965 0.9959 0.8910 0.9978 0.5122 0.9995
te.ac 0.9415 0.9594 0.9500 0.8718 0.9568 0.4982 0.9741
tr.t(s) 1.7463 3.9034 3.8853 3.0276 5.1931 5.3379 1.8346

SEEDS
tr.ac 0.9518 0.9416 0.9360 0.9412 0.9421 0.8978 0.9570
te.ac 0.9310 0.9255 0.9150 0.9112 0.9212 0.8886 0.9493
tr.t(s) 0.6690 1.9245 1.8638 1.6396 2.4636 2.6796 0.6835

VEHICLE
tr.ac 0.8404 0.8208 0.8481 0.8392 0.8106 0.6585 0.8525
te.ac 0.7984 0.7896 0.7859 0.8014 0.7789 0.6436 0.8016
tr.t(s) 2.9827 9.3945 10.2526 24.7038 12.2850 12.4967 3.4189

CAR
tr.ac 0.8910 0.8548 0.9047 0.8829 0.8744 0.8711 0.9072
te.ac 0.8845 0.8463 0.8959 0.8788 0.8669 0.8681 0.9059
tr.t(s) 0.6279 1.4334 1.9986 37.3476 2.5928 2.9248 1.1151

GLASS
tr.ac 0.6807 0.6478 0.6866 0.6081 0.6366 0.3556 0.7007
te.ac 0.6387 0.5810 0.6302 0.5665 0.5972 0.3375 0.6617
tr.t(s) 0.8233 4.0339 9.7277 2.6385 4.8015 10.4632 1.0687

SCC
tr.ac 1 0.9900 1 0.51 1 0.9907 1
te.ac 0.9827 0.9353 0.9865 0.5037 0.9426 0.9549 0.9926
tr.t(s) 15.0726 5.0784 17.1662 25.7054 6.1961 13.8103 2.2722

CTG
tr.ac 1 1 1 1 1 0.6770 1
te.ac 0.9999 1 0.9743 0.9997 0.9999 0.6717 0.9821
tr.t(s) 14.0502 15.9397 55.0768 6410.388 41.3981 91.1074 18.1388

Note: The results marked in bold are the best average results. The results marked in italics are
the second best average results, when they have been obtained by PM. In the following tables, we
use the same way to highlight the results.

1 tr.ac= training classification accuracy,
2 te.ac= testing classification accuracy,
3 tr.t(s)= training time measured in seconds.

Table 2 shows that PM outperforms the other models for most of the data sets. In particular,
PM always shows the best mean training classification accuracy. And except for the CTG dataset,
PM also gives the best mean testing classification accuracy. Even for the CTG dataset, PM
achieves the second-best mean testing classification accuracy. In terms of the mean training time,
PM requires only slightly more time than the best value, which is obtained based on the single-
objective method AT. For the SCC dataset, PM takes the shortest time.

Nevertheless, as our main goal is to find a reasonably detailed representation of the set of
all Pareto-optimal solutions to the classification problems, these measures are not the ones most
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suitable for comparing the performances of the different multi-objective SVMs. We have already
mentioned that for MS2, SM-OA and SM-OAO, we can obtain the weakly Pareto-optimal solutions
by using the ε−constraint method, while for PM, we are able to provide a characterization for
its Pareto-optimal solutions corresponding to a specific set of parameters. In both cases it is
too expensive to determine all the Pareto-optimal solutions, as the structure of this set is very
complex, particularly for high dimensions. Our aim is to find a good and efficient approximation
of the Pareto-optimal solution sets.

In the second group of experiments, we compare different multi-objective methods in terms
of the quality of their approximations of the Pareto-optimal solution sets: we say that a method
outperforms another when it approximates the Pareto-optimal solution set better than the other.
In this paper, we use the epsilon and hypervolume indicators, defined in terms of the test accuracy
values as objectives to measure the performance of these multi-objective SVMs. These indicators
have the important property of being Pareto compliant (whenever an approximation set A is
preferable to B with respect to weak Pareto dominance, the indicator value for A should be at
least as good as the indicator value for B Fonseca et al. (2005). Following Fonseca et al. (2005),
• The hypervolume indicator IH(A) calculates the proportion of the objective space that is

weakly dominated by an approximation set of Pareto-optimal solutions A.
• The epsilon indicator is defined as Iε+ = infε∈R{∀z2 ∈ R, ∃z1 ∈ A such that z1 �ε+ z2},

where R is an reference set.
For the hypervolume indicator, we take the objective space as the hypercube which contains

all possible testing classification accuracy (a1, a2, . . . , am), where ai is the testing classification
accuracy of class i. Based on the definition of the hypervolume indicator, it holds that the values
of the hypervolume indicators will be in [0, 1], and the method which has the largest hypervolume
indicator (closest to 1) outperforms the others.

For the epsilon indicator, we select the reference set R as {(1, . . . , 1)} ⊂ Rm, which corresponds
to the ideal test accuracy. From the definition of the epsilon indicator, it holds that the values of
the epsilon indicators will be in [−1, 0] and the method which has the largest value of its epsilon
indicator (closest to 0) outperforms the others.

To obtain a more stable performance measure, we have applied the procedure described below;
in each replication we have selected a different subset of 80% of our observations as a training
sample and the remaining observations as our testing sample. We have used Matlab R2014a and
Mosek 7 to solve the optimization problems. As Mosek sometimes gives us ’unknown’ solutions,
we have only kept the ’optimal’ and ’near-optimal’ solutions and discarded the other results, to
ensure the reliability of the results.
Step 1: For i = 1, · · · , 50, repeat:

– Step 1.1: Arrange the objects in a random order. Choose the last 20% objects as the testing
objects and leave the rest as the training objects.

– Step 1.2: Do:
∗ 1.2.a: If the method used is MS2, SM-OA or SM-OAO, then

· Step 1.2.a1: As in Tatsumi et al. (2007b, 2009, 2010, 2011); Tatsumi and Tanino
(2014), obtain the parameters (ε−rs0 , µ0) by solving corresponding single-objective
SVMs such as OS in Tatsumi et al. (2010).
· Step 1.2.a2: Let (r, s) = (1, 2) and c = 10. Choose uniformly 100 different values
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for (ε−rs, µ) with ε−rs from [0.1ε−rs0 , 2ε−rs0 ] and µ from [µ0 + 0.01, µ0 + 50]. Then,
solve 100 SOCPs such as εSMOA2 Tatsumi et al. (2010) defined from each value of
(ε−rs, µ). Keep the ’optimal’ and ’near-optimal’ solutions. 1

∗ 1.2.b: If the method used is PM, then
· Step 1.2.b1: Use a 10-fold cross validation method to choose the values cpq, q 6=
p, p, q ∈ G, in the objective function of (1), and compute the corresponding optimal
solution (ω1, b1).
· Step 1.2.b2: Generate 100 uniform random values zpq in (0, 1) for any p 6= q, p, q ∈ G,
and take θpq = z12

zpq .
2 Then use Corollary 3.4 with (ω1, b1) to obtain 100 Pareto-

optimal solutions to PM.
– Step 1.3: Calculate the testing accuracy set based on the solutions obtained from Step 1.2 for

each of these multi-objective approaches.
– Step 1.4: From the sets of testing classification accuracy, calculate the corresponding hyper-

volume and epsilon indicator values for each multi-objective method.
Step 2: Calculate a statistical summary for these epsilon and hypervolume indicators.

Note that to obtain an indicator for PM we only need to solve the single-objective SVM (1)
once, while for MS2, SM-OA or SM-OAO we have to solve 100 SOCPs and 50 QPs, and not all
of them are guaranteed to provide a solution. Additionally, with PM we get approximation sets,
each composed of exactly 100 testing classification accuracy vectors. Consequently, PM provides
a richer approximation in a shorter time, compared with MS2, SM-OA and SM-OAO.

The following boxplots (Figure 1 to Figure 8) and tables (Table 3 to Table 10)show the exper-
imental results and statistical information (mean, variance, minimum, 25 percentile, median, 75
percentile and maximum) which summarize the results for the hypervolume and epsilon indicators.

Table 3. Statistic information of epsilon and hypervolume indicators for IRIS data

Epsilon indicators for IRIS data set
Method mean variance min 25% median 75% max set size time(s)
MS2 -0.3040 0.0139 -0.6 -0.4 -0.3 -0.2 -0.1 100 59.8069

SM-OA -0.068 0.0059 -0.3 -0.1 -0.1 0 0 100 201.7863
SM-OAO -0.244 0.0715 -1 -0.4 -0.1 0 0 83.46 128.1809

PM -0.0280 0.0025 -0.2 -0.1 0 0 0 100 0.9278

Hypervolume indicators for IRIS data set
Method mean variance min 25% median 75% max set size time(s)
MS2 0.7515 0.0107 0.5018 0.7031 0.7717 0.8203 0.9689 100 59.8069

SM-OA 0.9310 0.0006 0.6985 0.8975 0.8975 1 1 100 201.7863
SM-OAO 0.7919 0.0744 0 0.6985 0.9395 1 1 83.46 128.1809

PM 0.9953 0.0001 0.9579 0.9902 1 1 1 100 0.9278
1 25%= 25 percentile, 75%= 75 percentile.
2 set size= the average approximate set size for each of the multi-objective approaches.
3 time(s)= the average time (measured in seconds) for getting a hypervolume and epsilon indicator.

1As we only keep the ’optimal’ and ’near-optimal’ solutions, we get at most 100 weakly Pareto-optimal solutions
for the corresponding multi-objective method.

2From Lemma 3.2, we have θpq =
%12
∗

%pq
∗
.
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Figure 1. Boxplots of epsilon and hypervolume indicators for IRIS data
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Figure 2. Boxplots of epsilon and hypervolume indicators for WINE data
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Table 4. Statistic information of epsilon and hyper volume indicators for WINE data

Epsilon indicators for WINE data set
Method mean variance min 25% median 75% max set size time(s)
MS2 -0.1290 0.0059 -0.2857 -0.2143 -0.1010 -0.0714 0 100 121.3078

SM-OA -0.0755 0.0035 -0.2222 -0.1111 -0.0714 0 0 100 135.6761
SM-OAO -0.1590 0.0255 -1 -0.2143 -0.1111 -0.0714 0 90.62 145.7128

PM -0.0576 0.0034 -0.2143 -0.0909 -0.0714 0 0 100 1.5107

Hypervolume indicators for WINE data set
Method mean variance min 25% median 75% max set size time(s)
MS2 0.8661 0.0076 0.6314 0.7836 0.8800 0.9245 1 100 121.3078

SM-OA 0.9120 0.0070 0.6301 0.8802 0.9245 1 1 100 135.6761
SM-OAO 0.8415 0.0342 0 0.8096 0.8861 0.9589 1 90.62 145.7128

PM 0.9544 0.0038 0.7820 0.9238 0.9917 1 1 100 1.5107
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Figure 3. Boxplots of epsilon and hypervolume indicators for SEEDS data
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Table 5. Statistic information of epsilon and hypervolume indicators for SEEDS data

Epsilon indicators for SEEDS data set
Method mean variance min 25% median 75% max set size time(s)
MS2 -0.1171 0.0031 -0.2143 -0.1429 -0.1429 -0.0714 0 97.66 185.2025

SM-OA -0.1243 0.0041 -0.2857 -0.1429 -0.1429 -0.0714 0 100 128.2825
SM-OAO -0.3586 0.1248 -1 -0.5714 -0.2143 -0.0714 0 96.46 156.314

PM -0.0771 0.0016 -0.1429 -0.0714 -0.0714 -0.0714 0 100 1.7399

Hypervolume indicators for SEEDS data set
Method mean variance min 25% median 75% max set size time(s)
MS2 0.8440 0.0057 0.7162 0.7927 0.8533 0.9244 1 97.66 185.2025

SM-OA 0.8313 0.0070 0.6599 0.7868 0.8540 0.8625 1 100 128.2825
SM-OAO 0.6421 0.1295 0 0.3937 0.8038 0.9096 1 96.46 156.314

PM 0.9647 0.0017 0.8436 0.9309 0.9813 0.9948 1 100 1.7399

Figure 4. Boxplots of epsilon and hypervolume indicators for VEHICLE data
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Table 6. Statistic information of epsilon and hypervolume indicators for VEHICLE data

Epsilon indicators for VEHICLE data set
Method mean variance min 25% median 75% max set size time(s)
MS2 -0.3522 0.002 -0.4524 -0.3810 -0.3488 -0.3256 -0.2619 95.72 244.0788

SM-OA -0.3782 0.0017 -0.4762 -0.4048 -0.3765 -0.3488 -0.2857 70.18 290.3144
SM-OAO -0.4086 0.0089 -0.7442 -0.4286 -0.3810 -0.3488 -0.2791 24.08 221.8891

PM -0.3497 0.0014 -0.4286 -0.3721 -0.3488 -0.3256 -0.2857 100 4.6410

Hypervolume indicators for VEHICLE data set
Method mean variance min 25% median 75% max set size time(s)
MS2 0.4914 0.0026 0.3558 0.4599 0.4886 0.5257 0.6228 95.72 244.0788

SM-OA 0.5106 0.0030 0.3708 0.4771 0.5107 0.5594 0.5960 70.18 290.3144
SM-OAO 0.4490 0.0117 0.0766 0.4176 0.4685 0.5116 0.6264 24.08 221.8891

PM 0.6220 0.0018 0.5365 0.5970 0.6169 0.6518 0.7181 100 4.6410

Figure 5. Boxplots of epsilon and hypervolume indicators for CAR data
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Table 7. Statistic information of epsilon and hypervolume indicators for CAR data

Epsilon indicators for CAR data set
Method mean variance min 25% median 75% max set size time(s)
MS2 -0.3215 0.0103 -0.6923 -0.3846 -0.3077 -0.25 -0.1538 72.44 340.689

SM-OA -0.8154 0.0362 -1 -1 -0.8462 -0.6154 -0.4615 92.68 392.7254
SM-OAO -0.2985 0.0080 -0.5385 -0.3846 -0.3077 -0.2308 -0.1447 34.84 521.4667

PM -0.1307 0.0005 -0.1842 -0.1488 -0.1316 -0.1184 -0.0789 100 2.7537

Hypervolume indicators for CAR data set
Method mean variance min 25% median 75% max set size time(s)
MS2 0.5040 0.0109 0.2292 0.4229 0.5154 0.5679 0.7368 72.44 340.689

SM-OA 0.1051 0.0120 0 0 0.0883 0.2119 0.3217 92.68 392.7254
SM-OAO 0.5442 0.0107 0.3404 0.4722 0.5395 0.6230 0.7881 34.84 521.4667

PM 0.9309 0.0006 0.8196 0.9226 0.9314 0.9459 0.9684 100 2.7537
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Figure 6. Boxplots of epsilon and hypervolume indicators for GLASS data
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Table 8. Statistic information of epsilon and hypervolume indicators for GLASS data

Epsilon indicators for GLASS data set
Method mean variance min 25% median 75% max set size time(s)
MS2 -1 0 -1 -1 -1 -1 -1 73.22 139.3754

SM-OA -1 0 -1 -1 -1 -1 -1 95.48 246.4926
SM-OAO -1 0 -1 -1 -1 -1 -1 80.78 248.0824

PM -0.8344 0.0245 -1 -1 -0.8571 -0.6667 -0.5714 100 3.3367

Hypervolume indicators for GLASS data set
Method mean variance min 25% median 75% max set size time(s)
MS2 0 0 0 0 0 0 0 73.22 139.3754

SM-OA 0 0 0 0 0 0 0 95.48 246.4926
SM-OAO 0 0 0 0 0 0 0 80.78 248.0824

PM 0.0354 0.0027 0 0 0.0151 0.0496 0.2247 100 3.3367

Figure 7. Boxplots of epsilon and hypervolume indicators for SCC data
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Table 9. Statistic information of epsilon and hyper volume indicators for SCC data

Epsilon indicators for SCC data set
Method mean variance min 25% median 75% max set size time(s)
MS2 -0.018 0.0006 -0.05 -0.05 0 0 0 74.14 285.3247

SM-OA -0.136 0.0025 -0.25 -0.2 -0.15 -0.1 -0.05 96.66 182.1686
SM-OAO -0.07 0.0018 -0.25 -0.1 -0.05 -0.05 0 16.76 395.1692

PM -0.032 0.0006 -0.05 -0.05 -0.05 0 0 100 2.1981

Hypervolume indicators for SCC data set
Method mean variance min 25% median 75% max set size time(s)
MS2 0.9845 0.0005 0.9473 0.9534 1 1 1 74.14 285.3247

SM-OA 0.7570 0.0063 0.6093 0.7142 0.7662 0.8087 0.8993 96.66 182.1686
SM-OAO 0.9078 0.0043 0.7085 0.8891 0.9039 0.9494 1 16.76 395.1692

PM 0.9981 0.0000 0.9875 0.9977 0.9982 1 1 100 2.1981

Figure 8. Boxplots of epsilon and hypervolume indicators for CTG data
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Table 10. Statistic information of epsilon and hypervolume indicators for CTG data

Epsilon indicators for CTG data set
Method mean variance min 25% median 75% max set size time(s)
MS2 -0.0934 0.0018 -0.2 -0.125 -0.0952 -0.0625 -0.0152 17.5641 9710.4

SM-OA -0.005 0.0004 -0.1 0 0 0 0 82.9 1105.2
SM-OAO -0.3131 0.0095 -0.5385 -0.3846 -0.3077 -0.2308 -0.1579 6.46 2496

PM -0.0936 0.0013 -0.2 -0.1 -0.1 -0.0714 -0.02 100 19.1136

Hypervolume indicators for CTG data set
Method mean variance min 25% median 75% max set size time(s)
MS2 0.8783 0.005 0.7159 0.8332 0.8816 0.9443 0.9982 17.5641 9710.4

SM-OA 0.9961 0.0004 0.9050 1 1 1 1 82.9 1105.2
SM-OAO 0.3318 0.01 0.1657 0.2596 0.3234 0.3969 0.5502 6.46 2496

PM 0.9030 0.0048 0.7484 0.8540 0.9244 0.9614 0.9912 100 19.1136
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We can see from these experimental results that PM outperforms the other multi-objective
methods. The values of the indicators obtained by PM are consistently among the best for the
multi-objective SVMs mentioned in this paper. For the IRIS, WINE, SEEDS, VEHICLE, CAR
and GLASS data sets, PM has the largest mean values for both the hypervolume and epsilon
indicators. For the SCC and CTG datasets, PM shows comparable performance with respect to
the other three multi-objective approaches considered in this paper. Indeed for SCC and CTG,
PM has the second largest values of the indicators among these multi-objective methods, and
these values are very close to the largest ones.

Evaluating the performances in terms of the training times and the numbers of Pareto-optimal
solutions computed within those times, we find that PM always outperforms the other three multi-
objective methods. Specifically, PM is at least 60 times quicker than MS2, SM-OA and SM-OAO.
Moreover, PM always obtains the largest approximation sets. As a summary, PM gives us more
options in a shorter time compared with MS2, SM-OA and SM-OAO.

5. Conclusions

We have proposed a new multi-objective method (PM) for multi-class classification. This
method is an extension of the bi-objective SVM method described in Carrizosa and Martin-
Barragan (2006). Our numerical results show that the performance of PM can be advantageously
compared to that of the other multi-class SVMs mentioned in this paper. Specifically, PM provides
the highest classification accuracy with least training time among the multi-objective methods, and
its performance is also comparable to that of the single-objective methods. PM provides us with
a good approximation of the Pareto frontier while the single-objective methods need to conduct a
large number of computations to offer us a similar number of options to choose from. Moreover,
from the values of the indicators, we can also see that PM outperforms the other three multi-
objective methods (MS2, SM-OA and SM-OAO), as it always gives us Pareto frontiers with high
out-of-sample quality compared to these other multi-objective methods.

From a theoretical point of view, PM is also an efficient and effective method. From Corollary
3.4, PM provides us with Pareto-optimal solutions, while the other multi-objective approaches are
only able to offer us weakly Pareto-optimal solutions. Furthermore, the Pareto-optimal solutions
obtained from PM can be computed by solving one quadratic problem Eq. (1). From Property
3.1, Eq. (1) can be decomposed into several binary problems Eq. (3.1). This property significantly
reduces the computational cost when the problems of interest have a large number of classes.

In summary, both from a theoretical and from a computational point of view, PM is an efficient
method compared with MS2, SM-OA and SM-OAO. Besides, PM’s performance is comparable to
that of the single-objective SVMs, while being able to provide not just one Pareto-optimal solution,
but a very detailed approximation of the set of all the Pareto-optimal solutions.
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AppendixA. Proof of Lemma 3.2

Assume that (ω∗, b∗, ξ∗) is optimal to Eq. (4). Notice that the feasible region of Eq. (4) and
the feasible region of PM are the same.

If (ω∗, b∗, ξ∗) is not weakly Pareto-optimal to PM, there will exist a feasible (ω0, b0, ξ0) such
that

%12(ω0,
√
Cξ0, b0) > %12(ω∗,

√
Cξ∗, b∗), %21(ω0,

√
Cξ0, b0) > %21(ω∗,

√
Cξ∗, b∗), . . . ,

%m(m−1)(ω0,
√
Cξ0, b0) > %m(m−1)(ω∗,

√
Cξ∗, b∗).

As θpq > 0, we have:

%12(ω0,
√
Cξ0, b0) > %12(ω∗,

√
Cξ∗, b∗), θ21%21(ω0,

√
Cξ0, b0) > θ21%21(ω∗,

√
Cξ∗, b∗), . . . ,

θm(m−1)%m(m−1)(ω0,
√
Cξ0, b0) > θm(m−1)%m(m−1)(ω∗,

√
Cξ∗, b∗).

This contradicts our assumption that (ω∗, b∗, ξ∗) is optimal to Eq. (4). As a consequence, (ω∗, b∗, ξ∗)
must be a weakly Pareto-optimal solution to PM.

Assume now that (ω∗, b∗, ξ∗) is a weakly Pareto-optimal solution to PM. Then, for any feasible
(ω0, b0, ξ0), there exists some i 6= j, i, j ∈ G such that %ij(ω0,

√
Cξ0, b0) ≤ %ij(ω∗,

√
Cξ∗, b∗). Let

%∗ = max
(
%12∗ , %

21
∗ , · · · , %(m−1)m∗ , %m(m−1)

∗
)
,

where %pq∗ = %pq(ω∗,
√
Cξ∗, b∗), p 6= q, p, q ∈ G.

Formulate the following problem:

max
ω,b,ξ

min

(
%∗
%12∗

%12(ω,
√
Cξ, b),

%∗
%21∗

%21(ω,
√
Cξ, b), . . . ,

%∗

%
m(m−1)
∗

%m(m−1)(ω,
√
Cξ, b),

)
,

s.t. ωpqx+ bpq + ξpqx > 0, x ∈ Ip, p < q, p, q ∈ G,
− ωpqx− bpq + ξqpx > 0, x ∈ Iq, p < q, p, q ∈ G,
ξpqx ≥ 0, p 6= q, p, q ∈ G.

(A.1)

Note that as (ω∗, b∗, ξ∗) is optimal to PM, it is also optimal to Eq. (A.1). By dividing all the
objectives in Eq. (A.1) by %∗

%12∗
, we get the equivalent optimization problem:

max
ω,b,ξ

min

(
%12(ω,

√
Cξ, b),

%12∗
%21∗

%21(ω,
√
Cξ, b), . . . ,

%12∗

%
m(m−1)
∗

%m(m−1)(ω,
√
Cξ, b),

)
,

s.t. ωpqx+ bpq + ξpqx > 0, x ∈ Ip, p < q, p, q ∈ G,
− ωpqx− bpq + ξqpx > 0, x ∈ Iq, p < q, p, q ∈ G.

(A.2)

Thus, (ω∗, b∗, ξ∗) is also optimal to Eq. (A.2).
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