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Abstract. We consider the convergence theory for dyadic approximation in the middle-
third Cantor set, K, for approximation functions of the form ψτ (n) = n−τ (τ ⩾ 0). In
particular, we show that for values of τ beyond a certain threshold we have that almost
no point in K is dyadically ψτ -well approximable with respect to the natural probability
measure on K. This refines a previous result in this direction obtained by the first, third,
and fourth named authors.

1. Introduction

Throughout this note, we write K to denote the middle-third Cantor set and denote
by µ the natural probability measure on K. We recall that K consists of the real numbers
x ∈ [0, 1] which have a ternary expansion consisting only of 0’s and 2’s, and that its Hausdorff
dimension is

dimHK =
log 2

log 3
=: γ.

The natural measure µ on K is the Hausdorff γ-measure restricted to K, which is a proba-
bility measure as Hγ(K) = 1. For more information on Hausdorff dimension and Hausdorff
measures, we refer the reader to [5].

The study of Diophantine approximation in the Cantor set was suggested by Mahler [13],
and has since been an active subject of research — see, for example, [3, 4, 10, 12, 14, 15, 16,
17]. In [1], the first, third and fourth named authors discussed the problem of approximating
elements of K by rationals with denominators that are a power of two: that is, dyadic
rationals. Our methods realised the dyadic approximation problem as a manifestation of
Furstenberg’s “times two, times three” phenomenon [6, 7].

For ψ : R → [0,∞) and y ∈ R, define

W2(ψ, y) = {x ∈ R : ∥2nx− y∥ < ψ(n) for infinitely many n ∈ N}.
Here, for x ∈ R, we write ∥x∥ to denote the Euclidean distance from x to the nearest integer.
In analogy with Khintchine’s theorem [11], Velani conjectured that if ψ is monotonic then

µ(W2(ψ, 0)) =


0, if

∞∑
n=1

ψ(n) <∞,

1, if
∞∑
n=1

ψ(n) = ∞,

see [1, Conjecture 1.2]. The two parts of such a dichotomy are commonly referred to as the
convergence and divergence theories of metric Diophantine approximation, respectively. The
second named author [2] stated the following natural generalisation of Velani’s conjecture,
dropping the monotonicity condition and introducing an inhomogeneous shift. The latter
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relates the problem to distribution modulo 1, and also enables one to recast it in terms of
shrinking targets [9].

Conjecture 1. ([2, Conjecture 1.2]) If y ∈ R, then

µ(W2(ψ, y)) =


0, if

∞∑
n=1

ψ(n) <∞,

1, if
∞∑
n=1

ψ(n) = ∞.

Let us now consider the problem at the level of the exponent. For τ ⩾ 0 and n ∈ N, define
ψτ (n) = n−τ . Plainly µ(W2(ψ0, y)) = 1 for any y. By [1, Theorem 1.5], we have

µ(W2(ψτ , 0)) = 0 (τ ⩾ 1/γ). (1)

It follows from the recent work of the second named author [2] that if y ∈ R then

µ(W2(ψτ , y)) = 1 (τ ⩽ 0.01),

refining the progress on the divergence side made in [1]. The purpose of this note is to
establish the following sharpening and generalisation of (1).

Theorem 2. Let

τ >
0.922(1− γ) + 1

γ(2− γ)
,

and let y ∈ R. Then µ(W2(ψτ , y)) = 0.

One computes that τ > 1/γ−0.03 is sufficient. This makes progress towards the convergence
part of Velani’s conjecture. In [1], it was shown conditionally that

µ(W2(ψτ , 0)) =

{
0, if τ > 1,

1, if τ ⩽ 1,
(2)

which constitutes a conditional solution to Velani’s conjecture at the level of the exponent.
Specifically, the appendix of [1] contains empirical data supporting the assertion that

D2(y) +D3(y) ≫ log y (y ∈ N),
where Db(y) denotes the number of digit changes of y in base b, and (2) was established
subject to this hypothesis. We refer the reader to [1, Section 5] for further results of a
similar flavour. Theorem 2 is unconditional.

We finish this section by briefly discussing the significance of the exponent 1/γ. By a
comparatively simple argument, one can see that if τ > 1/γ and y ∈ R then µ(W2(ψτ , y)) = 0,
see the proof of [1, Proposition 1.4]. In [1], we attained the exponent 1/γ in establishing (1).
Thus, as explained in the introduction of that article, dyadic approximation in K behaves
very differently to triadic approximation inK, the latter having been thoroughly investigated
by Levesley, Salp and Velani [12]. Theorem 2 extends the admissible range for the exponent
beyond this threshold.

Notation. For complex-valued functions f and g, we write f ≪ g or f = O(g) if |f | ⩽ C|g|
pointwise, for some constant C > 0.
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2. Preliminaries

During our proof of Theorem 2 we will make use of a number of technical results from
[1], [2] and [17]. These are detailed below. To this end, let us first recall the following
constructive definition of K: let K0 := [0, 1] and let K1 :=

[
0, 1

3

]
∪
[
2
3
, 1
]
be the set obtained

by removing the open middle third from K0. Next, suppose the set Kn−1 has been defined.
Let Kn be the set obtained upon removing the open middle thirds from all the component
intervals of Kn−1. With the sets Kn constructed in this way, we have

K =
∞⋂
n=0

Kn.

Note that for each n ∈ N, the set Kn consists of 2n closed intervals, each of length 3−n. Let
CN denote the set of all (left and right) endpoints of the intervals comprising KN .
The result we use from [1] estimates the µ-measure of a union of balls by counting nearby

triadic rationals in CN for a sufficiently large N ∈ N. For n ∈ N, σ > 0 and y ∈ R, denote
Ay

n(σ) = {x ∈ R : ∥2nx− y∥ < σ}.

Lemma 3. ([1, Lemma 2.1], special case) Let n,N ∈ N and σ ∈ (0, 1) with 3−N ⩽ σ
5·2n , and

let y ∈ R. Then

2−(N+1)#(CN ∩ Ay
n(σ/5)) ⩽ µ(Ay

n(σ)) ⩽ 2−(N−1)#(CN ∩ Ay
n(5σ)).

The results we use from [2] and [17] are formulated in terms of the Fourier transform of a
measure. Recall that this quantity is defined as follows: given a Borel probability measure
ν supported on [0, 1], let

ν̂(ξ) =

∫
e−2πiξx dν(x).

Lemma 4. ([2, Lemma 2.2]) Let N ∈ N, and let t ∈ Z \ {0}. Then there exist constants
C1, C2 > 0 independent of N and t such that

#
{
0 ⩽ n < N : |µ̂(t2n)| > C1N

−0.078
}
⩽ C2N

0.922.

Lemma 5. ([17, Theorem 4.1]) Let ν be a Borel probability measure on [0, 1]. Let δ ∈ (0, 1),
let Q ∈ N, and let y ∈ [0, 1]. Then

ν({x ∈ [0, 1] : ∥Qx− y∥ ⩽ δ}) ≪ δ

(
1 +

∑
0<|ξ|⩽2Q/δ

Q|ξ

|ν̂(ξ)|

)
.

The statement given in [17, Theorem 4.1] also provides a lower bound for ν({x ∈ [0, 1] :
∥Qx − y∥ ⩽ δ}) and applies in arbitrary dimensions, but we will only use this simpler
statement.

3. Proof of Theorem 2

Set C > 0 to be the constant C1 arising from Lemma 4. Define

β1 = 0.078, β2 = 0.922, α =
1− β2
2− γ

.
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Observe that the assumption of the theorem can be rewritten as

τγ > β2 + α = 1− α(1− γ), (3)

and that τ > α. Let N ∈ N be sufficiently large so that N τ−α ⩾ 150. For n ∈ [N, 2N ] ∩ Z,
put

σn = n−τ , δn = n−α.

Write GN for the set of integers n ∈ [N, 2N ] such that

max{|µ̂(t2n)| : t ∈ Z, 1 ⩽ |t| ⩽ 2/δ2N} ⩽ CN−β1 ,

and let BN be its complement in [N, 2N ]∩Z. Applying the union bound, and then Lemma 4
with 2N + 1 in place of N , we have

#BN ⩽
∑

1⩽|t|⩽2/δ2N

#{n ∈ [N, 2N ] ∩ Z : |µ̂(t2n)| > CN−β1}

⩽
∑

1⩽|t|⩽2/δ2N

#{n ∈ [0, 2N + 1) ∩ Z : |µ̂(t2n)| > C(2N + 1)−β1}

≪
∑

1⩽|t|⩽2/δ2N

(2N + 1)β2

≪ Nβ2+α.

Observe that
W2(ψτ , y) = lim sup

n→∞
Ay

n(σn).

By the first Borel–Cantelli lemma [8, Lemma 1.2], it suffices to prove that
∞∑
n=1

µ(Ay
n(σn)) <∞. (4)

For n ∈ BN , we use the following estimate, the proof of which follows straightforwardly from
the argument in [1, §2.1].

Lemma 6. Let y ∈ R. Then
µ(Ay

n(σn)) ≪ σγ
n (n ∈ N).

In the case that n ∈ GN , we are able to obtain a stronger estimate by transferring data
from the coarse scale δn to the fine scale σn. By Lemma 5, we have

µ(Ay
n(δn)) ≪ δn

1 +
∑

1⩽|t|⩽2/δn

|µ̂(t2n)|

 (n ∈ N).

As α < β1, we find that if n ∈ GN , then

µ(Ay
n(δn)) ≪ δn. (5)

To pass between the two scales δn and σn, we require an inhomogeneous analogue of [1,
Lemma 2.2]. Its statement and proof are based upon the iterative construction of K, which
we now briefly recall, see [1, §2] for further details. For N ∈ N, recall that the N th level
in the construction of the Cantor set, which we denote by KN , comprises 2N intervals of
length 3−N . The left endpoints of these intervals form the set LN of rationals a/3N such
that a ∈ [0, 3N ] is an integer whose ternary expansion contains only the digits 0 and 2, and
the right endpoints form the set RN = {1 − x : x ∈ LN}. Note that CN = LN ∪ RN . The
following is an inhomogeneous analogue of [1, Lemma 2.2].



A NOTE ON DYADIC APPROXIMATION IN CANTOR’S SET 5

Lemma 7. Fix an absolute constant c > 0. Let n,N ,M ∈ N and σ, δ ∈ R be such that
N ⩾ M and

0 < σ < δ ⩽ 1, 3−N ⩾
cσ

2n
,

σ

2n
⩽ 3−M ⩽

δ

2n
,

and let y ∈ R. Then
#(CN ∩ Ay

n(σ)) ≪ #(CM ∩ Ay
n(2δ)).

Proof. We imitate the proof of [1, Lemma 2.2]. By symmetry, it suffices to prove that

#(LN ∩ Ay
n(σ)) ≪ #(LM ∩ Ay

n(2δ)). (6)

Suppose x ∈ LN ∩ Ay
n(σ). Then x = a/3N for some integer a ∈ [0, 3N ) whose ternary

expansion contains only the digits 0 and 2. Further, there exists an integer b ∈ [0, 2n] such
that ∣∣∣∣x− b+ y

2n

∣∣∣∣ < σ

2n
.

Therefore #(LN ∩Ay
n(σ)) is bounded above by the number of integer solutions (a, b) to the

inequality ∣∣∣∣ a3N − b+ y

2n

∣∣∣∣ < σ

2n

such that a ∈ [0, 3N ), b ∈ [0, 2n], and each ternary digit of a is 0 or 2.
We write

a = 3N−Ma1 + a2, a1, a2 ∈ Z, 0 ⩽ a1 < 3M, 0 ⩽ a2 < 3N−M.

This reveals that #(LN ∩ Ay
n(σ)) is bounded above by the number of integer solutions

(a1, a2, b) to ∣∣∣∣3N−Ma1 + a2
3N

− b+ y

2n

∣∣∣∣ < σ

2n
(7)

such that
0 ⩽ a1 < 3M, 0 ⩽ a2 < 3N−M, 0 ⩽ b ⩽ 2n,

and the ternary digits of a1, a2 are all 0 or 2. As∣∣∣∣ a13M
− b+ y

2n

∣∣∣∣ ⩽ ∣∣∣∣ a13M
+
a2
3N

− b+ y

2n

∣∣∣∣+ a2
3N

<
σ

2n
+

1

3M
⩽

2

3M
, (8)

we must have a1/3
M ∈ Ay

n(2δ) for any such solution.
Given a1, the inequality (8) forces b/2n to lie in an interval of length 4/3M, and so there

are at most O(1) possibilities for b. Next, suppose we are given a1 and b. Then, by (7), the
integer a2 is forced to lie in the interval of length 3Nσ21−n centred at 3N (b+y)2−n−3N−Ma1.
Consequently, as 3−N ⩾ cσ/2n, there are at most O(1) solutions a2 to (7). Finally, since
a1/3

M ∈ LM ∩ Ay
n(2δ), we conclude that there are O(#(LM ∩ Ay

n(2δ))) solutions in total.
This confirms (6) and completes the proof of the lemma. □

Let n ∈ [N, 2N ] ∩ Z. Let N ,M be positive integers such that

σn
15 · 2n

< 3−N ⩽
σn

5 · 2n
and

δn
30 · 2n

< 3−M ⩽
δn

10 · 2n
.

We apply Lemma 3 with σ = σn and N in place of N therein, giving

µ(Ay
n(σn)) ≪ 2−N#(CN ∩ Ay

n(5σn)).

As δn/σn = nτ−α ⩾ N τ−α ⩾ 150, we may apply Lemma 7 with σ = 5σn and δ = δn/10,
giving

#(CN ∩ Ay
n(5σn)) ≪ #(CM ∩ Ay

n(δn/5)).
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Next we apply Lemma 3 again, now with σ = δn and M in place of N therein, giving

#(CM ∩ Ay
n(δn/5)) ≪ 2Mµ(Ay

n(δn)).

Note that we have
2−N ≪ (σn/2

n)γ and 2−M ≫ (δn/2
n)γ,

and that, combined with the above, these inequalities furnish

µ(Ay
n(σn)) ≪

(σn/2
n)γ

(δn/2n)γ
µ(Ay

n(δn)).

Thus, by (5), for n ∈ GN we have

µ(Ay
n(σn)) ≪ δ1−γ

n σγ
n.

Hence, by Lemma 6 and our earlier observation that #BN ≪ Nβ2+α, we have
2N∑
n=N

µ(Ay
n(σn)) ≪

2N∑
n=N

δ1−γ
n σγ

n +
∑
n∈BN

σγ
n

≪
2N∑
n=N

1

nτγ+α(1−γ)
+Nβ2+α−τγ.

In view of (3), and noting that we can write

∞∑
n=1

µ(Ay
n(σn)) ⩽

∞∑
k=0

2k+1∑
n=2k

µ(Ay
n(σn))

≪
∞∑
k=0

2k+1∑
n=2k

1

nτγ+α(1−γ)
+ 2k(β2+α−τγ)

,
we finally have (4), which completes the proof of Theorem 2.
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