

TRACK 11: RESOURCES: Risk generation and risk mitigation in the Anthropocene era

THE SUSCEPTIBILITY OF URBAN AREAS IN EUROPE TO VECTOR-BORNE DISEASES SPREAD BY THE ASIAN TIGER MOSQUITO

Sandra Oliveira Jorge Rocha César Capinha

Asian Tiger Mosquito Aedes Albopictus

TRIAD*

* meaning a "group of three", Chikungunya–Dengue-Zika (CDZ)

- Origin in Southeast Asia
- Colonized all continents, except Antarctica
- In Europe since 1979 (Albania), Italy in 1990
- Competent vector for dengue, Zika and Chikungunya
- Outbreaks in Croatia, France, and Italy in last decade
- Increase in environmental suitability due to climate change

Urban areas are particularly vulnerable:

- o supply of mosquito breeding sites in man-made water containers and through irrigation
- heat island effect, higher urban temperature amplifies climate change
- o availability of potential hosts and dynamics of urban movements increased risk of disease spread

- ✓ Assess the environmental suitability for the establishment of the species in Europe
 - Consensus between existing models
- ✓ Assess the suitability to the mosquito in large urban areas in Europe
 - Present-day conditions and future climatic scenarios (2050)
- ✓ Investigate the relation between international trade & mosquito dispersion
 - Potential for mosquito introduction via imported goods

Environmental suitability in Europe

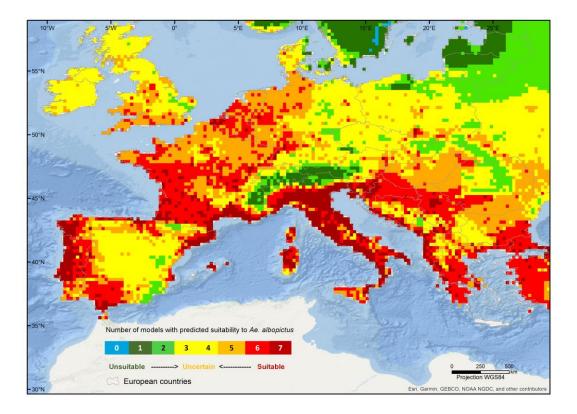
Data from existing models in Europe (7 present, 5 future)

Transform in binary scale (absence/presence)

Harmonize spatial resolution (25 km)

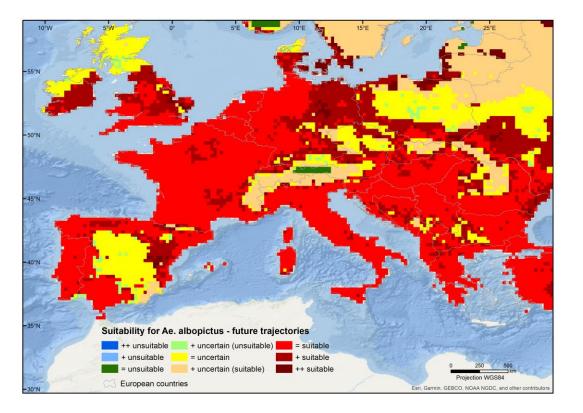
Identify common and divergent areas/patterns

Classify consensus level and uncertainty


> Identify future trajectories (2 timeframes)

References models	Geog. coverage	Spatial resolution	Present-day period	Future period	Scenario	Modelling technique
Caminade et al. (2012 ¹⁹)	Europe	0.25° ~ 25 km	1960-2009	2030-2050	SRES A1B	GIS-based (overwintering and seasonal activity); Multi-criteria decision analysis
Campbell et al. (2015) ⁸	Global	0.16666° ~18 km	1950-2000	2041-2060	SRES B1	MaxEnt
Ding et al. (2018)11	Global	0.05° ~ 5 km	1970-2000			Support vector machine (SVM); Gradient boosting machine (GBM); random Forest (RF)
Kraemer et al. (2015 ¹² , 2019 ⁵)	Global	0.04166° ~5 km	1960-2014	2050	RCP 6.0	Boosted regression trees (BRT)
Proestos et al. (2015) ⁷	Global	0.46875° ~ 50 km	2000-2009	2045-2054	SRES A2	Fuzzy-logic
Rogers (2015) ⁵²	Global	0.5° ~ 55 km	1961-1990	2080 (estimated for 2050 by linear interpolation)	SRES B1	K-means clustering; Nonlinear discriminant analysis
Santos and Meneses, (2017) ¹³	Global	30 arc-sec ~ 1 km	1950-2000			MaxEnt

Categories	Present (7 models)	Future (5 models)
Unsuitable, low uncertainty	5 to 7 models agree unsuitable	4 to 5 models agree unsuitable
High uncertainty	Only 3 or 4 models agree	Only 2 or 3 models agree
Suitable, low uncertainty	5 to 7 models agree suitable	4 to 5 models agree suitable


Results

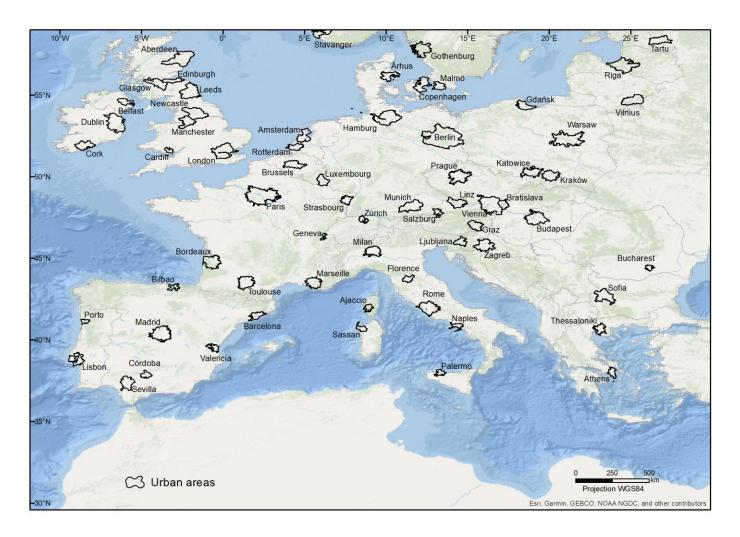
Present conditions

Areas of high uncertainty (high disagreement between models) mainly in eastern Europe, northern Britain, Ireland and central Spain.

Future trajectories

Suitable regions will encompass 21% more area, adding to the 47% of the continent that is suitable nowadays.

Objectives



Suitability in urban areas Functional Urban Areas	 Suitability class per 25 km cell, 3 major categories (traffic light scheme) Spatial overlap between cells and urban areas boundaries (majority) 						
(> 250.000 people)	 Worst-case scenario – 1/3 urban area covered by a more unfavorable variation than given by the baseline 						
Predominant class of suitability within FUA boundaries							
Expected change in	Traffic-light scheme	Most favorable situation from the human viewpoint (unsuitable with low uncertainty)					
suitability (present-future)		High uncertainty, regarding either suitability and unsuitability					
Worst-case scenario (most unfavourable change in suitability class)		Most negative situation, with suitability for the mosquito being consensual across models					

Functional urban area (FUA) - a city and its commuting zone. A densely inhabited city and a less densely populated

commuting zone whose labor market is highly integrated with the city (OECD, 2012).

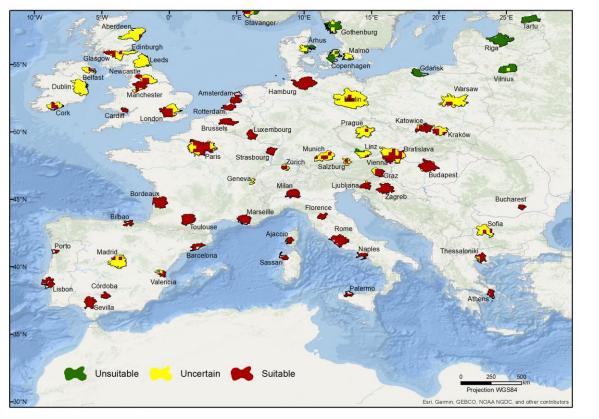
62 metropolitan areas

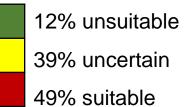
- Large metropolitan (above 1.5 million people)
- Metropolitan (250.000 to 1.5 million people)

3 medium-size urban areas

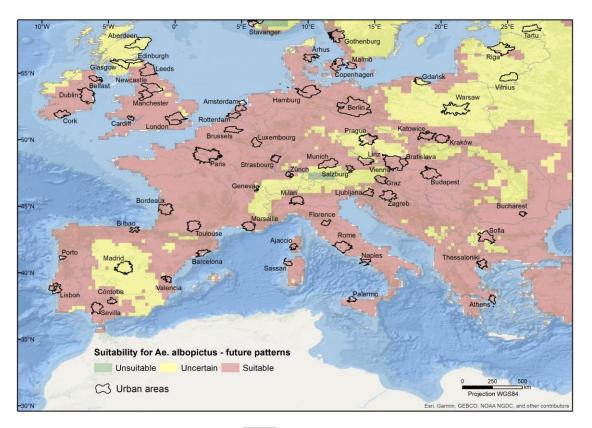
• 3 medium areas (100.000 to 250.000 people),

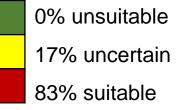
in Corsica, Sardinia and Estonia

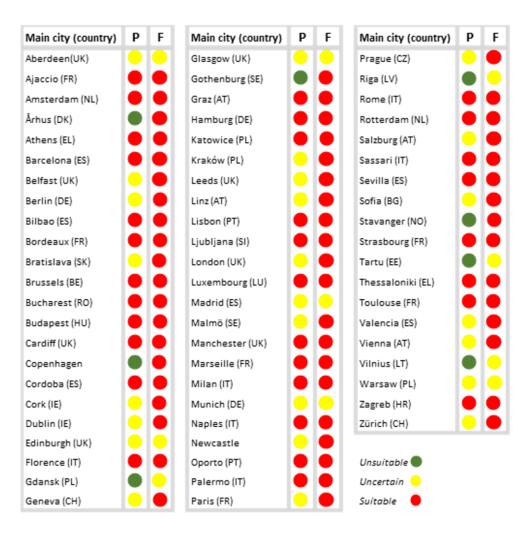

Methods



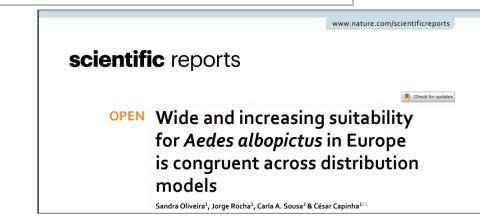
Tartu 25.-29.07.2022 AESOP ANNUAL CONGRESS Space for Species: Redefining Spatial Justice


Present conditions


Objectives


Future conditions

Background



- Cities located in northern Europe expected to undergo the most severe changes (from unsuitable to suitable) *Arhus, Copenhagen, Gothenburg, Stavanger*
- Cities of central Europe, Great Britain and Ireland are expected to become suitable (from uncertain today)

Berlin, Dublin, Geneva, London, Prague, Vienna

• Uncertainty remains in the future for cities such as:

Edinburgh, Madrid, Munich, Warsaw

//	ITC		istics for internation uarterly and year		development nport & export values, volum	nes, growth rates, market sha	ares, etc.	
Home &	Search	Data Availability	Reference Ma	aterial Oth	er ITC Tools More			
	Product	0602 - Live plan	ts incl. their roots	, cuttings and	slips; 🗸			
○ World	Country	Portugal			~		Country Group	None
	Partner	All			~			None
O	ther criteria	Imports ~ Yearl	y time series	 by country 	/ 🗸 Direct data 🖌 Qua	ntities 🗸 🖌 🗸	imary unit 🗸 🗸	
Table Graph Map / Companies Download: Image: Time Period (number of columns): Image: Time Period (number of columns): Image: Time Period (number of columns):								
			Мар		Companies	Time Period (n	umber of columns) : 🍀 5 p	ber page → 🀳 Rows per pag
	. 🗶 💓 🗄				Companies	Time Period (nr 2018	umber of columns) : 🍀 5 p 2019	per page 🔍 🀳 Rows per pag
Download			Map orters					2020
Download Bilateral					2017	2018	2019	2020 Imported quantity, Tons
Download Bilateral					2017 Imported quantity, Tons	2018 Imported quantity, Tons	2019 Imported quantity, Tons	2020 Imported quantity, Tons 0 33,343
Download Bilateral 4 digits	: 💌 💓 F	Exp			2017 Imported quantity, Tons 38,358	2018 Imported quantity, Tons 33,952	2019 Imported quantity, Tons 35,75	2020 Imported quantity, Tons 0 33,343 3 18,695
Download Bilateral 4 digits	E World Spain	Exp			2017 Imported quantity, Tons 38,358 23,289	2018 Imported quantity, Tons 33,952 18,589	2019 Imported quantity, Tons 35,75 19,81:	2020 Imported quantity, Tons 0 33,343 3 18,695 7 10,672
Download Bilateral 4 digits	World Spain Netherland	Exp			2017 Imported quantity, Tons 38,358 23,289 9,392	2018 Imported quantity, Tons 33,952 18,589 10,429	2019 Imported quantity, Tons 35,75 19,81 11,75	2020 Imported quantity, Tons 0 33,343 3 18,695 7 10,672 0 1,588
Download Bilateral 4 digits	World Spain Netherland	Exp			2017 Imported quantity, Tons 38,358 23,289 9,392 2,277	2018 Imported quantity, Tons 33,952 18,589 10,429 2,628	2019 Imported quantity, Tons 35,75 19,81 11,75 2,17	2020 Imported quantity, Tons 0 33,343 3 18,695 7 10,672 0 1,588 4 805
Download Bilateral 4 digits + + +	World Spain Netherland Italy.	Exp			2017 Imported quantity, Tons 38,558 23,289 9,392 2,277 448	2018 Imported quantity, Tons 33,952 18,589 10,429 2,628 130	2019 Imported quantity, Tons 35,75 19,81 11,75 2,17 2,77	2020 Imported quantity, Tons 0 33,343 3 18,695 7 10,672 0 1,588 4 805 0 261
Download Bilateral 4 digits • • • • •	: World Spain Netherland Italy United King Poland	Exp			2017 Imported quantity, Tons 38,358 23,289 9,392 2,277 448 2	2018 Imported quantity, Tons 33,952 18,589 10,429 2,628 130 102	2019 Imported quantity, Tons 35,75 19,81 11,75 2,17 27 1	2020 Imported quantity, Tons 0 33,343 3 18,695 7 10,672 0 1,588 4 805 0 2611 3 938

✓ Imports per country (destiny) per product

- ✓ Multiple source countries
- ✓ Monthly data (volume, tons/kgs/units)
- ✓ Period: 2004 2019

• Mann-Kendall & Sen's slope

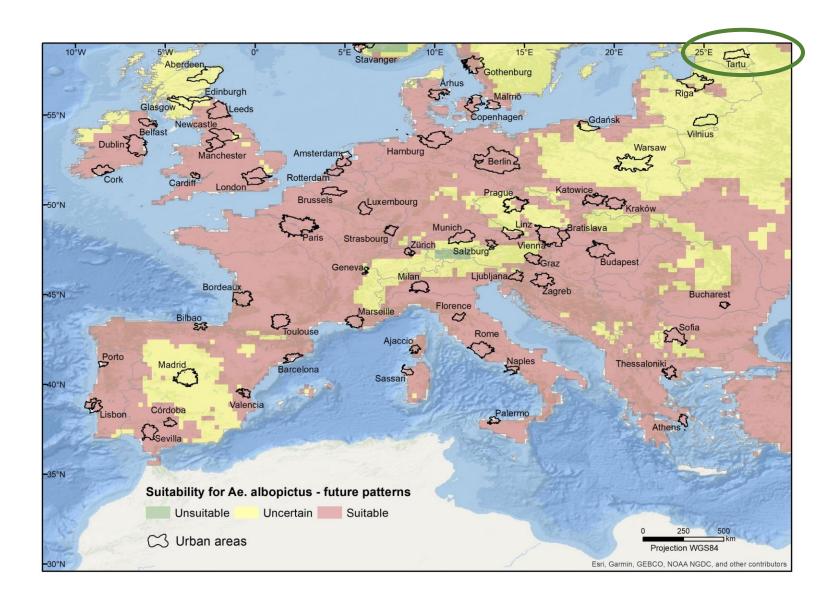
International	Country 1 File1	2010-M04	NA	#run loop to find the elements indexed and convert value	Exporters	2015-M11	2015-M12
Trade data	File10	Imported quantity	Units	for (i in 1:length(var_list\$var1)) {	Country 1	80	150
	Country 26 File1 File10	1500	Kilograms	<pre>#Process each value in position given by var1 and var2 merged_df[var_list\$var1[i],var_list\$var2[i]] <-</pre>	Country 2	900	300
0	Country 79	200	Units	merged_df [var_list\$var1[i],var_list\$var2[i]]/1000	Country 9	500	20
Tyres & live plants	File1 File10	4.5	Tons	}	World	1480	470

Pre-processing and harmonizing

Methods & (2021) 101567 Image: Contents lists available at ScienceDirect Methods X Methods X Image: Contents lists available at ScienceDirect Methods X Image: Contents lists available at ScienceDirect Methods X Image: Contents lists available at ScienceDirect Method Article Automated cleansing and harmonization of international trade data Sandra Oliveira*, César Capinha, Jorge Rocha Centre for Geographical Studies and Associated Iaboratory TERA, Institute of Geography and Spatial Planning, Universidad et Studies, Liston, Partial

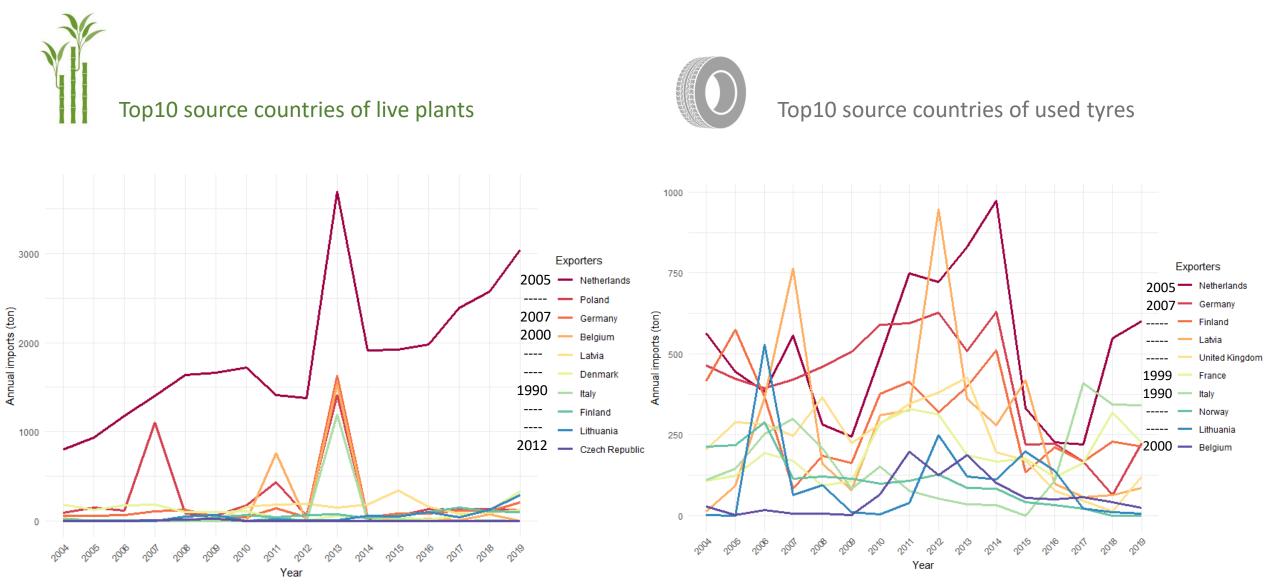
- **76 destinations** Ο
 - 2-83 source countries
- 53 with Ae. albopictus Ο
 - 31 < 2004
 - 22 ≥ 2004
- 23 without *Ae. albopictus* Ο

New Tyres	Austria Bulgaria Canada	
 77 destinations 	Costa Rica Czechia Germany Greece	
 8-89 source countries 	Honduras Croatia Laos Malta	Angola Belarus
 55 with Ae. albopictus 	Morocco Netherlands Portugal	Bolivia Chile
• 32 < 2004	Romania Russia Seychelles	Cyprus Denmark Egypt
• 23 ≥ 2004	lic of Serbia Slovakia Sweden Taiwan	Estonia Finland Ireland Kenya
• 22 without <i>Ae. albopictus</i>	Turkey Venezuela	Latvia Lithuania Luxembourg
		Peru Poland Senegal United Arab Emirates Uganda United Kingdom Ukraine Zimbabwe

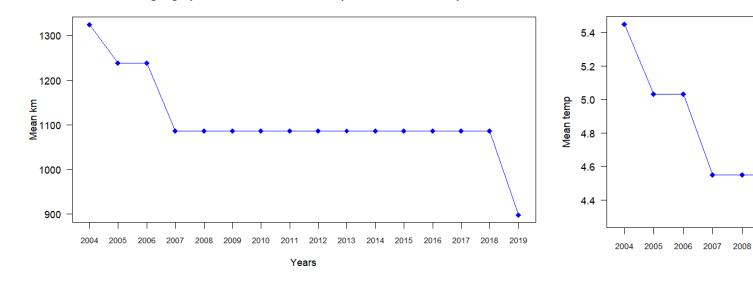

Used **Tyres**

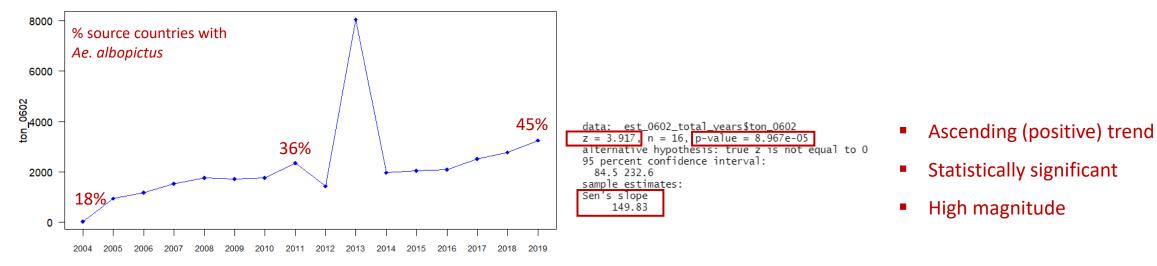
79 destinations 0

- 1-74 source countries
- 56 with *Ae. albopictus* 0
 - 33 < 2004
 - 23 ≥ 2004
- 23 without *Ae. albopictus* 0


ESTONIA

Objectives





Mean geographical distance between exporters with Ae. albopictus

ESTONIA

Years

2011

2012

2013

2014

2015

2016

2017

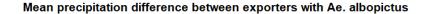
2018 2019

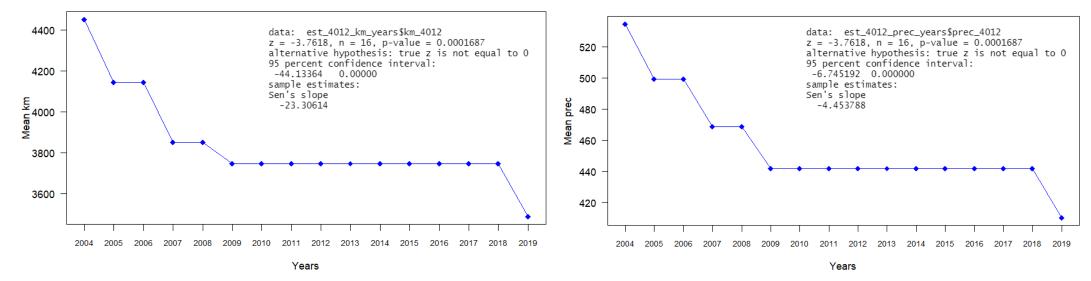
2009

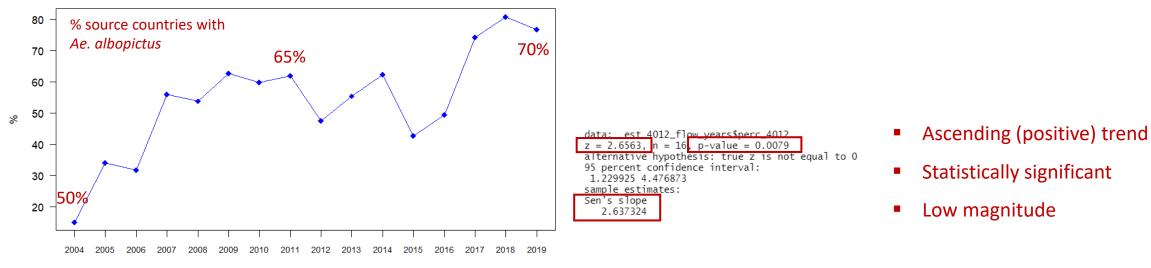
2010

Mean temperature difference between exporters with Ae. albopictus

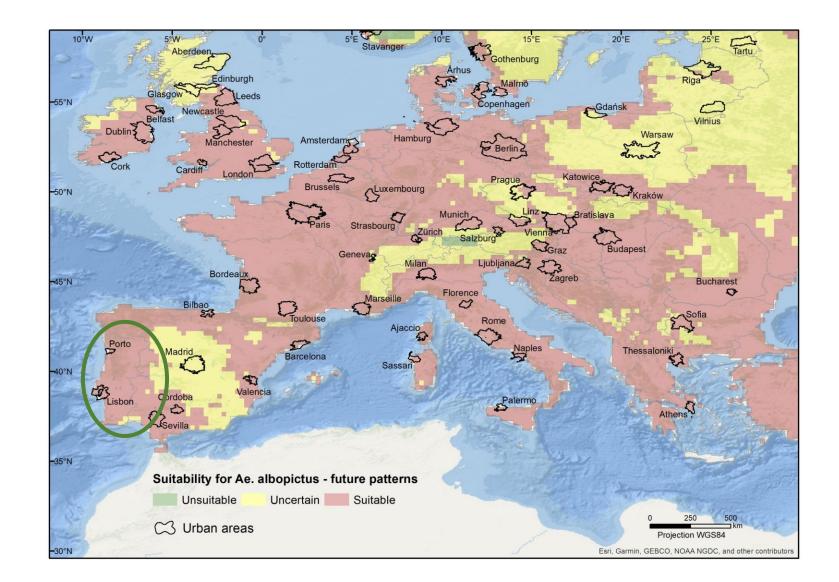
years


Background

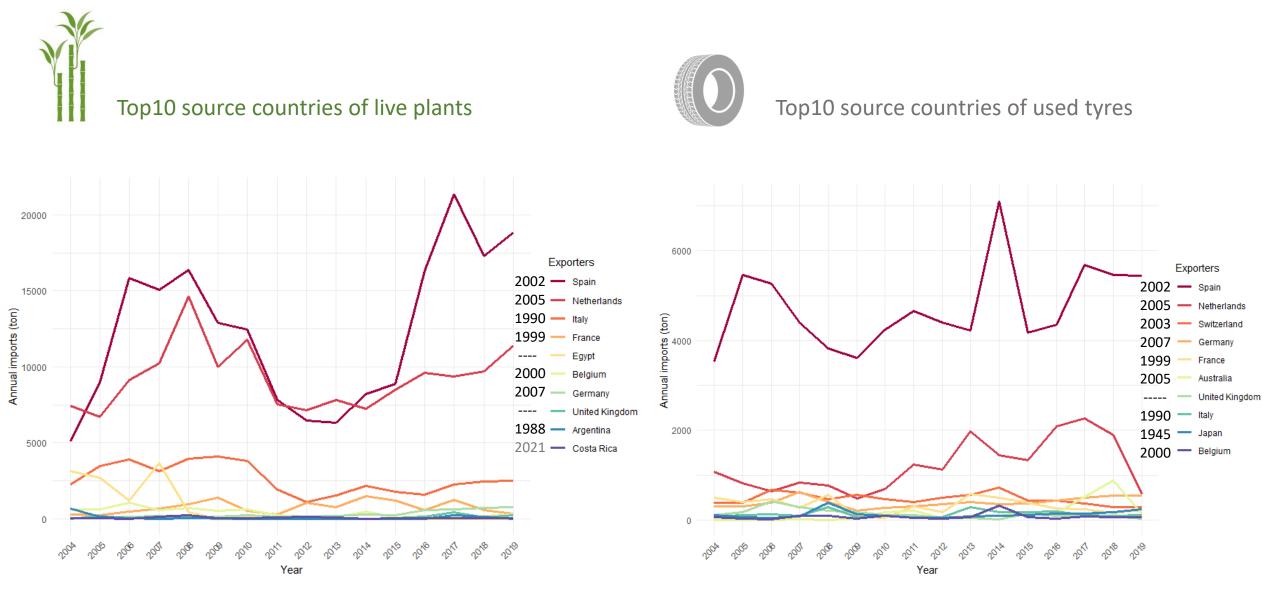



ESTONIA

Mean geographical distance between exporters with Ae. albopictus

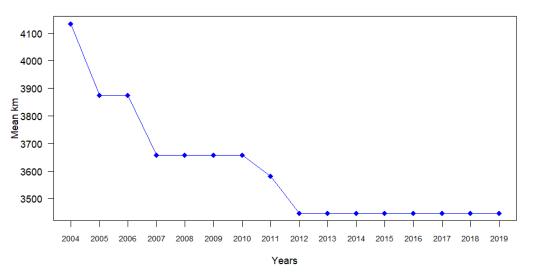


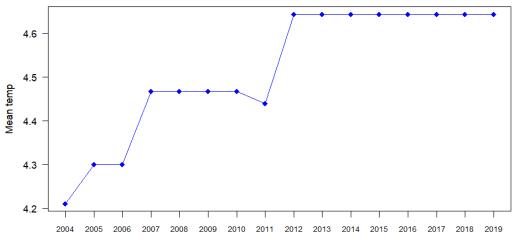
Annual imports of used tyres from countries with Ae. albopictus (%)



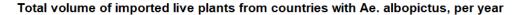
Results

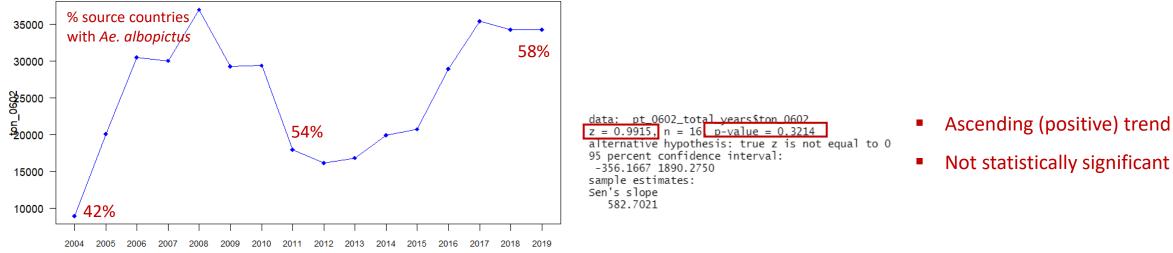
Objectives





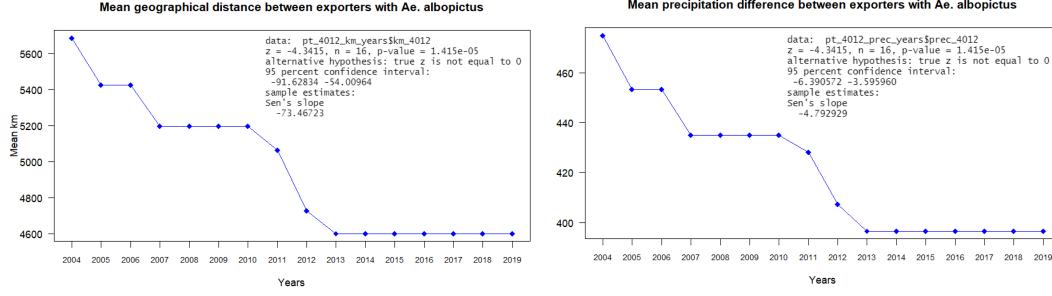
Mean geographical distance between exporters with Ae. albopictus

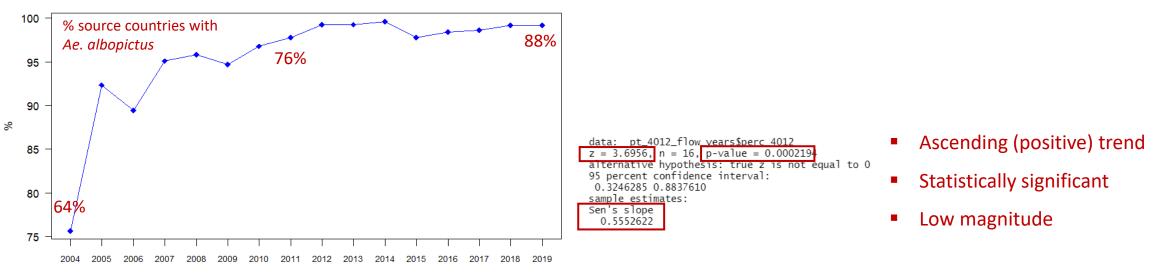



Mean temperature difference between exporters with Ae. albopictus

PORTUGAL

Years




Not statistically significant

Annual imports of used tyres from countries with Ae. albopictus (%)

PORTUGAL

2017 2018 2019

Results

Suitability to Aedes albopictus

- ✓ Nowadays, West and South Europe suitable. Climate change will aggravate conditions (increase suitability)
- ✓ In about 30 years, Ae. albopictus will find suitable areas in 68% of the European continent
- ✓ Suitability to Aedes albopictus in Europe raises public health concerns. Need to monitor and control vectors

Urban areas

- ✓ 83% of urban areas (out of 65 analyzed) predicted as suitable in the future (2050). None unsuitable
- ✓ Tartu (Estonia) uncertain
- ✓ Uncertainty reflects the divergence between estimations (half of them estimate suitability)

International trade

- ✓ Species dispersal via live plants and tyres
- ✓ Proportion of source countries (imports) with Ae. Albopictus increased over time
- \checkmark Geographic distance decreased, climatic similarity increased
- ✓ Probability of species introduction influenced by trade flows (?)

U LISBOA UNIVERSIDADE DE LISBOA Constructor de Congrefie De LISBOA DE LISBOA Constructor de Constructor de Saludos Compañicos

PTDC/GES-OUT/30210/2017

PORTUGUESA