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Abstract: Monitoring land-use patterns and its trends provides useful information for impact evalua-
tion and policy design. The latest in-depth studies of land-use dynamics for continental Portugal are
outdated, and have not examined how municipalities may be classified into a typology of observed
dynamics or considered the trajectory profiles of land-use transitions. This paper presents a compre-
hensive analysis of the spatiotemporal dynamics of land-use in continental Portugal from 1995 to 2018.
Our multi-scalar approach used land-use maps in geographic information systems with the following
objectives: (i) quantify variations of land-use classes, (ii) assess the transitions between uses, and
(iii) derive a municipal typology of land-use dynamics. The methodology employed involved calcu-
lating statistical indicators of land-use classes, transition matrices between uses and combinatorial
analysis for the most common trajectory-profiles. For the typology, a principal component analysis
was used for dimensionality reduction and the respective components were classified by testing
several clustering techniques. Results showed that the land-use transitions were not homogeneous in
space or time, leading to the growth of territorial asymmetries. Forest (∆5%), water bodies (∆28%)
and artificial surfaces (∆35%) had a greater expansion, as opposed to agricultural areas, which had
the biggest decline (∆-8%). Despite the decline of agricultural activities, olive-grove expansion (∆7%)
was a relevant dynamic, and in the case of forests, the increment of eucalyptus (∆34%) replaced native
species such as the maritime pine (∆-20%). A land-use-dynamics typology was estimated, dividing
continental Portugal into 11 clusters, which is informative for sectoral policies and spatial planning,
as zonings in need of interventions tailored to their specificities. The findings are a contribution to
the study of land-use dynamics in continental Portugal, presenting various challenges for sustainable
land uses with regard to the urban system, forest management, food production, soil preservation,
and ecosystem protection.

Keywords: land-use dynamics; land-use transition; sustainability; typology; geographic information
systems; Portugal

1. Introduction

Understanding landscape transformations over time is important for public policies.
Under this premise, and with the growing awareness of the human-induced systemic
effects on the planet, monitoring land-use dynamics (LUD), including their causes and
impacts, is a relevant field of study. Conceptually, LUD is associated with several terms.
The conventional land-use and land-cover change (LULCC) has been used for decades as
the conversion from a land-use class (LUC) to another and/or changes within the class [1].
More recently, the term land-use transition (LUT) has had a greater citation burst in studies
of LUD [2], being understood as any change in land-use systems from one state to another
and in its dominant and recessive morphology, in the structural sense of LUD and its
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impacts [3]. In addition, the term change trajectories has also grown in use, associated
with determining the sequence of transitions in longer time-series [4]. Regardless of the
conceptual approach, the use of a parcel of land is linked to local and global environmental
issues, making the knowledge of current and past trends of paramount importance. LUT by
human intervention, mainly driven by economic conditions [5,6], have impacts in several
domains [7] and is one of the main threats to the planet’s sustainability [8]. Around 75%
of Earth’s land use environment has already been subject to human intervention [9] and
since 1960 ‘almost a third’ of the world’s surface has changed, annually summing up to
720,000 km2, two times the size of Germany [10]. The transgression of anthropogenic
influence beyond natural boundaries puts the world’s sustainable development at risk,
jeopardizing the achievement of the Sustainable Development Goals (SDGs). SDGs are the
only integrated framework for economic, social and environmental development adopted
by all the United Nations (UN) Member States and are intrinsically related to land use
through international strategies and guidelines. For example, the New Urban Agenda, the
European Green Deal, the Paris Climate Agreement or the Global Biodiversity Strategy.
However, compliance with the SDGs in land use management is not a reality in most parts
of the world [11,12].

Sustainable land use management is complex [13] and recent LUD at a global scale had
a fast and intense pace that increased consumption of land, energy, water, and fertilizers,
among other elements with impacts on the planet’s biosphere [14]. Thus, planning schemes
need to contribute to sustainable changes and policy guidance should be based on a diagno-
sis of dynamics monitored over time. As examples of how LUD is informative for planning
guidance Liang et al. [15] developed a research framework that reflects that the analysis of
both land use patterns and land use function are of significance for landscape multifunction-
ality. Asadolahi et al. [16] dynamically analysed the trade-offs between ecosystem services
under various scenarios of land use planning strategies relevant to assist planners and
policymakers. Previously Long et al. [17] stated that the formulation of land management
policies cannot ignore the mutual feedback between LUT and land management in terms
of socio-economic and environmental paths. For that, a comprehensive in-depth analysis of
the spatiotemporal dynamics of land use allows delineating strategies adjusted according
to both the past, current and expected land use patterns.

As a spatiotemporal phenomenon, LUTs have different geographies, depending on
the region and scale of analysis. For example, on a global scale, agricultural production and
growing urbanization are the main drivers of deforestation [8,18], but in Europe, forests are
relatively stable and strong urbanization is causing a reduction in agriculture, while at the
same time agricultural intensification of some species is a growing reality [19]. Because of
recent LUD with complex geographies and disparate impacts, further studies on various
scales are justified, to understand variations in frequency, magnitude and irreversibility [4].
The common spatial resolution of LUD studies ranges from world regions/multiple coun-
tries [10,20,21], national or similar [22–24], to sub-national or regional [25–27]. A study on
LUD is not usually an end in itself, and in addition to monitoring changes it is common to
diagnose associated impacts. These have been studied from multiple perspectives such as
ecosystem services [7,28], soil erosion [29,30], climate change [31,32], food security [33,34],
wildfire risk [35,36], and others [14,37,38]. More policy guidance-oriented studies tend to
summarize key changes in land-use patterns and their geographies in clusters with similar
transitions. These types of analyses [21,39–44], reflecting the latest trends in the context of
land-use (un)sustainability, are informative policy-management instruments, identifying
zonings for land management tailored to specificities.

In the latest decades, Portugal has undergone major LUD. Recent intense urbaniza-
tion has caused landscape reconfigurations with impacts on other land uses. Although
several studies analysed LUD, there is a gap in the literature for a comprehensive study
synthesizing the main dynamics of the last decades. As examples of previous studies for
continental Portugal, we highlight [45], based on land-use samples, [46] and [47] with
Carta de Uso e Ocupação do Solo (COS), which is the Portuguese Land Use and Land Cover
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map, and [48,49] with CORINE Land Cover. Although these studies summarized the main
LUD in continental Portugal, they were exclusively based on administrative units and
did not explore the changes at higher resolutions. Despite more recent specific analyses
of regional/local scope [26,50], the last in-depth study for continental Portugal was with
the COS series 1995–2010 [46] and the CORINE series 1990–2012 [49]. Thus, there is a
gap for monitoring from more recently produced land-use maps and examining the most
common trajectories at cell resolution. In addition, there is a lack of typology based on
an extensive analysis of LUD. Some studies developed typologies at the municipal or
parish scale for continental Portugal, associated with development dynamics [51], urban
expansion and urban form [52], forest-transition paths [53] and types of peri-urbanization
in agricultural areas [54]. However, these either considered specific dynamics or were not
based on land-use maps or were not country-wide. Thus, the present study will respond
to the main gaps by deriving trajectory profiles and a typology based on dynamics for
continental Portugal.

LULC maps are the most important data sources for assessing land-use patterns,
since they provide an overview of the Earth’s surface and its evolution over time [55].
Our approach uses COS [56], polygon-based cartography with a 1-hectare mapping unit,
to perform a multiscale analysis. The methodological execution was centred on spatial-
analysis techniques in geographic information systems (GIS), and the study objectives
were:

(i) Analyse multi-scalar variations and trends of the main LUCs in continental Portugal,
from 1995 to 2018;

(ii) Assess and quantify the most relevant spatiotemporal patterns of LUT with cross-
tabulation matrices;

(iii) Classify municipalities by their LUD, with cluster analysis.

As a comprehensive study of LUD, this paper quantifies territorial dynamics and
discusses the trends of the 23-year period, in line with dynamics in other countries, con-
sidering strategic guidelines and policy goals and presenting potential implications of the
most relevant transitions. This work extends the set of studies on LUD at a national level,
and the methodological approach tested with innovative specificities can be transposed to
other contexts.

2. Study Area

Continental Portugal is located on the southwestern edge of the European continent,
with 89,100 km2 and a diverse set of landscapes (Figure 1). As a relatively small country,
with both Mediterranean and Atlantic influences, it has high landscape-heterogeneity and
a bipolarized urban system. Geomorphological characteristics can be divided into multiple
regional relief-units [57]. In general, the orography is more rugged in the north, with deep
river valleys and several mountain ranges exceeding 1000 m, while the south and coastal
areas are flatter (Figure S1). Regional climatic asymmetries follow the delineation of the
geomorphological units [58] and, according to Koppen’s classification [59], the study area
can be divided into two main regions (Figure S1): one with a temperate climate with dry
and hot summers (Csa), and another with a temperate climate with dry and mild summers
(Csb). Therefore, both Mediterranean and Atlantic climatic characteristics dominate the
country, with a significant portion having a typical Mediterranean landscape, in which
most of the vegetation dries out in the summer. The territorial-settlement model cannot
be dissociated from these physical conditions. The population distribution is asymmetric
(Figure S1), with more than 40% of the population concentrated in two metropolitan areas:
Lisbon, with 2.8 million inhabitants, and Oporto, with 1.7 million [60]. A recent (after 1960)
and intense rural exodus caused important internal-migration flows that intensified the
strong urbanization contrast between the coast and the inland country [61].
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Figure 1. Study area context in Europe.

In terms of economic activities that directly affect land use, according to the 2011
census results [62], the manufacturing industry (which includes certain phases of livestock
and agricultural-product transformation, as well as the pulp and wood industries) was the
second sector, with the most people employed in Portugal. Construction was the seventh,
and agriculture, livestock, hunting, forestry and fishing the sixteenth. In terms of wealth
creation, construction was one of the most relevant industries for the gross value added in
2018, a figure higher than the sum of agriculture and the wood industry.

The diversity of the physical environment and the human occupation of the territory
are responsible for differentiated land-use patterns and dynamics, making continental
Portugal an interesting case study. In addition, considering that in Portugal there is a grow-
ing need for evidence-informed policy-making [63], our results may present synthesized
information for public policies.

3. Data and Methods
3.1. Land-Use Data

The analysis performed in this study was based on COS [56]—the authoritative LULC
map for continental Portugal—for the years 1995, 2007, and 2018. We selected the 9 classes
at the highest level of aggregation, and 3 at a more detailed level (Table 1) of the hierarchical
nomenclature.

The selection of these 3 specific classes was based on the proportion of occupied
area and for being in the top 5 classes with the largest changed-area in the years under
analysis, with the importance of their dynamics already having been mentioned in previous
studies [53,64,65]. Of the other two classes in the top 5, one of them was indirectly included,
which is the case of the shrubland, whose class at level 1 is the same as at level 4, and the
remaining class corresponds to the improved pastures which were mentioned in the section
of agricultural dynamics.
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Table 1. COS classes considered in the study.

Level 1 Level 4

1. Artificial surfaces
2. Agricultural areas 2.2.3.1. Olive groves
3. Pastures
4. Agroforestry areas

5. Forest land
5.1.1.5. Eucalyptus forests
5.1.2.1. Maritime pine-forests

6. Shrubland
7. Open areas with little or no vegetation
8. Wetlands
9. Water bodies

3.2. COS Production and Specifications

In Portugal COS is the LULC cartography with the longest time-series and highest
thematic resolution. It is produced and published by the Directorate-General for Territory
(DGT). The COS series, with five reference dates (1995, 2007, 2010, 2015 and 2018), is freely
available through an open-data policy, following the INSPIRE Directive (European Union
Directive Infrastructure for Spatial Information in Europe). As the authoritative LULC
map of continental Portugal, it is used by national and international organizations, such as
Eurostat, for statistics production.

The current hierarchical nomenclature has four levels and a total of 83 classes (Table S1),
with direct correspondence to previous nomenclatures. Mapping procedures are manual,
from a visual interpretation of orthorectified digital aerial-images with a spatial resolution of
50 cm, apart from COS2018, which is based on 25 cm orthophotos. The production method-
ology is based on the detection and interpretation of changes, through a comparison of
previous and recent orthophotos. The new map represents detected changes and preserves
areas of no change. As a result, COS has a minimum mapping unit (MMU) of 1 ha, a mini-
mum mapping width (MMW) of 20 m, and an overall thematic accuracy higher than 85%.

From 2015 onwards, COS production included automatic methods of remote sensing
with Landsat and Sentinel-2 data, to reduce production time and increase detail and
accuracy. COS is part of SMOS (Sistema de Monitorização de Ocupação do Solo), the continental
Portugal Land Cover Monitoring System, along with its simplified version (COSsim) of
land-cover maps from Sentinel-2 image classification [66].

3.3. Methods

The workflow relied on spatial analysis using GIS. Conceptually, we assumed that a
LUT occurred with a change between level 1 classes (e.g., agricultural areas to forest land),
and when inside the same level 1 class there was a species change (e.g., pine forests to
eucalyptus forests). The analysis was structured in three vectors: (i) variations and trends,
where LUD was assessed for continental Portugal, the level II of Nomenclature of Territorial
Units for Statistics (NUTS II regions) and municipalities; (ii) transitions and trajectories,
highlighting LUT in terms of the gains and losses among LUC and trajectory profiles at
1-hectare cell units; (iii) the municipal typology of LUD from 1995 to 2018 resulting from a
cluster analysis.

The variation of LUC among years in area proportion was estimated based on the
following equation:

Vi =
(luca t2 − luca t1)

ia
∗ 100 (1)

where Vi is the variation in territorial unit i, luca is an LUC area, t2 is the last year, t1 is the
first year, and ia is the total unit area.
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The rate of change (Vri) considering the previously existing area is given by:

Vri =
(luca t2 − luca t1)

lucat1
∗ 100 (2)

For assessing the annual rate between different periods, the result was divided by the
number of years.

The modified contingency coefficient (MCC), a measure of association between two
qualitative variables, was also calculated for NUTS II regions as:

C∗ =

√
x2

x2 + N
∗
√

k
k− 1

(3)

where x2 is Pearson’s chi-squared, N is the total number of observations and k is the
smallest number between rows and columns in the contingency table.

Transition matrices were computed using cross-tabulation tables for two different
years of intersecting LUC areas.

Tmt1−t2 =



1 2 3 4 5 6 7 8 9
1 A11 A12 . . . . . . A19
2 . . . . . . . . .
3 . . . . . . . . .
4 . . . . . . . . .
5 . . . . . . . . .
6 . . . . . . . . .
7 . . . . . . . . .
8 . . . . . . . . .
9 A91 A92 . . . . . . A99


(4)

Tm is the transition matrix, t1 is the first year, t2 is the second year, number 1–9 is
LUC at level 1, and At1−t2 is the area transitioned for each pair. The diagonal of the matrix
represents the no-change area and the remaining entries are overall changes described in
terms of per-class losses (lines) and gains (columns) from t1 to t2.

Cell-trajectory profiles (1995–2007–2018) were obtained by combinatorial analysis.
Land-use matrices at level 1 classes were intersected to obtain the possible combinations
of uses over time, with a code for each geographic location. The sum of the area in each
sequence made accounted for the area per trajectory.

CTP = 1995
[

1 9
2 6

]
∩ 2007

[
1 9
3 5

]
∩ 2018

[
1 9
1 5

]
=

[
111 999
231 655

]
(5)

where CTP is the cell trajectory profile, and each entry is a 100 × 100 m cell with the
dominant land use.

To derive the typology of LUD, different unsupervised-clustering methods were tested.
A total of 26 variables were used on a municipal scale: the average number of transitions,
the total municipal area with transitions at level 1 (%), the variation (%) of each class and
the location quotient (LQ) of each class. A log transformation was used to compress high
values and enhance differences between smaller ones. For dimensionality reduction and to
avoid redundancy and multicollinearity issues, a principal component analysis (PCA) was
performed. Components were extracted based on eigenvalue (>1) with a varimax rotation.

Four types of clustering methods were compared: neighbourhood-based partitioning
(K-medoids); hierarchy-based (hierarchical); probabilistic (fuzzy c-means) and bagging
(random forest). The optimal number of clusters for all the methods relied on the lowest
value of the Bayesian information criterion (BIC), avoiding the bias of human intervention
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in the clustering process and guaranteeing the maximum number of clusters without
compromising cluster quality.

The selection of the best model relied on five cluster-evaluation metrics: (i) R2, which
measures the overall proportion of variance explained by the cluster means [67]; (ii) the
Dunn index, the ratio of the smallest distance between observations not in the same cluster
to the largest intra-cluster distance [68]; (iii) the silhouette coefficient, a metric that evaluates
the distance between cluster means [69]; (iv) classical entropy, which describes the harmony
in the discrimination of cluster memberships [70]; and (v), the Calinski–Harabasz index,
which is the ratio of the sum of between-clusters dispersion and inter-cluster dispersion for
all clusters [71].

The workflow used various types of software. For GIS data analysis and the calculation
of indicators of land use, ArcGIS Pro was used. For the multivariate statistical analysis,
Jamovi (v. 2.2.5) was used for the PCA, and JASP (v. 0.16.2.0) for cluster analysis.

4. Results
4.1. Variations and Trends of Land-Use Dynamics from 1995 to 2018 in Continental Portugal
4.1.1. Dynamics at the National Level

Despite relevant LUD from 1995 to 2018, land-use patterns in continental Portugal
remain dominated by vegetation features, with forest land and agricultural areas as the
most abundant landscapes (Figure 2 and Figure S2). Natural and seminatural areas were
the following most prevalent classes, while artificial surfaces accounted for more than 5% of
continental Portugal in 2018. The remaining classes, open areas with little or no vegetation,
wetlands and waterbodies, occupied less than 3%. Over the 23 years under analysis, no
structural changes were evident in terms of each LUC area, although relevant trends can be
highlighted, such as the increase in forested areas, the growth of soil artificialization and
the decline of agricultural land-use.
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LUTs were not homogeneous over time. The period 1995–2007 is characterized by
higher changes than 2007–2018 (Figure 3a). In the former, there were more significant rates
of change, namely the decrease in agriculture and the increase in forested and artificial
territories. The latter period was marked by higher stability and a slight trend of increasing
agriculture.
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The quantification of LUT shows that forest and artificial surfaces had the biggest
absolute increases, while agricultural areas had the greatest negative variation (Figure 3b).
However, forests lost about half of their gains to other LUCs. Agroforestry and shrubland
had small contractions and pastures, despite a great increase, also lost area, which remained
quantitatively identical to 1995. The remaining classes were relatively stable, except for
water bodies, which had the second-highest rate of change. In terms of the rate of change,
artificial surfaces had the largest, with approximately 35%, and while agriculture and forest
had residual rates, both forests and agriculture had residual variation, despite the higher
absolute values.

Regarding the fourth nomenclature level (Figure 4a), eucalyptus increased more than
any other tree species, in contrast with the maritime pine, whose proportion on forest land
was reduced by 10% (Figure 4b). Olive groves, after a slight downward trend until 2007,
recovered the area lost, and grew almost three times more from 2007 to 2018 than in the
area lost from 1995 to 2007. Given this variation, in 2018 olive groves already accounted for
approximately 20% of agriculture in continental Portugal.
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4.1.2. Dynamics in Regions and Municipalities

After the overview at the continental-country level, inequalities in LUD are evident
on a regional scale. The land-use map in the Alentejo region in 2018 was the least similar
compared with 1995 (Table 2), meaning more areas transitioned between LUCs.

Table 2. Modified contingency coefficient (COS 1995 versus 2018) for NUTS II regions (lower MCC
equals lower correlation).

Region MCC

Norte 98.3
Centro 98.4

Lisbon metropolitan area 98.1
Alentejo 97.9
Algarve 98.3

The spatial distribution of the main LUCs (Figure 5) reveals geographic asymmetries
in the study area:

• The distribution of artificial surfaces evidences an unbalanced and bipolar settlement
model preferably near the coastline, which coexists between agricultural and forested
areas. Urban areas dominate the landscape in the metropolitan areas of Lisbon and
Oporto and the Algarve coast, and are also evident in some urban systems of regional
importance (e.g., Aveiro, Braga, Coimbra and the majority of regional capitals);

• Agricultural areas present several clusters across the country in proximity to water
bodies, and are most represented in Alentejo and the Lisbon metropolitan area (LMA);

• Pastures and agroforestry areas have a very concentrated distribution marking the
landscape of the Alentejo and a residual part of the inland Centro region;

• Forest land is the LUC that occupies the largest proportion of area in all NUTS II,
dominating the landscape in the Centro region, where it occupies around 50%, and in
the Atlantic coastline of Alentejo;

• Shrublands are mostly distributed in areas of more rugged orography, and are more
common in the Norte and Algarve regions.

At the regional level (Figure S3), Algarve and Alentejo recorded the highest rate of
change of artificial surfaces, although the highest absolute variation occurred in the Centro
region. Agriculture decreased in all regions, and although the largest losses occurred
in Alentejo, it was the second region with the lowest rate of change. The expansion of
forest land was positive in all NUTS and had the highest rate of change in the Algarve,
although the largest absolute growth occurred in Alentejo. Shrubland declined with a
greater magnitude in the Norte region, although the largest negative rate of change was in
the Algarve. Pastures had the largest negative variation in Alentejo while growing slightly
in the Centro, similarly to agroforestry areas, which only grew in the Centro and Algarve,
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although residually. Still to be noted is the fact that the variation of water bodies in Alentejo
had a rate of change higher than in all the other regions combined.
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(source: COS [56]).

At the municipal level (Figures 6 and S4), the highest growth of certain LUCs generally
occurred in municipalities where they were already over-represented in the national context,
showing an intensification of their use. The geography of soil artificialization highlights the
intensification of an asymmetric urban-model attracted by the proximity to the coastline
and metropolitan areas. The abandonment of agricultural activity was only thwarted in a
few municipalities in Alentejo and the Norte, with the expansion of olive groves. Forests
had the largest contractions in the metropolitan areas of Lisbon and Oporto, where higher
urban-growth has occurred. Changes in forest occurred due to pine-forest contraction,
namely in the Norte and Centro regions, but forest growth has not always depended on
eucalyptus, as was evident in southern Alentejo and the Algarve. Shrublands had some
gains in the Centro region, but in most of the country they were converted. The distribution
of open spaces with little or no vegetation is associated with the more rugged areas of
bare or rocky soil and had no relevant variations identified. The same can be stated for
the wetlands, which as a protected use had only minor variations on the Aveiro coast.
Water bodies grew in several adjacent municipalities associated with the construction of
dam reservoirs, and seemed to favour agricultural activity, as there was an increase in
agriculture and olive groves in proximity to greater water availability.
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4.2. Transitions and Trajectories

The quantification of the LUTs, in terms of gains and losses from 1995 to 2018, are
presented in Figure 7. Open spaces with little or no vegetation, wetlands, and water bodies
were not considered, because their dynamics were residual or spatially concentrated, as
analysed in the previous section.
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These transitions had already been uncovered earlier, based on LUC variation, and
can be summarized with the following quantifications:

• Artificial surfaces increased mostly converting agricultural areas (42%), forest land
(33%), and shrubland (14%).

• New agricultural areas appeared from pastures (40%), shrubland (28%) and forests
(26%). In contrast, they were converted mostly to forest land (35%), and pastures (34%).

• Reductions in agroforestry resulted from conversions to forests (51%) and pastures
(29%), but gains were mainly from forests (83%).

• New areas of forest land resulted mostly from shrubland (38%), agriculture (34%)
and pastures (19%). Losses resulted in forest transited to shrubland (43%), artificial
surfaces (21%), agriculture (20%) and agroforestry (12%).

Regions were very heterogeneous, and their LUTs (Table S2) reflect multiple types
of landscape. From 1995 to 2018 in the Norte, Centro and Alentejo, afforestation was the
most common dynamic, in the first case from shrubland, in the second by the conversion
of agricultural areas and in the latter from pastures. In the LMA, the agricultural decline
was the most relevant transition, either to pastures or to artificial surfaces. In Alentejo, the
greatest transitions were in the expansion of pastures from the contraction of agricultural
areas and the growth of forests, by the conversion of pastures and forest intensification
in former agroforestry areas. Finally, in the Algarve, the dominant dynamic was the
afforestation of shrubland.

The spatial heterogeneity of these dynamics sometimes exhibited positive spatial-
autocorrelation patterns, with conversions to the same class appearing geographically close
(Figure 8a). Approximately 88% of the COS level 1 LUCs remained stable from 1995 to 2018,
and only 0.58% recorded more than one transition (Figure 8b). The highest proportion of
area changed by municipality (Figure 8c) was related to the dynamics of afforestation in
the Algarve, urbanization in the LMA and agriculture transition to pasture in the Oeste
(Figure 8d).
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The trajectory analysis revealed 339 different profiles, of which 330 had at least one LUT
between years. Considering only the profiles with more than 1% of the area changed in the
period 1995–2018 (Figure 9), the majority of LUT occurred from 1995 to 2007, and the same
LUC persisted from 2007 to 2018. It is noted that three of the first five profiles corresponded
to forest growth. The remaining two were agricultural reduction to pasture and forest
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degradation (deforestation to shrublands). The transformation of former agricultural areas
into shrublands was the sixth most-common profile. Although they were not among the six
most-common profiles, urbanization dynamics were significant because they represented
more than 10% of the area covered in Figure 9. The area recovered by agriculture occurred
preferentially through the conversion of pastures, shrubland and forest. Afforestation
and agriculture contraction were responsible for more changed areas. Most afforestation
occurred up until 2007, although after this date it still represents more than 7% of the areas
with LUT.
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4.3. Typology of Land-Use Dynamics

In light of the fact that many of the dynamics are inversely related, i.e., forest growth
and shrubland decline, a PCA analysis was performed before clustering, to reduce data
dimensionality and avoid multicollinearity. A total of nine components were extracted from
the 26 entry variables (eigenvalues greater than one) that explained 76% of the variance of
the 278 municipalities (Table 3). The spatial distributions of these nine dimensions can be
assessed in Figure S5.

Table 3. PCA components summary.

Component SS Loadings % of Variance Cumulative %

1 3.44 13.23 13.23
2 2.67 10.25 23.49
3 2.59 9.95 33.44
4 2.05 7.89 41.33
5 2.02 7.77 49.09
6 1.95 7.48 56.58
7 1.89 7.28 63.85
8 1.87 7.20 71.05
9 1.34 5.15 76.20

The first component had a strong positive correlation with the variation of maritime
pine and a strong negative association with the LQ of forest land and eucalyptus vari-
ation (which can be named as a transition of the dominant forest-species). The second
component had a negative association with the variation of artificial surfaces and its LQ
(low-urbanization municipalities). The third component had strong negative correlations
with the LQ of pastures and agroforestry (low-density woodland pasture). The fourth
component was strongly related to the LQ of agricultural areas, and moderately to the olive
groves (agriculture and olive-production hot spots). The fifth component had a negative
correlation with agroforestry variation and a positive with water-bodies variation (the ex-
pansion of artificial water reservoirs). The sixth component was strongly opposed to forest
land and was positively associated with shrubland variation (forest degradation). The
seventh component was reported by municipalities with a high LQ of wetlands and water
ecosystems (aquatic ecosystems). The eighth component had a negative relationship with
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changes in agricultural areas (evolution of agricultural activity), and the ninth component
correlated positively and strongly with the variation of open spaces with little or no vegeta-
tion, and wetlands (changing ecosystems reserves). The average number of transitions and
the total municipal area with transitions at level 1 (%) did not present strong relationships
with any component, both having correlations of 0.5 with the eighth component. In this
way, the components summarise both the main changes and the land-use patterns that
have remained stable in the study area.

Considering the research’s objective of generating a typology of LUD, several clus-
tering techniques were tested with the nine components, and the best result was selected,
based on evaluation metrics (Table 4). In this sense, the K-medoids method, with partition-
ing around the medoids algorithm, showed a superior fit, with more metrics with robust
values. Both the hierarchical and the probabilistic fuzzy c-means also showed reasonable
results, and the random forest presented the lowest performance.

Table 4. Cluster analysis evaluation metrics.

Clustering Methods K-Medoids Hierarchical Fuzzy C-Means Random Forest

Number of clusters * 11 9 13 12
R2 0.611 ˆ 0.457 0.506 0.384

Silhouette coefficient 0.190 0.330 ˆ 0.090 0.050
Classical entropy 2.083 ˆ 2.086 2.195 2.383

Dunn index 0.071 ˆ 0.050 0.037 0.045
Calinski–Harabasz

index 35.698 ˆ 28.276 22.837 15.052

* Identified as the optimal number from the Bayesian information criterion. ˆ Best value for each evaluation
metric.

Using K-medoids, the 11 clusters determined were (Figure 10):
Cluster 1 (72 municipalities) concerned high-density forest coexisting with agriculture

and urban areas. Although it had the largest number of municipalities, it recorded the
smallest average area transitioned at level 1 of COS. The overall forest area remained stable,
but with a transition from maritime pine, which showed a great reduction, to eucalyptus
forest, which dominated the landscape and had the highest variation in this cluster. New
forest areas originated from the conversion of agricultural areas.

Cluster 2 (35 municipalities) were areas occupied by open spaces and natural vege-
tation, with transitions from shrubland to forest and vice versa, but with an afforestation
tendency.

Cluster 3 (28 municipalities) was a context of over-representation of agroforestry and
pastures, with a great decline in agricultural and agroforestry activity. The change was
mainly to pastures, and there were transitions from pastures to forests. The dynamics of
mutual transition between forest and agroforestry also occurred, with the reduction in
agroforestry areas.

Cluster 4 (35 municipalities) corresponded approximately to the municipalities of
the metropolitan areas of Lisbon and Oporto, and the municipalities of Coimbra (in the
Centro region), and Lagoa and Albufeira (in the Algarve region). In other words, highly
artificialized urban and suburban territories, with extensive urban expansion through the
conversion of agriculture, forest and shrubland.

Cluster 5 (18 municipalities), a very dynamic peri-urbanization context, reported a lot
of changed area and a higher number of transitions. The fringe of the LMA had the highest
average loss of agricultural areas, although these areas maintained overrepresentation
in some municipalities. In order of magnitude, the largest area transitions were from
agriculture to pasture, forest, and then artificial surfaces.

Cluster 6 (11 municipalities) reported densely urbanized municipalities, similar to
cluster 4, but in this case in coexistence with wetland ecosystems and water bodies. The
mean artificial-surface growth was the second highest in continental Portugal, due to the
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conversion of agriculture, forest and shrubland. This cluster also registered artificial-surface
expansion in wetlands (drainage).

Cluster 7 (17 municipalities) had afforestation of natural vegetation, maintaining
patterns of forest and shrubland mixture. Its municipalities had the highest forest growth
which caused a large reduction in shrubland and pastures. Afforestation occurred mainly
through other types of forest, namely stone pine and Quercus, such as cork oak and holm
oak.

Cluster 8 (47 municipalities) represented a context of coexistence among forest, natural
vegetation and agricultural areas, registering mutual transitions with agricultural areas
losing the most.

Cluster 9 (10 municipalities) had agriculture and agroforestry overrepresentation
where the expansion of olive groves was registered and justified a positive variation in
agriculture. At the same time, it was the only cluster where the maritime pine forest had a
slightly positive variation through the conversion of pastures.

Cluster 10 (3 municipalities), an urban context with a large extension of wetland ecosys-
tems, had relative stability in most classes, with light deforestation through urbanization
and agricultural abandonment in the wetlands.

Cluster 11 (2 municipalities) had the most area transitioned by the expansion of water
bodies. The construction of the Alqueva dam, the largest artificial lake in Western Europe
for a major irrigation project in the region, converted forest and agroforestry.
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5. Discussion

This study quantified multi-scalar LUD in continental Portugal from 1995 to 2018,
and derived a typology using unsupervised classification methods. The spatiotemporal
analysis revealed markedly differentiated patterns, both in time and space, and intensifying
trends of territorial asymmetries on a regional and municipal scale, presenting Portugal as a
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country of great contrasts, in which the inland country mirrors a very different reality from
the coast. The results confirm previous studies of qualitative and monospecific approaches
that have used other methodologies and less systematized information.

5.1. Urban Dynamics

On a global scale, urbanization in Portugal is low, and occurred at a later stage than in
other European countries. Recent systematic transitions leading to artificial surfaces, which
was the LUC with the highest rate of change, led to the land occupied by artificial surfaces
in continental Portugal surpassing the European average of 4% [19]. The distribution of
these areas is territorially polarized, occupying more than 60% of the municipalities in
the Lisbon and Oporto metropolitan areas, where the greatest urban expansion occurred,
namely in Oeiras and Amadora, contrasting with the 5% country average, and with the
less than 2% in Alentejo.

The period under analysis was characterized by intense urbanization, as a result
of the intensification of an urban society [61,72] catalysed by Portugal’s entry into the
European Economic Community in 1986 [73]. More recently, land take decreased (Figure 2),
influenced by the economic and financial crisis [74] that particularly affected the Portuguese
construction sector [75]. In the suburbs and peripheries, the growth of discontinuous urban
fabric [76] promoted sprawl patterns [52,77], with higher impacts on land consumption
and infrastructure costs [78,79], partly promoted by illegal construction to overcome the
housing deficit [80]. Although patterns of low density and urban sprawl are a phenomenon
in other European cities [81], the ratio of land consumption to population increased in
Portuguese municipalities, jeopardizing land-use efficiency and SDG 11 [82].

Approximately 42% of new artificial areas were devoted to agriculture in the past,
despite regulations that prevent this LUT when soils have a high agricultural suitability.
Nonetheless, this value remains low compared with other countries with high urbaniza-
tion rates [83], but not significantly different from Mediterranean countries [84]. This
phenomenon has been identified by some authors as an example of the transgression of
agricultural and ecological reserves [85,86], as in the LMA, where 21% of the conversion
from agriculture to artificial occurred in areas protected from such conversion [85]. Since
our results show that this type of LUT was relevant throughout the country, it may be
possible that this collision with spatial-planning instruments is more country-wide than
previous studies have accounted for, suggesting that territorial-management instruments
may have failed in their purpose and effectiveness.

The results obtained indicate urban dynamics contradicting several international
strategies such as the SDGs, the New Urban Agenda and the European Green Deal. The
National Spatial Planning Policy Program (PNPOT) intended to contribute to a polycentric
territorial-model, contrary to the existing bipolar and coastal patterns, but the diagnosis
outlined shows that metropolization and coastalization intensified. The intensification
of these patterns is of concern in the domain of natural hazards, since the concentration
of the resident population has increased in locations classified by the PNPOT as highly
susceptible to coastal erosion, tsunamis and earthquakes. In addition, occupation of the
coastline causes anthropogenic pressure on wetlands and water bodies [87], ecosystems
that require careful management to prevent environmental degradation [88]. An increase
in urbanization will result in spatial shifts in both supplies of ecosystem services and the
beneficiaries of those services [89], soil-erosion vulnerability [30], natural disasters [90],
water quality and availability [91], urban temperature, and air quality [92]. In addition
to sprawl patterns, some Portuguese cities are shrinking, manifested in the vacant and
ruined spaces in the urban fabric [93]. As the opposite phenomena, reconversion of existing
urban derelict spaces may be a strategy both to counter urban shrinkage and to prevent
new artificial surfaces.

In this sense, the stabilization of artificial surfaces imposes itself as a reality in a context
of demographic decline, namely in the hinterland [94], which is unable to counteract the
artificialization in the coastal areas. To this end, a rethinking of urban public policies is
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evident, and the Portuguese Spatial Planning Framework Law (Law No. 31/2014 of 30
May) needs to integrate the outlined urban dynamics so that spatial-planning instruments
succeed in promoting sustainable urban areas with reduced land consumption.

5.2. Agricultural Dynamics

Agricultural areas had the largest negative variation, both in absolute terms and in
the rate of change. The most common transition was to forest land and pastures (more
than two-thirds of agricultural losses). Other important conversions were to shrubland and
artificial surfaces.

Since the last century, the agricultural decline has been associated with economic
development [95], and cropland abandonment is a common phenomenon in Europe [96,97].
The historical evolution of agriculture in Portugal shows oscillating patterns of crop culti-
vation [98], and its contraction is associated with depopulation, urban development, and
the Common Agricultural Policy (CAP) [76,99]. Agricultural areas recessed in almost all
municipalities, with higher reductions just north of the LMA (Sobral de Monte Agraço,
Arruda dos Vinhos and Alenquer) and in Alentejo (Cuba, Viana do Alentejo and Arraiolos),
because rural properties are larger (latifundia). In the case of the 123 thousand hectares
converted from agriculture to pasture, 15% were to natural herbaceous vegetation, while
the remaining were to permanent pasture, i.e., improved by fertilizing, cultivating, seeding
or draining, and used as grazing land. This differentiation is particularly relevant if we
consider that most transitions were to permanent pastures, i.e., maintaining productive
land use, and only a minority resulted in natural vegetation growth, whose ecological value
is important to the European Biodiversity Strategy [100].

Various municipalities maintained hotspots of agricultural activity and some had a
positive variation in agricultural areas. This growth is intrinsically associated with the
expansion of olive groves, demonstrating the resilience of these territories in counteracting
agricultural abandonment, by specializing in one species. These are the cases of Ferreira do
Alentejo, Beja and Vidigueira in the Alentejo region and Mirandela, Macedo de Cavaleiros
and Vila Flor in the Norte region. However, this expansion resulted from the intensification
(Figure S6) of olive-tree plantations [65], with negative environmental impacts on the soil’s
productive capacity. A report from the European Environment Agency [19] had previously
alerted the growing monofunctional agriculture based on intensive olive groves in arable
land, jeopardizing future soil-fertility. This trend has been confirmed in other Mediter-
ranean countries since 1990 [101], although Portugal started after 1999 with plantations in
Alentejo which benefited from the construction of the Alqueva dam reservoir [65]. This
specialization is worrisome, since, according to Debonne et al. [102], the Alentejo region is
not only at risk of drought but also of losing the potential yield of the land.

Agricultural dynamics conflict with several SDGs and pose challenges to future soil
productivity because of agriculture intensification and the artificialization of fertile lands.
Thus, it is necessary to diversify farming and protect land systems for food security. Future
policies need to accommodate the agroecological and biophysical conditions into the
production incentives to avoid economically unviable and environmentally unsustainable
situations [98], and spatial-planning instruments should consider farmers’ intentions [103].

5.3. Forest Dynamics

Forest land, dominated by monospecific forests with the prevalence of eucalyptus and
maritime pine, covered nearly 40% of continental Portugal in 2018. Forest areas in Portugal
are already above the world average, with a slight afforestation trend, while on the global
scale they are decreasing [104].

A higher density of forest use occurred in the Centro region, on a north–south align-
ment that expanded inland primarily through the conversion of shrublands and agriculture.
Deforestation led to the conversion from forest use to shrubland, due to recurrent forest
fires, as well as to artificial surfaces. In the LMA approximately 10% of forest conversion to
urban areas was legally protected [85] by their ecological value, representing a transgres-
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sion of the legal regime of land use. The same may have happened in the case of transitions
from agriculture to forest. Afforestation of abandoned agricultural areas is a trend that goes
back to 1970, at least according to [53]; however, given the reference years of the COS, there
may be hidden transitions not detectable by the temporal scale. For example, the trajectory
of an agricultural area that converted to pasture or shrubland before being forested is not
always captured.

Remarkable increments in forest area occurred in the municipalities of Mértola and
Odemira in the Alentejo region and Alcoutim in the Algarve, boosted by a forest restoration
initiative [105]. The area of eucalyptus grew in most of the country, and replaced maritime
pine forests. Afforestation is positive for carbon sequestration and mitigation of climate
change [106,107]; however, the increasing proportion of eucalyptus forests, which already
occupied more area in absolute terms in Portugal than in any other country in Europe [108]
is replacing native species. Its expansion, promoted by the pulp, paper and wood indus-
try [109] was subsidized and liberalized in the past decade (Decree-Law No. 96/2013
of 19 July) [110], constituting the ideal conditions for its proliferation. After the massive
wildfires of 2017 [111], a new law repelled the previous regime (Law No. 77/2017 of 17
August), prohibiting new plantations [110], but the species was already present throughout
the country. Superior earlier profitability compared with other species and its importance
for timber production [112,113] justifies its preference (transitions from maritime pine to
eucalyptus from 1995 to 2018 amounted to more than 200 thousand hectares, while the
reverse was approximately 2400 hectares). In turn, the decline of pine species resulted
from wildfires [114] and extreme weather events or pests [115]. Eucalyptus expansion
is not exclusive to Portugal [116,117], having negative environmental impacts [118] on
biodiversity, groundwater reservoirs and fire flammability [119–121]. These dynamics have
led to contexts of coexistence and proximity between pines and eucalyptus that enhance
vulnerability to fire if natural vegetation is unmanaged [114,122], as these species are
flammable and burn recurrently [123–125]. Considering that wildfire severity has been
increasing in Portugal [126], and in the context of climate change with the growth of the
proportion of forest with flammable species, reinforcement of this severity is expected.

In addition, it is important to address the intensification of forest use in agroforestry
areas, culminating in a transition to forest land. Montado, an agroforestry ecosystem specific
to southern Portugal that normally combines Quercus trees and livestock grazing [127], is
in decline [128], threatening its own sustainability and existence.

Moreover, the intersection of urban and forest dynamics, both with an expansive ten-
dency over agricultural areas and natural vegetation, has created conditions of coexistence
of patches of urban development mixed with wildlands (Figure S6). The disappearance
of the buffer areas between forest and urban use increases the fire risk [129] and therefore,
effective land-use management at urban–rural interfaces is required [130].

In summary, the state of the Portuguese forest is complex, and is in the worst situation
in Europe when it comes to its condition, biodiversity and ecosystem services [131]. The
forest-growth reliance on flammable trees, in a disorderly forest-shrubland mix that re-
placed native species, conflicts with a diversified forest use, and is not aligned with SDG 15
nor with biodiversity strategies. Considering that there are a minority of forests under state
control, and few regulations on planted species and on ecosystems maintenance, diversified
and better-managed forests require structural changes through legislative initiatives [132].

5.4. Typology

The cluster typology of LUD from 1995 to 2018, exclusively based on LULC dynamics,
divided continental Portugal into 11 clusters that range from 2 to 72 municipalities. The
spatial cohesion of the clusters revealed regionalization patterns that suggest spatial depen-
dence on LUTs, although municipalities with similar dynamics do not belong exclusively
to the same political-administrative region. The proposed zonings need sectoral and spatial
planning policies adjusted to their specificities.
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The geography of the clusters is similar to the former agrarian and forestry divisions
(Figure 10), suggesting that incentives and objectives of these regional bodies of sectorial
scope have influenced LUD. High agricultural losses coincide with the boundaries of former
agrarian regions, especially in the north of the LMA (the Oeste region), and in the Alentejo
region. In the case of forest, the situation is more complex, but several former forest regions
can be identified as boundaries for clusters.

To complete the discussion of the typology, Table 5 provides socio-economic indicators
relevant to the interpretation of the clusters. From this information, it is evident that
the increase in artificialization is related to population growth and that, simultaneously,
depopulation implies a reduction in agricultural employment.in addition, clusters with
more population involved in services had less forest land, and employment in the secondary
sector is positively associated with forest areas.

Table 5. Cluster socioeconomic and land-use indicators.

Cluster Population
(∆ %)

Population Employed by Sector 2011
(%)

Gross
Income per

Capita

% Area Occupied (Mean Variation
1995–2018)

# 1995–2018 1st 2nd 3rd 2018
(Mean)

Artificial
Surfaces

Agricultural
Areas

Forest
Land

1 −2.4 3.4 37.4 59.2 7363 6.6 (1.9) 19.2 (−2.8) 60.1 (0.5)
2 −5.4 4.8 26.4 68.8 6865 4.1 (1.5) 17.4 (−2.2) 41.8 (1.3)
3 −15.1 9.1 20.7 70.2 7848 1.3 (0.5) 20.0 (−2.8) 29.5 (1.8)
4 11.2 0.9 26.1 73.0 8979 24.8 (7.5) 27.9 (−3.6) 33.9 (−1.4)
5 20.5 4.2 25.0 70.8 8456 9.9 (2.8) 41.7 (−8.5) 28.6 (2.6)
6 −7.2 1.2 15.7 83.1 10,062 19.5 (4.8) 30.2 (−2.8) 11.5 (−0.2)
7 −11.7 9.4 25.0 65.6 6892 1.7 (0.8) 20.4 (−1.9) 45.7 (8.4)
8 −10.5 8.5 23.9 67.7 6603 3.2 (1.0) 37.4 (−0.7) 29.5 (0.2)
9 −14.7 12.5 18.0 69.5 7476 1.6 (0.5) 48.7 (−1.8) 18.3 (2.7)

10 8.5 2.1 33.2 64.7 8949 17.2 (3.0) 22.4 (−3.1) 32.5 (−0.5)
11 −14.2 13.7 19.3 67.0 7173 1.5 (0.6) 32.0 (−4.5) 11.0 (−2.4)

Cluster 1 stands for municipalities with large coverage of forest land in a forest-type
transition. According to the Oliveira et al. [53] typology of forest-transition theory, these
same areas had large forest growth in the first half of the last century. Although the forest
area presented stability, the intensification of eucalyptus monoculture already made this
species dominant. Cluster 2 experienced some urban growth and had areas of mutual LUT
between natural vegetation and forest land, but forests experienced more gains than losses.
In both these clusters the size of forest land was positively correlated to employment in
the secondary sector, so industry employment may be dependent on forestry production.
Cluster 3 represented a large contraction of agricultural and agroforestry activity (latifundia).
Historically, these municipalities in Alentejo went through an intensive wheat-production
campaign in the 1920s and 1930s, despite the poverty of the soil, and the agricultural decline
was intensified by the 1992 CAP measures [133] and depopulation [61]. This cluster had the
highest population decrease, and despite the decline in agricultural activity, employment in
the primary sector remained close to 10% (Table 5). Cluster 4, on the outer fringe of the city
of Lisbon, the capital of Portugal, went through highly dynamic urbanization, according to
Moreira et al. [54], where the largest absolute growth of urban fabric was registered at the
turn of the century.

Cluster 5 had the highest mean agricultural decline, with transitions to pastures, forests
and artificial surfaces corresponding to areas of suburbanization and peri-urbanization,
with scattered urban forms [52] and agricultural land-fragmentation [134]. Nonetheless,
peri-urban agroecosystems tend to have the capacity to resist, despite urban pressure [135],
and this cluster had the highest mean of the LQ of agricultural areas, reflecting the op-
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portunities associated with infrastructure, namely the proximity to the country’s largest
consumer market.

Clusters 4, 6 and 10 demarcated the transitions associated with the expansion of
artificial surfaces. These areas were classified by Abrantes et al. [52] as urban and suburban
territories and areas of urban sprawl. These clusters represent mainly the metropolitan
areas or their functional dependencies, as well as the Algarve urban system, and had
intense population growth (except for cluster 6). More than 70% of its population was
employed in services (Table 5).

Cluster 7 had the highest afforestation through the conversion of natural vegetation,
an exceptional context in Portugal through the increase of stone pine and Quercus, namely
cork oak and holm oak, relevant for the ecological recovery of native-species forests [136].
Some of these municipalities were part of a forest-landscape-restoration initiative, named
the Southern Portugal Green Belt project of the World Wide Fund for Nature Mediterranean
Cork Oak Landscapes Programme [105], presenting greater forest resilience through less
dependence on eucalyptus and maritime pine.

Cluster 8 had mutual transitions among shrubland, agriculture and forest, and al-
though they are mainly rural areas [52], historically, forest use has been declining [53]
and agricultural areas remain relevant. Cluster 9 had a specialization in olive groves,
through intensified use [65], but still in a more controlled situation compared with Spanish
regions [137]. Almost 50% of the cluster area was occupied by agriculture, and 12.5% of its
population worked in the primary sector (Table 5).

In Cluster 10, nature has reclaimed agricultural areas for wetlands. The relevance of
wetlands and coastal areas is unquestionable [138,139], and their recovery in Portugal is
important because from 1958 to 2018 agricultural land reclamation resulted in an 85% loss
of saltmarshes [140]. In addition, LUT from wetlands to artificial surfaces occurred in the
municipalities of cluster 6, which makes the recovery of these sensitive ecosystems even
more important.

Cluster 11 had the largest changed area, due to the expansion of water bodies. Al-
though this implied a marked reduction in agroforestry and forest, through the major
irrigation plan of the Alqueva dam, the greater availability of water in the region was
essential to promote agricultural irrigation and enhance regional development [65]. Despite
the 3% reduction in agricultural areas, it is the cluster that maintained the greatest level of
employment in primary activities (Table 5).

The aggregation of dynamics in clusters makes it easier to assess the state of the terri-
tory, highlighting differentiated zoning patterns. The identification of these spatiotemporal
dynamics in areal units (municipalities) that have a certain autonomy in spatial planning
is a way of providing the local ruling bodies with knowledge on LUD for public policies
adjusted to their specificities, considering the national context and its vicinity.

5.5. Discussion Summary: Dynamics, Specificities and Limitations

This study results showed a very heterogeneous country with marked contrasting
patterns, unsustainable trends of LUT, and a challenging picture for public policies of land-
use planning and sectoral scope. Some of the dynamics in parts of the territory conflict with
guidelines and strategies for sustainable development, such as the PNPOT, the Portuguese
National Strategy for Sustainable Development 2005–2015, the European Green Deal, or the
SDGs itself. Hyper-specialization is removing resilience from the territory that no longer
has a diversified economic base. By contrast, large areas of the country showed inertia, and
remained with no productive use, although guaranteeing an important reserve of interest
for nature conservation and biodiversity, crucial for maintaining ecosystem services and
fundamental for sustainability. The spatial patterns of the clusters suggest the need for a
properly integrated and articulated land-use-management strategy to reverse undesirable
dynamics in a systemic way, which is made more difficult by forcing a compromise between
administrative regions. The results provide the decision-makers with the knowledge for
reformulating spatial-planning instruments and policy objectives, in line with the diagnosis
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outlined, both in the sense of what may be the need to reverse certain trends and to
promote and intensify some LUTs. In short, it is necessary to accommodate an integrated
land-use-management framework with an assessment of ecosystem services [141] that
succeeds in promoting balanced urban-development [142], with a stimulus for local multi-
actor strategies to reverse the agricultural abandonment of depopulated areas [143] and
multifunctional landscapes in forested areas [144].

LUT was analysed as a broad concept, with the spatiotemporal typology of LUD
focusing on land-use structure and its changing patterns. However, recessive morphology,
common in LUT analysis, as suggested by Long et. al. [2], was not explored. In addition,
unlike other authors [26,52], we decided not to evaluate morphological changes with spatial
indices, which would have enriched the analysis in respect of the fragmentation of the LUC,
but would have required the reduction of the scope of other analyses.

The data used also has some specificities and limitations. Dynamism depends on the
nomenclature level, because the quantification and rate of LUT are influenced by thematic
resolution, being higher at lower aggregation levels. For example, from 1995 to 2018 the
area changed in COS at level 1 was 11.9% of continental Portugal, but at level 4 it was 18.1%.
This is a known effect of thematic resolution on landscape-pattern analysis [145], so there
may have been important dynamics that were not examined. Besides that, the typology of
LUD on the municipal scale may be subject to modifiable areal unit problems [146,147] and
ecological fallacy [148]. Concerning the LUCs selected for this study, it is important to note
that the COS-series nomenclature does not allow correspondence of the type of built fabric
with the year 1995, not permitting the analysis of relevant dynamics in specific classes of
artificial surfaces as was performed for agriculture and forest. Regarding spatial resolution,
the COS minimum-mapping unit does not allow the identification of LUT smaller than 1
hectare, and the temporal resolution is a source of uncertainty because of potential hidden
transitions between reference years. In addition, although the thematic accuracy of COS is
around 85%, spatiotemporal interdependence may have propagated errors between years,
creating deviations in accounting for LUT over time. However, error propagation tends to
be higher with increasing thematic complexity [149], and since the analysis of large classes
was privileged, i.e., mostly COS level 1 class, the bias should have been minimal.

This paper presented an analysis of continental Portugal in some detail, but given
the COS accessibility and its richness in LULC data, we believe that its potential is far
from being explored. That said, future research should focus on understanding the causes
and consequences of the monitored dynamics. The examination of driving factors should
consider a large spectrum of potential causes, from spatial dependence, fiscal burdens,
local economics and socio-political data. Also, it will be important to assess the effect of
wildfires on the LUT, for example, how many situations of forest loss that converted to
pasture or shrubland were caused by fire without recovery of the former use. In the field of
analysing the implications of the dynamics, we suggest that consequences should be based
on the development of a quantified framework concerning the impacts of the loss of fertile
land, carbon emissions, ecosystem services, land-infrastructure costs and increased natural
and environmental risks.

6. Conclusions

Understanding spatiotemporal LUD is of great relevance for regional and urban
planning, monitoring ecosystem services, assessing environmental impacts and measuring
progress toward SDGs. We have outlined the most significant changes in continental
Portugal for a 23-year period, complementing previous studies.

The spatiotemporal analysis revealed the fact that land-use territorial-asymmetries
have intensified. From 1995 to 2018, approximately 12% of continental Portugal had at least
one LUT with geographical disparities and different rate-changes, depending on the type of
transitions. Key trends and patterns were summarized in a typology at the municipal scale
that highlights afforestation, urban expansion, agriculture changes and natural-vegetation
dynamics. The typology is the only one available for continental Portugal as a result of
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a comprehensive study of land-use maps, and can be a spatial summary relevant to the
land-management framework of spatial planning and sectoral policies. In general, we can
state that LUD in continental Portugal is in collision with several strategic orientations.
Urban expansion has increased in coastal areas, entailing a risk of degradation of wetlands
and water bodies, and converted agriculture and forest areas. In the case of agriculture, the
reduction of agricultural areas by irreversible transitions, as is the case of urbanization and
the intensification of olive groves, is a threat to sustainability. Likewise, the fact that forests
are increasingly reliant on eucalyptus plantations, rather than native species, contradicts
biodiversity strategies for resilience and sustainable development.

Although the particular causes of these dynamics have not been identified, these
changes are interdependent, and land-management policies should prioritize integrated
approaches for sustainable land-use. That said, greater territorial multifunctionality is
needed to restore landscape balance through spatial planning and sectorial policies.

In summary, we consider our results to be primarily of policy interest for science and
evidence-based decision-making, to design sustainable-pathway policies. The LUD typol-
ogy approach allowed the definition of zonings that need specific policies and interventions
to address the observed dynamics. It may be of interest for replication by other countries
with markedly unequal patterns of land use, and those that have experienced significant
changes. This analysis can be an inspiration for future LUD studies with higher spatial
resolution and higher thematic disaggregation, creating new evidence of LUT in line with
key guidelines and directives for sustainability.
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