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ABSTRACT: The response of precipitation to global warming is manifest in the strengthening of the hydrological cycle
but can be complex on regional scales. Fingerprinting analyses have so far detected the effect of human influence on re-
gional changes of precipitation extremes. Here we examine changes in seasonal precipitation in Europe since the beginning
of the twentieth century and use an ensemble of new climate models to assess the role of different climatic forcings, both
natural and anthropogenic. We find that human influence gives rise to a characteristic pattern of contrasting trends, with
drier seasons in the Mediterranean basin and wetter over the rest of the continent. The trends are stronger in winter and
weaker in summer, when drying is more spatially widespread. The anthropogenic signal is dominated by the response to
greenhouse gas emissions, but is also weakened, to some extent, by the opposite effect of anthropogenic aerosols. Using a
formal fingerprinting attribution methodology, we show here for the first time that the effects of the total anthropogenic
forcing, and also of its greenhouse gas component, can be detected in observed changes of winter precipitation. Greenhouse
gas emissions are also found to drive an increase in precipitation variability in all seasons. Moreover, the models sug-
gest that human influence alters characteristics of seasonal extremes, with the frequency of high precipitation
extremes increasing everywhere except the Mediterranean basin, where low precipitation extremes become more
common. Regional attribution information contributes to the scientific basis that can help European citizens build
their climate resilience.
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1. Introduction

Scientific evidence makes it clear that a warming climate
engenders changes in precipitation around the world (Bindoff
et al. 2013). On a global scale, as surface temperature rises,
water vapor increases at a rate of 6%–7% per Celsius degree
(Trenberth 2011). This leads to an intensification of the hy-
drological cycle, though regional hydroclimatic changes may
be more complex than a mere amplification of existing pat-
terns (Allan 2014; Kumar et al. 2015). The change in global
precipitation itself is not only driven by moisture but also by
the energy budget of the troposphere and has been suggested
to evolve at a lower rate (Allen and Ingram 2002; Held and
Soden 2006).Understanding modifications in precipitation
patterns is crucial, as they are associated with a raft of socio-
economic impacts, like, for example, loss of lives and liveli-
hood due to an increasing risk of droughts or floods (Wilhite
et al. 2007; Dottori et al. 2018). Taking a closer look at Europe,
summer droughts of unprecedented severity in the Mediterra-
nean region are projected to become common by the end of the
century (Christidis and Stott 2021), which highlights that even

in countries with a relatively high adaptive capacity, communi-
ties may still be greatly vulnerable.

How well do climate models represent changes in precipita-
tion? On a global scale, Polson and Hegerl (2017) demon-
strate that models that contributed to phase 5 of the Coupled
Model Intercomparison Project (CMIP5; Taylor et al. 2012)
simulate an intensification of the water cycle consistent with
observed data. CMIP5 models have also been shown to repre-
sent well post-1948 zonal trend precipitation patterns over
land, including a rainfall increase in Northern Hemisphere
midlatitudes, though the trends are weaker than the observa-
tions suggest (Li et al. 2016). The new generation of CMIP6
models (Eyring et al. 2016) brings in further improvements
(Bock et al. 2020; Vannière et al. 2019), including a better rep-
resentation of storm tracks in the North Atlantic (Priestley
et al. 2020), pertinent to European rainfall.

Trends in regional precipitation can be driven by a combi-
nation of forced thermodynamical and dynamical changes
(Seager et al. 2010) and may be more challenging for models
to simulate because of higher natural variability, as well as the
rudimentary representation of small-scale processes (Jakob
2014). An example of the complexity in the interaction be-
tween different drivers is the increase in winter European
rainfall, influenced by changes in the storm tracks, which in
turn are affected by changes in stratospheric circulation (Scaife
et al. 2012). In contrast, the Mediterranean region becomes
drier in winter and tropical influences have been identified as

Denotes content that is immediately available upon publica-
tion as open access.

Supplemental information related to this paper is available
at the Journals Online website: https://doi.org/10.1175/JCLI-D-21-
0637.s1.

Corresponding author: Nikolaos Christidis, nikos.christidis@
metoffice.gov.uk

This article is licensed under a Creative Commons
Attribution 4.0 license (http://creativecommons.org/
licenses/by/4.0/).

DOI: 10.1175/JCLI-D-21-0637.1

C HR I S T I D I S AND S TO T T 52151 AUGUST 2022

Unauthenticated | Downloaded 11/15/22 03:17 PM UTC

https://doi.org/10.1175/JCLI-D-21-0637.s1
https://doi.org/10.1175/JCLI-D-21-0637.s1
mailto:nikos.christidis@metoffice.gov.uk
mailto:nikos.christidis@metoffice.gov.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


a possible mechanism for this change (Hoerling et al. 2012).
Finally, observational uncertainties could pose an additional
setback in model evaluation (Bhend and Whetton 2013).
Despite modeling challenges Knutson and Zeng (2018)
demonstrated that CMIP5 models yield realistic regional
precipitation trends and reported consistency with the ob-
servations in most areas. It has also been claimed that spa-
tial characteristics of the response to climatic forcings may
in fact render certain regional changes more detectable
(Sarojini et al. 2016).

Attribution studies set out to establish whether the effect of
external, and, in particular, anthropogenic forcings can be de-
tected in observed climatic changes. While the Fifth Assessment
Report (AR5) of the Intergovernmental Panel on Climate
Change (IPCC) concluded there is high confidence that hu-
man influence has contributed to the recent warming on global
to continental scales, medium confidence was assigned with re-
gard to precipitation changes over land, including increases in
the Northern Hemisphere’s mid- and high latitudes (Bindoff
et al. 2013). However, more recent studies strengthened this at-
tribution statement, which is assigned high confidence in the lat-
est Sixth Assessment Report (AR6; Eyring et al. 2021). There is
stronger evidence for detection of the anthropogenic effect on
large-scale changes, including the strengthening of the hydro-
logical cycle (Wu et al. 2013; Padrón et al. 2020) or zonal trends
(Zhang et al. 2007). Detection has also been shown for annual
and seasonal precipitation trends in northern high latitudes
where snow/ice feedback give rise to a stronger signal (Wan
et al. 2015). Regional effects, however, have been more difficult
to detect (Sarojini et al. 2016). The need for regional attribution
studies is pressing, as they provide information that is most use-
ful in helping communities reduce their vulnerability to climate
change. Christidis and Stott (2021) provided some first insights
into summer rainfall changes in Europe due to human activity
and identified an opposite response in the drying Mediterra-
nean region and the rest of the continent where rainfall in-
creases. Here we take a step farther and examine whether this
characteristic nonuniform pattern is present in other seasons
too and whether the fingerprint of human activity can be de-
tected. Formal detection on regional scales has not been shown
yet for changes in seasonal mean precipitation.

Changes in extreme precipitation do not necessarily arise
the same way as the mean and human influence may be argu-
ably easier to detect in this case. Thermodynamical drivers
linked to moisture and ultimately temperature changes play a
major role in the intensification of extremes, which can more
confidently be attributed to anthropogenic forcings (Pendergrass
et al. 2015). Rainfall extremes have been shown to increase in
most parts of the world (Alexander 2016) and recent trends
have been attributed to human influence both globally and
on continental regions, including Europe, China, and North
America (Madakumbura et al. 2021; Dong et al. 2021; Chen
and Sun 2017; Kirchmeier-Young and Zhang 2020). As
greenhouse gas emissions continue to rise, their weaker effect
on mean precipitation is also expected to emerge above vari-
ability. Our study aims to assess whether detection of a sea-
sonal signal is already possible in the wider area of Europe on
the basis of a formal attribution fingerprinting method.

We here employ a suite of CMIP6 models and rainfall ob-
servations to examine the contributions of different external
forcings, both natural and anthropogenic, to seasonal precipi-
tation trends in Europe since the beginning of the twentieth
century. We partition the overall anthropogenic effect be-
tween different forcing components like greenhouse gas and
aerosol emissions and investigate the detectability of the cli-
mate’s response in the observations with a fingerprinting attri-
bution technique. The impact of human influence on extremes
of seasonal rainfall is also investigated, calling attention to the
contrast between the northern and southern parts of the conti-
nent. Although, as an attribution study, the focus is kept on
past changes, future changes in European precipitation are
also briefly considered.

The remainder of the paper is organized as follows: in
section 2 we list the data used in the analysis and explain how
they were processed. Section 3 presents the observed and sim-
ulated changes in European precipitation, considering both
long term trends as well as changes in variability. The detect-
ability of the influence of anthropogenic forcings on observed
seasonal rainfall changes is assessed in section 4. Section 5 dis-
cusses the changing characteristics of seasonal extremes. The
main results and concluding remarks are given in section 6.

2. Data

We employ fields of gridded monthly precipitation over
land from Climatic Research Unit (CRU) time series (TS),
version 4.03 (CRU TS4.03), a dataset constructed with obser-
vations during the period 1901–2018 (Harris et al. 2020). The
fields, which cover all land areas except Antarctica, are ho-
mogenized and available on a 0.58 latitude by 0.58 longitude
grid. Uncertainties associated with orographic correction and
interpolation techniques may pose limitations in assessments
of local changes but are expected to have little effect on our
results, which concentrate on larger spatial scales. Unlike sta-
tion data, the gridded dataset also allows us to examine pat-
terns of change across the whole continent in a uniform
manner. Harris et al. (2020) also demonstrate that the cover-
age of European observations is good even in earlier years. Al-
though the limited length of the observational record and the
effect of natural variability pose limitations to the evaluation
of climate models, CRT TS4 data can still provide a useful test
bed for a simple assessment of simulated precipitation charac-
teristics. Moreover, application of an optimal detection meth-
odology in section 4 will help establish in a more rigorous
statistical framework whether simulated signals of forced cli-
mate change are detectable in the observations.

Simulated monthly precipitation data come from experiments
with a multimodel ensemble of 9 CMIP6 models (Table 1).
Each model provides multiple simulations for each experiment.
We selected only those models that provide data for all the
experiments utilized in this study. For a basic attribution assess-
ment, we compare simulations with and without human influ-
ence on the climate. The former come from an experiment with
all forcings (ALL), that is, both anthropogenic and natural,
while the latter come from an experiment that includes only
changes in volcanic aerosols and the solar irradiance (NAT).
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The total anthropogenic effect (ANTHRO) in CMIP6 simula-
tions represents the effect of changes in well-mixed greenhouse
gases, aerosols, ozone, and land use. We break down the
ANTHRO component further and also examine the response
to greenhouse gas and aerosol emissions separately, using
CMIP6 experiments that only simulate the effect of these forc-
ings (GHG and AER, respectively). This distinction between
GHG and AER is of particular interest as the two forcings may
lead to opposite rainfall trends (Wu et al. 2013). Future changes

are considered by extending the ALL simulations from year
2015 to the end of the twenty-first century with the “middle of
the road” Shared Socioeconomic Pathway 2 4.5 (SSP2 4.5; Riahi
et al. 2017). The remaining experiments provide simulations up
to year 2020, and all of the simulations start in year 1850. Our
attribution analysis also requires simulations of a “control” cli-
mate (CTL) without the effect of any external forcings, which
approximates the preindustrial climate. The models also pro-
vide such long CTL simulations, from which we extract about
6200 years of data in total.

The CMIP6 data were processed in standard ways to be fit
for use in a multimodel analysis. The simulated fields are re-
gridded onto the CRU TS4 grid and also masked with the ob-
servations to include land areas only. For a meaningful
comparison between different models that may have different
mean biases, we report seasonal precipitation as an anomaly
relative to the baseline period 1901–1930. The choice of an
early period, serving as a proxy of the preindustrial climate, is
deliberate and common in attribution studies (Bindoff et al.
2013), as it allows us to account for the bulk of the anthropo-
genic effect. A key advantage of large multimodel ensembles
is that the ensemble mean offers a clearer representation of
forced changes, as averaging suppresses the effect of internal
climate variability. On the other hand, no multimodel ensem-
ble is perfectly constructed, and any analysis is limited by the
suite of available models, often referred to as “an ensemble of
opportunity.” In our study it is evident that the models we

TABLE 1. The CMIP6 models and the experiments used in the
study. The number of simulations employed in the analysis for
each model and each experiment is shown in the table. The
ALL experiment was extended to year 2100 with SSP2 4.5. The
total number of simulations per experiment is given in the last
row.

Model ALL1 SSP2 4.5 NAT GHG AER

1 BCC-CSM2-MR 1 3 3 3
2 CNRM-CM6.1 6 10 10 10
3 CanESM5 25 15 25 15
4 GFDL-ESM4 3 3 1 1
5 HadGEM3-GC3.1-LL 1 4 4 4
6 IPSL-CM6A-LR 9 10 10 10
7 MIROC6 3 3 3 3
8 MRI-ESM2.0 1 5 5 5
9 NorESM2-LM 3 3 3 3

Total 52 56 64 54

FIG. 1. Seasonal precipitation trends (mm yr21) calculated with CRU TS4 data over 1901–2018. Each panel
corresponds to a different season, marked in the title by the first letters of the months within the season.
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employ make an unequal contribution to the ensemble mean,
and consequently a simple averaging would give greater
weight to models with the largest number of simulations
(CanESM5, CNRM, and IPSL). Hence, as in previous multi-
model attribution studies (e.g., Jones et al. 2013), we construct
the multimodel ensemble mean for each experiment by as-
signing equal weight to all models. The weight is calculated as
the inverse of the number of simulations provided by the
model for the reference experiment multiplied by the inverse
of the number of different models. The resultant weighted en-
semble mean is the equivalent of taking the average of all the
models’ ensemble averages.

Changes in precipitation are investigated over the wider
European area 108W}408E, 308}758N, which is made up of
the two predefined, subcontinental “Giorgi” regions (Giorgi
and Francisco 2000) of northern Europe (NEU) and the Med-
iterranean basin (MED). The Giorgi regions were introduced
to represent different climatic regimes and physiographic set-
tings over spatial scales that are well captured by the majority

of climate models. Here we examine spatial patterns of
change over the reference European area as well as mean
changes in the NEU and MED regions. Spatial divisions over
smaller regions act as a form of spatial smoothing that aims to
improve signal detectability. There are of course different
ways such divisions can be made. It is important to bear in
mind that the selected regions should be small enough to pro-
vide sufficient information that helps our attribution tools dis-
tinguish between different forcings, but also large enough to
minimize the effect of internal variability. We find here that
division into two subcontinental regions maximizes the signal-
to-noise ratio, and hence the Giorgi regions are more suitable
than, for example, the AR6 reference regions (Iturbide et al.
2020) that split Europe into three areas. Complexities of the
European climate would require consideration of smaller
local scales, in the context, for example, of analyses with re-
gional, or convection-permitting models, which we propose as
complementary follow-up work. Here we start by considering
larger scales and we will next present seasonal changes

FIG. 2. Seasonal precipitation trends (mm yr21) calculated with data from different CMIP6 experiments over the observational period.
The patterns correspond to the weighted ensemble mean for experiments (a),(e),(i),(m) ALL, (b),(f),(j),(n) GHG, (c),(g),(k),(o) AER,
and (d),(h),(l),(p) NAT. Different rows of panels correspond to different seasons, as marked in the titles.
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inferred from the CMIP6 models and the observations and
will also provide a simple first assessment of the contributions
of different forcings.

3. Observed and simulated precipitation changes

a. Trend patterns

We first construct seasonal precipitation trend patterns
over the observational period 1901–2018 with CRU TS4 data
(Fig. 1). We find a mix of positive and negative trends in dif-
ferent parts of the continent, but also note a possible signal of
rainfall decreases in the Mediterranean area and increases
over most other parts of the continent, with the exception of
summer, where drying is more widespread and rainfall in-
creases are mainly concentrated in Scandinavia. It should be
stressed, however, that observed trends are expected to be
highly influenced by natural variability, which partly obscures
the effect of forced changes. To assess the latter, we also con-
struct trend patterns from the (weighted) multimodel ensem-
ble mean for all the CMIP6 experiments considered in this
study (Fig. 2). As averaging suppresses to some extent the ef-
fect of internal variability, the resulting patterns are more uni-
form, and the mean trends are also smaller than the observed
trends. The ALL trends (Figs. 2a,e,i,m) illustrate more clearly

the north–south contrast, as well as the more widespread
drying in summer, and to a smaller degree in autumn, which
extends over parts of eastern Europe. The NAT experi-
ment yields smaller trends, suggesting that the total forced
response is primarily driven by anthropogenic forcings.
Knutson and Zeng (2018) also find a north–south contrast
in annual precipitation trends in Europe and, using CMIP5
runs of the preindustrial climate, demonstrate the signifi-
cance of this pattern.

Although it is beyond the scope of our study to identify
physical processes or thermodynamical and dynamical mecha-
nisms that operate behind the forced response to external forc-
ings, previous research offers some valuable insights. The drying
of the Mediterranean region has been suggested to be mainly of
thermodynamical origin and linked to the land–sea warming
contrast, changes in the lapse rate, and land–atmosphere in-
teractions (Brogli et al. 2019; Barcikowska et al. 2020). Dy-
namical drivers have also been proposed for winter changes in
the region including changes in circulation and teleconnec-
tions (Brogli et al. 2019; Hoerling et al. 2012). Increasing pre-
cipitation in the northern parts of the continent, on the other
hand, may predominantly be of dynamical origin and influ-
enced, for example, by a southward shift of the jet stream due
to sea ice losses (Screen 2013). While further research is

FIG. 3. Time series of seasonal mean precipitation anomalies relative to 1901–30 computed with observational
data (black) and data from the CMIP6 simulations with (red) and without (green) the effect of human influence.
Anomalies are averaged over (a),(c),(e),(g) the NEU region and (b),(d),(f),(h) the MED region. Different rows of
panels correspond to different seasons, as marked in the titles.
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needed to examine the models’ ability to represent the above
processes, the overall consistency between modeled and ob-
served changes is reassuring.

Precipitation changes in response to greenhouse gas and
aerosol emissions separately are also depicted in Fig. 2. The
ALL and GHG patters have similar shapes with the exception
of summer when rainfall decreases extend northward in the
GHG experiment. The GHG trends, however, are greater
than ALL. This suggests that while greenhouse gas emissions
appear to dominate the overall change, their effect is some-
what tempered. This trend reduction may be explained by the
effect of aerosol emissions, which, according to the models,
leads to a continent-wide decrease in rainfall in winter and
spring and to a response opposite of GHG in summer and au-
tumn. This contrast between precipitation changes in GHG
and AER experiments was also seen in larger-scale changes
over the Northern Hemisphere and the fingerprint of the two
opposing forcings was detected in post-1950 observations
(Wu et al. 2013). While greenhouse gas emissions increase the
longwave radiation at the surface, aerosol emissions reduce
the shortwave radiation through scattering (direct effect) and
the modification of cloud properties (indirect effect). The in-
terplay between the two forcings determines the total re-
sponse, and as European aerosols emissions decrease, the

greenhouse gas influence is expected to intensify in coming
years (Westervelt et al. 2018).

b. Changes in NEU and MED and variability evaluation

We next examine temporal changes in seasonal precipita-
tion averaged over the NEU (108W–408E, 508–758N) and
MED (108W–408E, 308–508N) regions. Time series of seasonal
anomalies computed with CRU TS4, and the ALL and NAT
simulations are shown in Fig. 3. Over the observational pe-
riod, both CRU TS4 and the mean of the ALL simulations
yield positive trends in NEU, indicating increases in precipita-
tion, and small negative trends in MED, indicating drying.
The NAT experiment gives near-zero trends, and the NAT
time series are hardly distinguished from the ALL, as they
both mainly reflect the effect of natural variations, though in
more recent years changes in the ALL experiment become
more prominent. In future decades, however, the NEU rain-
fall displays a clear increase in all seasons, with the larger
change seen in winter. Despite the strong drying trends seen
in parts of the Mediterranean area (Fig. 2), the MED time se-
ries do not show a clear decrease in precipitation, as the MED
region is too large and therefore includes areas of both posi-
tive and negative trends that largely cancel out. The regional
changes display the effects of both internal variability and

FIG. 4. Time series of seasonal mean precipitation anomalies relative to 1901–30 corresponding to the weighted en-
semble mean of the ALL (red), GHG (purple), AER (orange), and NAT (green) experiments. Anomalies are aver-
aged over (a),(c),(e),(g) the NEU region and (b),(d),(f),(h) the MED region. Different rows of panels correspond to
different seasons, as marked in the titles.
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external forcings and it has been suggested that model esti-
mates of the latter may bear a low trend bias (Knutson and
Zeng 2018) in models. The consistency between modeled
forced signals and observed changes will be assessed later by
our statistical attribution analysis. Trends over the observa-
tional period estimated with the CRU TS4 and different
model experiments (ensemble mean) are reported in Table
S1 in the online supplemental material. We stress, however,
that the effect of internal variability, especially on observed
trends, does not allow an instructive comparison.

To distinguish between different forcings, we also plot sea-
sonal precipitation time series corresponding to the ensemble
mean of each experiment (Fig. 4).We find that the overall
(ALL) increase in NEU is very much a manifestation of the
GHG response. Aerosol emissions induce an opposite re-
sponse, which, however, is much weaker and thus not obvious
in the ALL forced change. Interestingly, the GHG and AER
responses are opposite in the MED region relative to NEU
and are stronger in summer and autumn. The models suggest
that greenhouse gas emissions drive a summer drying in the
MED, which could be a direct response to warming, whereas
aerosol emissions tend to increase rainfall, which might be in-
dicative of the aerosol influence on cloud formation in a sea-
son that favors convective rainfall. Again, more work is
needed to better understand the difference in the response to

the two forcings. The overall effect is a weak summer drying
in the MED, which could increase in strength, if the aerosol
forcing were to become weaker.

Besides long-term trends, it is also important that models
provide a realistic representation of natural variability across
a range of time scales. Power spectra are often employed as a
simple evaluation test in attribution studies (Gillett et al.
2000; Christidis et al. 2013). Spectra from seasonal precipita-
tion time series based on observations and the 52 ALL simu-
lations are shown in Fig. 5. The observed variability is found
to lie within the range of the modeled variability and although
the small observational sample does not allow a more conclu-
sive assessment, the results indicate that the models employed
in the study offer a reasonable representation and are thus fit
for purpose. Spectra produced with detrended precipitation
time series (to minimize the effect of external forcings) give
qualitatively similar results. In comparing the observed and
modeled standard deviation of seasonal precipitation during
1901–50, a period before the emergence of a prominent
forced signal, we also find that the modeled range is consistent
with the observations, as illustrated for DJF precipitation in
Fig. S1 in the online supplemental material.

While power spectra offer an overall assessment of the sim-
ulated variability, a more focused look at some main modes
of variability would also be useful. Trends and variability

FIG. 5. Power spectra computed from seasonal precipitation time series (1901–2018) with data from observations
(black) and simulations with all forcings (colored lines). Spectra are shown for (a),(c),(e),(g) the NEU region and
(b),(d),(f),(h) the MED region. Different rows of panels correspond to different seasons, as marked in the titles.
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associated with precipitation are the complex outcome of dif-
ferent processes, which cannot all be comprehensively as-
sessed here. Therefore, in terms of atmospheric circulation
influences, we concentrate on two main modes of winter and
summer variability that affect the European climate, namely,
the North Atlantic Oscillation (NAO; Hurrell et al. 2003) and
the summer NAO (SNAO; Folland et al. 2009), and we assess
how the CMIP6 models represent the precipitation response
to these two seasonal oscillations.

We construct the NAO and SNAO indices using sea level
pressure (SLP) data from the NOAA–CIRES–DOE Twentieth
Century Reanalysis, version 3 (20CR; Slivinski et al. 2019), and
the CMIP6 simulations of the ALL experiment. The indices are
defined as the principal component (PC) of the leading EOF of
winter and summer SLP anomalies over the North Atlantic
(208–808N, 908W–408E) and are estimated here for the period
1850–2014 for which the 20CR data are available. The patterns
of the leading EOF are computed with reanalysis data (Fig. S2
in the online supplemental material) and with pooled ALL data
for each model. The principal component is then estimated for
each year of the reference period with 20CR and the 52 ALL
simulations. Regression maps that illustrate how the NAO and
SNAO affect European precipitation in winter and sum-
mer, respectively, are subsequently constructed by regr-
essing the gridpoint winter/summer precipitation against
the NAO/SNAO index. We thus obtain patterns from
20CR and from each of the ALL model simulations. The

reanalysis and the weighted ensemble mean regression pat-
terns are shown in Fig. 6. Although the model patterns are
smoother due to the ensemble averaging, they show a very
similar precipitation response to the reanalysis, providing
additional evidence of the adequacy of the CMIP6 models
for our attribution analysis.

c. Changes in variability

While forced trends would lead to a shift of the precipita-
tion distribution, changes in variability would also alter its
shape, and the combination of the two is key for understand-
ing how extremes, that is, events in the tails of the distribu-
tion, might be affected in a changing climate. Christidis and
Stott (2021) showed that as European summers become
warmer, there is an increase in summer rainfall variability,
leading to a broadening of its distribution, which increases the
likelihood of wet extremes, even in areas where summer rain-
fall decreases on the whole. Here we extend previous work
and further investigate whether changes in variability are also
manifest in other seasons, and also use the different CMIP6
experiments to determine how different forcings may contrib-
ute to the change.

Patterns of variability change in Europe constructed with
observational data and the ALL simulations are illustrated in
Fig. 7. The patterns depict the difference in the mean standard
deviation of seasonal precipitation between the first and last

FIG. 6. Regression patterns showing (a),(b) the winter precipitation dependence on the NAO and (c),(d) the sum-
mer precipitation dependence on the SNAO. The patterns were constructed with (left) 20CR reanalysis data and
(right) the ALL simulations. The ALL maps in (c) and(d) correspond to the weighted mean of the 52 patterns con-
structed with data from individual simulations.
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30 years of the observational period (1989–2018 minus
1901–30). The modeled patterns were computed for each of
the 52 ALL simulations and the weighted mean of the result-
ing 52 patterns is what is shown in Fig. 7. For comparison, fu-
ture changes are also shown (Figs. 7i–l), calculated using the
last 30 years of the century (2071–2100 minus 1901–30). Al-
though the observed patterns suggest an increase in variability
when averaged over the entire area, they also appear to be
largely influenced by noise. By contrast, the ensemble mean
alleviates much of the noise effect, and reveals a more uni-
form increase of the variability in all seasons. The increase be-
comes more pronounced by the end of the century, is present
in most parts of the continent, and is greater in winter than in
summer.

Since the increase in variability according to the models is
generally spatially uniform, we next examine how it varies
with time for precipitation anomalies averaged over the whole
European region. We construct the ensemble mean standard
deviation time series for each experiment by computing the
standard deviation of seasonal European mean precipitation
in 30-yr rolling windows (Fig. 8). More specifically, for each
30-yr window we compute the standard deviation for each
simulation of a given experiment and then use the resulting

estimates to calculate the weighted mean. We also estimate
the CTL standard deviation for the preindustrial climate in a
similar way using equal time segments extracted from the
CMIP6 models. While there is little change in the NAT cli-
mate, which is consistent with the CTL estimate, the green-
house gas and aerosol forcings appear to drive variability in
opposite directions, with the former leading to an increase
and the latter to a decrease over time. The effect of individual
forcings, however, is only indicative and is affected to some
degree by natural fluctuations. With this limitation in mind,
we find that as the GHG effect appears to dominate, the total
response in the ALL experiment indicates an increase in vari-
ability that becomes evident after the 1950s in winter and
spring, but only after the 2000s in the other seasons. The rate
of change is also higher in the winter season. The summer
time series suggest that summer variability may again decr-
ease later in the century. However, this may be to some extent
a manifestation of the effect of natural fluctuations. Indeed,
we find that time series with three other SSPs do not indicate
a definitive large future decrease in summer precipitation var-
iability and, at least one scenario, points to a monotonic in-
crease instead (Fig. S3 in the online supplemental material).
We therefore conclude that according to the CMIP6 models

FIG. 7. Changes in the variability of seasonal precipitation. The mean standard deviation of seasonal precipitation is computed in the
first and last 30 years of the observational period, and (a)–(d) their difference (recent minus earlier period) is shown. (e)–(h) Patterns com-
puted in a similar way as in (a)–(d), but for the ALL experiment. The ALL maps correspond to the weighted mean of the 52 patterns
constructed with individual simulations. (i)–(l) Future changes (last 30 years of the twenty-first century minus first 30 years of the observa-
tional period) for the ALL ensemble mean. Different columns of panels correspond to different seasons, as marked in the titles.
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used here, seasonal variability is set to further increase over
Europe, primarily due to the influence of greenhouse gas
emissions.

Increases in precipitation variability have been identified
before over a range spatial scales, for example, globally
(Pendergrass et al. 2017) or in mid- and high latitudes, espe-
cially on seasonal time scales (Wood et al. 2021). However,
the effect of small-scale processes in different regions and the
interplay between dynamical and thermodynamical influences
limit our understanding of the mechanisms that drive variabil-
ity changes (van der Wiel and Bintanja 2021). In the northern-
most parts of Europe, increased atmospheric moisture and its
poleward transport have been suggested to lead to variability
increases, while summer changes in the continent may also be
sensitive to dynamical influences (O’Reilly et al. 2017). The
important role of land–atmosphere interactions has also been
identified as a contributor to variability increases, which mani-
fests itself through a northward shift of climatic regimes in
Europe (Seneviratne et al. 2006). Finally, oceanic warming in
the North Atlantic may also exert significant influence on the
winter variability in northwestern Europe (Årthun et al. 2017).
Our findings provide further evidence of variability increases in
all seasons under the effect of anthropogenic forcings, though

the mechanisms through which the changes occur is subject to
further research.

4. Optimal fingerprinting

Optimal fingerprinting (Allen and Stott 2003) is a well-
established attribution methodology that underpins main at-
tribution statements of the IPCC (Bindoff et al. 2013). Its
application has also provided evidence of a detectable anthro-
pogenic signal in precipitation changes on large spatial scales
and changes in extremes (Wu et al. 2013; Zhang et al. 2007;
Lambert et al. 2004; Min et al. 2011; Dong et al. 2021). The
weaker anthropogenic effect on regional mean precipitation,
however, makes its detection more challenging. Knutson and
Zeng (2018) analyzed precipitation trend patterns in historical
periods with a CMIP5 ensemble and identified significant
changes in parts of Europe. Hoerling et al. (2012) also found
a significant winter drying over the Mediterranean region rel-
ative to earlier years (pre-1970), when the anthropogenic in-
fluence was smaller. This study adds to the evidence of
previous work by examining the detectability of the anthropo-
genic signal in seasonal European precipitation on the basis
of a more rigorous fingerprinting analysis and its partitioning

FIG. 8. Time series of the standard deviation of seasonal mean precipitation corresponding to the weighted ensem-
ble mean of the ALL (red), GHG (purple), AER (orange), and NAT (green) experiments. The standard deviation
values were calculated in 30-yr rolling windows from precipitation averaged over the European region. The standard
deviation estimated from control simulations of the preindustrial climate is marked by the dashed black line. Different
panels correspond to different seasons, as marked in the titles.
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between different forcings components. Fingerprinting can as-
sess the detectability of the total climatic response to all exter-
nal forcings, as well as the response to individual forcings, or
forcing combinations. This partitioning of the response be-
tween its components is an advantage of the methodology,
which has not yet been incorporated in newly developed
techniques based on machine learning (Madakumbura et al.
2021).

Optimal fingerprinting is a generalized multivariate regres-
sion that expresses the observed change y as a linear combina-
tion of the responses to n external forcings (often referred to
as fingerprints) xi, represented by the multimodel ensemble
means of n different experiments:

y � ∑n

i�1
(xi 2 ui)bi 1 u0: (1)

The noise terms ui and u0 represent the effect of sampling
noise (which becomes smaller as the ensemble size increases)
and the effect of internal variability in the observations, re-
spectively. One-way regression analyses with only a single finger-
print (n = 1) from the ALL experiment (xALL) assess the
detectability of the climate’s response to all external forcings in
the observations. The total response may be decomposed further,
and in this study we also carry out the following regressions:

1) We do a two-way regression analysis that separates the
total anthropogenic (ANTHRO) and NAT responses. As
common in fingerprinting analyses, responses to differ-
ent forcings are assumed to combine linearly, hence the
ANTHRO fingerprint, xANTHRO, is estimated as the
difference between xALL and xNAT.

2) We do a two-way regression that separates the GHG
fingerprint from the response to aerosols and all other
anthropogenic and natural forcings (AER1OAN). The
latter is estimated as the difference between xALL and
xGHG.

3) We do a three-way regression that separates the GHG,
AER, and OAN responses. The first two come from
the corresponding GHG and AER experiments and the
OAN from subtracting the GHG and AER fingerprints
from the ALL.

The detectability of a fingerprint xi in the observations is in-
ferred by the corresponding scaling factor bi. The scaling
factors attempt to best match the fingerprints to the ob-
served change and are reported as a best estimate and a
5%–95% uncertainty range. If the range does not include
zero, the signal is deemed detectable, otherwise it is not dis-
tinguishable from internal variability. Moreover, scaling fac-
tors consistent with 1 indicate good consistency between the
modeled response and the observed change, whereas scaling
factors above or below 1 indicate that the modeled response is
under- or overestimated.

The vectors representing the observed response (y) and the
fingerprints (xi) are constructed by concatenating the time se-
ries of decadal mean values of seasonal precipitation in the
NEU and MED regions. Fingerprinting analyses employ this
kind of spatial averaging to reduce dimensionality, as, for

example, in the study of Wan et al. (2015), who split Northern
Hemisphere’s high latitudes into 1–6 regions. Here the two
time series cover the observational period 1901–2018, which
has 118 years in total. Therefore, when applying temporal av-
eraging to compute decadal means, the last decade is incom-
plete and only includes 8 years, but this has no impact on the
results as long as all data are processed the same way. The
variance–covariance structure of the noise terms (ui, u0) is
derived from 118-yr-long segments extracted from the CTL
experiment, which are subsequently processed and organized
into vectors, the same way as the observations and the model
fingerprints. The regression is fitted using the total least
squares method and the analysis is restricted to the subspace
of the noise covariance defined by the 17 leading eigenvec-
tors, which explain more than 75% of the observed variance.
More details about the method can be found in Allen and
Stott (2003).

Results from the different optimal detection assessments
carried out in this study are summarized in Fig. 9. We first ex-
amine whether the combined influence of anthropogenic and
natural forcings is detectable and regress the ALL fingerprint
against the observations. We conduct separate one-way re-
gression analyses, one for each season. The resulting scaling
factors are shown on the left part of Fig. 9. As noted above,
winter changes in precipitation are more pronounced relative
to other seasons, and consequently we find that the ALL fin-
gerprint (dominated by the anthropogenic response) is only
detected in winter. The winter scaling factor is consistent
with 1, suggesting that the magnitude of the modeled forced
response is consistent with the observations, although the un-
certainty range of the scaling factor lies mostly above 1, which
might indicate that the response is somewhat underestimated
and needs to be scaled up to bring it in better agreement with
the observations. As climate change escalates in coming years,

FIG. 9. Scaling factors and their 5%–95% uncertainty range from
optimal fingerprinting analyses. Different segments of the figure
present results from analyses that use fingerprints corresponding to
different forcings or forcing combinations. Scaling factor values of
zero (no detection) and unity are marked by the solid and dashed
horizontal lines, respectively.
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its influence on precipitation could indeed become detectable
in other seasons too, but for the rest of the detection analysis
we only focus on winter, as we did not identify detectable sig-
nals in other seasons. Adverse socioeconomic impacts associ-
ated with changes in the winter climate of Europe (Schaller
et al. 2016; Fuhrer et al. 2006) underline the need to under-
stand better the role of human influence.

Winter precipitation changes seen in the ALL ensemble
mean are mainly driven by anthropogenic forcings, as the ef-
fect of natural forcings is smaller and generally short-lived. It
is therefore expected that the ANTHRO fingerprint is also
likely to be detectable. This is confirmed with our two-way
analysis (Fig. 9), which gives a scaling factor greater than zero
and consistent with one for ANTHRO, but indicates no de-
tection for NAT. The scaling factors of weak forcings (like
NAT) have larger uncertainties, as it is harder to distinguish
their effect from internal variability. The main contribution to
the ANTHRO response, as seen in the previous Section,
comes from greenhouse gas emissions and the second largest
contribution from anthropogenic aerosols. Interestingly, the
two forcings give rise to opposite changes, and previous work
showed that the effect of both forcings on Northern Hemi-
sphere’s precipitation changes is detectable (Wu et al. 2013).
A similar two-way detection analysis that attempts to distin-
guish between the GHG and AER1OAN responses shows
that, in the case of winter precipitation changes in Europe,

it is only the GHG fingerprint that can be clearly detected
(Fig. 9). The availability of the AER experiment in CMIP6
also allows us to carry out a three-way regression and examine
the effects of GHG, AER, and OAN separately. As before,
the GHG effect can still be detected, but this is not the case
for AER, or for other weaker forcings (Fig. 9). On the basis of
our fingerprinting analysis, we conclude that greenhouse gas
emissions have led to precipitation changes since the beginning
of the twentieth century that have risen significantly above in-
ternal variability and can be detected in the observations.

5. Changes in extremes

a. Patterns of changes in extremes

So far, we examined changes in the seasonal mean precipi-
tation driven by external forcings. In the last part of the study,
we shift the focus on changes in extremely wet and dry
seasons, more likely to be associated with high-impact floods
and droughts. We stress that wet and dry seasons are only de-
scribed here in terms of rainfall, which offers a limited
perspective on complex events like droughts. We employ a
risk-based framework, common in event attribution studies
(Herring et al. 2021), that determines the anthropogenic influ-
ence on the likelihood of extreme events from ensembles of
simulations with and without human influence (Stott et al.
2016). We first consider extremely wet and dry seasons that

FIG. 10. Changes in the frequency of seasons with extremely high precipitation. The patterns show the present-day
(years 2011–30) return time of extreme seasons that would occur once in a century without human influence on
the climate. Green colors indicate an increase in the likelihood of such events, and brown colors indicate a decrease.
Different panels correspond to different seasons, as marked in the titles.
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are rare in the natural climate, occurring on average 1 every
100 years, and then estimate how their likelihood has changed
in the present climate, represented by the period 2011–30.

Maps showing the return time patterns of seasons with low
and high precipitation anomalies are constructed as follows.
First, we estimate the 1st (dry events) and 99th (wet events)
percentiles of the precipitation anomaly (i.e., seasons with
100 ears return time) in the NAT climate. At each grid box
we have data from 56 NAT simulations that cover a period of
171 years, so in total we have samples of 9576 anomalies for
the computation of the percentiles. These are used to define
extreme events and we next estimate the probability of sea-
sons with precipitation below the 1st percentile and above the
99th percentile in the present climate. Extreme probabilities
are calculated with the generalized Pareto distribution, ap-
plied to anomaly samples extracted from the 52 ALL simulations
over the period 2011–30. The calculations are carried out on ev-
ery grid box, and the resulting patterns of the present-day return
time are illustrated in Figs. 10 (wet events) and 11 (dry events).

We note again a contrast in the changing likelihood of ex-
treme seasons between the Mediterranean basin and the rest
of the continent. Seasons with extremely high precipitation
anomalies (Fig. 10) become much rarer in the MED where
their return time has more than doubled relative to the natu-
ral world in many parts of the region. Such wet seasons, how-
ever, are now estimated to occur more frequently over the

rest of Europe, especially in winter, when their return time re-
duces to a few decades in most areas. On the other hand, sea-
sons with extremely low precipitation anomalies (Fig. 11)
become more common in the south and less common in the
north of the European regions. The increase in the likeli-
hood of dry events is more widespread in autumn, and espe-
cially summer, when it appears to affect most European
areas. The changes in extremes are consistent with the
trends in precipitation discussed in section 3, but are also
influenced by changes in variability, as, for example, in-
creases in the spread of the distributions could increase the
likelihood of extremes.

b. Past, present, and future extremes in NEU and MED

We also estimate the return time of seasons with very high
or low precipitation averaged over the NEU and MED re-
gions. Using again data from the ALL and NAT experiments,
we estimate the probabilities of events with regional mean
precipitation anomalies above (wet) or below (dry) prespeci-
fied return levels. We carry out the computations over a range
of return levels and present the resulting return level minus
return time plots in Figs. 12 and 13. Probabilities are esti-
mated for the NAT climate (using all simulated years of the
NAT experiment), the present climate (ALL years 2011–30)
and the climate of the end of the century (years 2081–2100).
Uncertainties in the return times are estimated with a

FIG. 11. Changes in the frequency of seasons with extremely low precipitation. The patterns show the present-day
(years 2011–30) return time of extreme seasons that would occur once in a century without human influence on
the climate. Green colors indicate a decrease in the likelihood of such events, and brown colors indicate an increase.
Different panels correspond to different seasons, as marked in the titles.

C H R I S T I D I S AND S TO T T 52271 AUGUST 2022

Unauthenticated | Downloaded 11/15/22 03:17 PM UTC



bootstrapping procedure and represented by the colored
areas in Figs. 12 and 13, but as the samples used for the prob-
ability estimation are large, the uncertainties are generally
small and not easy to distinguish from the best estimate. We
find a marked decrease in the return time of extremely wet
seasons in NEU in all seasons under the influence of anthro-
pogenic forcings and a more moderate decrease in the MED
in winter and spring (Fig. 12). Conversely, human influence is
shown to decrease the frequency of extremely dry seasons in
NEU (return time increases) and, apart from winter, increase
the frequency in the MED (Fig. 13). In conclusion, we find
that wet extremes become more frequent in NEU and dry ex-
tremes become less frequent in NEU and more frequent in
MED due to human influence on the climate. Similar to
changes in the mean precipitation, changes in extremes may
be more of thermodynamical origin in the south (where con-
vection processes are stronger) and dynamical in the north,
but, again, further research is needed to elucidate the mecha-
nisms behind the difference in the response across the Europe.

6. Discussion

Results from our attribution study with an ensemble of the
latest CMIP6 models offer valuable insights on the contribution
of anthropogenic forcings to changes in European precipitation

since the 1850s and into coming decades. A characteristic pat-
tern of emerging trends is evident in all seasons, comprising in-
creases in precipitation north of the Mediterranean basin and
decreases in the southernmost parts of the continent. The pat-
tern is stronger and more widespread in winter, but weaker in
summer when, apart from the MED, large areas in eastern and
western Europe also experience drier conditions. Models suggest
that much of the change is driven by greenhouse gas emissions,
while anthropogenic aerosols favor an opposite response. It may
thus be expected that as European aerosol emissions continue to
decrease, the greenhouse gas influence will strengthen in coming
years (Folini andWild 2011; Samset et al. 2018).

Because the influence of anthropogenic forcings is stronger
in winter, it is more likely to be detectable than in other
seasons. Indeed, we demonstrate that on the basis of an opti-
mal fingerprinting analysis, both the anthropogenic signal in
winter, but also its greenhouse gas component, is detected in
the observations. This is the first demonstration of a detectable
greenhouse gas signal for mean rainfall changes on continental
scales. Despite the weakening of the greenhouse gas signal by
the effect of aerosols, its detection is still feasible, and an inter-
esting future research question to consider is whether, going
forward, detection becomes possible in other seasons too.

Greenhouse gas emissions are also found to increase the var-
iability of seasonal rainfall over most of Europe. It should be

FIG. 12. Return time (inverse probability) of wet seasons corresponding to different levels of seasonal precipitation
anomalies in (a),(c),(e),(g) NEU and (b),(d),(f),(g) MED estimated for the NAT climate without the effect of human
influence (green), the present climate (red), and the climate of the late twenty-first century (dark red). Different rows
of panels correspond to different seasons, as marked in the titles.
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stressed that our analysis only provides a first indication of this
change and although the strong effect of natural fluctuations
precludes a precise quantification of its magnitude, we can still
see an emerging signal in the CMIP6 simulations. Increasing
variability would have possible repercussions for extremes. For
example, while summer precipitation is found to decrease over
France, wet extremes are suggested to have become more fre-
quent, which could manifest the effect of an increase in vari-
ability. Here we only examine seasonal precipitation extremes
and find an increasing risk of extremely dry seasons in the
Mediterranean basin and extremely wet seasons elsewhere in
the European region. More detailed research into of the risk of
floods would require streamflow information, for example,
from hydrological models. Similarly, drought studies should
also account for a range of other relevant variables like tem-
perature, wind, humidity, and radiation. Precipitation, how-
ever, still remains an underlying main driver and it is vital to
understand how it changes in a warming world. Therefore, our
analysis offers a useful broader perspective of large-scale sea-
sonal precipitation changes, elucidating the context in which
high-impact events develop. Such attribution information con-
tributes to the scientific basis that decision-makers can use to
frame effective mitigation policies and adaptation planning.
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