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Abstract
Thermokarst lakes and ponds are a common landscape feature resulting from permafrost thaw, but their intense greenhouse 
gas emissions are still poorly constrained as a feedback mechanism for global warming because of their diversity, abundance, 
and remoteness. Thermokarst waterbodies may be small and optically diverse, posing specific challenges for optical remote 
sensing regarding detection, classification, and monitoring. This is especially relevant when accounting for external fac-
tors that affect water reflectance, such as scattering and vegetation shadow casts. In this study, we evaluated the effects of 
shadowing across optically diverse waterbodies located in the forest–tundra zone of northern Canada. We used ultra-high 
spatial resolution multispectral data and digital surface models obtained from unmanned aerial systems for modeling and 
analyzing shadow effects on water reflectance at Earth Observation satellite overpass time. Our results show that shadowing 
causes variations in reflectance, reducing the usable area of remotely sensed pixels for waterbody analysis in small lakes 
and ponds. The effects were greater on brighter and turbid inorganic thermokarst lakes embedded in post-glacial silt–clay 
marine deposits and littoral sands, where the mean reflectance decrease was from -51 to -70%, depending on the wavelength. 
These effects were also dependent on lake shape and vegetation height and were amplified in the cold season due to low 
solar elevations. Remote sensing will increasingly play a key role in assessing thermokarst lake responses and feedbacks 
to global change, and this study shows the magnitude and sources of optical variations caused by shading that need to be 
considered in future analyses.
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Introduction

Abrupt permafrost thaw is known to accelerate greenhouse 
gas emissions relative to active layer deepening. However, 
most of its mechanisms have not yet been incorporated in 
Earth system and global climate models (Kuhn et al. 2018). 
This is due to the small relative area of the disturbances, 
despite their biogeochemical significance (Walter Anthony 
et al. 2018; Heslop et al. 2020; Turetsky et al. 2020). The 
most frequent and widespread mechanism of abrupt perma-
frost thaw is thermokarst lake and pond formation (Bouchard 
et al. 2017; Walter Anthony et al. 2018; Wauthy et al. 2018). 
These aquatic environments are less than 10,000  m2 and 
are generally less than 5 m deep (Bégin & Vincent 2017). 
Several studies have shown that the majority of the thermo-
karst ponds and lakes are biogeochemical hotspots, releasing 
carbon dioxide  (CO2) and especially methane  (CH4) (Vonk 
et al. 2015; Matveev et al. 2016; Kuhn et al. 2018; Zandt 
et al. 2020).
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Optical satellite, airborne and unmanned aircraft systems 
(UAS) remote sensing are essential tools to map and under-
stand the dynamics of important constituents of waterbodies; 
e.g., cyanobacterial blooms (CYAN), chlorophyll a (Chl), 
fluorescent dissolved organic matter (fDOM), colored dis-
solved organic matter (CDOM), dissolved oxygen (DO), 
total suspended solids (TSS) (Toming et al. 2016; Peterson 
et al. 2020; Sagan et al. 2020). However, there are many 
challenges for the remote sensing mapping and optical moni-
toring of small waterbodies, from spatial resolution to co-
registration errors (Pekel et al. 2016; Muster et al. 2019; 
Olefeldt et al. 2021). In addition, vegetation surrounding 
waterbodies may cast shadows, causing difficulties for the 
analysis of the water spectral characteristics.

Ecologically, shadowing limits the amount of incoming 
visible and ultraviolet radiation, making it an important fac-
tor for aquatic ecosystems. The reduction of incident solar 
radiation may also affect the water thermal regime, strati-
fication, presence, concentration and behavior of certain 
chemical species, photosynthetic, photochemical and photo-
biological transformations, aquatic ecosystem structure and 
productivity, primary production, microbial communities, 
and greenhouse gas fluxes (Magnuson et al. 1997; Vincent 
2009; Przytulska et al. 2016; Williamson et al. 2020).

In optical remote sensing applications, shadows changing 
at-sensor solar radiance, are mostly considered as noise that 
should be removed. Shadows cause biases in spectral indexes 
(e.g., NDVI, Bowen ratio), indicators (e.g., crop productiv-
ity), and spectral properties (Stagakis et al. 2012; Aboutalebi 
et al. 2019). They can also be problematic for image clas-
sification, causing loss of information (Mora et al. 2015; 
Movia et al. 2016; Milas et al. 2017; Al-Najjar et al. 2019). 
In optical remote sensing of water, shadows can cause false-
positive detections (Feyisa et al. 2014; Fisher et al. 2016; 
Pekel et al. 2016; Xie et al. 2016). Distinguishing the small 
differences between shadows and water, and resolving the 
effects on spectral reflectance that vary through space and 
time, remain important challenges (Tian et al. 2017; Guo 
et al. 2020; Pickens et al. 2020; Yan et al. 2020).

Shadowing problems in remote sensing have been 
addressed by techniques such as thresholding (Parmes et al. 
2017), 3D reconstruction based on 2D objects morphomet-
rics (Zhu et al. 2015), reduction and information recovery 
(e.g., gamma correction, multisource data fusion) (Movia 
et  al. 2016), and predictive models (Hung et  al. 2012). 
Although the constraints imposed by shadows and potential 
solutions have received increasing attention in the remote 
sensing literature, research is still lacking about the effects 
of shadows on optically contrasting waterbodies (Cordeiro 
et al. 2021).

Our goal was to develop an experimental study to evalu-
ate the spectral, spatial, and temporal effects of shadow-
ing on optically diverse permafrost thaw lakes surrounded 

by variable height and dense vegetation. We studied thaw 
lakes of the boreal forest–tundra transition zone in Nuna-
vik, subarctic Canada. This region provides an ideal model 
system for assessing and improving remote sensing prod-
ucts for permafrost thaw waters. It is undergoing fast eco-
system changes (e.g., shrubification) and its thermokarst 
waterbodies are optically diverse, spanning a wide range 
of turbidities, dissolved organic carbon concentrations and 
colors, even across small distances (Watanabe et al. 2011). 
Spectrally calibrated data obtained with a UAS were used 
to assess the reflectance bias promoted by shadows, aiming 
at bridging the gap to coarser resolution multispectral satel-
lite data (Lu et al. 2020). Cast shadowing was analyzed by 
assessing the area of shady and sunlit pixels throughout the 
year, and the reflectance bias across the range of watercolors.

Study area

The KWAK valley study area is located in Subarctic Canada, 
Northern Quebec, in the transition zone between sporadic 
and discontinuous permafrost, showing boreal forest–tundra 
(Bhiry et al. 2011) (Fig. 1). Since the end of the Little Ice 
Age, warming and increasing precipitation have led to rapid 
changes in the landscape. The thawing of ice-rich perma-
frost mounds has created numerous thermokarst lakes and 
caused a successional vegetation cover shift characterized 
by shrubification and terrestrialization processes, as well as 
the expansion of tree vegetation (Payette et al. 2004; Vallée 
and Payette 2007; Bouchard et al. 2014).

The UAS survey area of 0.3  km2 contains 92 thermo-
karst lakes and ponds varying from 2 to 2000  m2. The 
waterbodies show diverse optical properties, from black to 
light brown and with contrasting color differences even over 

Fig. 1  Study area (red dot) location in Northern Quebec (Subarctic 
Canada)
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small distances, with blue, green, brown, black, and white 
waters (Laurion et al. 2010; Bouchard et al. 2011; Watanabe 
et al. 2011; Freitas et al. 2019). Since limnology and water 
geochemistry are mostly controlled by autogenic processes, 
varying concentrations of organic (natural dissolved organic 
matter) and inorganic (post-glacial silt–clay marine sedi-
ments) contents are observed, resulting in different colors 
and greenhouse gas flux characteristics (Laurion et al. 2010; 
Bégin and Vincent 2017; Folhas et al. 2020).

The Eastern Hudson Bay region has been showing an 
increasing greening trend over recent decades (McManus 
et al. 2012; Beck et al. 2015; Ju and Masek 2016). In KWAK, 
the dense and high vegetation surrounding the shallow 
(1–3 m) thermokarst lakes, is characterized by trees (Picea 
mariana, Picea glauca and Larix laricina) and erect shrubs 
(Betula glandulosa, Salix sp., Alnus crispa and Myrica gale) 
(Bégin and Vincent 2017). Some lakes show aquatic grass 
meadows and are surrounded by mosses (Sphagnum spp.) 
and herbaceous plants such as Carex (Bouchard et al. 2014) 
(Fig. 2).

Material and methods

General methodological framework

KWAK is a remote area and it is only accessible by heli-
copter in the summer. It shows large sectors of continuous 
surficial water logging, numerous lakes and high and dense 
shrubs. This imposes serious logistical constraints, both for 
conducting visits to the site, as well as for direct measure-
ments in the multiple ponds and lakes, since walking and 
equipment transportation from lake to lake is extremely dif-
ficult. Hence, the acquisition of ultra-high resolution aerial 
imagery with UAS is the best way to obtain high multispec-
tral data from a large number of lakes, representative of the 
spatial diversity of the area.

The data were processed using automatic photogrammet-
ric techniques for point cloud and multispectral orthomosaic 
generation. The orthomosaic allowed for the classification 
of shadow and sunlit areas inside lakes, as well as to char-
acterize water reflectance and color. The point cloud was 
used to derive an ultra-high resolution digital surface model 
(DSM), which was the basis for shadow modeling. Our anal-
yses focused on how shadowing affects water reflectance and 
how this changes throughout the year (Fig. 3).

UAS data acquisition and modeling

We used a fixed-wing SenseFly eBee Standard to collect 
RGB and multispectral data in 2015 and 2017. The surveys 
differed in flight configuration, sensors and flight times 
(Table 1). As a result, the RGB data of 2015 allowed to 
derive vegetation structure and was used for 3D and cast 
shadow modeling, while the multispectral data of 2017 were 

Fig. 2  Thermokarst lakes surrounded by dense and high shrub vegetation and trees in KWAK

Fig. 3  Methodological workflow for shadow cast modeling and 
reflectance analysis
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used for shadow footprint ground truthing and reflectance 
analysis. No significant vegetation nor water level changes 
occurred during the two surveys, as confirmed by visual 
comparison of the scenes.

The flights were done along orthogonal paths. The RGB 
data acquisition was done in the morning of 28/08/2015. 
The conditions were overcast and without cast shadows. 
The multispectral UAS survey was done on 01/09/2017 with 
clear skies and cast shadows favored by the low solar eleva-
tion (20.49° to 22.92°). In that flight, we flew a multispec-
tral Parrot Sequoia camera with four spectral bands: Green 
(G: 530–570 nm), Red (R: 640–680 nm), Red Edge (REG: 
730–740 nm) and Near Infrared (NIR: 770–810 nm) and an 
optical RGB composite. A sun irradiance sensor was used 
for single-image radiometric calibration and an albedo target 
for reflectance calculation (Lu et al. 2020).

We processed the imagery in Pix4DMapper 4.7, 
which automatically detects characteristic features on the 
ground, creating thousands of common 3D key points, 
which are used to generate the dense point cloud, the 
orthomosaics, and DSMs (McKenna et al. 2017; Pix4D, 
2017). The 2015 DSM and orthomosaic show 2.6 cm/
pixel and the ones from 2017, 12.7 cm/pixel. The geolo-
cation was determined by the Global Positioning System 
(GPS) of the UAS. As a post-processing procedure, we 
manually co-registered the models, ensuring accurate 
overlap among all imagery.

To generate an accurate DSM able to precisely model cast 
shadows onto the thermokarst lakes, we tested different UAS 
data processing parameters: minimum number of matches 
(MNM) during the point cloud generation, and the inter-
polation and smoothing methods during the DSM genera-
tion. For the MNM, we tested 2, 3, and 4 reprojection image 
matches. We then tested two interpolation methods for each 
MNM: inverse distance weighting (IDW) and triangulated 
irregular network (TIN). Finally, we tested three smoothing 
methods for each MNM and interpolation method results: 
sharp, medium, and smooth.

Validation and selection of the best DSM for shadow 
modeling

The more accurate DSM was selected by comparing the 
results of modeled and observed shadows. Ideally, data from 
the same flight should have been used to validate DSM per-
formance. However, overcast conditions occurred during 
the acquisition of 2015, which led to the use of the data 
from 2017 for validation. The date and mean acquisition 
time were used for defining the sun position and modeling 
shadows using the DSMs produced for 2015.

The results were classified as true positive (TP—mod-
eled shadows match observed shadows), false positive (FP—
modeled shadows in sunlit areas), and false negative (FN—
modeled shadows miss observed shadows). This allowed the 
calculation of quality evaluation metrics, such as precision 
([TP] / [TP + FP]), recall ([TP] / [TP + FN]), and F1 score 
([precision × recall] / [[precision + recall] / 2]). The overall 
producer’s and user’s accuracy were also calculated accord-
ing to a confusion matrix.

Shadow effects on optically diverse thermokarst 
lakes

To classify the main lake groups by watercolor, we per-
formed a K-Means clustering analysis on the sunlit multi-
spectral data. We focused on the main color classes limiting 
mismatches between the results and earlier studies (Laurion 
et al. 2010; Bouchard et al. 2011; Watanabe et al. 2011).

To evaluate the impacts of shadows depending on lake 
color, we compared the UAS-measured reflectance in the 
sunlit and shaded areas for each lake. This was obtained 
from sectors away from lake margins, allowing to miti-
gate land adjacency effects. These sectors corresponded to 
10–20% of the former areas. This approach minimized sig-
nal-to-noise factors, such as vegetation scattering effects and 
impacts of aquatic vegetation (Sawaya et al. 2003; Watanabe 
et al. 2011). KWAK lakes are optically deep, as concluded 

Table 1  UAS data acquisition and sensor characteristics

28/08/2015 01/09/2017

Start and end hour (EDT) 10:54–11:18 17:13–17:31
Flight duration (min) 24 18
Illumination conditions Overcast Clear
Mean height above ground (m) 110 110
Sensor Canon IXUS 127HS (Global shutter) Parrot Sequoia (Roller shutter)
Sensor type RGB RGB and Multispectral (G: 530–570 nm; R: 640–680 nm; REG: 

730–740 nm; NIR: 770–810 nm)
Sensor resolution 12 megapixels (4608 × 3456) RGB – 16 megapixels (4608 × 3456); Multispectral – 1.2 megapixels 

(1280 × 960)
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by Watanabe et al (2011), which allowed neglecting bottom 
effects on reflectance (Zeng et al. 2017).

Monthly shadow modeling at the satellite overpass 
time

The best DSM was used to model the annual dynamics of 
cast shadows onto the lakes at the satellite overpass time. For 
this analysis, the solar elevation and azimuth angles for the 
first day of each month at 16:00 UTC were used. This time 
was selected as a compromise between the Sentinel-2 (ca. 
16:30 UTC), Landsat 8 (ca. 16:00 UTC), and PlanetScope 
(ca. 15:30 UTC) overpass times. Complementarily, we ana-
lyzed the controlling factors for casting shadows by analyz-
ing the surrounding lake environment based on 3D and 2D 
photointerpretation, oblique photographs from helicopter 
and modeling the monthly shadow footprints.

Results

Evaluation of the quality of the DSMs for shadow 
modeling onto the lakes

The DSMs casted larger shadows onto the lakes when the 
MNM was lowest (Fig. 4). Keeping MNM lower (2) gener-
ated more TP, as well as minimizing the FN, although the 
FP increased slightly. IDW and TIN were inversely related 
with MNM when analyzing the total area of modeled shad-
ows and TP. When the MNM was highest (4), the IDW per-
formed slightly better than TIN, but when the MNM was 
lowest (2), TIN performed better than IDW. Accordingly, 
when MNM was 3, the performance of both methods was 
even. When analyzing the influence of the smoothing meth-
ods, the results for IDW always improved from the sharp to 
the smooth parameterization. However, for TIN, the quality 

decreased when the MNM was 4 and only improved for the 
sharp parametrization when the MNM was 3 and 2.

The best DSM was produced with a MNM value of 2, 
TIN, and sharp parameters. This allowed detection of the 
largest modeled shadow area (2,800  m2), the equivalent to 
72% of the observed shadows (3,912  m2). This DSM had an 
overall accuracy of 87% according to the confusion matrix 
calculation (Table 2). The precision, recall and F1 score 
were 0.90, 0.65, and 0.76, respectively.

Lake spectral clustering and shadow effects

The analysis of UAS multispectral data allowed for distin-
guishing three main lake clusters: black, brown, and light 
brown (Fig. 5). The black lakes cluster shows the lowest 
reflectance for all bands. This cluster had a mean value of 
1.7% in G (SD = 0.6%), 1.3% in R (SD = 0.7%), 2.9% in REG 
(SD = 2.1%), and 4.6% in NIR (SD = 2.9%). The light brown 
lakes had the highest reflectance, with a mean value of 6.6% 
in G (SD = 1.5%), 7.1% in R (SD = 1.9%), 7.8% in REG 
(SD = 1.8%), and 9% in NIR (SD = 2.2%). Brown lakes had 
intermediate reflectance values, namely mean of 3.9% in G 
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Fig. 4  Evaluation of DSM quality and of shadow modeling accuracy 
inside the lakes

Table 2  Confusion matrix for the evaluation of shadow modeling 
accuracy

Observed

Modelled Shadow  (m2) Sunlit  (m2) User's 
accuracy 
(%)

Shadow  (m2) 2523 261 91
Sunlit  (m2) 1372 8175 86
Producer's accuracy (%) 65 97

Fig. 5  Multispectral clustering of thaw lakes in the KWAK study site
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(SD = 1%), 4% in R (SD = 1.2%), 4.7% in REG (SD = 1.3%), 
and 5.9% in NIR (SD = 1.8%) (Fig. 6).

Shadows caused a mean absolute reflectance decrease of 
2.1% in G, 2.8% in R, 2.7% in REG, and 2.5% in NIR, the 
equivalent of -54, -68, -54 and -40% of reflectance compar-
ing to the sunlit sectors, respectively. The analysis of the 
water reflectance in shaded and sunlit areas according to lake 
color shows that shadow disturbances depend on the optical 
properties of the lakes (Fig. 7). For black lakes, the mean 
absolute reflectance differences between those areas varied 
from 0.5 to 1.1%, depending on the band. Brown or light 
brown lakes showed larger differences. The mean absolute 

reflectance differences were 1.9 to 2.6% in the first case and 
3.7 to 5% in the second case.

Assessment of cast shadow impacts at satellite 
overpass time

The impacts of cast shadows onto the thermokarst lakes are 
highly dependent on solar elevation, which shows an angle 
of 55º on 1 July and 10º on 1 January at 16:00 UTC. As a 
result, the mean shaded lake area varies from 3 in July to 
69% in January (Fig. 8). This shows the strong seasonality 
of shadows, with the smallest effects in June/July and highest 
effects in December/January. From 1 October to 1 March, 
the mean shaded lake area ranged from 16 to 69%, and from 
1 April to 1 September, from 3 to 10%.

Regarding the conditioning factors, trees and erect shrubs 
played important and different roles in lake shadowing. 
Trees close to lakes are scarce in the study area but cre-
ated well-defined and consistent shadows throughout the 
year (Fig. 9, A1–A3). In contrast, erect shrubs produced 
less shadowing, but had a larger overall footprint due to their 
widespread occurrence (Fig. 9, B1–B3). Erect shrubs were 
particularly important in the beginning and ending of the 
warm season and during the cold season. Lake morphometry 
also played a role, since narrow and elongated lakes were 
more impacted by shrub cast shadows (Fig. 9, B2). Various 
lakes were impacted by both, erect shrubs and trees (Fig. 9, 
C1–C2). Some thermokarst lakes show the importance of 
catchment topography, a factor especially relevant at the 
early stages of their formation, since the degradation of ice-
rich permafrost mounds creates concavities in which they 
are deeply embedded (Fig. 9, D1).

Discussion

Vegetation structure and shadow modeling

UAS image processing through Structure-from-Motion 
(SfM) photogrammetric principles provides an efficient and 
affordable approach for 3D modeling (Dandois et al 2017). 
However, the resulting point clouds and orthomosaics are 
highly dependent on the survey circumstances (McKenna 
et al. 2017; Aboutalebi et al. 2019). Factors such as the UAS 
type, sensors, conditions (atmosphere, illumination, clouds 
and shadows), and characteristics of the flights (configura-
tion and overlap) need to be adjusted to ensure the quality 
and robustness of SfM and derived DSM results (Comba 
et al. 2015; Dandois et al. 2017; McKenna et al. 2017; Clark 
et al. 2021).

The overall accuracy of the best cast shadows model for 
KWAK was 87%. However, cast shadows in most lakes were 

Fig. 6  Reflectance boxplot by lake color group
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underestimated, suggesting that the SfM processing results 
and DSM quality varied considerably depending on the char-
acteristics of the vegetation surrounding lakes. Modeling 
shadow casts from conic-shape coniferous trees was better 
than by erect shrubs, since these revealed irregular shapes 
and spaces between leaves and stems. The modeling results 
also suggest limitations regarding the characteristics of the 
image acquisition, which was always close to zenithal and 
non-oblique. Although our images showed well-defined 
shrub cast shadows, a producer’s accuracy of 65% was 
obtained, showing that our survey was not able to fully cap-
ture this influence. As a result, shrubs may play an even 
more important role on casting shadows onto small lakes in 
the boreal forest–tundra zone than modeled here. Such shrub 
effect will be more important further north, where solar 
angles are lower and shrubification processes are known to 
be rapid (Stow et al. 2004; McManus et al. 2012; Beck et al. 
2015; Myers-Smith et al. 2020).

Water reflectance and cast shadow influences

Analysis of the spectral properties of waterbodies is spe-
cially complex due to the bidirectional reflectance distribu-
tion function of water and the many environmental factors 
that affect it, such as sun glint, atmospheric scattering, wind, 
adjacent and bottom effects (Zeng et al. 2017; Sagan et al. 
2020), as well as shadows. Finding a pure spectral signature 
of water using remote sensing, especially on smaller lakes, 
can therefore be difficult.

According to Watanabe et al (2011), the different lake 
colors in KWAK are caused by varying concentrations 

of two main optically active substances, namely CDOM, 
responsible for spectral absorption, especially on the darker 
lakes (e.g., black cluster) and TSS supporting spectral scat-
tering and absorption on the light brown colored lakes (e.g., 
brown and light brown cluster). Our results show shadow-
ing changes as a function of surface characteristics in these 
optically diverse waterbodies. Specifically, we observed that 
shadow effects as measured by reflectance variations were 
higher for light brown lakes and almost unnoticeable for 
black lakes. As a result, correcting cast shadow effects in 
optical remote sensing imagery, will be most relevant in the 
light brown colored or turbid lakes, but will be dependent on 
the percent of lake area affected by shadows.

Wauthy et al (2018) suggest an increasing dominance 
of erodible terrestrial-derived DOM in waters with ongo-
ing permafrost thaw, a process known as browning with the 
decrease of water column transparency. In remote sensing 
time-series analysis, this process will act as a reflectance 
reductor factor, similar to shadow influences. As a con-
sequence, correctly identifying spatiotemporal browning 
trends of small thaw lakes and ponds in wide regional sectors 
will imply that shadows are correctly considered and their 
impacts on reflectance are mitigated. Considering shadow 
dynamics will allow to avoid mismatches between at-sensor 
signal and what happens on the field, lowering the signal-
to-noise ratio and improving remote sensing time-series 
spectral analysis of small waterbodies in the Circum-Arctic.

The reflectance in shaded areas showed the same behav-
ior of the sunlit areas, with higher values in light brown 
lakes and lower in clear black lakes, although the magni-
tude of these variations was comparatively much lower. In 
both shaded and sunlit areas, the lowest reflectance values 

Fig. 9  Cast shadow duration at 
16:00 UTC and causal factors 
over KWAK lake surfaces. A. 
Modeled accumulated monthly 
footprint; B. Aerial photo-
graph from 28/08/2015. Cast 
shadow causes: A1-A3—Trees, 
B1-B3—Erect shrubs, C1-C2—
Trees and erect shrubs; D1—
Topography
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always occurred in G and R and the highest in REG and 
NIR, independently of the watercolor. However, the values 
in REG and NIR, as true lake water properties, should be 
interpreted with caution, since they may be influenced by 
the characteristics of the surrounding environment (Wata-
nabe et al. 2011). In addition, all bands can be affected by 
a combination of sun/sky glint to some extent, but this is 
difficult to quantify.

Modeling shadows based on ultra-high resolution DSMs 
produces accurate results, although such detailed height data 
are unavailable for the majority of the landscapes. Shad-
ows are also known for having greater impacts when using 
ultra-high and very high resolution images (Movia et al. 
2016; Aboutalebi et al. 2019), since in coarser resolution 
images they act as a complex varying mixing component of 
a specific pixel (Milas et al. 2017). In those circumstances, 
they are not explicit, but implicit, making the correction for 
this effect even more difficult, although some effects can 
be minimized using techniques such as band ratios (Zeng 
et al. 2017).

Conclusions

The application of UAS-derived ultra-high resolution mul-
tispectral orthomosaic and DSMs for water reflectance 
analysis and shadow modeling allowed the quantitative 
assessment of shadowing effects on thermokarst lakes and 
ponds. The results show that the impacts of shadow casts 
by vegetation and topography are greater in light brown-
colored (turbid) lakes, reflecting the highest absolute dif-
ferences in reflectance between sunlit and shaded areas. As 
a result, adequately removing the spectral influence of cast 
shadows from light brown lakes (e.g., masking) is especially 
important to access spectral characteristics using remotely 
sensed imagery, comparatively to darker lakes, where spec-
tral absorption prevails. The reflectance differences induced 
by shadows in subpolar and polar light brown or turbid 
lakes can have large consequences for assessing their opti-
cal dynamics, especially towards the end of the warm sea-
son when solar elevation declines. However, the shadowing 
effect on thaw lakes varies greatly depending on the local 
topographic position and its landscape context (proximity to 
trees, dense high shrubs, and palsa mounds). Certain lakes 
such as those that are in depressions as a result of thaw sub-
sidence, or that are small, narrow and elongated, as well as 
closer to trees and surrounded by high and dense shrubs, 
will be strongly affected by cast shadows. These effects may 
occur even at the highest solar elevation angle and limit the 
usable area of unaffected water pixels for monitoring analy-
sis. This problem will become increasingly relevant with 
the ongoing shrubification and accelerated tree growth that 
is taking place in Subarctic and Arctic regions.
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