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Abstract 

Elastomeric seals are mechanical devices that are used to prevent the leakage of fluids 

across a boundary. Most commonly, a leak is driven by differential pressure acting across 

a seal, and failure occurs due to elastic leak, fracture, or a combination thereof. A pure 

elastic leak occurs when fluid bypasses a seal without imparting mechanical damage, so 

when the differential pressure is reduced sufficiently, the device recovers some or all of its 

sealing capability. When seal fracture occurs, it may be followed by elastic leak of the 

damaged seal, nearly always with a reduction in the maximum sealing ability. When severe 

enough, fracture can render a seal completely useless. It is important to understand both 

failure modes, but rubber fracture has received much more attention in the literature than 

elastic leak. Hence, this thesis focuses strictly on elastic leak failures. 

To reduce cost and development time, it is advantageous to predict elastic leaks during 

the design process. Some reasonably accurate analytical models to assess sealing 

performance exist for simple geometries such as O-rings, but non-standard seal 

configurations are notoriously difficult to design and model. Although the basic operating 

principles of rubber seals are simple, complexities arise due to many factors such as the 

tribological conditions, finite deformations, time-dependent mechanical properties, and 

thermal effects. Thus, custom seal design remains an empirical and iterative process. Some 

challenges are partially mitigated with numerical techniques such as finite-element analysis 

(FEA), but the subtleties to accurately simulate fluid leakage are neither well-described nor 

resolved in the literature. 

FEA has been used to simulate seal leakage for at least two decades, but no systematic, 

comprehensive study of the modelling parameters that affect leak simulations has been 

disclosed. This thesis closes this gap with numerical sensitivity analyses that consider the 

following: the hyperelastic material model and its validation; stress relaxation; volumetric 

compressibility; friction models; mesh sensitivity; contact interactions; static versus 

dynamic solvers; discretisation of pressures into nodal forces; the fluid pressure penetration 

algorithm; and the leak criterion. This latter parameter which tells the solver when to 

propagate fluid pressure from one node to the next is of primary importance in this thesis. 

Two leak criteria that were previously proposed in the literature are studied. 

Researchers have attempted to experimentally validate simulated leak pressures, but 

there is no comprehensive discussion of the variables that affect test measurements and 

model predictions. The present work addresses this gap by conducting experimental tests 

on bonded rubber seals to validate leak simulation studies and provides the following 

details: the materials tested including their formulations; manufacturing and material model 

validation tests; justification for critical settings in finite-element models; and potential 

sources of error in the experimental tests and numerical models. Poor correlations are found 

between the laboratory and numerically simulated leak pressures. It is argued that the 

primary source of error is the leak criterion, and it should be the focal point for future 

validation attempts. An alternative leak criterion, which is yet to be numerically 

implemented, is proposed for further investigation.   
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1.  Introduction 

1.1  Terminology: Elastomers, Rubbers, & Compounds 

The terms elastomer, rubber, and compound are used interchangeably in practice, 

though distinct definitions are given in ISO 1382:2012.1 They all require an initially 

amorphous assembly of long polymer chains which, after substantial deformation on short 

timescales, return roughly to their original shape. Over longer timescales, an elastomer 

exhibits permanent deformation due to plastic flow of molecular chains. A rubber on the 

other hand has chemical crosslinks between polymer chains which impose long-term 

dimensional stability. A compound refers to one or more rubbers mixed with all the 

ingredients necessary to form a finished product. It can be as simple as one base elastomer 

and one crosslinking agent, but today even the most basic unfilled compounds have at least 

5 ingredients, with perhaps 8 to 15 being typical in filled compounds. Arguably, the word 

“rubber” does not connote the complexity of a modern compound, but the terms are used 

interchangeably in this work. The term “elastomer” is reserved for “raw rubber”, both 

referring to an uncrosslinked rubber, be it filled or unfilled. Terminology aside, it is 

important to recognise that modern compounds are highly engineered elastomeric 

composites. 

1.2  Rubber Seals and Their Criticality in the Oil & Gas Industry 

As Buchter2 describes, “seals are mechanical devices used to prevent leakage of liquids, 

solids, or gases.” They come in a wide range of materials and configurations, and numerous 

parameters must be considered for their selection such as: pressure, temperature, fluid 

compatibility, and dynamic shaft movements. Common sealing materials include metals, 

thermoplastics, and rubbers.  

Rubbers are ideal sealing materials for several reasons. They impose negligible loads 

on hard countersurfaces, preventing damage and high maintenance costs. They can readily 

deform into surface imperfections and cut off leak paths. Being nearly incompressible, they 

efficiently transform applied fluid pressures into sealing contact pressures. Though their 

operating principles are simple, rubber seals are notoriously difficult to design. They are 

subject to complex tribological conditions, geometric variations as loads change, and 

evolution of mechanical properties with time and temperature. Consequently, seal design 

is a highly empirical and iterative process for custom seals in the oilfield industry. 

Rubber seals are widely used in the oil and gas (O&G) industry. Material design and 

compound selection are critical in these applications because they affect the longevity and 

efficiency of downhole equipment where costs may exceed £100,000 per tool. Downhole 

fluids are harsh and diverse, ranging from acids to bases which may be in aqueous or oil 
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suspensions. Thermal, mechanical, and chemical ageing are present, and these can all 

contribute to seal leakage or failure that is concomitant with nonproductive time. For 

example, a leak in completions equipment3 for a deep water well may take 6 months to 

redress. At a production rate of 20,000 barrels a day and assuming £50 per barrel, costs 

exceed £175M (million) of deferred revenue. However, when it comes to protection of life 

and environment, the costs are even greater. 

The most catastrophic loss in the O&G industry was the blowout of the Deepwater 

Horizon rig in which 11 lives were lost. The resultant lack of well control dumped an 

estimated 4.9M barrels of oil into the Gulf of Mexico for 87 days (Fig. 1.1) which brought 

more than a £15B (billion) settlement, the largest in the industry’s history.4,5 Among the 

factors that contributed to the failure, the blowout preventer (BOP), which includes a large 

toroidal rubber seal, did not safely direct wellbore fluids through the drilling string. When 

it works properly, the BOP reduces the severity and likelihood of an explosion or flare up 

on the drilling rig. The high flow rate of the well eroded a primary seal in the BOP, resulting 

in leakage of volatile gas. An explosion ensued, and an emergency-actuated rubber seal in 

a tool called the variable bore ram was able to temporarily isolate wellbore fluids. However, 

it eventually failed due to excessive thermal loads.6  Thus, the loss of the Deepwater 

Horizon highlights the importance of seals in the O&G industry and the potentially 

catastrophic consequences of seal failure. 

 
Fig. 1.1: Showing 2 out of the 411 controlled burns used to consume approximately 250,000 barrels of the 

Deepwater Horizon oil spill.4 

1.3  Limitations in the Historical Seal Design Process 

Historically, industrial seal design has been trial and error. This is a costly and long 

process that can stretch across multiple years. To circumvent the time and cost, it is 

customary to reuse old designs, even if they are not optimised for new applications. This 

results in low reliability and high failure rates, particularly during development but also in 

operations. Fig.1.2 illustrates this point where seal related failures dominated test failures 

during the development of a downhole oilfield tool by the project sponsor.7 In this case, 

trial-and-error dominated the design process. 
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Fig. 1.2: Failure modes for a downhole tool used in completions.7 

1.4  The Numerical Simulation of Rubber Seals 

To shorten the design lifecycle of seals, finite-element analysis (FEA) is increasingly 

used during their development. One case study by the project sponsor8 shortened the 

development time of packer seals3 by more than 50% when numerical methods were 

employed, but knowledge gaps still result in inefficiencies, usually in the form of physical 

test iterations. 

Modules that capture the basic physics of rubber exist in commercially available 

solvers, and where more advanced physics are essential, user-defined codes can be 

implemented. One helpful simulation capability, and a focus of this research, is the 

automation of fluid pressure penetration (FPP) along a sealing interface as leakage occurs. 

The technique is covered in previous literature where reasonable experimental validations 

have been achieved. Yet, the author’s industrial experience can point to numerous cases 

where the technique is in gross error. Furthermore, detailed sensitivity analyses on the 

numerical prediction of seal leakage have not been provided. Thus, it is difficult to 

determine why results are so varied in industrial and academic literature.  

The wide variation in the accuracy of FPP solutions probably arises from too many 

uncontrolled variables (that is, assumptions) in the models. This makes it impossible to 

isolate errors due strictly to FPP methods from other parameters. The present thesis strives 

to close these knowledge gaps by conducting sensitivity analyses on FPP techniques, 

carefully controlling material and test conditions during leak experiments, and then 

correlating those physical results to simulated ones. In the end, the goal is to apply the 

findings of this research to industrial seals, thereby improving seal design methodology and 

reliability, presumably with benefits to bring efficient use of resources with minimal 

negative impact on the environment and human life. 

As arguments proceed in this work, it is important to highlight a limitation in the scope 
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of numerical modelling. Many works in rubber research focus on the implementation of 

non-linear viscoelastic models (see Sections 2.6 and 2.9). These are indeed critical for the 

general application of seal modelling, but they are difficult to implement in standard 

engineering practice today. While this point is acknowledged, and modelling errors related 

to this subject are estimated in later chapters (see Sections 6.5 and 7.4.2), detailed explor-

ations are not pursued here. The idea is to mitigate these effects as much as possible by 

using unfilled rubber, which minimises viscoelasticity, to isolate and systematically study 

numerical leak propagation itself. Thus, a simplified sealing material is used to isolate the 

desired variable. In parallel, a highly filled material is used to understand how much this 

alters the experimental results which will help focus future research efforts. 

1.5  Organisation of the Thesis 

It is appropriate to begin with a statement of the penultimate finding of this research: 

experimental leak pressures are bound by numerical predictions that use two different leak 

criteria commonly employed in the literature, and the measured pressures are far from the 

limits established by either criteria. Chapter 7 illuminates this finding by comparing 

experimental leak pressures to numerically simulated ones for bonded rubber face seals that 

are made from filled and unfilled compounds. The poor correlations could arise from many 

complexities in rubber mechanics, but efforts are made to systematically rule out the 

following as primary sources of error: 

 the friction model; 
 volumetric compressibility; 
 numerical discretisation (for instance, the mesh size); 
 inelastic effects such as stress relaxation and strain rate sensitivity; 
 dynamic effects due to inertia of the deformed seal and elastic instabilities; 
 deformation of the test fixture when pressurised; 
 asymmetries in the physical test (that is, three-dimensional considerations that are 

not captured by the two-dimensional analyses). 

With these error sources dispelled, it is argued that the discrepancies arise because neither 

leak propagation criterion is physically correct. Some ideas are proffered that, with further 

research, could establish a more reliable leak criterion for the numerical simulation of seals. 

The arguments in Chapter 7 require some fundamental knowledge of the physics of 

rubber, and Chapter 2 elucidates this requisite information. A reader skilled in the art of 

rubber mechanics can skip this early chapter without being lost to the arguments of this 

thesis. To motivate interest, Chapter 2 often touches on some historical context when it 

introduces the following technical subjects: 

 The molecular structure of rubber. This subject accounts for rubber’s ability to 
achieve large elastic deformations and provides the foundation for practically all 
mathematical models of rubber. The content is not novel, but the presentation is 
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perhaps unique in its effort to be streamlined and simple without completely 
sacrificing some important mathematical and thermodynamic concepts. 

 The glass transition. Building on the molecular structure of rubber, the variation of 
rubber mechanical properties as a function of temperature is discussed. Using a free 
volume concept, it is shown that the thermodynamics that underlie the glass 
transition also result in pressure-dependent mechanical properties, an important 
consideration for high pressure seals. A summary of how pressure alters the glass 
transition temperature is provided for several rubbers. 

 The loading mode dependency of rubber. The stress-strain response of rubber 
depends on the applied loading mode, and in the general deformation of a 
component, it is helpful to know which mode is dominant.  To this end, biaxiality 
analysis is introduced, and a novel definition developed by the author and a 
colleague is shown for a compressible rubber. Additional topics include loading 
mode equivalencies and some clarifications of planar tension, pure shear, and 
simple shear loading modes in finite elasticity. 

 Strain-energy functions. These provide the basis for finite-element modelling of 
rubbery materials, so they are necessarily introduced. 

 Volumetric compressibility. Rubber materials are often approximated to be 
incompressible. This generally accurate assumption leads to significant errors with 
high pressure seals due to their high level of confinement. Some necessary 
mathematics are introduced to account for this important effect. 

 Inelasticities and viscoelastic effects in rubber. To advance some arguments in 
Chapter 7, it is necessary to introduce how the mechanical properties of rubber 
change over time and with the load history. Within this context, linear 
viscoelasticity and reinforcing fillers are presented. A brief section touches on non-
linear viscoelastic modelling to illustrate some recent advances in this area. 

 Tensors. These mathematical objects provide a compact means to express 
constitutive models for finite elasticity and are used throughout the chapter. Yet, 
they may be confusing to a novice or casual reader. Therefore, they are introduced 
with a simple two-dimensional example that is developed by the author. The 
illustration uses vector and tensor representations of force balance on a bar in 
uniaxial tension, making it intelligible to students with an elementary understanding 
of physics. Tensors are also used to present some more advanced topics in non-
linear mechanics. 

Chapter 3 provides a literature review on the prediction of leakage in elastomeric seals. 

Analytical, experimental, and numerical techniques are discussed, but emphasis is given to 

the latter.  

Chapter 4 discusses novel contributions to the general research of rubber. These 

contributions are not explicitly related to the study of seal leakage. Content includes: 

 a novel strain-energy function that is suitable to capture both low- and high-strain 
non-linearities in the stress-strain response of rubber sealing materials that have a 
high content of reinforcing filler. 

 a novel method to accurately predict the stress-strain response of a uniaxial tension 
specimen when strain cannot be directly measured on the test sample. Although this 
is somewhat of a tangential topic to the thesis, it is the author’s favourite output. 
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The theory to develop the technique has been available since at least the 1940s, yet 
it has not been previously proposed. 

Chapter 5 studies how different model settings affect leak pressures in the commercially 

available finite-element solver Abaqus. This thesis appears to be the first publicly disclosed 

in-depth sensitivity analysis of numerically simulated leak pressures. A two-dimensional 

axisymmetric bonded face seal is used for all cases. Some topics that are studied include: 

 surface interaction models with constant and contact pressure-dependent 
coefficients of friction. The latter are shown to be more physically realistic and 
numerically stable. 

 different schemes for propagating pressure along a sealing interface. Default 
schemes in Abaqus are used before presenting two user-defined subroutines with 
implicit and explicit solvers. This work appears to be the first public disclosure of 
full codes for pressure penetration in Abaqus. It also provides the first 
demonstration of automated pressure penetration in Abaqus/Explicit. 

 the impact of the finite-element mesh on leak pressures. This includes sensitivities 
to mesh sizes and shapes. Similar results are found with structured and unstructured 
quadrilateral meshes. In addition, a small fraction of triangular elements (which are 
known to be overly stiff for rubbery materials) can be introduced to simplify the 
generation of a structured mesh without adversely affecting model accuracy. 

 the use of biaxiality and strain analyses to ensure appropriate curve fitting of a 
hyperelastic material model. 

 the impact of the seal compression and the extrusion gap on leak pressures. Leak 
pressures increase as the former increases and the latter decreases. 

 the impact of volumetric compressibility on leak pressures. A stiffer volumetric 
response usually results in higher leak pressures. 

Chapter 6 presents an experimental test fixture that is based on the axisymmetric 

geometry in Chapter 5. Bonded seals made from unfilled and filled rubber formulations are 

introduced. The former minimises the complications of viscoelasticity, and the latter is 

more representative of an oilfield sealing material. The materials are characterised in planar 

tension and uniaxial compression, and stress relaxations are reported. A hyperelastic 

material model is fit for each material, and the models are validated by comparing 

experimental compression tests to finite-element studies. Next, experimental tests measure 

leak pressures for the seals with different compression ratios and extrusion gaps. The results 

are compared to FPP simulations in Chapter 7, and an alternative leak criterion is proposed 

for future investigation. Chapter 8 provides guidelines – substantiated by the author’s 

research – for simulating seal leakage with FPP techniques in finite-element analysis. The 

thesis closes by giving a rational basis for adopting the alternative leak criterion that is 

suggested in Chapter 7. 
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2.  Historical and Theoretical Foundations 

2.1  Some Historical Notes 

In England, unvulcanised rubber originally inherited the French name caoutchouc. 

Likely a derivative of the Amerindian word cauchu for “weeping wood”, the name befits 

the trees whose excised bark brings discharge of rubber latex, a viscous liquid (Fig. 2.1). 

Having origins in the West Indies, the English name evolved to “India rubber” or “rubber”, 

most likely due to the material’s ability to remove pencil marks.9,10,11 Without naming the 

object, Joseph Priestley briefly pointed to an eraser’s utility which he presumably learned 

from a London shopkeeper in 1770,12 who may have adopted the idea from France.13 

Chartered by Spain, Italian chronicler Pietro Martyre d’Anghiera gave the first written 

account of rubber in 1511,14 and over the centuries numerous authors have added to this.9 

They indicate that indigenous Mesoamericans made the first practical use of elastomers, 

and modern evidence dates the use as far back as 1600 B.C.15 For example, numerous 

rubber sports balls have been found (Fig. 2.2) as well as stone tools hafted with rubber 

bands. Hosler and colleagues write that latex from Castilla elastica trees was combined 

with a liquid extract from the morning glory vine Ipomoea alba, presumably freeing latex 

from proteins to promote the formation of small quasi-stabilising crystalline lamellae.16 

Heat used in forming processes may have promoted light crosslinking of sulphur moieties, 

though gradual cold flow was probably not entirely eliminated.17

 

Fig. 2.1: Latex extraction from a tree.18 
 

Fig. 2.2: Rubber ball artifact from southern Sinaloa; 

diameter ≈20 cm; mass ≈3 kg.19

Raw rubber from trees in the Amazon (Hevea brasiliensis) was sent to the French 

Académie des Sciences by Charles Marie de la Condamine in 1736,11 but plasticity limited 

its practical use and commercial demand. Regardless, a notable early application was leak-

proofing fabric which found its way into clothing and manned balloon flights in the early 

1780s. The 1800s brought more profitable developments. In 1821, the English entrepreneur 

Thomas Hancock developed the world’s first masticator, a machine that mechanically 
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consolidated raw rubber to improve manufacturability and reduce waste (Fig. 2.3). In 1839, 

Charles Goodyear discovered sulphur vulcanisation (that is, crosslinking), practically 

eliminating plasticity and low temperature embrittlement. Tangentially, the material’s foul 

odour was also mitigated. By 1844, Hancock had also vulcanised rubber, but his 

independent conception of the idea is disputed.9 Regardless of its origin, vulcanisation 

created innumerable possibilities for new rubber products (Fig. 2.4).

 
Fig 2.3: One of Thomas Hancock’s original masticators. 

(Adapted from Tunnicliffe.)20

 
Fig 2.4: A small number of rubber articles. 

suggested by Hancock.21 

Rubber manufacturing developed during the Industrial Revolution, but early latex 

extraction remained pre-industrial for decades, often at catastrophic human and ecological 

expense. Extraction during the years 1890-1910 was dominated by the British in the 

Amazon and the Belgians in the Congo. Unsustainable tapping, economic inefficiencies, 

and growing demand pushed latex harvesting to rubber plantations in Asia. This transition 

was enabled in 1876 when Henry Wickham smuggled Amazonian seeds to London’s 

Botanical Gardens in Kew.22 After decades of haphazard depletion coupled with plantation 

tree disease in the Amazon, Asian rubber became the dominant material by 1914.9  

One technical improvement and two wars in the 1900s had exceptional impacts on 

rubber history. In 1904, the Englishman S.C. Mote23 introduced carbon black (CB) as a 

reinforcing filler, dramatically improving rubber’s mechanical properties. Later, the world 

wars mandated development of synthetic rubber on both sides of the Atlantic. Germany 

successfully synthesised rubber in 1909, but it was largely unused until the country lost 

access to African and Pacific colonies during World War I. However, the material was 

mechanically inferior to natural rubber and took up to six months to produce. By 1918, 

shortcomings in rubber supply undoubtedly contributed to Germany’s surrender.9,22 
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In the 1930s, Adolf Hitler recognised that rubber was no less critical than oil or steel to 

a modern military, yet Allied powers controlled more than 90% of the world’s rubber 

supply. Therefore, he incentivised the German chemical company IG Farben to provide his 

war machine with synthetic rubber, by then a commercially viable but specialty product. 

Despite their monopoly on natural rubber, the Allies were severely hamstrung in 1942 when 

Japan’s Pacific campaign put a stranglehold on 80% of the world’s rubber supply. Germany 

was unable to capitalise on this Axis windfall because transfer through Russia and the 

Indian subcontinent was impossible, and an Allied naval blockade held the sea. The U.S. 

was inexorably forced to produce synthetic rubber, initially finding itself behind its German 

counterpart. Interestingly, the U.S. company Standard Oil had signed intellectual property 

agreements with IG Farben as the Nazi regime came to power, gaining access to synthetic 

rubber technology through a contentious, if not embarrassing, avenue.24,25 After the war, 

natural rubber maintained its commercial importance but lost its exclusivity. The post-war 

demise of direct colonialism also moved control of rubber production to native governance, 

or in some cases multi-national corporations.9  

In summary, humans have used rubber for millennia. Mesoamericans successfully 

extracted and used the raw material, at some point introducing a stabilising agent that 

mimicked crosslinking. From the mid-19th century, advances in rubber technology have 

been propelled by ingrained entrepreneurship and extant socioeconomic circumstances in 

the West. This success was contingent on scientific advancement in the fields of rubber 

chemistry and physics, subjects to which the remainder of this work is dedicated. 

2.2  The Molecular Structure and Vulcanisation of Rubber 

Hydrocarbons are the building blocks of most common rubbers, so some terminology 

regarding them is useful. Aliphatic hydrocarbons are acyclic (no ring structures) and 

consist only of carbon (C) and hydrogen (H) atoms.26 Saturated acyclic hydrocarbons are 

called alkanes and contain no carbon-carbon double or triple bonds (C=C and C≡C). 

Unsaturated hydrocarbons contain C=C or C≡C bonds and are called alkenes (or olefins) 

and alkynes, respectively. The suffix -diene is attached to alkenes with exactly two sets of 

C=C bonds. A vinylic carbon atom is directly involved in a double bond, whereas an allylic 

carbon atom does not directly participate in a double bond but is adjacent to a vinylic 

carbon.27 For example, in the molecule H��=�H– CH�– CH�, the carbons in bold are vinylic, 

the carbon in red is allylic, and the last one is neither. The two red hydrogen atoms are also 

called allylic. Single bonds are called �-bonds (the gray bonds in Fig. 2.5). Double bonds 

(the red bonds in Fig. 2.5) consist of one σ-bond and one �-bond. The latter prevents 

rotation about the bond axis but is weaker than the σ-bond. (Note: The bond structure is 

simplified here; see Morrison & Boyd27 for a more accurate representation of the electron 
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orbitals.) Finally, isomers are molecules with the same molecular formula but different 

structures. 

              
 (a)                                        (b)                                                      (c) 

           
(d) 

Fig. 2.5: (a) Butadiene molecule (an uncommon isomer is used for illustration). (b) cis - butadiene 
monomer. (c) Molecular formula for cis - polybutadiene with 2 monomers shown. (d) One 

possible orientation of 6 butadiene monomers after polymerisation.  = C ,  = H. 

To illustrate the molecular structure of rubber, consider butadiene rubber (BR). It is 

synthesised from butadiene molecules (C�H�) (Fig. 2.5a). A polymerisation reaction 

converts the base units into butadiene monomers (Fig. 2.5b) and then joins them to form a 

macromolecule with the formula in Fig. 2.5c. Fig. 2.5d shows one possible arrangement of 

six polymerised monomers generated with the application Molview.28 The carbon atoms in 

the butadiene molecule, butadiene monomer, and all the constituent monomers of the 

polymer are geometrically planar; however, the structure of the polymer chain backbone is 

3-dimensional (3D). Importantly, the C=C bonds in the monomers are preserved in the 

polymer, and the two ethylene (CH�) groups associated with any single monomer are on the 

same side of that monomer’s C=C bond to give a cis- configuration. The trans - configuration 

would occur if the two CH� groups were on opposite sides of the C=C bond. 

A butadiene elastomer is an amorphous assembly of randomly oriented polybutadiene 

molecules. To illustrate some properties that arise from these arrangements, consider three 

idealised polybutadiene chains in which each 10-atom monomer is represented by a single 

sphere with adjacent spheres connected by σ-bonds (Fig. 2.6a). The chains are initially 

entangled but do not interfere with one another. When an external force is applied, they 

interfere and resist deformation (Fig. 2.6b). In the presence of interference, it is assumed 

that the bond length and angle between any sphere and its two adjacent spheres is fixed, a 

reasonable approximation per energetic considerations of stereochemistry.29 Finally, also 
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assume that rotations around the axes of σ-bonds can occur unimpeded. (Note that σ-bond 

rotations do not alter the bond angles between any three adjacent spheres.) These 

constraints allow molecular rotations to disentangle the chains when loaded, causing plastic 

flow in the bulk elastomer. 

 
(a) 

 
(b) 

Fig. 2.6: Physical entanglement of 3 idealised polybutadiene molecules: (a) with no external force applied; 
(b) with an external force applied (a red hue accents the bonds that interfere). (Note: the illustrated 

molecules are orders of magnitude shorter than actual polymer chains.) 

On short timescales, an assembly of chains as shown in Fig. 2.6 can exhibit rubber-like 

elasticity because they cannot instantaneously disentangle, but to achieve long-term 

stability they must be crosslinked in a process called vulcanisation (or curing).* To 

illustrate, consider Fig. 2.7a which shows the exact same chain configuration as Fig. 2.6a 

with several molecules removed for clarity. The yellow molecules represent the addition of 

covalently bonded links that join the red and blue chains to the black chain to form a 

connected network. When deformed, the individual chains can reorient via rotation, but 

they cannot completely separate unless fracture occurs. For example, consider a tensile load 

applied to the left-most (blue) and right-most (red) monomers. Fig. 2.7b shows only those 

monomers along the connected load path. Upon deformation, the bonds rotate to the 

configuration in Fig. 2.7c. In this deformation, the connected chain exhibits three key 

 
* Vulcanisation refers specifically to sulphur crosslinking, making it a subset of the more general curing 

processes. In industrial contexts, the terms are often used informally and interchangeably. 
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features of rubber elasticity: (i) the length of a vector connecting the ends of the chain along 

the load path undergoes a large increase in length, here about a factor of two; (ii) the load 

required to impose the deformation is low because rotation about σ-bonds is relatively 

unrestricted; and (iii) the crosslinks prevent the chains from completely separating. The 

first point arises from the imposition of finite (that is, non-infinitesimal) deformations. The 

second point gives rubber much lower stiffness than most solids of practical interest. The 

third point prevents complete molecular disentanglement of the rubber, an inevitability in 

its elastomeric counterpart under a constant load. 

 
(a) 

 
(b) 

 
(c) 

Fig. 2.7: Idealised polybutadiene molecules with two crosslinks (yellow) after vulcanisation: (a) with no 
load applied to the network; (b) with only the load path monomers shown before deformation; (c) with 
only the load path monomers shown after deformation. (Note: the illustrated molecules are orders of 

magnitude shorter than actual polymer chains.) 

One last feature is essential for the chain in Fig. 2.7c to exhibit rubber-like elasticity. 

There must be an internal force to restore the network chain to its initial configuration after 

the load is removed. In most deformed solids, such force arises from an increase in internal 

energy due to stretching of molecular bonds, but changes in the polymer bond lengths and 

angles have been proscribed as outlined above. Hence, a different mechanism must drive 

retraction of the polymer chain. Section 2.5.1 shows in detail that the restoring force arises 

from entropy. For the moment, a qualitative description ensues. 

When the network chain in Fig. 2.7 extends, it changes from a disordered state to an 

ordered state, and hence its entropy reduces. However, entropic processes naturally seek to 

maximise disorder. Since stretching moves the polymer away from innate disorder, nature 
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creates an entropy-based restoring force in the chain. The disposition of polymeric 

molecules toward maximum disorder is in stark contrast to that of smaller molecules. In 

the latter, organised (or at least somewhat predictable) atomic arrangements are typical due 

to nature’s tendency toward energy minimisation. On the other hand, unvulcanised and 

vulcanised polymer chains commonly range from 10�-10� and 75-185 monomers, 

respectively, which themselves may contain additional degrees of freedom (DOFs) via 

embedded σ-bonds.30 This creates a molecular system with practically unlimited DOFs, so 

entropic principles inescapably drive polymers toward random, disorganised 

configurations in much the same way that gas molecules randomly distribute in a room. It 

is important to emphasise that polymer chains do not ignore or violate any energetic 

principles, but entropic considerations override energetic ones where rubber elasticity is 

concerned. 

Next consider the vulcanisation process in some detail. It commonly involves mixing 

rhombic sulphur (S�) in an elastomer and exposing it to temperatures of 140-170℃.30 

Initially, the heat reduces the mixture’s viscosity to allow forming operations, typically 

under pressure to fully consolidate the material and eliminate gas voids. Intermediate 

chemical reactions in vulcanisation are still not fully understood, but the end result is 

formation of sulphur bridges between carbon atoms. Fig. 2.8 shows two sections of 

butadiene chains joined with a disulphidic crosslink, though more bridging atoms are 

possible. The bridges are formed by hydrogen substitution at allylic carbon atoms (dark 

gray), leaving bonds at vinylic sites (light gray) undisturbed. Replacement of allylic 

hydrogen instead of vinylic hydrogen is easily understood because the former has a lower 

bond dissociation energy, 360 kJ/mol versus 430 kJ/mol, respectively.27,31 More curious is 

the reaction’s preference for substitution of allylic hydrogens instead of addition at C=C 

bonds. Although the total strength of the C=C bond is 680 kJ/mol, the strength of the π-

bond is only 285 kJ/mol. At least two factors probably promote allylic substitution instead 

of vinylic addition: resonance theory and the conditions of vulcanisation. The former 

refines the concept of fixed σ- and π-bonds in the carbon-carbon backbone with hybrid 

bonds of intermediate strength that are presumably stronger than allylic hydrogen bonds. 

Regarding the conditions of vulcanisation, high temperatures favor allylic substitution 

reactions over vinylic addition.27 
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Fig. 2.8: Two butadiene chain sections crosslinked by two sulphur atoms at allylic carbons. 

 = C (vinylic) ,  = C (allylic) ,  = H ,  = S. 

Sulphur vulcanisation is inefficient and time consuming (5 hrs @ 140℃).32 The 

resulting network consists of polysulphidic linkages, dangling fragments, and cyclic 

sulphides, some of which do not participate in crosslinks at all. The network is also prone 

to thermal and chemical degradation. To mitigate these problems, all practical compounds 

use an accelerator, typically an organic base, to impart several benefits: (i) a reduction in 

curing time by 1-2 orders of magnitude; (ii) higher crosslinking efficiency and hence a 

reduced quantity of sulphur; and (iii) shorter crosslinks for better network stability. The 

ratio of accelerator to sulphur controls the character of crosslinks. A high ratio creates 

shorter crosslinks thereby improving thermal stability and resistance to permanent set. A 

lower ratio gives longer crosslinks that have more sulphur bonds with the ability to 

reconfigure across network chains after a deformation. That is, the crosslinks are more 

labile which enhances fatigue resistance and ultimate strength due to a network repair 

mechanism.33 

To reduce the activation energy for crosslinking, zinc oxide (ZnO) and a fatty acid such 

as stearic acid are often used. These permit curing to take place at lower temperatures which 

reduces thermal degradation.31 Activators, the accelerator, and sulphur comprise the curing 

system of a compound. An anti-degradant is usually incorporated. Ozone readily attacks 

the C=C bond, and oxidation induces undesired crosslinking at allylic carbons.33 Both issues 

are mitigated with �-isopropyl-�′-p-phenylenediamine (IPPD).32 The elastomer, a curing 

system, and an environmental anti-degradant make up the five essential ingredients in 

sulphur vulcanised diene rubbers of practical interest. 

Peroxides may be used instead of sulphur to cure elastomers. Crosslinking proceeds by 

splitting a peroxide (ROOR, where R represents a functional group) at its O-O bond to 
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generate two free radicals, ROOR → RO∙ + ∙OR, which abstract (remove) hydrogens from 

polymer chains. The abstraction leaves open bonds at carbon sites that can join to form 

crosslinks.34 The benefits of peroxide curing are: (i) the stoichiometric efficiency is at or 

near one in some rubbers, resulting in negligible non-network material; (ii) C-C bonds are 

more stable than C-S�-C bonds which gives better resistance to temperature and permanent 

set; and (iii) saturated elastomers can be crosslinked because the reaction does not require 

double bonds. Ultimate strength and fatigue resistance are typically lower in peroxide cured 

diene rubbers. Refer to Dluzneski34 for more details on this subject.  

2.3  The Glass Transition 

Before explaining the glass transition in polymers, it is helpful to review the definition 

of entropy in classical thermodynamics.35 For simplicity, consider a 1st-order transition or 

phase change from gas to liquid. The change in entropy can be written as: 

 Δ� = ∫
��

�
=

��

�
= −

���

�
 (2.1) 

where d� is the incremental heat transfer, � is the absolute temperature, assumed constant, 

during the phase change, � is the mass of the material, and Δ� is the latent heat of 

vaporisation. Consistent with the definition of entropy, it is assumed that the integration 

path is reversible. The negative sign arises because condensation is an exothermic process. 

Consequently, cooling through a phase change reduces the entropy of a material. 

When cooling in the absence of a phase change, Eq. 2.1 can be expressed as: 

 Δ� = ∫
��

�
= ∫

���

�
d�

��

��
= ��� ln �

��

��
� (2.2) 

where �� is the isobaric specific heat capacity (assumed constant) of the material, and �� 

and �� are the initial and final temperatures. Since ln(��/�� ) < 0, Eq. 2.2 also gives a 

negative entropy. From a statistical mechanical perspective, this implies that cooling 

processes generally reduce the number of microstates available for a material, a fact with 

significant implications for rubber elasticity which requires accessibility to a large number 

of microstates. A question arises: can a cooling process reduce sufficiently the number of 

available microstates in a rubber such that its entropic elasticity is practically eliminated? 

Theoretical arguments and experimental evidence suggest “yes”, and the concept of free 

volume is helpful to understand this. 

Free volume (��) is the empty space between molecules which, when added to the 

molecular volume, comprises a material’s bulk volume (�). The actual existence of free 

volume is inferred from dissolution of polymers in solvents which reduces the total volume 

of the polymer-solvent system.36 Sufficient free volume permits a high degree of molecular 

mobility, enabling the large configurational changes necessary for rubber elasticity. As �� 

decreases, macromolecular motion is increasingly hindered which reduces the number of 
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microstates available to the molecules. Taken to its theoretical limit, the molecular 

positions relative to one another can be completely constrained to a single microstate 

leading to Δ� ≈ 0. In such a thermodynamic state, entropic elasticity becomes negligible, 

and large scale elastic deformations are impossible. Elastic behavior then reverts to its more 

familiar thermodynamic driver, internal energy. 

Experimental evidence and theoretical arguments suggest that entropic elasticity is 

practically eliminated at a free volume well above �� = 0.36,37,38  This critical free volume 

is estimated to be between 2.5–12% of the bulk volume. It determines the material’s glass 

transition which is the point when the polymer network rapidly (but smoothly) changes 

from a rubbery to a glassy state. The glass transition is usually determined from bulk 

properties, for instance, with dilatometry to give isobaric volume–temperature (V –T ) or 

isothermal volume–pressure (V –P ) plots. Fig. 2.9 shows a V –T plot for uncured natural 

rubber where the glass transition temperature (Tg ) is defined at the intersection of two 

linear regions. The slopes are the material’s thermal expansivities above and below Tg. 

When cooling the rubber through the transition, the free volume reaches a critical limit that 

severely impedes chain mobility, significantly reducing the rubber’s thermal expansivity. 

In a similar manner, a V –P plot reveals the glass transition pressure (Pg ) (Fig. 2.10). Here 

the slopes are compressibilities which reduce as pressure increases. Although Tg and Pg are 

both consequences of volumetric constraint, the glass transition is more distinct in the V –

T  plot. The reason for this is not fully clear but is thought to arise because temperature 

alters molecular energies and free volume, whereas pressure primarily affects only the 

latter.39,40,41  

 
Fig. 2.9: Isobaric V-T  plot to determine Tg for 
unvulcanised natural rubber. Relative volume 
is unity at 0℃. (Adapted from Bekkedahl.)42

 
Fig. 2.10: Isothermal V-P plot to determine Pg for 

vulcanised natural rubber. The intersection of 
two linear extrapolations defines Pg.  
(Adapted from Adams & Gibson.)43 

Other thermodynamic properties such as entropy and enthalpy undergo abrupt changes 

through the glass transition. In addition, mechanical properties change significantly. For 

example, the shear modulus of a polymer can increase by a factor of 10� through the glass 
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transition.44 Consequently, Tg can be measured with many techniques including thermal 

analysis,45 ultrasonic excitation,46 dielectric measurement,39 nuclear magnetic resonance 

imaging,47 stress-strain measurement,48 and rebound resilience.49 Different methods give 

different Tgs, but many agree within ±5℃ when measurement timescales are properly 

controlled. Rebound resilience is a notable exception with reported Tgs ≈30℃ higher due 

to the test’s inherently high strain rate and a corresponding short timescale.50 This effect is 

not exceptional; it is expected as discussed in Section 2.6.3. 

Research suggests that the glass transition is a reversible change in thermodynamic 

phase,36 but it has several differences from more common state changes such as 

condensation and solidification. Thermodynamic properties are continuous and smooth 

through the glass transition, whereas they usually show step changes during phase 

transitions. Accordingly, there is negligible latent heat associated with the glass transition, 

and X-ray diffraction reveals that the network structure remains amorphous.50 Therefore, it 

is often called a 2nd-order transition, though this terminology is not strictly accurate. If it 

were a true 2nd-order transition, the glass transition would satisfy the relation:51 

 Π =
������

�������
� = 1  (2.3) 

where Π is the Prigogine-Defay ratio. Δ��, Δ��, and Δ�� are the changes in isobaric specific 

heat, isothermal compressibility, and isobaric thermal expansivity, respectively, through 

the glass transition. Eq. 2.3 expresses a relationship between entropy (through Δ��, see Eq. 

2.2), internal energy (through Tg), and volume (through Δ�� and Δ��). When Π = 1, 

fluctuations in entropy and volume are coupled which allows the thermodynamic state to 

be completely defined by a single parameter. However, measurements on polymers through 

the glass transition show 1 < Π < 5. 

A rubber (and a polymer in general) that is cooled through its glass transition is not 

actually in thermodynamic equilibrium. Consequently, the glass transition is best 

determined with cooling experiments because heating can prematurely convert a glassy 

polymer to rubber, giving a fictive indication of the state change.52 In addition, 

measurements of Tg and Pg depend on the measurement timescale. For example, increasing 

the interval between measurement times when constructing a V –T plot shifts Tg lower 

because the longer timescale allows more reconfiguration of molecular chains, a 

phenomenon called physical ageing or relaxation.53 This relaxation occurs well below 

glass transition temperatures that are based on practical timescales. In fact, some research 

postulates that experimentally determined Tgs are 50–55℃ higher than the true Tg where 

thermodynamic equilibrium is achieved.36,37,38 These theories suggest that the entropy of a 

molecular network becomes zero far above absolute zero which violates the third law of 

thermodynamics, an unresolved issue known as the Kauzmann paradox.51 Testing these 
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theories has proven intractable because the timescales to achieve thermodynamic 

equilibrium in glassy macromolecular networks are on the order of decades, if not 

longer.44,51,53  

Although glass transition temperatures and pressures do not represent true thermo-

dynamic transitions, they are critical for practical purposes because they define the 

threshold at which rubbery behaviour ceases. For sealing applications, they establish a 

material’s low temperature and high pressure limits. This is especially critical in arctic and 

deepwater oilfield applications where high pressure at sub-zero temperatures may be 

simultaneously encountered. To best assess seal functionality, one must know how pressure 

alters the glass transition temperature (dP/dTg) (Fig. 2.11). There is limited data on the 

combined effects of pressure and temperature on the glass transition, but Table 2.1 shows 

several Tgs and some dP/dTgs for rubbery materials. (See the List of Symbols and 

Abbreviations section for full material names and Section 2.4 for more details on each 

rubber.) For most materials, Tgs are averaged from multiple sources with no differentiation 

between cured and raw rubber. Differences in measurement technique are also ignored. 

Consequently, the Tgs are accurate to perhaps ±3℃, with some notable exceptions captured 

in the notes below the table. References for pressure-glass transition temperature (P –Tg) 

gradients are sparse and sometimes have large discrepancies. Furthermore, the gradients 

are only accurate for the initial slope of the P –Tg relationship, but even so they appear to 

be accurate to at least 125 MPa. Finally, Table 2.2 shows Tgs and dP/dTgs for some of the 

thermoplastics used in copolymer rubbers. Tgs of copolymers typically lie between those of 

the constituent monomers. 

 
Fig. 2.11: Relationship between pressure and glass transition temperature for polyvinyl acetate (wood glue) 

using dynamic measurements of the dielectric loss coefficient. Note that dP/dTg remains linear to a 
remarkably high pressure. (Adapted from O’Reilly.)39 
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Table 2.1: Glass transition temperatures at atmospheric pressure and initial pressure-glass transition 
temperature gradients for several elastomers and rubbers. 

Material 
�� 

 (℃) 

d�/d�� 

  �
���

℃
� 

Oilfield 
Service 

Oilfield 
Trade 
Name 

Comment Refs. 

PDMS -124 5.9 Yes – Low pressures only 36,40,51,54  
BR (i) -93 4.2 No – Poor oil resistance 36,51,54-57  
IIR -70 4.1 No – Poor resilience 45,46,51,54-57  
NR / cis - IR (ii) -69 5.2 Rarely – Poor oil resistance 40,45,54,55,57,58 
SBR (23.5% PS) -56 – No – Poor oil resistance 45,55,57  
EPDM -48 – Specialty – For swell packers 55,57,59 
CR -45 – Limited Neoprene® Obsolete by NBR 45,54-57  
NBR (20% ACN) (iii) -36 6.7 Yes Nitrile Good oil resistance 40,55,45,60-63  
HNBR (20% ACN) (iv) -33 – Yes – Good oil resistance 62,63 
FKM (v) -19 3.1 Yes Viton® High temperature 55,59,64,65 
FFKM (vi) -19 – Yes Chemraz® Extreme high temp. – 
HNBR (50% ACN) (iv) -17 – Yes – Better oil resistance 62,63 
NBR (50% ACN) (iii) -12 – Yes Nitrile Better oil resistance 40,45,55,60,61-63 
TFEP, FEPM (vii) -3 (vii) Yes Aflas® High temperature 59,66,68 

(i) dP/dTg for BR is taken from Roland51 for 1,2-polybutadiene which is not the same as the configuration used for 
rubber, 1,4-cis -polybutadiene.  

(ii) Natural rubber and cis-polyisoprene are entered in the same row because they are chemically identical. In the oil 
industry, there is a rule-of-thumb that dP/dTg is 750 psi/℃ for all rubbers, but its origin is unclear. Perhaps coinci-
dentally, this rule of thumb is identical to dP/dTg reported here for natural rubber (750 psi = 5.17 MPa). However, it 
is important to recognise that the average value reported in the table is based on a range of approximately 600–900 

psi/℃ (4.14 – 6.21 MPa/℃). In addition, the reported dP/dTgs for oilfield copolymers are much different than the rule-
of-thumb which makes its general adoption a dubious practice. Finally, James Walker67 has published a report that 

recommends a slightly lower rule-of-thumb for dP/dTg of rubbers: 725 psi/℃ (5.00 MPa/℃). Nielsen44 suggests using 
a larger gradient of 853 psi/℃ (5.88 MPa/℃).  

(iii) NBR with less than 37% ACN has two Tgs due to the different monomers.60 The higher of the two Tgs is reported in 

the table. To determine Tg, a linear trendline was fit to the data from Brazier,45 Gent,55 Ambler,60 Sircar & Lamond,61 

Bhattacharjee et al.,62 and Hayashi et al.63 The two lowest points from Hayashi and Sircar were neglected because 
it appears the authors reported the lower of the two Tgs for their NBRs with the lowest ACN content. The linear 
trend calculates Tgs for NBRs with different ACN content according to: Tg = (0.83(ACN%) − 52.9)℃. Only one 
reference was found for dP/dTg, so there is limited confidence in the value (which seems rather high). 

(iv) HNBR with low (high) ACN content has a higher (lower) Tg than NBR with an equivalent ACN content. Increasing 
the degree of hydrogenation appears to monotonically reduce Tg. The reported temperatures are based on a linear fit 

to the data of Bhattacharjee et al.62 and Hayashi et al :63 Tg = (0.525(ACN%) − 43.3)℃. 
(v) There are 5 different classes of FKM, so the range of Tg is closer to ±10℃ instead of ±3℃. Only one reference was 

found for dP/dTg, but the relatively low value here seems consistent with fluoroelastomers tested by the project 
sponsor. 

(vi) There is very limited scholarly data for FFKMs. The reported Tg has been inferred from product literature by 
industrial suppliers. Some suppliers claim special blends of FFKM can function below −40℃. 

(vii) Refer to Schlumberger GEMS report 101692827 for dP/dTg of an Aflas compound.68 

Table 2.2: Thermoplastics used in copolymer rubbers. 

Material 
�� 

 (℃) 

d�/d�� 

  (MPa/℃) 
Comment Refs. 

PTFE (i) -85 7.8 Used in TFEP 56,57 
VDF -38 – Used in FKM 54,56,57 
PP (ii) -10 6.3 Used in TFEP 36,51,56,57 
PS 100 3.1 Used in SBR 36,51,54,56 
ACN (iii) 100 – Used in NBR & HNBR 36,54,56,57 

(i) Brandrup57 reports many transitions in polytetrafluoroethylene (PTFE), and PTFE 
properties depend on the level of crystallinity, so it ��s have wide variation.  

(ii) dP/dTg for polypropylene (PP) is for the atactic configuration.51 The glass transition 

temperature is for the isotactic configuration and has large variation, −30℃ to 10℃.57 
(iii) The Tg of ACN ranges from 85℃ to 105℃. 
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2.4  Types of Rubber 

In this section, natural and synthetic rubbers are introduced with some attention given 

to those that are used in oilfield seals. A wider account of rubbers in oilfield seals, as well 

as a materials selection guideline, has been given by Mody et al.3 The reported service 

temperature limits are based on guidelines from James Walker,69 but oilfield rubber 

compounds often push the upper limit 15–30℃ higher, particularly for service lifetimes that 

are of the order of weeks. Table 2.3 shows the names, acronyms, chemical formulas, and 

molecular structures for all rubbers in this section. The 3D representations were generated 

with Molview.28 

2.4.1  Natural Rubber and cis – Polyisoprene Rubber 

The elemental composition of natural rubber (NR), C�H�, was first deduced by Himly 

in 1838 and its name “isoprene” was coined by Williams in 1860.23 cis–polyisoprene rubber 

(IR) is the synthetic twin of NR. Despite its name it has a lower cis- content than NR giving 

it slightly inferior mechanical properties, often negligibly so.32 NR’s molecular structure 

was correctly proposed by Pickles in 1910,23 though he imagined each molecular chain 

formed a ring with low molecular weight. The macromolecular nature of rubber was 

discounted until Staudinger29 advocated for it in 1919, yet it remained a contentious 

proposition until receiving sound experimental support from others in the mid-to-late 

1920s.23 In 1932, Meyer, von Susich, & Valko50 refined these ideas into an early form of 

the kinetic theory of elasticity which underpins most models of rubber mechanics.  

Natural rubber must be in the cis- configuration to have rubbery behavior at room 

temperature. In the trans - configuration, it is a largely obsolete thermoplastic called “gutta 

percha”, though it retains specialty use in biomedical-applications. An important property 

of NR is that when stretched a fraction of its molecules become aligned and form crystals, 

a phenomenon called strain-induced crystallisation. The result is exceptional tensile 

strength and fatigue resistance. It also has good resilience and, by corollary, low hysteresis. 

However, NR is prone to oxidation, ozone cracking, and degradation by light. The material 

is rarely used for oilfield seals because it swells in hydrocarbons and has a low upper 

temperature limit of 105℃, whereas 120℃ is required for low-tier oilfield seals. 
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Table 2.3: Names and formulas for different rubbers. 

Name Acronym Formula Monomer(s) 

butadiene (i) 
BR 
(Buna)   

natural rubber 
cis -polyisoprene 

NR 
IR 

   

chloroprene (ii) 
Neoprene® 

CR 
(GR-M) 

  

styrene-butadiene 
SBR 
(Buna-S) 
(GR-S)  

 
acrylonitrile- 
      butadiene 
nitrile 

NBR 
(Buna-N) 
(GR-N)   

hydrogenated nitrile HNBR 

 
 

isobutylene-isoprene 
butyl (iii) 

IIR 
(GR-I) 
(GR-X) 

  

ethylene- 
      propylene (iv) 
(w/ -diene monomer) 

EPDM 

  

tetrafluoroethylene- 
      propylene 
Aflas® 

TFEP 
FEPM 

  

vinylidene- 
    hexafluoropropylene 
Viton® (v) 

FKM 
VDF 
VF2   

perfluoroelastomer (vi) 
Kalrez® 
Chemraz® 

FFKM 

  

polydimethylsiloxane 
silicone 

PDMS 

  
(i) The use of the acronyms in parenthesis are deprecated. 
(ii) Only 10% of CR is in the cis- configuration. The balance is mostly in the trans- configuration.32 
(iii) The isoprene monomer is not shown in the image because it only comprises ≈2% of the rubber. 
(iv) The diene monomer is not shown as it is only used in small quantities for crosslinking. 
(v) A class 1 FKM is shown (Viton A). Class 2 adds tetrafluoroethylene (Viton B) . These are 95% of the market.32 
(vi) FFKM formulations are generally proprietary. The structure shown is a simple one given by James Walker.69 
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2.4.2  Synthetic Rubbers 

The first attempts at rubber synthesis were with IR, but chemists were unable to impart 

the cis- configuration until the advent of Ziegler-Natta catalysis in the 1950s.32 In 1910, the 

Germans found it easier to polymerise isoprene molecules with an additional methyl (CH�) 

group resulting in methyl isoprene rubber (or dimethyl-butadiene). Germany used the 

material in World War I, but thereafter it was obsolesced due to inferior properties and 

prohibitively long times for polymerisation.22 

Butadiene rubber (BR) was first synthesised by the Russian chemist Lebedev in 1910, 

with process improvements continuing through the 1920s. In the lead-up to World War II, 

Germany heavily invested in economic development of BR with some success,9 though its 

mechanical properties were (and still are) inferior to NR. They called the material “Buna”, 

a conjunction of butadiene and the polymerisation catalyst natrium (Na, sodium). To 

improve mechanical properties and reduce cost, the Germans introduced ≈25% poly-

styrene (PS) to produce styrene-butadiene rubber (SBR) which they called “Buna-S”. BR 

replaces the CH� groups in NR with hydrogen atoms making the rubber structurally simpler 

and less reactive. Its low steric hinderance gives it low hysteresis. BR can strain-

crystallise,52 but SBR does not.70 BR is rarely used by itself in demanding applications, so 

its service temperature range is difficult to locate. SBR can be used up to 115℃ and is 

predominant in tyres for light vehicles due to its excellent abrasion resistance in filled 

compounds.71 The cost of SBR is similar to that of NR. BR and SBR are not used in oilfield 

seals because they readily swell in hydrocarbons.  

Germany developed the oil-resistant rubber acrylonitrile-butadiene rubber (NBR or 

nitrile) in the 1930s which they labeled “Buna-N”. The acrylonitrile (ACN) side group 

comprises 15– 50% of the material. Its polarity gives good resistance to swelling in 

hydrocarbons, making NBR a workhorse sealing material in the oilfield. However, it 

embrittles in hydrogen sulfide (H�S) and amines. The former is produced in some oil wells, 

and the latter is used as a corrosion inhibitor in completions fluids.72 NBR’s service 

temperature range is -30℃ to 130℃. Early work suggested NBR did not strain crystallise,70 

but Shaw’s73 recent work on the fracture of NBR challenges this finding. NBR is about 

50% more expensive than NR. 

Building on academic research from 1903 to 1925, the DuPont company began 

commercialisation of chloroprene rubber (CR, DuPrene®, or Neoprene®) in 1930. At the 

time, the material polymerised 700 times faster than IR. It replaces the methyl groups in 

NR with chlorine (Cl) atoms which improves resistance to oxidation, ozone, and thermo-

chemical attacks. The Cl atoms disrupt diene bond energies, so it is crosslinked with metal 

oxides (MgO and ZnO) instead of sulphur.30 CR strain crystallises,70 and it has moderate 

resistance to swelling in hydrocarbons. It also has a service temperature range of -40℃ to 
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125℃, so it is an acceptable material for low-tier oilfield seals. However, oilfield usage is 

largely obsolete due the adoption of NBR. Its cost is also about 50% higher than NR.† 

Butyl rubber was developed in the US alongside SBR and NBR.25 It is primarily iso-

butylene with a small quantity of a diene rubber, usually isoprene, added for vulcanisation 

which gives the acronym IIR (formerly GR-I or GR-X). The material is more resistant than 

NR to heat, oxidation, ozone, and chemical attack. Compared to diene rubbers, it has 

unrivaled resistance to gas permeation, so it is often used in pneumatic applications. Its 

poor resilience at room temperature makes it an excellent damping material but a poor 

choice for dynamic sealing applications. Due to this drawback and its propensity to swell, 

the material is not used for oilfield sealing. Its service temperature range is -50℃ to 135℃. 

It costs four times more than NR and does not strain crystallise.70 

Developed in the 1950s and ’60s, ethylene-propylene rubber with a diene monomer 

(EPDM) is a copolymer (≈60% ethylene) of two thermoplastics that together create a 

rubbery material. The diene monomer attaches as a side group to provide a crosslinking 

site. Since the C=C bonds are not part of the main chain, EPDM has good resistance to 

thermal and chemical degradation, and its service temperature range is -50℃ to 150℃. 

EPDM readily swells in hydrocarbons, so its use in oilfield seals is generally limited to 

specialty products, for instance swellable seals. Some formulations can strain crystallise, 

particularly at low temperatures, and its cost is comparable to NBR. 

NBR can be processed to remove nearly all of its residual double bonds resulting in 

hydrogenated nitrile rubber (HNBR).74 The material was developed in the 1980s to bridge 

a cost and performance gap between NBR and fluoroelastomers. It costs 10-15 times more 

than NBR but is ≈30% cheaper than entry-level fluoroelastomers. The hydrogenation 

improves thermal and chemical resistance, including in amines and H�S.72 It extends the 

upper temperature limit of NBR to ≈180℃. HNBR is a tough, stiff material, so it can be 

compounded to give a high shear modulus that is well-suited to resist rapid gas 

decompression. Crystallisation effects in HNBR are not straightforward. Windslow’s PhD 

thesis75 reviews this subject in detail. To summarise, HNBR with low ACN content strain-

crystallises under certain conditions because it has long ethylene units (CH�) that align when 

stretched. HNBR with high ACN content can exhibit features of semi-crystalline 

thermoplastics, including yielding behaviour, due to the regularity of CH� and ACN units 

along the polymer chain. It can also strain-crystallise, though typically at strains well above 

those experienced in seals. 

Developed in the 1940s as an insulating material for electrical applications, polydi-

 
† As a side note, the US was not constrained to use CR for applications with oil exposure during World War 

II. Standard Oil had gained rights to Germany’s Buna technology, and the US went on to rebrand SBR and 
NBR as government rubbers GR-S and GR-N.24 
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methylsiloxane (PDMS) rubber is unique in that its backbone consists of silicone-oxygen 

units instead of carbon. It is a largely inert material, but its strength and stiffness are 

typically orders of magnitude lower than those of other rubbers which prevents its use in 

high pressure seals. However, it is stable over a large temperature range of -60℃ to 300℃. 

2.4.3  Fluoroelastomers 

The first commercially successful partially fluorinated fluoroelastomers were 

developed in the 1950s. These are called FKMs and consist of 2 to 5 different monomers 

but always have vinylidene-hexafluoropropylene (VDF or VF2, trade name Viton®). 

General statements about FKMs usually have exceptions, but some guidelines are given. 

Compared to non-fluorinated rubber, they are superior against oxidation and most chemical 

attacks including H�S, so they find frequent service in the oilfield. However, they are prone 

to embrittlement by amines (and bases in general) which are used as corrosion inhibitors in 

some oilfield fluids.65 Some grades have limited resistance to steam and polar fluids such 

as ketones, esters, and ethers. Resistance to gas permeation is similar to that of butyl rubber. 

A typical temperature range is -20℃ to 250℃. FKMs are about 25 times more expensive 

than NBR. A detailed review of FKM chemistry, curing, processing, and properties has 

been given by Arnold et al.76 

Developed in the 1960s, perfluoroelastomers are fully fluorinated and designated as 

FFKMs (trade names Chemraz® and Kalrez®). Removal of all CH bonds gives them 

unrivaled heat resistance, and they are inert to practically all chemical attacks. Like FKMs, 

the materials are resistant to gas permeation. However, they require specialty manu-

facturing and cost 20–25 times more than FKMs (≈£3,500/kg) which means their usage is 

very limited.32 In the oilfield, cost tends to restrict usage to small parts such as O-rings. 

FFKM’s temperature range is wide with some suppliers claiming low and high temperature 

limits around -40℃ and 325℃, though not with the same compound. These limits may not 

be appropriate for high pressure oilfield seals, especially because mechanical properties 

deteriorate at the highest temperatures.3 FFKMs always require anti-extrusion devices such 

as thermoplastic back-up rings. Academic publications on FFKMs are exceedingly rare, an 

exception being the review by Arnold et al.76 

To bridge the performance and cost gaps between FKMs and FFKMs, tetrafluoro-

ethylene-propylene rubber (TFEP or FEPM, trade name Aflas®) was developed in the 

1970s. Its price is more aligned with FKMs than FFKMs. TFEP has better resistance to 

amines and steam than FKMs. Its resistance to gas permeation matches that of other 

fluoroelastomers. Its primary drawback is a high glass transition temperature. A typical 

service temperature range is 0– 200℃, but in the oilfield a range of 23– 218℃ is often 

applied. The material can be pushed to 232℃. Like FFKMs, the material has poor extrusion 
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resistance,‡ so it requires anti-extrusion devices such as thermoplastic back-up rings. It is 

also a difficult material to process during manufacturing.65  

2.5  Hyperelasticity 

2.5.1  The Thermodynamic Foundation of Rubber Thermoelasticity 

This section formalises the entropy of a single chain to build an expression for the total 

entropy of a rubber network. The entropy is then related to external work on the system, 

revealing the thermoelastic origin of rubber elasticity. This coupling between deformation 

and heat was observed at least as early as 1805 by Gough who noted that a stretched rubber 

contracted when heated.77 However, a correct thermodynamic formalism for arbitrary 

deformation was not achieved until the early 1940s, perhaps explained most clearly in 

Treloar’s work.78,79,80  

To develop a micromechanical model for the deformation of rubber, first consider the 

absolute entropy of the randomly oriented idealised molecular chain in Fig. 2.12a: 

 �� = k� ln ω� (2.4) 

where ω� is the number of microstates available to the chain. One end of the chain is fixed 

at origin, �, and the other end is at point � with coordinates (��, ��, ��). Point � is enclosed 

in differential volume, d�� = d�� d�� d��, and the chain ends are joined by vector ��. Both 

ends are assumed to coincide with crosslinks in the rubber network. 

       
                                     (a)                                                                                 (b) 

Fig. 2.12: A randomly oriented idealised molecular chain in a rubber network: (a) before deformation with 
ends at origin � and point �; (b) before deformation (light molecules) and after deformation (dark 

molecules). Both ends are assumed to terminate at crosslinks. 

There are numerous microstates that permit the chain end to coincide with point �.50 

The probability of finding the end of the chain at an arbitrary point (�, �, �) in space is: 

 �(�, �, �) = �(�, �, �) d� (2.5) 

where �(�, �, �) is a probability density function (PDF, probability per unit volume). The 

 
‡ A reader unfamiliar with this term can refer to Fig. 3.6 for an illustration of extrusion. 
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PDF for a single chain with a Gaussian distribution of end-to-end chain lengths is given 

by:50 

 �(�, �, �) =
��

��.�
e���(��������) (2.6) 

where � = ��
���3/2�� , and �� and �� are the number and length of idealised molecules in 

the network chain, respectively. Qualitatively, � is a scaling factor that is associated with 

parameters that affect the total length (contour length) of the network chain. From Eqs. 

2.5 and 2.6, the probability of finding a chain end in differential volume d�� at point � is: 

 �(��, ��, ��) =
��

��.�
e������

����
����

��d�� (2.7) 

Expressing the absolute entropy of the chain in terms of probability: 

 �� = k� ln��(��, ��, ��)�  

 = � − k���(��
� + ��

� + ��
�) (2.8) 

where all constant terms in the simplified expression have been grouped into �. 

Next, consider the deformation of the single chain within the rubber network as shown 

in Fig. 2.12b. Following the logic of Eq. 2.8, the absolute entropy of the deformed chain is: 

 �� = � − k���(��
� + ��

� + ��
�) (2.9) 

where � is the same in both equations when d�� = d��, which is the case for an 

incompressible material. The change in entropy for the network chain is thus: 

 Δ� = −k���[(��
� − ��

�) + (��
� − ��

�) + (��
� − ��

�)] (2.10) 

Eq. 2.10 can be further simplified by invoking a relationship between the macro-

deformation of the rubber and the micro-deformation of the polymer chain within it. One 

simple relationship invokes the affine deformation assumption which requires all 

crosslinks to translate in exact proportion with the bulk deformation. In terms of the 

principal axes of deformation which have principal stretches (��, ��, ��), the following 

substitutions apply: (��, ��, ��) = (���� , ���� , ����). Eq. 2.10 becomes: 

 Δ� = −k���[(��
� − 1)��

� + (��
� − 1)��

� + (��
� − 1)��

�] (2.11) 

Assuming the change in entropy of the entire rubber network, Δ�, is the sum of the 

change in entropy of all network chains: 

 Δ� = ∑ Δ��� = −k����(��
� − 1) ∑ ��,�

�
� + (��

� − 1) ∑ ��,�
�

� + (��
� − 1) ∑ ��,�

�
� � (2.12) 

where ���,�, ��,�, ��,�� are the undeformed coordinates of the ith chain. For an isotropic 

network, the average undeformed end-to-end chain dimensions in each coordinate direction 

are the same which requires ∑ ��,�
�

� = ∑ ��,�
�

� = ∑ ��,�
�

� = 3-� ∑ ���,��
�

� . The last summation can 

be expressed as the average end-to-end squared chain distance, ��
����, times the total number 

of chains in the network, ��, such that ∑ ���,��
�

� = ����
����, and Eq. 2.12 simplifies to: 



27 
 

 Δ� = −
�

�
��k����o

����(��
� + ��

� + ��
� − 3) (2.13) 

It can be shown that ��
���� = 3/(2��),50 so Eq. 2.13 further simplifies: 

 Δ� = −
�

�
��k�(��

� + ��
� + ��

� − 3) (2.14) 

Interestingly, the network’s change in entropy is completely independent of any chain 

contour lengths. This result is accurate only when the end-to-end chain distances are much 

shorter than contour lengths. To relate Δ� to macroscopic deformation, classical forms of 

the 1st and 2nd laws of thermodynamics are required: 

 Δ� = Δ� + Δ� (2.15) 

 Δ� = �Δ� (2.16) 

where Δ� is the change in internal energy and Δ� is external work that deforms the rubber. 

As previously suggested, let Δ� = 0. The rubber is initially undeformed (�� = 0), which 

requires Δ� = �� = �. Combining these simplifications with Eqs. 2.14–2.16, it follows 

that: 

 � =
�

�
��k��(��

� + ��
� + ��

� − 3) (2.17) 

Eq. 2.17 is the basis for most practical hyperelastic models for rubbery materials. It is 

usually expressed per unit volume to give strain-energy density, and the function is called 

a strain-energy function (SEF) or stored-energy function. For an ideal network, the 

number of chains per unit volume is the same as the number of crosslinks per unit volume 

(crosslink density).50 An SEF can be differentiated to compute stresses. For an 

incompressible material, conservation of volume requires ������ = 1.50 With this 

expression and Eq. 2.17, the nominal stress (or synonymously, engineering stress) in a 

rubber that is stretched an amount, �, in uniaxial extension is: 

 ��� = ��k�� �� −
�

��� (2.18) 

Therefore, stress is proportional to the crosslink density and the absolute temperature.  

Eq. 2.18 readily accounts for Gough’s observation in 1805 that a stretched rubber under 

a constant load contracts when heated. When heat increases � and ��� is constant, then � 

must decrease to balance the equation. From another perspective, heating the stretched 

rubber increases its entropy, and hence, the rubber network and its individual chains seek 

a larger number of microstates. Consequently, the rubber seeks a macroscopic config-

uration in which it is easier to access more microstates, and that occurs if the chain ends 

are closer to one another (review Fig. 2.7b,c to verify that reducing |�| increases the 

available microstates). Therefore, the rubber network contracts. 

2.5.2  Modes of Deformation & Biaxiality 

The stress-strain response of rubber depends on the applied loading mode. As a way of 
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illustration, the simplest modes are pure and homogeneous. A pure deformation occurs 

when the principal axes do not rotate during the deformation. A homogeneous deformation 

occurs when the state of strain at all points in a body is the same. Fig. 2.13 illustrates three 

pure, homogeneous deformations for an incompressible unit cube stretched by an amount, 

�. The amount of energy required for each deformation increases from left to right; 

therefore, ��� < ��� < ��� (UT = uniaxial tension; PT = planar tension; ET = equibiaxial 

tension). In the PT mode, constraint is required to prevent contraction along the unstrained 

side, but the reaction force to maintain this constraint is not illustrated. 

 
                                (a)                              (b)                          (c)                              (d) 

Fig. 2.13: An incompressible rubber block of unit volume: (a) before deformation; (b) after a uniaxial 
extension; (c) after a planar extension; (d) after an equibiaxial extension. 

The deformations in Fig. 2.13 can be achieved by different loads, resulting in loading 

mode equivalencies. For instance, an equibiaxial extension is equivalent to a uniaxial 

compression (UC) (Fig. 2.14). Nominal stresses, ��� and ���, are applied to achieve 

identical deformations, but ��� ≠ ���. However, true stresses, ���� and ����, are the same. To 

prove this, superimpose a hydrostatic pressure on the button in Fig. 2.14b such that � =

−����. Since the body is incompressible, � cannot deform it, but it does cancel the radial 

stress, leaving a compressive stress of magnitude ���� on the axial surfaces. The net 

compressive force is thus ���
� = ������. The axial force on the button in Fig. 2.14c in terms 

of true stress is ��� = ������. To achieve the same deformations from geometrically identical 

buttons, ��� must equal ���
� , and it follows that true stresses are equivalent, ���� = ����. 

 
                                  (a)                                         (b)                                                 (c) 

Fig. 2.14: Loading mode equivalency in a cylindrical button: (a) before deformation; (b) after an 
equibiaxial extension; (c) after an equivalent uniaxial compression. 

For an incompressible material, a known equibiaxial stretch can be converted to an 

equivalent uniaxial compression (see Appendix E), and vice versa, with the relation: 
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 ��� = ���
�� (2.19) 

Using this result and the equivalency of true stresses, any known nominal stress in ET may 

be converted to an equivalent nominal stress in UC, and vice versa: 

 ��� = ���
� ��� (2.20) 

Another common loading mode is simple shear (Fig. 2.15). By definition, simple shear 

is a constant volume deformation that only captures angular distortions. The deformation 

imposes �-displacements, �, that are linear functions of �, yielding �(�) = �� where � is a 

constant such that: 

 Lines initially parallel to the �-axis remain parallel to that axis; 

 Lines initially parallel to the �-axis rotate but remain parallel to one another; 

 Points along any line parallel to the �-axis remain equidistant; 

 Planes initially parallel to the ��-plane remain parallel to that plane. 

To maintain volume constancy, these constraints require �� = 1.  

 
Fig. 2.15: Illustration of a simple shear deformation. 

In finite strain, simple shear is not a pure deformation because shearing rotates the 

principal axes. However, it is a homogeneous deformation because the state of strain is 

uniform throughout the body, a fact illustrated in Fig. 2.15 where the superposed grid shows 

all deformed sub-units have the same shape. 

A planar tension deformation is often called a pure shear. To illustrate why, Fig. 2.16 

shows a unit cube in planar tension stretched to an extension ratio of 2. Conservation of 

volume requires the thickness in the unconstrained direction to halve. A diamond is 

superposed on the block before (��) and after (��) deformation to show an element that has 

undergone a shear. Since �� = 1, careful inspection of the geometry reveals that these two 

volumes must be equal. In addition, the principal axes do not rotate during this deformation, 

hence the name pure shear.  

To be clear, the sub-element given by �� does not represent a simple shear of ��. To 

illustrate why, consider Fig. 2.17a. A face of each sub-element is coincident with the �′�-

plane in a rotated coordinate system, clearly illustrating that the element has stretched in 

the �′-direction; hence, the �′-displacement is given by �′ = �′(��, ��) which violates simple 

shear’s requirement that �′ = �′(�′). Specifically, lines that were initially parallel to the �′- 

axis have stretched. Fig. 2.17b illustrates a simple shear element with the same volume and 
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angular distortion as ��. From observation of Fig. 2.17b, it is not difficult to deduce that a 

tensile stress is required in the �′-direction to maintain the simple shear; hence, a shear 

stress alone cannot sustain a finite simple shear. Treloar50 has provided a mathematical 

proof of this fact. Another complication with finite shear is that there is no simple geometric 

relationship between the pure shear and simple shear modes. This is in contrast to the 

infinitesimal strain case in which one mode may be recovered from the other with a 45° 

rotation of the principal axes.81 

 
Fig. 2.16: Equivalence of planar tension and pure shear deformation modes. 

 
                                                  (a)                                                                     (b) 

Fig. 2.17: (a) The �� sub-element from Fig. 2.16 aligned with an (��, ��, �) coordinate system to illustrate 
that the pure shear element of �� is not a simple shear. (b) A simple shear element with volume �� and 

the same shear angle as that in Fig. 2.17a. 

Strains in a deformed body are generally inhomogeneous, and even when homo-

geneous, they may fall somewhere between the three states illustrated in Fig. 2.13. When 

this occurs, it is useful to know which mode best characterises the deformation. This is 

revealed by computing the biaxiality of the deformed body (or a point in the body if the 

strain is inhomogeneous). Wadham-Gagnon et al.82 and Mars83 offer two definitions of 

biaxiality. Windslow et al.84 recently reported a useful one as given below in Eq. 2.21. To 

compute biaxiality, principal strains are ordered from high to low with �� ≥ �� ≥ ��. The 

biaxiality is then given by: 

 � =
���(��)

���(��)
 (2.21) 

For an incompressible material, ���� , ��� , ���� = (-2 , -1 , -0.5).84 Any incompressible 

deformation, even an inhomogeneous one, has a biaxiality bounded by this range. As shown 

in Appendix D, Windslow and Hohenberger have provided a modification of Eq. 2.21 for 

use with a compressible material. The practical use of biaxiality is discussed further in 

Section 5.4.7. 
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2.5.3  Strain-Energy Functions  

A major benefit of a strain-energy function is that it captures an isotropic rubber’s 

loading mode dependencies in a single function. For example, the SEF of Eq. 2.17 can be 

differentiated for the deformations in Fig. 2.13 to yield three stress equations, one of which 

is shown in Eq. 2.18. The nominal stresses in planar and equibiaxial tension are given by: 

 ��� = ��k�� �� −
�

��� (2.22) 

 ��� = ��k�� �� −
�

��� (2.23) 

Having all deformation modes captured by one function provides an efficient way to model 

hyperelastic behaviour in finite-element solvers. 

The strain-energy function of Eq. 2.17 is often called the statistical or Gaussian SEF. 

Assuming an incompressible, isotropic material, Rivlin adapted Hooke’s law for finite 

deformations and, through symmetry conditions, derived the Neo-Hookean SEF: 

 � =
�

�
�(��

� + ��
� + ��

� − 3) (2.24) 

which essentially substitutes the shear modulus, � = ��k��, into the Gaussian SEF. 

Although the forms are practically identical, Eq. 2.17 is derived using a statistical 

thermodynamic approach, whereas Eq. 2.24 is phenomenological in nature. There are a 

large number of SEFs in both categories. Several authors have provided reviews,85,86,87 so 

a detailed account does not ensue here. Brief attention is given to some modelling features 

of two particular SEFs that will be discussed in a Chapter 4. 

Fig. 2.18a shows stress-strain data in uniaxial tension data for an unfilled natural rubber 

that is fitted with a Neo-Hookean SEF. The shear modulus is chosen to match the initial 

modulus of the stress-strain data, but two problems are evident. The SEF moderately 

overpredicts the stress for 1.5 < � < 5.5 and grossly underpredicts the stress for � > 6.  

    
                                                 (a)                                                                             (b) 

Fig. 2.18: (a) Treloar’s canonical data set for unfilled natural rubber with his curve fit using the Neo-

Hookean SEF; (� = 0.39 MPa).50 (b) Yeoh’s SEF fit to Treloar’s data; (���, ���, ���) = 
(0.195, −0.003, 0.00006) MPa. 
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Between 1948 and 1956, Rivlin88,89 proposed a general SEF that may be employed to 

overcome some problems associated with the Neo-Hookean SEF. He gave a general 

phenomenological form for hyperelastic SEFs in terms of a series expansion:  

 � =   ∑    ����(�� − 3)�(�� − 3)�(�� − 1)� (2.25) 

where ���� are fitting parameters, ���� = 0, n is the model order, and (i, j, k) are positive 

integers. ��, ��, and �� are called invariants and are given by: 

 �� = ��
� + ��

� + ��
� 

 �� = ��
���

� + ��
���

� + ��
���

� (2.26) 

 �� = ��
���

���
� 

For an incompressible material, �� = 1 so Eq. 2.25 simplifies to: 

 � =   ∑    ���(�� − 3)�(�� − 3)� (2.27) 

The Neo-Hookean form is recovered when n = 1, ��� = �/2, and ��� = ��� = ��� = 0. In 

general, it is recommended to include both �� and �� terms when shear strains exceed 

100%.90 However, expansions strictly in terms of �� can be appropriate, particularly when 

strain magnitudes do not exceed 100%.91 Many industrial applications meet this criterion. 

Such SEFs are called reduced invariant forms, and one popular version was proposed by 

Yeoh in 1990:92 

 � = ���(�� − 3) + ���(�� − 3)� + ���(�� − 3)� (2.28) 

Compared to the Neo-Hookean SEF, the Yeoh model significantly improves curve fits 

at moderate and high strains usually by choosing ��� < 0 and ��� > 0 and satisfying the 

constraint ��� > |���| > ���. The improvement is illustrated in Fig. 2.18b where the 

quadratic term shifts the stresses downward at moderate strains, and the cubic term captures 

the stiffening effect at high strains. The Neo-Hookean and Yeoh SEFs will be revisited in 

Chapter 4 where both are found deficient for modelling the behaviour of highly filled 

sealing rubbers. 

2.5.4  Tensors, Finite Elasticity, and Their Link to Thermodynamics 

Tensors are mathematical objects that allow a compact, general representation of 

relationships between physical quantities such as stress and strain in finite elasticity. They 

are implicitly or superficially introduced for stress transformations in elementary solid 

mechanics,93 but their underlying concept is generally omitted. More advanced treatments 

tend to start with a 3D generalisation that carries an undue risk of masking some important 

attributes of tensors in mechanics.94 The simple two-dimensional (2D) example below 

shows some salient aspects of tensors relevant to this work. 

Fig. 2.19 illustrates a block with cross-sectional area, �, held in uniaxial tension with a 

n 

n 

i,j,k=0 

i,j=0 
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force, �. An oblique cut at angle, (� + π/2), results in an internal section with area, �′. The 

true stress in the block is homogeneous, and by definition is �� = �/�. For equilibrium, the 

force on the oblique face must be equal and opposite to the applied force, so the sum of 

forces in the �-direction gives: 

 � = �� cos � + �∥ sin � (2.29) 

Eq. 2.29 is essentially a coordinate transformation (more specifically, a rotation) of the 

force, �, by the angle, �. In terms of stress, it becomes: 

 ��� = ����′ cos � + ��∥�′ sin �  (2.30) 

and with �′ = � cos�� �, the equation simplifies to: 

 �� = ��� + ��∥ tan � (2.31) 

Eq. 2.32 is also a coordinate transformation of ��, and interestingly, it is not dependent on 

the magnitude of the area that the stress acts upon. However, it is dependent on the 

orientation of that area as defined by the oblique cut. A direct comparison of Eq. 2.29 with 

Eq. 2.31 shows that the transformation rules for force and stress are different. Here, the 

force transformation is captured in a single coordinate rotation, �. Stress includes this trans-

formation, but it adds a second one to capture the area’s orientation. The additional 

transformation makes stress more “complicated” than force, but only insomuch as it 

requires the consideration of two vector rotations instead of one. For the simple case in Fig. 

2.19, the following equations can be proven consistent with the general stress 

transformation equations from elementary solid mechanics:93 

 ��� = ��(1 + tan� �)��          ��∥ = ��(tan � + cot �)�� (2.32) 

 
Fig. 2.19: Equivalent representations of loads on a body in uniaxial tension; the force description (left) is 

related to the stress description (right) through the areas on which the force acts. 

In Eq. 2.29, it has been implicit that the force values, (�, ��, �∥), are scalar magnitudes 

of the force vectors, (�, ��, �∥), and in fact, all 6 of these objects are encoded by two objects: 

the force vector, �, and the rotation angle, �. By analogy, the stress values of (��, ���, ��∥) can 

be interpreted as scalar magnitudes of (��, ���, ��∥), and all 6 of these objects are also encoded 

by two others: �� and �. However, �� is not a vector because it does not follow a vector 

transformation rule, a fact captured by the different trigonometric dependencies of Eqs. 

2.29 and 2.31. Rather, �� is a rank-� tensor, the number “2” arising from the fact that stress 

depends on the rotation of two objects, namely area and force vectors. These two vectors 

are related through the tensor equation: 
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 � = ��� (2.33) 

where �� is the Cauchy (true) stress tensor and � is the unit-normal vector of the area that 

stress acts upon. In mathematical terms, �� is a linear operator that transforms the area 

vector, �, into the force vector, �. 

Strain is also a rank-2 tensor. There are different options when formulating the strain 

tensor, but they all encode a relationship between a line element (described by a vector) 

and its displacement (also a vector quantity) upon deformation. For infinitesimal 

deformations, stress and strain (�) are then related through generalised Hooke’s law:95 

 �� = �� (2.34) 

� is a rank-4 elasticity tensor that operates on a rank-2 tensor to produce another rank-2 

tensor. More generally, a rank-j tensor operating on a rank-k tensor with j > k results in a 

tensor of rank ( j – k). For finite deformations, an equation that is analogous to Eq. 2.34 can 

be constructed by linearising the strain tensor. The mathematics are quite involved and can 

be found in Holzapfel’s text (see in particular Eq. 8.79 in “Linearization and the Principle 

of Virtual Work”).96 Such linearisations are prevalent in finite-element analysis. 

For finite elasticity, strain measures are usually derived from a tensor called the 

deformation gradient (Fig. 2.20) which characterises the local deformation in a body by: 

 locating a material point, ��, in the body with position vector ��; 

 assigning an arbitrary differential line element, d��, emanating from point ��; 

 transforming d�� to a deformed configuration in the body such that: 

o d�� becomes d��; 

o material point �� transforms to ��; 

o the position vector locating �� is ��. 

All this information is concisely captured in the tensor equation: 

 d�� =
���

���
d�� = � d�� (2.35) 

where � ≡ ∂��/ ∂�� is the deformation gradient, a rank-2 tensor. After operating at every 

material point in a body, it is taken from an undeformed (or reference) configuration to a 

deformed (or current) configuration. Fig. 2.20 illustrates this concept as well as vectors 

associated with the transformation of a single material point, �, within a larger body. 
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Fig. 2.20: Transformation of the line element, �, at material point, �, from an undeformed to a deformed 

configuration. The transformation of all material points through the deformation gradient, �, gives the 
body’s updated configuration. 

The deformation gradient is the most general descriptor of the kinematics of a body, 

but it is not the most mathematically convenient for some problems because strains and 

rotations are coupled in the tensor. When the tensor is referred to a coordinate system, 

which is required for numerical simulation, this coupling requires 9 independent 

components in the 3×3 matrix representation of �. However, these can be decoupled with 

the polar decomposition of � to give: 

 � = �� (2.36) 

where � is a rotation tensor that captures only rigid body rotations, and � is the right 

stretch tensor which is purely a measure of strain. � is orthogonal which gives it the 

property, ��� = ��� = �, where (∘)� denotes the transpose operator and � is the identity 

tensor, which itself has the property �� = � for any arbitrary rank-2 tensor, �. The 

transpose operation can be interpreted by its matrix counterpart in which rows and columns 

are swapped, yielding the property, ����
�

= �. The stretch tensor is symmetric, giving it 

the useful property, �� = �.  

There are many other measures of strain aside from the stretch. For instance, the left 

Cauchy-Green strain tensor is given by: 

 � = ��� = ����� (2.37) 

The second equality follows from the properties, (��)� = ���� and �� = � due to 

symmetry. This strain tensor has precisely the same invariants as those in Eq. 2.26 for 

Rivlin-type SEFs. Thus, there is a clear link between the kinematic formulations of finite 

elasticity and the strain-energy density of rubber as determined from thermodynamics. For 

further insight into these connections, the interested reader is referred to Holzapfel’s 

textbook.96 Bergström97 provides a good supplement for numerical implementation of finite 

elasticity, as well as Section 4.2 and Appendices A, B, P, and Q in this thesis.  

2.5.5  Volumetric Deformation 

The volumetric behaviour of rubber, much like thermoelasticity, was a curiosity to early 
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researchers. In 1805, Gough77 stated that the volume of rubber decreased when stretched, 

an incorrect assertion probably arising from inadequate experimental precision. In 1848, 

Wertheim98 measured Poisson’s ratios, �, for stretched rubber at finite strains, finding a 

value of ≈ 0.3 at 100% strain. This implicitly suggested the volume had increased more 

than 30%, a vast overprediction. In 1859, Joule99 found that rubber’s volume increased ≈

0.14% upon stretching 100%, and by 1871 Thomson & Tait100 deduced (without proof) that 

rubber’s low stiffness should make it, roughly, an incompressible solid. In 1876, Röntgen101 

tested Thomson & Tait’s hypothesis, and with a modified definition for Poisson’s ratio, he 

found � ≈ 0.5 at both low and finite strains, thus confirming rubber’s low compressibility. 

Perhaps the most important lesson from Röntgen’s study is that the linear elastic definition 

of Poisson’s ratio does not accurately represent a finite volumetric response, a point that 

was reiterated by Bouasse in 1903.102 Whitby103 has given an excellent review of these 

early articles as most of them are not in English.  

Treating rubber as an incompressible material can be useful, but in absolute terms, it is 

more compressible than metal. Their bulk moduli, �, are on the order of 1 GPa and 100 GPa, 

respectively, but rubber can be approximated as incompressible because its shear modulus, 

�, is 10�–10� times lower than its bulk modulus, whereas �: � ≈ 1: 1 in metals. However, 

it is inaccurate to treat rubber as an incompressible material at very high pressures, as Fig. 

2.10 makes clear. Even at low pressures, it becomes necessary to consider rubber’s 

compressibility if it is highly constrained – that is, if it has limited free surface area – 

because the constraint inhibits shear deformation; thus, the majority of any load on the 

rubber is stored in volumetric deformation. Most seals are highly constrained even prior to 

the application of differential pressure, so it is essential to consider their volumetric 

compressibility if a realistic model is required. 

Finite elasticity theory addresses volumetric deformation though the volume ratio (also 

called the Jacobian determinant and often simplified to the Jacobian) which may be 

expressed by any of the following: 

 � =
���

���
= det(�) = det(�) = �det(�) = ��� = ������ (2.38) 

where det(∘) is the determinant operator and � > 0 is a scalar value that maps infinitesimal 

volumes near a point in an undeformed body to the same point in its deformed 

configuration. The inequality is required because � = 0 and � < 0 imply the volume 

vanishes and is negative, respectively, which are forbidden conditions in continuum 

mechanics. For an incompressible material, � = 1. When volume expands, � > 1, and when 

it contracts, � < 1. 

Another important concept for addressing volumetric deformation in finite elasticity is 

the additive decomposition of any tensor into so-called spherical and deviatoric parts. This 



37 
 

is perhaps best introduced by referring to the matrix representation of the true stress tensor, 

��, here denoted as [σ�], which is: 

 [σ�] = �

���� ���� ����

���� ���� ����

���� ���� ����

� (2.39) 

Letting � = 3-�(���� + ���� + ����) and ����� = ���� − �/3, the decomposition is expressed as: 

 [σ�] = [σ�]� + [σ�]���� =
�

�
� �

1 0 0
0 1 0
0 0 1

� + �

����� ���� ����

���� ����� ����

���� ���� �����

� (2.40) 

where [σ]� and [σ�]���� are the spherical and deviatoric parts of the decomposition, 

respectively. The spherical part characterises dilatational (volumetric) deformations that 

are strictly a function of hydrostatic pressure, �, on the body. The deviatoric part captures 

shear stresses that, by definition, cause distortional or isometric (volume-preserving) 

deformations. Converting to tensor notation, Eq. 2.40 is expressed as: 

 �� = ��� + ��� =
�

�
�� + ��� (2.41) 

This decomposition allows volumetric and shear responses to be decoupled in constitutive 

models of rubber. One such model can be illustrated by invoking a multiplicative decomp-

osition of the deformation gradient into dilatational and distortional parts: 

 � = ���/����� = ��/���  (2.42) 

where ���/��� and �� are dilatational and distortional contributions to �, respectively. The 

dilatational nature of ���/��� is revealed by noting that it has a form similar to ��� in Eq. 

2.41. Because ��, by definition, conserves volume, its determinant must be 1, so by analogy 

with Eq. 2.38 and comments thereafter, det(��) = 1. Bearing in mind that, generally, 

det(�) ≠ 1, it becomes necessary to define the so-called modified principal stretches, �̅�s, 

that satisfy this modified incompressibility condition, det(��) = 1. Thus: 

 det(��) = �̅��̅��̅� = 1 (2.43) 

These are conveniently computed with the volume ratio as: 

 �̅� = ���/��� (2.44) 

From these definitions, it is possible to define the modified left Cauchy-Green strain 

tensor which strictly characterises the distortional strains in a body: 

 �� = ���/�� (2.45) 

By analogy with Eq. 2.26, which defines the invariants of � (which is itself defined in Eq. 

2.37), the so-called modified invariants of �� are: 

 ��̅ = �̅�
� + �̅�

� + �̅�
� 

 ��̅ = �̅�
��̅�

� + �̅�
��̅�

� + �̅�
��̅�

� (2.46) 

 ��̅ = �̅�
��̅�

��̅�
� 
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To exploit the dilatational and distortional decompositions, an SEF of the form: 

 � = ����(�) + ����(��) (2.47) 

can be postulated. Each term solely captures dilatational and distortional deformations, 

respectively. The Cauchy stress can then be expressed as:97 

 �� = �
��

��
−

���̅

��

��

���̅
−

���̅

��

��

���̅
� � +

�

�
��

��

���̅
+

��

���̅
��̅� �� −

��

���̅
���� (2.48) 

When a strain-energy function is independent of ��̅, Eq. 2.48 simplifies to: 

 �� =
��

��
� +

�

�

��

���̅
��� −

�

�
tr(��) �� (2.49) 

where tr(∘) denotes the trace operator, in this case giving tr(��) = ���� + ���� + ����. By 

analogy with Eq. 2.40, the term in parenthesis is simply the deviatoric part of ��, so invoking 

the definition �� ≡ (�� − 3-� tr(��) �), Eq. 2.49 may be expressed by decoupled volumetric 

and distortional components: 

 �� =
��

��
� +

�

�

��

���̅
�� (2.50) 

The first term is a scalar value, ∂�/ ∂�, times the identity tensor, precisely of the same form 

as the dilatational terms in Eqs. 2.41 and 2.42. The factor of �-�, though derived from a 

consideration of volumetric changes, appears in the deviatoric term strictly to remove 

volumetric distortions from the strain tensor. Some additional considerations on modelling 

volumetric compressibility are deferred to Section 4.2.3. 

2.6  Linear Viscoelasticity 

The previous section described the ideal elastic behaviour of rubbery materials in which 

deformations are fully reversible (that is, mechanical energy is conserved). In reality, all 

elastomers and rubbers, when deformed, have dissipative effects that are characteristic of 

viscous fluids. Consequently, these materials are viscoelastic, and their mechanical 

properties are time-dependent. Viscoelasticity arises from molecular relaxations (for 

instance, chain disentanglements) of polymer chains,36,51  but for simplicity, a brief pheno-

menological account of some observed behaviours is given here.104,105 

2.6.1  Linear Viscoelasticity with Static Loading 

The building blocks for linear viscoelastic models are springs and dashpots. For small 

simple shear strains, �, and strain rates, �̇ (Fig. 2.21), these elements can be represented 

through Hooke’s law and Newton’s law of viscosity, respectively:36 

 �∥ = �� (2.51) 

 �∥ = �
��

��
= ��̇ (2.52) 

where � = tan(�) = �/� and � is viscosity. (Strictly speaking, Eq. 2.51 requires a negative 

sign, but it is often dropped in engineering contexts.) The equations state that stress is 
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proportional to the strain and the strain rate in a solid and a fluid, respectively, as 

represented in Fig. 2.22. Stress in the viscous element is also plotted against strain to 

illustrate that a constant shear stress causes continuous straining (flow) in a fluid. 

 
Fig. 2.21: Geometry of deformation for a small simple shear of a volume element. 

         
                                               (a)                                                                         (b) 

Fig. 2.22: Linear elastic and viscous responses according to Eqs. 2.51 and 2.52: (a) Hooke’s law for a 
spring element with shear modulus �; (b) Newton’s law for a dashpot with viscosity �. 

A crosslinked rubber with small strains can be modelled reasonably well with Hooke’s 

law, and an uncrosslinked rubber under specific conditions can approach a Newtonian 

response, at least over a narrow range of strain rates.106,107 However, elastomers and rubbers 

generally require more complicated models to describe their rheology. The simplest models 

that capture some salient features of rubber viscoelasticity combine a spring and a dashpot. 

In the Maxwell model, these are in series, and in the Voigt (or Voigt-Kelvin) model, these 

are in parallel (see schematic illustrations in Fig. 2.23). Mathematically, these models may 

be expressed as:36 

 �∥(�) = ��e(��/�) (2.53) 

 �(�) = ���1 − e(��/�)� (2.54) 

where �� and �� are an instantaneous shear stress and an equilibrium shear strain, 

respectively. � = �/� is a characteristic (stress) relaxation time or (creep) retardation 

time that relates the stiffness and viscous behaviours of the model. The utility of these 

models arises from their exponential functions which, under appropriate loading 

conditions, cause the stress or strain response to decay over time. 
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                                            (a)                                                                                   (b) 

Fig. 2.23: Maxwell and Voigt models with: (a) a fixed displacement resulting in stress relaxation (note that 
the Voigt model cannot relax); (b) a constant force resulting in creep (note that the Maxwell model creeps 

indefinitely). (Adapted from Williams.)108 

Either rheological model can be used to describe creep (a continued displacement with 

a fixed load) or stress relaxation (a reduction in force with a fixed displacement) 

phenomena, but not all models are appropriate for rubber viscoelasticity.108 Fig. 2.23a 

shows that a Voigt model with a specified instantaneous displacement is unable to relax 

stress because the spring cannot unload, rendering the model practically identical to a 

simple spring. Therefore, the Maxwell model is better suited for modelling stress relaxation 

in polymers. Fig. 2.23b shows that the Maxwell model predicts continuous creep because, 

with a constant load, there is no internal mechanism to stop the dashpot’s displacement. 

This may be acceptable for an uncured material, but it is inaccurate for crosslinked rubber; 

the Voigt model is more suitable since it asymptotically approaches a limiting strain. 

Fig. 2.24a compares the Maxwell and Voigt models to rubber test data. The illustration 

is meant to be qualitative, so the data have been normalised for ease of plotting. The 

relaxation data are from an HNBR sealing material that has not been previously published, 

and the creep data is from a filled natural rubber as reported by Tunnicliffe20 (compound 

N134 in Fig. 8.11). Neither set of data has reached an equilibrium value, but their changes 

asymptotically diminish. The figure makes clear that the Maxwell model is entirely 

inaccurate, needing an additional parameter to define a finite equilibrium stress. The Voigt 

model performs well although it struggles to capture the rapid changes in strain, a problem 

that is exacerbated by non-linearities associated with the filler (see Section 2.7). 

The Maxwell model can be refined by applying a Prony series expansion to define the 

normalised relaxation modulus of a material so that: 

 �(�) = 1 − ∑ ���1 − e(��/��)� (2.55) 

where n is the model order of the expansion. The stress can then be assumed to change in 

exact proportion with the relaxation modulus so that the definition of one determines the 

i=1 

n 
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other. This model is illustrated in Fig. 2.24b where it is shown that the stress is bound to a 

finite equilibrium value, and increasing the model order improves the fit. This same 

principle can be applied to the creep data in Fig. 2.24a to improve the fit of the Voigt model. 

The scaling of the shear modulus in Eq. 2.55 can be generalised to multi-parameter 

hyperelastic material models as discussed by Windslow & Busfield.109 The authors also 

demonstrated that, although the Prony series expansion is a linear viscoelastic model, it can 

successfully model a response with finite strains. 

     
                                           (a)                                                                                        (b) 

Fig. 2.24: (a) Maxwell and Voigt models fit to normalised test data for filled rubbers. (b) Prony series 
model with 3 different model orders fit to the stress relaxation data from Fig. 2.24a. 

The Maxwell and Voigt models can be combined to describe more complicated 

behaviours. One such option, the Burger model,110 is illustrated in Fig. 2.25a, and its 

response to a static loading and unloading is shown in Fig. 2.25b. The numbers in Fig. 

2.25b correspond to the numbered elements that are active in Fig. 2.25a during a specific 

portion of the strain response. When the load is applied, it generates an instantaneous strain, 

��, (1). Next, creep occurs under constant load (2). It is a combination of reversible strain, 

��, due to the dashpot in parallel and irreversible strain due to the dashpot in series. Once 

the reversible strain terminates, completely irreversible creep occurs (3). The total plastic 

strain, �p, can be deduced by projecting the slope of this linear region to the ordinate. When 

the load is removed, �� is completely recovered (4). The elastic portion of the creep is then 

recovered (5), and residual plastic strain remains in the system. Increasingly complex 

behaviour that includes multiple relaxation and retardation times can be simulated by 

adding more elements to the Maxwell, Voigt, and Burger models.105 
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                                                (a)                                                                                   (b) 

Fig. 2.25: (a) A Burger model subjected to loading and unloading with a constant force. 

(b) Creep response in the model. (Adapted from Cowie & Arrighi.)36 

Boltzmann’s principle of superposition is essential for constructing mechanical 

response curves in linear viscoelasticity. It states that when, for instance, multiple discrete 

loads are applied to a viscoelastic body, the total strain is the algebraic sum of the individual 

strains that arise from each load. Thus, the system’s total response depends on the load 

history, but constituent responses are completely decoupled from one another. Fig. 2.26 

illustrates this concept with three discrete loads that cause creep. The principle can be 

extended to loads that vary continuously in time,104 and Williams108 illustrates how this is 

done by introducing a convolution integral to activate and deactivate loads at different time 

intervals.  

 
Fig. 2.26: Principle of superposition applied to a Voigt element with 3 instantaneous loads. 

2.6.2  Linear Viscoelasticity with Dynamic Loading 

The previous section shows that as time elapses during static loading, rubber becomes 

more compliant. Conversely, as excitation frequency increases during dynamic loading, 

rubber becomes stiffer. Both of these behaviours arise from the molecular response time(s) 

of rubbery materials. Understanding how dynamic loads alter material properties is critical 

in applications such as shock absorption and vehicle braking where small strain 

approximations are practically useful even though finite strains may occur. The theory can 

also be applied to mud motors and progressive cavity pumps in the oilfield.73 Therefore, 

this section discusses some aspects of small strain dynamic loading of rubber. 

When a dynamic force is applied to an ideal elastic material, the resulting deformation 
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is instantaneous, so the stress and strain curves are in phase with one another. When a 

dynamic stress is applied to a Newtonian fluid, the strain response is out of phase by π/2. 

In a viscoelastic material, the behaviour falls between these two extremes.105 Because an 

elastic response conserves energy and a viscous one is purely dissipative, it is possible to 

determine the elastic and viscous components of a viscoelastic material through the phase 

difference between an applied stress and the resultant strain, or vice versa.  

Fig. 2.27 illustrates load and response curves for a viscoelastic material that is 

harmonically excited at a frequency, � = 2π�. The strain response lags the applied stress 

but oscillates with the same frequency, giving the following stress-strain relations: 

 �∥(�) = ��sin(��) (2.56a) 

 �(�) = �� sin(�� − �) (2.56b) 

where � is the loss tangent (or phase lag) in the strain.  

In complex notation, the stress and strain may be related as:36,105 

 �(�) = ��e��� (2.57a) 

 �∥(�) = (�′ + i�′′)�(�) = �∗�(�) (2.57b) 

where i = √-1, and the complex modulus, �∗, is determined from the storage modulus, 

��, and loss modulus, ���. �� characterises elastic energy that is stored during a deformation 

cycle. Although ��� is associated with the imaginary part of �∗, it characterises a real 

quantity and is proportional to the energy dissipated during a cycle. The storage and loss 

moduli are related to the loss tangent by: 

 tan(�) =
���

��  (2.58) 

The following relations also hold for the complex modulus and its components:104 

 �∗ =
��

��
= �′�1 + tan�(�)  = �(��)� + (���)� (2.59a) 

 �� = �
�∥

��
� = �

��

��
� cos(�) (2.59b) 

 ��� = �
��

��
� = �

��

��
� sin(�) (2.59c) 

where �∥ is the stress component in phase with the peak strain and �� is the stress 

component that is 90° out of phase with the peak strain, as illustrated in Fig. 2.27. 
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Fig. 2.27: A harmonic stress (applied) and strain (response) for a viscoelastic material. The strain has the 

same frequency as stress, but lags by a factor of �/�. 

To summarise, a sinusoidal stress can be applied to a rubber sample (Eq. 2.56a), and 

the sinusoidal strain response can be measured (Eq. 2.56b) to determine the strain 

magnitude, ��, and the loss tangent, �. With Eqs. 2.56a and 2.56b fully determined, the 

complex modulus can be computed from the first equality in Eq. 2.59a. Finally, the storage 

and loss moduli can be determined with the second and third equalities in Eq. 2.59a, 

respectively, thereby characterising energy storage and loss during a deformation cycle. 

Eqs. 2.58, 2.59b, and 2.59c provide alternate routes for these computations. 

Fig. 2.28 graphically shows the relationship between �′, �′′, tan(�), and temperature 

for an unfilled natural rubber compound, where according to linear elastic theory and 

assuming incompressibility, �� ≈ 3�′ and ��� ≈ 3�′′105 over a range of temperatures through 

the glass transition. The rubber was excited at a frequency of 1 Hz. Below Tg, the material 

is glassy with �� of the order of GPa, and tan(�) is low. Through the glass transition, �′′ 

overtakes �′ which indicates significant energy dissipation. Correspondingly, tan(�) peaks 

through the transition. As the material becomes increasingly rubbery, �′ overtakes �′′ and 

tan(�) drops significantly, a trend that would continue through the rubbery plateau (see Fig. 

2.29) which is not shown in Fig. 2.28. 

 
Fig. 2.28: Storage modulus, loss modulus, and loss tangent for an unfilled crosslinked natural rubber. Note 
that tan(�) = 1 when �� = �′′, indicating equal elastic and viscous contributions to the complex modulus. 

(Adapted from Tunnicliffe.)20 
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Below Tg, energy loss is low because the rubber molecules are essentially frozen in 

place, and the rubber, though still amorphous, has mechanical behaviour that is similar to 

other elastic solids. In the transition zone, the temperature is sufficiently high to 

thermodynamically drive molecular motion, but the free volume is insufficient to fully 

accommodate those motions. Hence, the glass transition is a region of maximal molecular 

interference and, consequently, maximum energy dissipation. Above Tg, the free volume is 

large enough to allow relatively unrestricted molecular motion. 

2.6.3  Time-Temperature-Pressure Superposition 

The glass transition temperature in Fig. 2.28 can be defined at any of a few different 

points: (i) at the peak of �′′ (– 52℃); (ii) where the concavity of �′ changes (– 49℃); or (iii) 

at the peak of tan(�) (– 46℃). Regardless of what is chosen, all these temperatures are 

significantly higher than Tg = – 69℃ reported in Table 2.1. The upward shift is typical for 

dynamic measurements (unless of course � ≪ 1 Hz) because the polymer chains have less 

time to relax during such tests. Consequently, the moduli of rubber materials are a function 

of excitation frequency. Because the mechanical properties of rubber are temperature- and 

time-dependent over several orders of magnitude, it quickly becomes a burden to test a full 

range of independent variables. In some cases, it is also difficult to test rubber parts at their 

operational timescales. For instance, vehicle tyres experience vibrational frequencies in the 

kHz –MHz range during braking, but test equipment may be limited well below these orders 

of magnitude.20 Another issue arises when testing static creep or stress relaxation because 

the timescales can grow prohibitively long. Provided a rubber is thermo-rheologically 

simple, which means that it is a single-phase and single transition homopolymer or random 

copolymer,64 the principle of time-temperature superposition (TTS) provides a method 

to predict mechanical properties over broader timescales than those physically tested. The 

premise of TTS is that time and temperature affect molecular motion in the same way, so 

they can be reduced to a single independent variable.§ Therefore, test data using an 

experimentally practical timescale at several temperatures can be shifted by orders of 

magnitude along the time axis to predict mechanical properties at much lower and higher 

frequencies (or equivalently, lower and higher relaxation times). 

Fig. 2.29 illustrates TTS using the stress relaxation data of Catsiff & Tobolsky111 for a 

butyl elastomer. Reviewing the authors’ references, the material was presumably 

unvulcanised although they do not explicitly state this. The experimental data (right) covers 

 
§ An assumption in elementary TTS is that all relaxation times in the material have the same temperature shift 

factors. This assumption is almost always violated in practical engineering materials due to the complexity 
of rubber compounds. They are highly engineered composites with complex chemistries, so there are 
multiple relaxation times due to various molecular interactions. So, TTS and similar theories should be used 
cautiously for industrial rubber compounds. 
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a timescale from 60–3,600 s with a temperature range from –79℃ to 25℃. In the master 

curve (left), data at 25℃ are fixed in place and act as an arbitrarily chosen reference 

temperature. Data from the other tests are shifted left by temperature-dependent factors, ��, 

whose magnitudes increase as |� − ����| increases. In the master curve, the left portion of 

the data tends toward glassy behaviour. The glass transition zone is broad which is 

characteristic of IIR. An indication that the material was unvulcanised is the diminution of 

the modulus after the rubbery plateau, transitioning to a terminal region that is related to 

the material’s viscosity.36 The poor alignment of data points through the rubbery region can 

be smoothed with additional corrections,111 but shifting data that is relatively flat, like that 

at –20℃, is subject to large uncertainty. Also note that the time axis in some TTS plots does 

not include the �� factor in the axis label, although it still implicitly there. 

 
Fig. 2.29: TTS master curve (left) for the relaxation modulus of IIR, constructed from the experimental data 

(right) with a reference temperature of 25℃. For clarity, not all points from the data are retained in the 

master curve. (Adapted from Catsiff & Tobolsky.)111 

Different equations have been proposed for TTS shift factors. One of the most common 

is the Williams-Landel-Ferry (WLF) model:112 

 log(��) =
��(������)

���(������)
 (2.60) 

where �� and �� are fitting parameters, � is the temperature that is shifted, and ���� is the 

arbitrary reference temperature for shifting other temperatures (that is, ���� is not shifted). 

When generating master curves, �� = 40 and �� = 50℃ are recommended initial guesses, 

but some rubbers may depart significantly from these values. For instance, butyl rubber has 

�� = 100℃.105 Although the WLF equation originated from phenomenological 

observations, it can be derived from thermodynamic arguments based on the free volume 

concept. See, for instance, Moonan & Tschoegl113 and references therein.  

Section 2.3 shows that the glass transition is pressure-dependent. Consequently, time-
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pressure superposition (TPS) can be applied to piezo-rheologically simple rubbers 

which, analogous to thermo-rheologically simple materials, have molecular dynamics 

whose response times all depend on pressure in the same manner. Although academic 

literature on TPS is relatively sparse, it has significant implications for oilfield applications 

where dynamically loaded rubber components (for instance, in mud motors) experience 

high hydrostatic pressures.73 A recent summary of the subject, including a recommended 

experimental apparatus, is given by Aulova et al.41 Some data from their work with natural 

rubber is shown in Fig. 2.30. The reference pressure is at atmospheric conditions, and as 

pressure increases, the modulus increases which indicates longer relaxation times. The inset 

in this figure shows the shift factors, ��, and in this case, they are linear on a logarithmic 

scale. This linearity is not generally present when superposing data. A comparison of Figs. 

2.29 and 2.30 shows that molecular response times are much more sensitive to temperature 

changes than pressure. The transition in the former occurs over Δ� on the order of 10�, 

whereas in the latter Δ� is on the order of 10�. As mentioned in Section 2.3, this difference 

probably occurs because temperature affects both thermal excitations and free volume 

while pressure primarily affects only the latter. 

 
Fig. 2.30: TPS master curve (left) for the relaxation modulus of NR, constructed from the experimental data 

(right) with a reference pressure of 0.1 MPa. For clarity, not all points from the data are retained in the 

master curve. (Adapted from Aulova et al.)41 

Different models have been proposed to extend the WLF equation for time-

temperature-pressure superposition (TTPS). For example, the Fillers-Moonan-Tschoegl 

(FMT) model has the form:41  

 log���,�� =
��[(������)��(�)]

��(�)�(������)��(�)
 (2.61) 

The equation adds a pressure functional, �(�), to the WLF equation, and �� becomes a 

function of pressure as well. The model has six fitting parameters which are not detailed 

here but may be found in Aulova et al.41 Some of these parameters are not entirely 
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empirical, but arise from thermodynamic relations such as thermal expansivity and bulk 

modulus. 

2.7  Fillers in Rubber Compounds 

Fillers are materials that are compounded with rubber to reduce cost, give pigment, 

improve processing, enhance ageing performance, or enhance (reinforce) mechanical 

properties. Today, the term “filler” can refer to any of these functions, but through the early 

20th century, it usually referred to inert, non-reinforcing materials that reduced cost. The 

consolidation of terms may have arisen because some fillers serve multiple purposes 

simultaneously. 

Filled rubber was common at least by the mid-1870s. Oenslager114 indicated that the 

earliest non-reinforcing and reinforcing fillers were, respectively: (i) calcium carbonate 

(whiting) and barium sulphate; and (ii) zinc oxide, light magnesium carbonate 

(hydromagnesite, a hydrated mineral containing MgCO�), and white lead (lead carbonate). 

Technically, carbon black in the form of lamp black was among these earliest fillers, but it 

was used as a colouring agent. Its particle size, which is about 1 μm, precludes its use as a 

quality reinforcing agent.115,116 Mote23,116 is credited with the first studies on genuine rubber 

reinforcement with carbon black in 1904, but his work was not popularised until 1912 when 

Oenslager9 of B.F. Goodrich incorporated carbon black in vehicle tyres. Today, it is the 

dominant reinforcing filler. Zinc oxide is still used, albeit usually in small quantities as an 

activator, not a reinforcing agent. White lead is no longer used due to its toxicity, and 

hydromagnesite, despite showing some early promise as a reinforcing agent,117,118 is largely 

obsolete. 

Fig. 2.31 shows some mechanical properties for natural rubber with different fillers. 

Fig. 2.31a displays stress-strain curves for rubber with a reinforcing filler volume content 

of 17%. A curve for the unfilled rubber is shown to illustrate that the filled rubber is stiffer 

in each case, and the upward inflection in the response occurs at a lower strain in filled 

rubbers. In natural rubber, this upward inflection is due to a combination of strain-induced 

crystallisation (SIC) and finite-extensibility of the polymer chains. During SIC, some 

portion of the stretched polymer chains, say 10–20%,119 crystallise and significantly 

increase stiffness. Finite-extensibility also has a stiffening effect because fewer chain 

conformations are available as the molecules stretch. These stiffening effects occur at lower 

strains in filled rubbers due to strain amplification (see Section 2.7.1). The increases in 

strength and stiffness, as well as the decrease in elongation, for the filled rubbers are typical. 

Because of this tradeoff between stress and strain, it is not straightforward to directly 

compare how well different fillers reinforce rubber from stress-strain curves, so other 

metrics are useful, with proof resilience and abrasion resistance being common.120 
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                                            (a)                                                                                   (b) 

      
                                             (c)                                                                                  (d) 

Fig. 2.31: Effect of different fillers on some mechanical properties of natural rubber: (a) uniaxial stress-
strain curves with a filler volume content of 17%; (b) resilience at fracture (area under the stress-strain 

curves); (c) permanent set; (d) hardness. (Adapted from Greider.)117,118 

Proof resilience, or the total energy required to fracture a test specimen, is a good gauge 

to determine reinforcing capability. The resilience with some different fillers and volumes 

is shown in Fig. 2.31b. Hydromagnesite approaches the reinforcing capability of carbon 

black, but its use as a reinforcing filler is generally discouraged because its permanent set 

(residual, plastic deformation after the load is removed) is at least 2.3 times higher than that 

of carbon black if one subtracts the 5% offset that is inherent in the unfilled rubber (Fig. 

2.31c). The resilience with a non-reinforcing filler, ground magnesite (MgCO�), is also 

shown. It monotonically reduces the energy required to fracture the sample, and therefore, 

it cannot be used for mechanical reinforcement. 

Although different mechanical properties can be chosen to assess reinforcing 

capability, some are poor choices. For example, Fig. 2.31c shows that permanent set is 

lowest with ground MgCO�, but it has no reinforcing capability at all. Fig. 2.31d makes clear 

that hardness is also a poor choice because both reinforcing and non-reinforcing materials 

affect hardness in a similar manner. Despite this, the mechanical behaviour of rubber is 

often reduced to its hardness in the oilfield, a poor practice that has been slow to change. 
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2.7.1  Reinforcing Mechanisms in Filled Rubber 

In the 1920s, researchers began debating the reinforcing mechanisms in filled 

rubber.121-124 Despite sustained and continuing research this area, definitive answers remain 

elusive because of the practical difficulty of isolating different mechanisms that occur 

simultaneously. In this section, a brief account of the topic is given, and the interested 

reader is referred to Tunnicliffe20 for more details.  

Fig. 2.32 illustrates the generally accepted notion that at least four different factors 

contribute to the bulk mechanical properties (in this case, shear modulus is chosen) of a 

rubber compound.125 The baseline rigidity is due to the rubber itself. For small filler volume 

fractions, ��, stiffness increases through a hydrodynamic reinforcement mechanism. The 

simplest mathematical model of this effect was given by Einstein126 in 1906 who was 

studying the increase in viscosity when solute is added to a solvent:  

 � = ��(1 + 2.5��) (2.62) 

where � is the viscosity of the solution and �� is the viscosity of the solvent. Smallwood127 

adapted this equation for elastic solids to give an entirely analogous form:  

 � = ��(1 + 2.5��) (2.63) 

where � is the shear modulus of the filled rubber and �� is the shear modulus of the unfilled, 

crosslinked elastomer. Some of the simplifying assumptions in this model are: (i) the fillers 

are rigid spheres; (ii) a no-slip boundary condition exists between the rubber and filler 

particles; and (iii) there are no filler-filler interactions (that is, the particles are well-spaced). 

None of these are practical in an industrial sense because: (i) filler morphology is generally 

complex; (ii) the rubber-filler boundary condition is open to debate; and (iii) �� is often 

sufficiently large that filler-filler interactions are guaranteed. To address some of these 

limitations, the Guth-Gold equation and its modified form were proposed:128 

 � = ��(1 + 2.5�� + 14.1��
�) (2.64) 

 � = ��(1 + 0.67���� + 1.62��
���

�) (2.65) 

where the first equation is for spherical particles and the second equation includes a 

morphology-dependent shape factor, ��, for the filler. 
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Fig. 2.32: Contributions to a rubber’s shear modulus. (Adapted from Payne.)125 

 
Fig. 2.33: Comparison of different models for hydrodynamic reinforcement of filled SBR. 

�� = 6 for the modified Guth-Gold equation. (Adapted from Cohan.)129 

Fig. 2.33 shows the increasing accuracy of Eqs. 2.63–2.65, but even the modified Guth-

Gold equation systematically under-predicts the rubber’s stiffness as �� increases. Presum-

ably, some of this error occurs because the models do not account for bound and occluded 

rubber. Bound rubber is physically restrained or chemically adsorbed, perhaps even 

bonded, to filler aggregates (clusters of filler particles), while occluded rubber is trapped 

by tightly packed filler agglomerates (clusters of aggregates). Both are shielded from 

global strains as illustrated in Fig. 2.34. Their presence is deduced from the fact that a 

fraction of rubber cannot be recovered from a filled compound upon dissolution in a 

solvent.130 Bound and occluded rubber effectively increase the volume fraction of the filler 

which leads to a systematic underprediction of stiffness with Eq. 2.65. The final form of 

this equation is subject to some uncertain assumptions, so different forms have been 

proposed.131 It should be noted that there is no clear delineation between the hydrodynamic 

reinforcement and rubber-filler interactions (strong links) in Fig. 2.32; therefore, 

interpretation remains qualitative. 
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Fig. 2.34: Bound and occluded rubber. (Adapted 

from Tunnicliffe.)20 

 
Fig. 2.35: Carbon black mixed with low viscosity 

paraffin oil. (Adapted from Warasitthinon et 

al.)132 

Fig. 2.32 shows that the final level of reinforcement comes from filler-filler 

interactions. To achieve this, the filler must be fully dispersed and have a sufficient volume 

to reach the percolation threshold which is the point at which the filler forms a fully 

permeating network in the rubber matrix. The importance of such structures in determining 

the stiffness of rubber compounds has been demonstrated by Warasitthinon and 

coworkers.132 They mixed carbon black with low-viscosity paraffin oil and showed that the 

behaviour and magnitude of the composite structure’s shear modulus resembled that of a 

similarly loaded SBR compound. The structural integrity of the oil and carbon black 

mixture is illustrated in Fig. 2.35 where a ball of the material showed no signs of creep after 

sitting for 140 days. Generally, filler-filler reinforcement is less stable than the other 

reinforcing mechanisms, as discussed in the next section. 

2.7.2  The Payne Effect 

Fig. 2.32 shows that the reinforcement due to filler-filler interactions reduces as the 

strain amplitude increases, a non-linear viscoelastic phenomenon known as the Payne 

effect (synonymously called the Fletcher-Gent effect).133 This results from a 

microstructural breakdown of the filler network which causes the storage modulus to 

decrease as strain increases (Fig. 2.36a), and this is concomitant with an energy loss that 

manifests as a higher loss modulus in filled rubber (Fig. 2.36b). The Payne effect reduces 

as temperature increases (Fig. 2.37), presumably because thermal energy reduces the 

strength of the percolated filler network. 
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                                           (a)                                                                                      (b)  

Fig. 2.36: The Payne effect in butyl rubber with harmonic loading and different volume fractions of carbon 
black: (a) storage modulus in shear; (b) loss modulus in shear. Strain amplitudes are measured from peak-

to-peak. (Adapted from Payne & Whittaker.)134  

 
Fig. 2.37: Reduction in the Payne effect as temperature increases for natural rubber 

filled with carbon black and �� = 32%. Strain amplitude is measured from  

peak-to-peak. (Adapted from Payne & Whittaker.)134 

2.7.3  Hysteresis, The Mullins Effect, & Cyclic Stress Softening 

During a loading-unloading cycle, rubber exhibits a hysteretic energy loss as illustrated 

by the red and blue paths in Fig. 2.38. The difference in area between the solid and dashed 

lines gives mechanical energy loss. This effect was perhaps first described by Bouasse & 

Carriere in 1903,135 and it is an inherent feature of rubber viscoelasticity. It is amplified by 

strain-induced crystallisation and the presence of reinforcing fillers, manifesting as heat 

which can be detrimental in rubber components that are dynamically loaded. 

In the 1940s and 1950s, Mullins106,136 published numerous papers studying hysteresis 

in rubber, and he observed what has become known as the Mullins effect. This is illustrated 

in Fig. 2.38. The red trend shows initial loading (1) and unloading (2) curves. On a 

subsequent strain cycle, the loading curve follows curve (2) until it reaches the maximum 
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strain from the previous cycle, and then it follows curve (3) to a higher strain limit. The 

final unloading path is given by curve (4). The path defined by the union of curves (1) and 

(3) is identical to the stress-strain curve that would have been achieved if the sample had 

been loaded to the maximum strain limit (defined by the apex of curve (3)) during the first 

deformation cycle.  

The behaviour in Fig. 2.38 is ideal. In practice, there is a smooth transition zone 

between curves (2) and (3), and curve (3) does not precisely follow the illustrated path, 

instead showing slightly softer behaviour. In addition, the load path on the second cycle 

usually lies between curves (1) and (2), and the unloading paths do not return to the origin 

due to permanent deformation. This plastic behaviour is illustrated for an oilfield sealing 

material in uniaxial compression in Fig. 2.39. Because the strain magnitude in Fig. 2.39 is 

constant, the Mullins effect is not fully illustrated in the figure, but the cyclic softening 

behaviour is apparent. The figure also makes clear that cyclic stress softening attenuates as 

the cycle count increases. Consequently, rubber can be preconditioned with deformation to 

reach a more stable response before testing or operational deployment.  

 
Fig. 2.38: An ideal Mullins effect: solid = loading; 

dashed = unloading.  

 
Fig. 2.39: Cyclic stress softening with permanent 

set in uniaxial compression for a filled HNBR 
compound: solid = loading; dashed = unloading. 

2.7.4  Effects of Filler on the Glass Transition, Entropic Elasticity, and TTS 

As a filler’s volume fraction and reinforcing capability increase in a rubber compound, 

characterisation of the mechanical properties becomes increasingly complicated. For 

example, Fig. 2.40a shows that in the region of rubbery behaviour, say from 0– 80℃, the 

stiffness of the unfilled rubber increases linearly with temperature (note that the upward 

trend is barely discernable due to the logarithmic ordinate). However, the stiffnesses of the 

filled rubbers decrease in this range which is in accord with the inverse relationship 

between the filler network strength and temperature from Fig. 2.37. The filler also broadens 

the glass transition zone because it retards molecular relaxation due to physical constraint 

on the polymer chains. Fig. 2.40b shows TTS master curves for filled and unfilled 
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compounds. The curve for the unfilled compound is smooth, but there is a breakdown in 

superposition with the filled material because two relaxation times are associated with the 

filled rubber: that of the polymer and that of the filler structure. Klüppel137 demonstrated 

how to correct the master curve for this effect. The point to emphasise is that additional 

processing is required when analysing filled rubbers even when restricted to characterising 

small strains. 

         
                                             (a)                                                                                 (b) 

Fig. 2.40: Effect of carbon black filler on the small strain storage modulus of an SBR-vinyl rubber: (a) as a 
function of temperature, the glass transition broadens and entropic elasticity is increasingly masked as �� 

increases; (b) as a function of time, TTS breaks down and requires a vertical shift. (Adapted from 

Klüppel137 and Fritzsche & Klüppel.)138 

2.7.5  Carbon Black and Precipitated Silica 

Carbon black is the most common reinforcing filler used in rubbers. Individual particles 

are spherical, but they form aggregates that create different morphologies called structure. 

Fig. 2.41. illustrates three aggregates with structure increasing from left to right. Higher 

structure tends to correlate with an increasingly anisotropic aggregate shape and reinforcing 

capability. Individual particle size (and correspondingly specific surface area) and surface 

reactivity also affect reinforcing capability, with smaller carbon black offering superior 

reinforcement. Table 2.4 lists several grades of carbon black, average particle (not 

aggregate) diameters, and specific surface areas. The “N” in the grades indicates a “normal” 

carbon black which does not affect sulphur curing kinetics. The first number roughly 

correlates with the average particle diameter in tens of nanometres, with N990 being a clear 

exception to this rule. The last two numbers often characterise structure. 

 
Fig. 2.41: Carbon black aggregates with structure increasing from left to right. 

(Adapted from Hallet & Tunnicliffe.)139 
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Table 2.4: Properties of some commercial carbon black grades. 

(Adapted from Donnet et al.)140 

Grade 
Mean particle 
diameter / nm 

Specific surface 
area / (m�/gm) 

N110 18 138 
N220 21 116 
N330 30 83 
N550 56 41 
N660 67 36 
N762 107 26 
N990 285 9 

Fig. 2.42 shows that there is a tradeoff between reinforcing capability and viscoelastic 

energy dissipation. As the carbon black particle size reduces, the difference in maximum 

and minimum rheometer torques, �� − ��, increases which indicates a stiffer material (see 

Section 2.8), but tan(�) also increases. This may be important for dynamic applications 

because the additional heat generation can adversely affect fatigue life. 

 
Fig. 2.42: Increase in maximum viscoelastic energy dissipation as reinforcing capability increases, as 

indicated by rheometer torque. (Adapted from Hallet & Tunnicliffe.)139 

Precipitated silica (silicon dioxide) is the second most common reinforcing filler.20 It is 

commonly employed in the tread of vehicle tyres because it reduces rolling resistance when 

compared to carbon black filled compounds.141 In such applications, it consists of silica 

aggregates on the order of 50 nm. Due to surface polarity, it is difficult to disperse in 

nonpolar diene rubbers, and once dispersed it is prone to agglomeration (clumping into 

large structures) during curing processes. To mitigate these issues, the silica is often 

modified with a coupling agent such as silane. This alters the polarity of the aggregates and 

facilitates interaction between the filler and polymer.142 
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2.8  Differential Scanning Calorimetry to Assess the State-of-Cure 

Curing of rubber is time- and temperature-dependent, so for manufacturing, it is 

important to understand how the process proceeds as a function of both parameters. This is 

initially determined by compressing an elastomer between two small, ribbed platens, one 

of which is shown in Fig. 2.43a. These are held at a temperature high enough to activate 

curing, a small oscillating torque is applied to the rubber, and the stiffness is recorded as it 

evolves over time. A typical output from this rheometer test is shown in Fig. 2.43b. The 

solid line shows the following trends in the torque: (i) a very brief increase as the discs 

compress the rubber; (ii) a decrease as the heat lowers the material’s viscosity; (iii) an 

increase as crosslinks form; and (iv) a stable, asymptotic value once fully cured. 

          
                                       (a)                                                                                    (b) 

Fig. 2.43: (a) The bottom platen of an oscillating disc rheometer (ODR) with the test platen highlighted in 
blue. (Adapted from Hiwa Engineering Company.)143 (b) The output from a rheometer test. (Adapted from 

Dluzneski.)34 

Two measurement times from the rheometer test are used to guide curing processes 

during manufacturing of rubber components. The scorch time, ���, is the time at which 

torque increases by 0.23 N ∙ m (2 in ∙ lbf) from the minimum, ��. It is used to determine the 

time allowed for forming operations such as compression moulding. The time to achieve 

90% cure is defined as Δ� = 0.9(�� − ��) and denoted as ���. It establishes the minimum 

time to achieve a sufficient cure for practical applications. Curing processes for rubber 

components often stop precisely at ��� for four reasons: (i) curing continues as the 

components cool; (ii) to prevent reversion; (iii) to minimise manufacturing time; and (iv) 

mechanical properties at 90% cure are broadly indistinguishable from those at 100% cure. 

Marching cure and reversion are two problems that may be encountered in rubber 

compounds. In the former, the stiffness monotonically increases throughout a rheometer 

test and may not stabilise even over a timescale of the order of several hours. In such cases, 

it is not simple to determine when the crosslink density is sufficient for practical purposes. 

Reversion occurs when the cure curve has a local maximum. It indicates that, given 

sufficient time, the combination of heat and stress reduce the effective crosslink density, an 

adverse effect that should be controlled. 
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Cure times for thick rubber components, which must be longer than ��� to ensure 

adequate heat transfer, are often determined by experience-based rules-of-thumb, though 

specialty thermal modelling software also exists. In any case, it is important to validate 

curing processes. Hardness measurements can detect gross under-cure on component 

surfaces, but for critical applications such as high pressure sealing, differential scanning 

calorimetry (DSC) provides a more reliable technique. Small samples are cut from different 

portions of the component, including interior regions, and heated through a temperature 

ramp. If a sample is fully cured, it evolves no heat through the curing temperature (see the 

lower trend in Fig. 2.44). If it is partially cured, it evolves some heat as it passes through 

the curing region (see the middle trend in Fig. 2.44). The area under a partially cured trend 

can be compared to that under a reference trend for the uncured rubber, and the state-of-

cure can be estimated as Cure % = (1 − ��/��) ∙ 100. Finally, there are other methods to 

assess the state-of-cure, and swelling is commonly used as a proxy to assess crosslink 

density.50 Schlumberger data provided by Xiaohong Ren144 reveals that the DSC method is 

fast and sufficiently accurate for industrial practice. 

 
Fig. 2.44: Trends from a DSC test for uncured, partially cured, and fully cured rubber samples. 

2.9  Non-linear Viscoelasticity 

Generally, non-linear viscoelastic models are not restricted to small strains, nor do they 

respect Boltzmann’s principle of superposition.** They are particularly relevant when 

modelling filled rubber due to the strain amplitude and history dependencies outlined in 

Section 2.7. In addition, they can address damage, fracture, and fatigue life. The primary 

drawbacks of these models are that they require many model parameters which may be 

difficult to ascertain, and they often require user-defined coding or specialty software to 

 
** As a sidenote, linear viscoelasticity can address some aspects of large strains by replacing Hooke’s law for 

elasticity with a hyperelastic material model.97,109 
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execute. The load cases in which they have been validated may also be restricted, hindering 

their general adoption. A review of some non-linear viscoelastic models was given by 

Carleo et al.145 Predictions from two such models are illustrated in Figs. 2.45–2.48. 

Carleo146 provided a good illustration of some difficulties that arise when developing 

novel non-linear viscoelastic models. She developed a 9-parameter viscoelastic material 

model based on fractional derivatives. It was successfully implemented for uniaxial 

extension of a rubber block in MATLAB, but when converted to a subroutine for imple-

mentation in Abaqus, the model became unstable, therefore limiting its generalisation. Figs. 

2.45 and 2.46 show some of her results from the simulations in Abaqus. The model 

successfully captured cyclic stress softening during the first 3 loading cycles, but thereafter 

the block showed unrealistic extension in a direction that was not loaded.  

 
Fig. 2.45: Cyclic stress softening with a fractional 

derivative model in Abaqus. (Adapted from 

Carleo.)146  

 

                 (a)                                       (b) 

Fig. 2.46: (a) Realistic deformation during a uni-
axial extension. (b) Unrealistic deformation 

during a uniaxial extension. (Adapted  

from Carleo.)146 

Carleo and coauthors147 achieved better success with a 10-parameter model based on a 

stress decomposition into elastic and hysteretic (viscous) components, the former including a 

strain-dependent continuum damage parameter to soften the material. Fig. 2.47 shows cyclic 

stress-strain response for the model in uniaxial extension. It successfully captures hysteresis, 

cyclic softening, the Mullins effect, large strain non-linearity, and permanent set. The model 

was implemented in Abaqus for a 3D bushing component, and the results of a radial 

deformation are shown in Fig. 2.48.    
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Fig. 2.47: Successful simulation of multiple visco-
elastic non-linearities in uniaxial extension with a 

continuum damage model. (Adapted from 

Carleo et al.)147 

 
Fig. 2.48: Successful simulation of a 3D com-
ponent in Abaqus with a continuum damage 

model. (Adapted from Carleo et al.)147 

2.10  Rate-Dependent Tensors & Objectivity 

In Section 2.5.4, the left Cauchy-Green strain tensor was introduced and shown to be a 

function of the deformation gradient, � = ���. These tensors are only functions of 

deformed and undeformed coordinates, and hence independent of time. This fact is more 

apparent by letting �� = (�, �, �) and �� = (�′, �′, �′) and expressing � in matrix form: 
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 (2.66) 

In time-dependent analyses, it is necessary to account for not just positions as given by 

�� and ��, but also velocities and accelerations which may be derived from tensor calculus. 

Holzapfel96 and Bergström97 provide details on this subject, and a few illustrative results 

are given below. 

Fig. 2.20 shows undeformed and deformed representations of a body. In continuum 

mechanics, these are called material and spatial representations, respectively. The 

kinematics of a body can be expressed in either configuration, and it is possible to transform 

between them. For example, the material time derivative of a smooth field, ℱ, (which 

could be scalar-, vector-, or tensor-valued) in the undeformed configuration is: 

 
�ℱ

��
≡

�ℱ

��
�

��

= ℱ̇ (2.67) 

in which the partial derivative, by definition, holds the position vector constant. To account 

for directional changes, the material gradient of ℱ is defined as: 

 Grad(ℱ) =
�ℱ

���
�

�
 (2.68) 
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in which � is fixed during the partial differentiation. (Take note of the similarity between 

Eq. 2.68 and the definition of � in Eq. 2.35). The gradient describes how a field is changing 

with respect coordinate directions in that field. The analogs of these equations in the spatial 

configuration are: 

 
��

��
�

��

= �̇ (2.69) 

 grad(�) =
��

���
�

�
 (2.70) 

The use of upper and lowercase letters or variables in the material and spatial frames, 

respectively, are common in continuum mechanics, but the convention is not followed in 

this work. The material time derivative of a field expressed in the spatial frame is computed 

with the material time derivative operator: 

 
�(∘)

��
=

�(∘)

��
+ grad(∘)�� (2.71) 

where (∘) is a scalar-, vector-, or tensor-valued field expressed in the spatial frame. Eq. 

2.71 shows that the derivative of a spatial field with respect to the material frame is the sum 

of time and position partial derivatives, the position derivatives being multiplied by the 

spatial velocity field which is given by: 

 �� =
���

��
= �̇� (2.72) 

The material and spatial velocity gradients are readily computed with the gradient 

operators as Grad(��) = ∂��/ ∂�� and grad(��) = ∂��/ ∂��, respectively. It can be shown 

that the material and spatial velocity gradients require:96 

 Grad(��) =
��

��
= �̇ (2.73) 

 � ≡ grad(��) = �̇��� (2.74) 

Eqs. 2.73 and 2.74 make clear that the material and spatial velocity gradients are 2nd-

order tensors. The spatial velocity gradient can be additively decomposed into symmetric 

and skew components such that: 

 � =
�

�
(� + ��) = �� (2.75) 

 � =
�

�
(� − ��) = −�� (2.76) 

where the last equalities in each equation follow from the definitions of symmetric and 

skew (anti-symmetric) tensors. � is called the rate of deformation tensor, and � is called 

the spin (or rate of rotation or vorticity) tensor. These are the rate-dependent analogs of 

the stretch and rotation tensors introduced in Eq. 2.36. Rate-dependent tensors show up in 

time derivatives of strain tensors. For example, the material time derivative of the left 

Cauchy-Green strain tensor is: 

 �̇ = �� + ��� (2.77) 
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Special care is required when developing rate-dependent constitutive equations. 

Physical quantities that are described must be independent of any observer who reports 

them, an axiom called the principle of material frame-indifference, or simply 

objectivity. A physical quantity that is independent of an observer is called objective. 

Objectivity requires that the distance between two arbitrary points in space is the same 

regardless of the reference frame in which that distance is measured. Similarly, time 

intervals between two arbitrary events being observed must be the same regardless of the 

reference frame. Let there be two observers in different reference frames, one of which has 

physical quantities denoted with the prime symbol, (∘)′. The mathematics that describe 

frame-indifference of an arbitrary scalar (ϕ), vector (�), and tensor (�) in these frames 

require that they transform according to: 

 ϕ�(��, ��) = ϕ(�, �) 

 ��(��, ��) = ��(�, �) (2.78) 

 ��(��, ��) = ��(�, �)�� 

where (�, ��) locate a point in space with respect to the different frames, (�, ��) are times 

measured by different clocks in each frame, and � = �(�) is an orthogonal tensor that is 

restricted to rigid body rotations. It is self-evident that scalars in each frame are identical. 

Since � only permits rotations, it does not change the length of the vector on which it 

operates. Furthermore, it does not alter the orientation (that is, the angle between) any two 

vectors in one frame that are transformed to the other frame. By analogy, � and �� do not 

alter the “length” and “orientation” of a tensor when they operate on it according to Eq. 

2.78. 

It can be shown that the following quantities which have been introduced are objective: 

 volume ratio, �; 

 deformation gradient, �; 

 rotation tensor, �; 

 stretch tensor, �; 

 left Cauchy-Green strain tensor, �; 

 Cauchy stress tensor, ��; 

 rate of deformation tensor, � (and notably, the spin tensor, �, is not objective). 

However, complications can occur when derivatives of these tensors are required. For 

example, the velocity gradient in Eq. 2.74 is given by � = �̇���. It can be shown that a 

change in observer gives the following transformation rule: 

 �� = ���� + �̇�� (2.79) 

Hence, � is not objective because Eq. 2.79 does not have the same form as Eq. 2.78, and it 

cannot be directly used when formulating constitutive equations. 

Rate-dependent constitutive equations are used for dynamic simulations, for instance 
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in Abaqus/Explicit. When derivatives of vector or tensor quantities are required, the 

quantities may need adjustment to cast them into an objective form. This gives rise to 

objective stress rates. There are a variety of rates that may be chosen. For instance, the 

Green-Naghdi stress rate and Jaumann-Zaremba stress rate are respectively defined in 

terms of the Cauchy stress tensor as: 

 ���� = ��̇ − �̇���� + ���̇�� (2.80) 

 ���� = ��̇ − ��� + ��� (2.81) 

These equations satisfy objectivity such that ���� = ������ and ���� = �������.  

Although different objective stress rates exist, they are not all equally effective at 

modelling different problems. Ideally, one should use so-called work conjugate measures 

of stress and strain (or rate of deformation). For example, the stress measure � = ��� 

(Kirchhoff stress) is work conjugate to the rate of deformation tensor, �, so they make a 

suitable couple to build a constitutive equation. As Vorel & Bažant148 point out, the Green-

Naghdi and Jaumann-Zaremba stress rates are not work conjugate to any finite strain 

tensors, yet they are used in many commercial finite-element solvers. In addition, Holzapfel 

states that these rates give undesirable oscillations in simple shear. To avoid such problems, 

Vorel & Bažant recommend use of the Truesdell stress rate: 

 ���� = ��̇ − ��� − ���� + �� tr(�) (2.82) 

Further attention on stress rates is given in Section 4.2.3.  

2.11  Summary 

This concludes the main theoretical foundations that support the remainder of this work. 

Some key takeaways are: 

 the links between Gough’s early observations of thermoelasticity, Treloar’s 
development of a kinetic theory to explain the phenomenon, and tensor mathematics 
which establish a general framework for finite elasticity; 

 a summary of glass transition temperatures from multiple sources as well as the 
variation in �� as a function of hydrostatic pressure, the latter being an important 

consideration for high pressure seals in the oilfield; 

 arguments that the glass transition pressure arises from the same source as the glass 
transition temperature, namely constraints on free volume; 

 a clarification of the equivalence of uniaxial compression and equibiaxial extension 
in terms of true stress, and a proof of their equivalence in terms of engineering stress 
(also see Appendices E and F); 

 force and stress descriptions of a load on a bar that is held in uniaxial extension to 
conceptualise a tensor; 

 an illustration on why a pure shear is not a simple shear; 

 the introduction of some common strain-energy functions; 
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 an introduction to biaxiality and giving reference to the first reported numerical 
implementation of biaxiality analysis for a compressible material; 

 an introduction to viscoelastic effects that arise in rubbery materials, with an 
emphasis on reinforcing fillers that amplify inelasticities; 

 a discussion of objectivity and work conjugate pairs in finite elasticity, two effects 
that may be introducing errors and discrepancies in finite-element solvers. 
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3.  Literature Review on Elastomeric Seals 

3.1  Overview 

Elastomeric seals are commonly used to prevent fluid exchange between regions that 

share a common boundary. For example, Fig. 3.1a shows a rubber O-ring compressed 

between a piston and a housing which, upon application of pressure, prevents fluid transfer 

across the sealing boundaries (Fig. 3.1b). Ideally, seals perfectly impede fluid migration, 

but in practice, pressure and chemical concentration gradients always lead to some 

leakage.149 This implies any sealing system must tolerate some leakage with seal failure 

being defined by a finite leak threshold. Seal fracture is often a precursor, but not always a 

prerequisite, for unacceptable leakage (Fig. 3.1c). For instance, elastic leak occurs when 

fluid bypasses a sealing interface without mechanically damaging the seal (Fig. 3.1d). 

    
                                           (a)                                                                          (b) 

    
                                             (c)                                                                         (d) 

Fig. 3.1: (a) O-ring compressed between a piston and housing with no differential pressure. (b) O-ring 
preventing fluid migration from a high pressure zone to a low pressure zone. (c) Leakage due to 

fracture of the seal. (d) Leakage due to elastic leak of the seal. 

As motivation for the numerical calculations in Chapters 5 through 7, this chapter 

reviews the literature for elastic leak prediction in seals, with a focus on studies where: 

 Fracture does not occur; 

 Leakage is strictly pressure-driven. For instance, fluid transfer via chemical concen-
tration gradients is not covered; 

 Leakage occurs along sealing interfaces. That is, fluid migration through the seal or 
surrounding bodies is not considered, thereby omitting fluid diffusion and swelling; 

 Mechanical deformations and fluid motions are quasi-static. Consequently, dynamic 
effects associated with, for instance, boundary layer lubrication are not considered. 

A strict focus on elastic leak is not just of theoretical interest. The research sponsor has 

documented multiple instances of leakage with no apparent damage to sealing compon-

ents. For some of the topics that are not covered here, refer to Windslow75 for fracture and 

gas diffusion, Lou et al.150 for swelling, Müller & Nau149 and Nau151,152 for dynamic 

considerations, and Flitney153 for a general account of seals and sealing materials. 
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3.2  Techniques for Prediction of Elastic Leak 

There are two primary approaches to predict elastic leak at a sealing interface. Classical 

theories rely on arguments from mechanics, usually considering a macroscopic length 

scale, to establish a relationship between contact pressure, fluid pressure, and leakage. 

Alternatively, percolation theories consider the microscopic surface topography of 

contacting bodies which contain small channels that permit leaks. Fig. 3.2 illustrates these 

channels with a PDMS button that is compressed against a rough surface. With a light load, 

dark spots appear at areas highlighting the region of contact. As the load increases, the dark 

areas coalesce, but some voids are still visible. The unfilled areas allow pressurised fluid 

to enter the contact interface and, possibly, permeate across the seal. 

    
Fig. 3.2: A PDMS button with compression load increasing from left to right. Light areas at the contact 

interface indicate possible leak paths. (Adapted from Lorenz.)154 

Both of the strategies are valid for certain problems. For oilfield seals, which generally 

have large initial contact pressures and smooth countersurfaces, it appears most appropriate 

to explore leak prediction using classical theories. For instance, sealing elements in oilfield 

completions packers3 are tested in metal tubulars with arithmetic mean surface roughness 

and initial contact pressure of the order of 2 μm and 7 MPa, respectively.155 Considering 

test fluid volumes of the order of 40 L, leaks at the microscale are negligible if not 

completely absent during typical hold periods of 15 minutes.156,157,158 Furthermore, seals 

often show no apparent leakage until a critical pressure is reached, a fact visually supported 

by the supplementary online videos of leakage in Lui et al.159 Druecke160 also recognised 

that the onset of seal leakage can be sudden, and he gave a classical mechanical description 

of the problem (see his Appendix D). These works, as well as direct observation of axial 

buckling in annular seals,161 indicate that seal leakage is intimately tied to elastic instability.  

The review in this subsection consists of three parts. First, a sample of analytical models 

for leakage is shown, followed by representative studies from percolation theory. Finite-

element models for leak prediction are then presented in two categories: those that (a) only 

assess contact pressures, and (b) those that also simulate fluid pressure penetration (FPP) 

at the sealing interface. Despite their commercial availability since the 1990s,162 FPP 

algorithms have received little research attention, so a comprehensive review of the 

academic studies is given. Based on the author’s anecdotal experience, many industrial 

studies of FPP exist, but their proprietary nature does not permit a critical assessment of 

their accuracy. 
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3.2.1  Analytical Models for Leak Prediction 

Seal contact pressures, which are assumed to correlate with sealing capability, have 

been studied analytically. The models require simple geometry and constitutive laws. 

Müller & Nau149 gave a basic analytical model for a plane strain rectangular seal installed 

in a groove (Fig. 3.3). From generalised Hooke’s law for a linearly elastic material,81 they 

derived an equation for the total contact pressure at a frictionless sealing interface: 

 �� = �� +
�

���
�� ≈ �� + �� (3.1) 

where �� is the initial contact pressure due to compression and �� is the applied fluid 

pressure. The approximation is true for a nearly incompressible material such as rubber 

because � ≈ 0.5. Eq. 3.1 indicates that the seal is self-energising because the fluid pressure 

superposes with the contact pressure. This principle holds for O-rings although their initial 

contact pressure profile, assumed to follow Hertzian contact theory,163 is more complicated. 

Of course, Eq. 3.1 cannot hold for arbitrarily high pressures because, as illustrated in Fig. 

3.1, the seal (or perhaps a countersurface body) must eventually fail mechanically. 

                     
                                                                                                           (c) 

Fig. 3.3: Plane strain rectangular seal: (a) before compression; (b) after compression in a gland; (c) with 

fluid pressure applied. (Adapted from Müller & Nau.)149 

In 1967, Lindley164 proposed a load-deflection equation for a laterally unrestrained O-

ring (that is, one free to expand in a direction perpendicular to the direction of 

compression): 

 �� = 3���(1.25��.� + 50��) (3.2) 

where �� is the total compression force, � is the cross-sectional diameter of the O-ring, � is 

the circumference of the O-ring (see Fig. 3.4), and � = Δ�/� is the average strain due to 

compression by an amount, Δ�. The first term arises from a plane strain assumption and 

Hertzian contact theory, and the second term is an empirical correction factor. Lindley gave 

the peak contact stress as: 

 ��.��� = ��
��

�
(1.25��.� + 50��) (3.3) 

Lindley’s equation follows experimental trends but tends to underestimate stress at low 

values of compressive strain as shown in Fig. 3.4. 

(b) 
(a) 
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Fig. 3.4: Comparison of Lindley’s contact stress equation with experimental data. Stress is normalised by 

the shear modulus. (Adapted from George, Strozzi, & Rich.)165 

Dragoni & Strozzi166,167 derived plane strain contact pressures for a laterally constrained 

O-ring in a rectangular groove. They modified Eq. 3.3 to give the maximum contact 

pressure as:166 

 ��.��� = ��
��

�
(1.25�̂�.�) (3.4) 

where �̂ is an “equivalent” compression that may be derived from the O-ring and gland 

dimensions. From this, they deduced contact pressures in two orthogonal directions as 

illustrated in Fig. 3.5b. They validated the model with finite-element studies and 

experiments on thin photoelastic discs. Their test fixture is shown in Fig. 3.5a. Their 

solutions worked better than Lindley’s equation at 10% compression but became unsuitable 

at 20% compression. The authors also noted that their model was insensitive to changes in 

Poisson’s ratio, and this is a significant limitation. Because a high pressure seal is well-

confined, its volumetric stiffness, which correlates to its Poisson’s ratio (see Eq 4.7), 

significantly alters contact pressure. Although typical rubber compounds have Poisson’s 

ratios in a narrow range of 0.495-0.4995, the corresponding range of bulk modulus to shear 

modulus (�: �) is 10�-10�. So, when shear deformations are inhibited, any energy changes 

to the system are stored in volumetric deformation which is sensitive to �. 
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                                         (a)                                                                           (b) 

Fig. 3.5: (a) Dragoni & Strozzi’s 166 test fixture; (b) Comparison of contact stress equation (loaded in the 
�-direction) with numerical and experimental results. Stress is normalised by the shear modulus. 

Some authors have developed models for O-ring extrusion. Nikas168 predicted the shape 

and contact pressure profile for the extruded portion of a Neo-Hookean O-ring with a 

square cross-section. Also assuming a Neo-Hookean material, Eshel169 predicted the 

pressure for elastic extrusion of an O-ring via roll-out through a frictional extrusion gap 

(see inset in Fig. 3.6). He also considered upper and lower bounds for “plastic” extrusion 

which would occur if the O-ring exceeded its “yield” strength, admittedly an ill-defined 

property for rubber. Fig. 3.6 shows that his model was reasonable as the data follow roughly 

the elastic extrusion theory. The black data points indicate failures in which the O-rings 

were mechanically damaged, and they generally fall within the theoretical plastic failure 

limits.  

 
Fig. 3.6: Comparison of Eshel’s elastic extrusion and plastic yield equations with experimental data. The 

inset illustrates elastic extrusion roll-out under pressure. (Adapted from Eshel).169 

Some authors have described superposition models that account for fluid pressure on 

O-rings. Based on empirical evidence, Karaszkiewicz170 suggested that Eq. 3.1 should be: 



70 
 

 �� = �� + 0.9�� (3.5) 

in order to reduce the significance of the fluid pressure’s contribution to the total contact 

pressure. Other extensions of superposition include: (i) a Hertzian contact model with two 

correction parameters to account for fluid pressure (Fig. 3.7);171 (ii) viscoelastic effects;172 

(iii) an X-ring geometry;173 and (iv) use of Muskhelishvili’s complex analysis for structural 

mechanics174 to decompose stress into real and imaginary components.175  

  
Fig. 3.7: Theoretical and experimental contact pressure profiles for an O-ring (20% compression) with fluid 

pressure. Pressure is normalised by the maximum contact pressure. Position is normalised with respect to 

the centre of the nominally compressed O-ring. (Adapted from Kim et al.)171 

Fracture mechanics has also been invoked to predict leakage. Beghini et al.176 

developed a linear elastic fracture mechanics (LEFM)177 model to predict fluid penetration 

in a metal flange with a linear bolt pattern. It was based on the similarity of a flange 

interface and a partially open planar edge crack. The model considered a bolt preload, 

which held the crack closed, to be countered by fluid pressure on the adjoined bodies (Fig. 

3.8). A stress intensity factor was imposed to predict the critical pressure for leakage. 

Brighenti & Artoni178 developed an LEFM model for a planar PDMS seal on a hard surface. 

The model predicted a critical pressure that would initiate separation (that is, a “crack”) at 

the sealing interface. The authors studied the effect of a lead-in angle between the seal and 

hard countersurface (Fig. 3.9), finding that shallow lead angles reduced the cracking 

pressure due to less efficient self-energisation. 

                 
                                                             (a)                                                           (b) 

Fig. 3.8: (a) A flange with internal pressure and a linear bolt pattern. (b) Partial separation of the flange due 

to the internal pressure. (Adapted from Beghini et al.)176 
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Fig. 3.9: Seal with a lead-in angle after compression. (Adapted from Brighenti & Artoni.)178 

There has been some work on leak prediction of seals with long aspect ratios such as 

swell packers. As the name implies, these seals absorb fluid, swell, and create an annular 

seal. Fig. 3.10 shows swell packers in unswollen (left) and swollen (right) states. The 

swollen packer separates high pressure and low pressure annular regions. Length to cross-

sectional thickness ratios may be greater than 100: 1. Notable work on this subject has been 

given by Druecke and coauthors.160,161,179 They did not focus specifically on quantitative 

prediction of elastic leak, but developed a fracture model and illustrated elastic instabilities 

with small-scale experimental tests. 

 
Fig. 3.10: Swell packers (the black components) in unswollen (left) and swollen (right) states. 

 Al-Hiddabi et al.180 focused on long seals that are bonded to a metal tubular which is 

mechanically expanded, thereby creating an annular seal similar in concept to Fig. 3.10. 

They developed a model to predict contact pressures as a function of compression and fluid 

pressure. The model showed good qualitative agreement with an FE model that assumed a 

Neo-Hookean material. Notably, the authors predicted a critical seal length, after which 

additional length would not increase sealing capability. Druecke179 reached a similar 

conclusion for swell packers. These two works question a well-accepted notion in the 

oilfield that pressure retention in swell packers directly scales with seal length. 

Liu et al.159 studied rectangular plane strain seals with long aspect ratios (Fig. 3.11). 

The seal assumed bonded and frictionless interfaces at its bottom and top, respectively. 

Compression by an amount, � = Δℎ/ℎ created an initial contact pressure profile which was 

altered by application of pressure on an exposed seal face. Using analytical arguments, they 

proposed an equation to predict the pressure required for leakage: 

 ����� = � �
�

���
�

�

�
� +

��

���
�

�

�
�

�

� (3.6) 

where � and ℎ are defined in Fig. 3.11a, and � and � are fitting parameters that arise from 

shear strains at the bottom corners of the seal (indicated by the black dots). (Note: Liu’s 

publication of Eq. 3.6 contains typesetting errors.) The fitting parameters are deduced from 

FE studies, so the model is semi-empirical. Fig. 3.12 shows experimental validation of Eq. 

3.6 as given by Liu. The model works well for 10% compression and an aspect ratio near 

2, but the fit is poor for larger compression and aspect ratios. 
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                                            (a)                                                                           (b) 

     
                                    (c)                                                                                  (d) 

Fig. 3.11: Plane strain seal geometry studied by Liu et al.:159 (a) before compression; (b) after 
compression; (c) after application of pressure; (d) at the critical pressure when �� = ��.���. The 

red line and pink shading indicate the contact pressure profile along the top of the seal. 

 

Fig. 3.12: Comparison of Eq. 4.6 with experimental results. (Adapted from Liu et al.)159 

In summary, analytical models are qualitatively useful, and for some simple problems, 

they give reasonable quantitative predictions. Material constitutive models are restricted to 

linearly elastic or Neo-Hookean behaviour, but this appears reasonable for compressions 

up to perhaps 20%. Several models include Hertzian contact pressure profiles due to 

compression. These appear reasonable for O-rings, but Nau151 notes that Hertzian contact 

does not apply to rectangular seals. Some models address combined contact and fluid 

pressures, but they cannot predict critical leak pressures because they are premised on 

additive superposition. Finally, the frictional behaviour at the sealing interface is usually 

assumed frictionless or, at best, to follow Coulomb’s model. Both models are too simplistic 

for hyperelastic materials.181,182,183 
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3.2.2  Percolation Models for Leak Prediction 

Fig. 3.13a illustrates fluid percolation through a sealing interface, with side and top 

views of the percolating network shown. Leakage across the entire seal occurs when the 

contact pressure is insufficient to block the flow channels. Typical examples of this 

modelling approach are given by Bottiglione et al.184 and Lorenz & Persson.185,186 The 

authors determined the characteristic size of leak paths by analysing surface topography 

and then invoked pressure-flow relationships from fluid mechanics (Fig. 3.13b). The 

technique has been validated for contact pressures of the order of kPa, but it fails at higher 

contact pressures when flow is completely restricted. This subject is not explored further 

in this thesis, but it is worth noting that Persson187 has extended the concept for metal-to-

metal seals at differential pressures of the order of 1 MPa. 

           
                                          (a)                                                                                 (b) 

Fig. 3.13: (a) Illustration of fluid percolation through surface asperities at a contact interface. (b) 

Comparison of a percolation model with experiment. (Adapted from Lorenz & Persson.)185 

3.2.3  Finite-Element Models for Leak Prediction 

Finite-element models for leak prediction can be split into two categories: those that 

strictly assess deformation and contact pressure due to compression, and those that also 

account for the effect of pressure. Some examples of the former and a comprehensive 

review of the latter are given in this subsection. 

Contact Pressure Models 

In 1987, George, Strozzi, & Rich165 constructed a plane strain finite-element model 

(FEMALES, for Finite-Element Mechanical Analysis of Large Elastic Strain) for a laterally 

unconstrained O-Ring with Neo-Hookean behaviour. Fig. 3.14a shows one of their 

deformed meshes superposed on an O-ring that was compressed in an experiment, and the 

correlation is nearly exact. Fig. 3.14b is a repeat of Fig. 3.4, but with the addition of 

solutions from FEMALES to illustrate its improvement over Lindley’s analytical equation. 

One year later, Dragoni & Strozzi166 developed a plane strain FE model for a laterally 

constrained O-ring, and their results are illustrated in Fig. 3.5. 
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                                         (a)                                                                                     (b) 

Fig. 3.14: (a) FE mesh overlay on a compressed O-ring. (b) Comparison of FEMALES, Lindley, and 
experimental contact pressures, with stress normalised by shear modulus. 

(Adapted from George, Strozzi, & Rich.)165 

In 1992, Green & English188 conducted axisymmetric FE simulations on O-rings using 

the commercial software Ansys. They showed that axisymmetric and plane strain models 

differed significantly as compression and constraint increased (Fig. 3.15), even for large 

O-rings with small curvature. They found the Neo-Hookean material model was accurate 

up to 30% compression and demonstrated frictional sensitivities using a Coulomb model. 

An important implication of their work is that plane strain experimental studies of O-rings, 

which are common,165 may not accurately represent axisymmetric O-ring behaviour. 

    
Fig. 3.15: Maximum contact forces for different FE models of O-rings. 

(Adapted from Green & English.)188 

There are numerous other studies on contact pressures in seals, such as: 

 optimisation of seal length for oilfield expansion mandrels;189 

 determining an empirical leak equation for underground shielding tunnels;190 

 3D simulation of an O-ring compressed by a flange;191 

 pinching damage of a seal in a ball valve;192 

 analysis of O-rings with D-shaped193 and U-shaped194 cross-sections;  
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 analysis of Chevron seals (also called Vee-packing);195 

 analysis of metal-to-metal seals.196 

Some of these studies used a Mooney-Rivlin material model which is discouraged for 

problems involving uniaxial compression (or equivalently, equibiaxial tension).50 

Pressure Penetration Models 

Consider further the analytical/semi-empirical model of Liu et al.159 The experimental 

leak pressures from Fig. 3.12, repeated in Fig. 3.16a, are for steady-state leakage which 

occurs at a constant flow rate across the entire seal. Fig. 3.16b shows these are much lower 

than experimental leak initiation pressures. The leak equation was fit to the steady pressures 

because they were repeatable and, presumably, the frictionless interface was approximated 

well during steady leak. In some cases, accurate prediction of the leak initiation pressure is 

of greater interest, and as will be shown, an accurate model for friction becomes critical. 

   
         (a) 

 
         (b) 

Fig. 3.16: (a) Steady leak pressures vs. aspect ratio. (b) Test data for 3 pressure cycles showing differences 

between leak initiation and steady leak pressures. (Adapted from Liu et al.)159 

Fig. 3.17 compares contact pressure profiles for rectangular plane strain seals with 

frictionless and (Coulomb) frictional interfaces, with � indicating the coefficient of friction. 

The models were generated in Abaqus and assume a Neo-Hookean material. The graphics 

on the left show the seals with a low pressure applied, and the maximum contact pressure 
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in both seals exceeds the fluid pressure. Higher fluid pressures are applied on the right. In 

the frictionless seal, the applied pressure equals the maximum contact pressure, so leak is 

imminent. This same pressure is applied to the frictional seal, but friction causes the peak 

contact pressure to exceed the fluid pressure because a small portion of the pressure is 

directed upward near the sealing front which is defined in Fig. 3.17a, better energising the 

seal. According to this cursory analysis, the frictional model seals better than the frictionless 

model. 

    
                                     (a)                                                                             (b) 

                
                                        (c)                                                                                (d) 

Fig. 3.17: Rectangular plane strain seals with: (a) low pressure and a frictionless interface; (b) the critical 
leak pressure applied to the frictionless seal; (c) low pressure and a frictional interface; (d) the same 

pressure as applied in Fig. 3.17b to illustrate that the peak contact pressure in the frictional 
 case exceeds the fluid pressure. 

Examination of the contact pressure profile in Fig. 3.17d reveals an important 

consideration that is irrelevant in the frictionless case. With friction, a portion of the contact 

pressure profile near the sealing front is less than the fluid pressure, so presumably, fluid 

can leak through this region and alter the pressure profile, possibly inducing leakage. Fig. 

3.18 illustrates this by plotting a frictional contact pressure profile near the sealing front. 

The contact pressure profile is normalised by its maximum, and it is greater than the applied 

fluid pressure. However, the model does not account for leakage through the initial 6% of 

the sealing interface. A better model would account for this possibility, and several 

techniques to account for this have been addressed in the literature. 
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Fig. 3.18: Normalised contact pressure profiles near the sealing front with frictional and frictionless 

interfaces. The frictionless seal clearly leaks. It is unclear if the frictional seal will leak because 
fluid penetration through the shaded portion of the profile is not simulated. 

In 1999, Estrada & Parsons162 conducted 3D and axisymmetric FE simulations of a 

tubular flange joint with a Neoprene gasket using an incompressible Mooney-Rivlin 

material model. Their coarse FE mesh and its boundary conditions are illustrated in Fig. 

3.19. For the 2D analysis, they used Abaqus’ automated fluid pressure penetration 

algorithm to predict leakage, making this perhaps the earliest demonstration of such 

capability in the literature. The authors found their 2D and 3D FE results in accord with 

industrial design guidelines. 

 

Fig. 3.19: The FE mesh of the radial flange gasket from Estrada & Parsons.162 

Estrada & Parsons stated that Abaqus’ FPP algorithm propagates pressure when contact 

and fluid pressures are equal, but this appears to be a misunderstanding. Abaqus’ default 

setting propagates pressure when the contact pressure falls to zero.197 Importantly, this leak 

criterion, �� = 0, is much different than the traditional criterion, �� = ��. In Abaqus, leakage 

can be set to occur at any user-specified contact stress, but there is no built-in capability to 

update the leak criterion to match fluid pressure as the simulation progresses. To impose 

leakage when �� = ��, pressure must be manually propagated step-by-step, or a user-

defined subroutine could possibly impose the criterion, though such a routine has not been 

publicly demonstrated. This topic is given more thorough attention in Chapter 7. 

In 2004, Möller & Stey198 developed an Abaqus subroutine to implement FPP in a 3D 

analysis of an elastomeric seal. They benchmarked the algorithm against the built-in 2D 

FPP capability, finding some small differences between the solutions. Regardless, the 
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algorithm successfully ran their 3D problem. Fig. 3.20 shows some of their results. In 2014, 

Slee et al.199 studied FPP in a metal-to-metal seal, recognising that once Abaqus propagates 

fluid pressure to a node with open contact, it cannot remove pressure from that node in later 

steps if the contact closes up again. They wrote a subroutine to remove fluid pressure from 

nodes when this occurred. Today, Abaqus has a built-in FPP algorithm for 3D analyses, but 

a subroutine is still required to remove fluid pressure from nodes that change from open to 

closed contact. New subroutines to handle closing contact were developed for this thesis 

and are presented in Chapter 5. 

       
                    (a)                                                 (b)                                                           (c) 

Fig. 3.20: Pressure penetration solutions in Abaqus: (a) fluid pocket in a 2D model of a Vee-seal using a 
user-defined FPP subroutine; (b) 3D radial seal before pressure application; (c) 3D radial seal after 

pressure application. (Adapted from Möller & Stey.)198 

Several authors have studied pressure penetration through flexible pipe couplings used 

in offshore applications for the oilfield. These tools feature a metal seal ring that is swaged 

into a polymeric barrier on its inner surface and a metal body on its outer surface. Fig. 3.21 

schematically illustrates the critical seal in the tool. Li et al.200 conducted an FE study on 

the assembly, but it is unclear how they applied the pressure load. Fernando & Karabelas201 

also studied the seal ring with an axisymmetric FE model. They defined what appears to be 

a novel leak equation: 

 �� = ��� + (1 − �)�� (3.7) 

where �� and �� are contact and fluid pressures at a node, �� is the yield strength of the 

weakest material at a sealing interface, and � is a material- and geometry-dependent 

parameter. As shown in Fig. 3.22, a plot of normalised contact pressure versus normalised 

fluid pressure defines the threshold at which leakage occurs. The authors manually 

implemented their leak criterion by iterating 2D solutions with increasing pressure 

increments, extracting contact stress results, and then moving the pressure load when the 

leak criterion was satisfied at nodes along the sealing front. The simulations were validated 

against experimental tests with an ultrasonic technique to measure contact stress, and good 

agreement was found. It is not clear if Eq. 3.7 can be adopted for elastomeric seals because 

they do not have a well-defined yield strength. In addition, the authors do not explain how 

they determined �. Tang et al.202,203 provided two more examples of pressure penetration 

on seal rings using Abaqus’ built-in FPP algorithm. 
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Fig. 3.21: Flexible hose coupling for offshore oilfield 

applications. (Adapted from Fernando & 

Karabelas.)201
 

Fig. 3.22: Leak failure map based on Eq. 4.7. 

(Adapted from Fernando & Karabelas.)201 

Hu et al.204 conducted experimental and FE studies on a simplified version of an oilfield 

packer seal,3 illustrated schematically in Fig. 3.23. They used Abaqus’ built-in FPP with a 

2D axisymmetric model. They conducted friction characterisation tests and used a 

Coulomb model with � = 0.045 for rubber-on-steel and � = 0.024 for rubber-on-

polymethyl methacrylate, commonly called plexiglass. The plexiglass allowed visual-

isation of the seal during experimental testing (Fig. 3.24). As shown in Fig 3.25, they 

achieved remarkable consistency between simulation and experimental results. 

       
                                            (a)                                                                              (b) 

Fig. 3.23: Schematic illustration of a 2D axisymmetric oilfield packer seal: (a) FE mesh; (b) after setting 

and with a small amount of pressure applied. (Adapted from Hu et al.)204 

 

 
Fig. 3.24: Packer seal test fixture with trans-

parent tubular. (Adapted from Hu et al.)204

 
Fig. 3.25: Experimental and numerical results for a 

packer seal. (Adapted from Hu et al.)204 

Zhao et al.205 conducted a 3D FE analysis of a linear section of a cabin seal for an 

aircraft. They used Abaqus’ built-in FPP capability. The seal, a fabric-rubber composite, 

was vertically compressed, and then cabin pressure was applied (Fig. 3.26). Unique to this 

study, the authors knew a priori  that the critical contact pressure for leakage was 42.4 kPa, 

so this was specified in the FPP settings. 
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                                                  (a)                                                                         (b) 

Fig. 3.26: (a) 3D FE mesh of an aircraft cabin pressure seal before compression. (b) The seal after 

compression and with pressure along one surface. (Adapted from Zhao et al.)205 

Gong and coauthors206,207,208 conducted a series of studies in Abaqus for gasket seals in 

underground shield tunnels (Fig. 3.27). The seal geometry in different configurations is 

shown in Fig. 3.28. They used Abaqus’ 2D FPP algorithm with default settings, finding 

predicted leak pressures were generally lower than experimental results, but accurate within 

±20%. They conducted a mesh-sensitivity study for the seal compression step, but not the 

pressure penetration loading. A Mooney-Rivlin model and Coulomb friction (usually with 

� ≈ 0.5) were used. They also used adaptive re-meshing to correct mesh distortion that 

occurred when pre-manufactured voids in the seal collapsed. 

   
Fig. 3.27: Underground shield tunnel constructed from curved sections that are sealed by compression 

gaskets. (Photo from the Institution of Civil Engineers.)209 

 
                                (a)                                               (b)                                                (c) 

Fig. 3.28: Shield tunnel gasket seals: (a) before compression; (b) after compression; (c) with fluid pressure 

applied. (Adapted from Gong et al.)190 

Gorash and coauthors have published a series of papers that explore fluid pressure 

penetration. In 2016, they conducted 2D metal-to-metal FPP studies in Ansys using a multi-

scale model approach to address roughness at the microscale.210 A year later, they  
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attempted 2D FPP in Abaqus/Standard (which uses an implicit solution scheme) for an 

oilfield swell packer,211 but convergence was not achieved due to contact issues. They 

achieved a converged solution in Abaqus/Explicit which has no built-in FPP algorithm, so 

pressure was not propagated. Nevertheless, the seal suddenly extruded at a critical pressure, 

indicative of elastic instability. 

In 2018, Gorash et al.212 successfully extruded a swell packer with Abaqus’ built-in 

FPP algorithm (Fig. 3.29). Important to note, a material model for unfilled rubber was used 

which is not realistic for practical swell packer materials. Contact convergence was 

facilitated with a bi-linear Coulomb-Orowan frictional law.213 This law applies a Coulomb 

friction model until a critical shear force threshold, above which the frictional force is 

constant regardless of any increase in the normal load. If the frictional force drops below 

the shear threshold, the Coulomb model resumes. Wriggers214 noted that this mitigates 

nodal locking and has a smoothing effect on the contact behaviour. Convergence was also 

helped with Abaqus’ global automatic stabilisation control which adds non-physical 

viscous damping to the model at the expense of some modelling error. Turning their 

attention back to Abaqus/Explicit, the authors implemented a coupled Euler-Lagrange 

(CEL) approach to solve the swell packer extrusion problem (see the next paragraph for 

details on CEL), but the simulation did not converge (Fig. 3.30). However, convergence 

was achieved on a seal with a low aspect ratio, �/ℎ = 0.2. 

   
                         (a)                                                (b)                                                          (c) 

Fig. 3.29: An unbonded swell packer: (a) before application of FPP; (b) with pressure applied but prior to 
blowout; (c) with FPP at blowout. Note that a contact definition was not assigned at the interference on 

the bottom right. (Adapted from Gorash et al.)212 

 
Fig. 3.30: A swell packer loaded with pressure by a fluid using the CEL approach. Bubbles appear and 

disappear in the fluid domain due to computational noise. Compared to Fig. 3.29b, the deformation 
appears unrealistic because fluid does not penetrate between the gauge ring and swell packer. The 

simulation failed to converge at the point shown. (Adapted from Gorash et al.) 212 

Morrison, Gorash, & Hamilton215 used Abaqus’ built-in FPP and CEL capabilities to 

study leakage across the axisymmetric seal shown in Fig. 3.31. The CEL approach assigns 

a Lagrangian mesh to solid bodies and an Eulerian mesh to fluid domains. Referring to Fig. 

3.31, the seal uses a Lagrangian mesh. The fluid domain permeates the whole interior of 

the bounding walls, and a working fluid is initially assigned in the left domain. In Fig. 
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3.31b, a piston has pushed the fluid across the seal to cause leakage. Distinct from Abaqus’ 

FPP algorithm, CEL accounts for contact nodes opening and closing during the simulation. 

However, it has drawbacks. It is computationally expensive, requires significant post-

processing, and is subject to computational noise in the fluid domain (Fig. 3.32a). 

Nevertheless, once the authors fully processed their data, they achieved good correlation 

between Abaqus’ FPP and CEL solutions (Fig. 3.32b). For a more detailed review of CEL, 

see Foucard et al.216 and references therein. 

As a final note, Abaqus has some online tutorials that are relevant to the topics in this 

section. See Parraga217 and Morlacchi218 for demonstrations of FPP on a threaded joint and 

the CEL technique with a boat hull, respectively. 

  
                                          (a)                                                                                         (b) 

Fig. 3.31: 1° segment of the axisymmetric seal studied by Morrison et al.:215 (a) with a pressurised fluid 

prior to leakage; (b) as fluid breaches the sealing interface. (Images adapted from Gorash.)219 

      
                                            (a)                                                                                      (b) 

Fig. 3.32: (a) Noise in the fluid pressure time history when using the CEL approach. (b) Comparison of 

CEL and FPP leakage pressures. (Adapted from Morrison et al.)215 
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3.3  Summary 

Several analytical models have been developed to predict contact pressures for simple 

seal geometries and in particular for O-rings. Some of these account for the application of 

fluid pressure, but they are generally unable to predict critical leakage pressures because 

they assume fluid and contact pressures superpose. One exception to this is the semi-

empirical model of Liu et al.,159 but it does not account for friction. Based on FE studies 

that have extended Liu’s work, friction is a critical parameter when modelling seal leakage 

because it alters the contact pressure profile near the sealing front, potentially allowing 

fluid to penetrate the sealing interface. Due to the coupling of frictional behaviour, which 

itself is complicated for elastomers, and the evolution of contact stress with fluid pressure, 

numerical simulation appears to be the only recourse to develop accurate models for leak 

prediction. 

As summarised in Table 3.1, there are several methods to simulate pressure penetration 

at a contact interface, the most common being automated FPP in Abaqus or Ansys. Several 

authors have achieved good correlation between experimental and numerically simulated 

leak pressures. However, studies in Chapter 5 reveal that predicted leakage pressures are 

sensitive to many factors including: (i) the frictional model; (ii) mesh size; (iii) how 

pressure (a surface load) is discretised to nodes (a concentrated load); (iv) the leak criterion 

(such as �� = 0 or �� = ��); and (v) changes in nodal contact status. Collectively, these 

factors can change leak predictions by more than 50%, but they have not been 

systematically addressed in the literature. Some other concerns or gaps in the existing 

literature are: (i) the use of a Mooney-Rivlin model without showing that uniaxial 

compression is a negligible loading mode, for instance through the use of a biaxiality 

analysis; (ii) simulated pressures for rubber seals are much lower than those encountered 

in the oilfield where 35 to 70 MPa is common; and (iii) material compressibility, which can 

become important for highly constrained seals, is usually not modelled. Given the 

uncertainties in the published models, some of the reported accuracies may simply be 

fortuitous. Chapter 5 addresses some of these knowledge gaps in the literature with an in-

depth assessment of numerical FPP techniques in Abaqus. 
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Table 3.1: Summary of FE studies that simulate fluid pressure penetration in seals. 

 
(i) FPP: a built-in algorithm for fluid pressure penetration in Abaqus or Ansys. 

Man.: pressure was manually propagated, step-by-step, by the user. 
Sub.: a user-defined subroutine-controlled the pressure penetration. 
CEL: automated pressure penetration via the coupled Euler-Lagrange scheme. 

(ii) 0.3 was specified for the Coulomb part of Coulomb-Orowan frictional behaviour. 

  

Rubber Poisson's Rubber Max. DP

3D 2D SEF Ratio, n Friction, m / MPa FPP Man. Sub. CEL

1999  Estrada & Parsons179 X X Mooney-Rivlin? 0.5 0.8 0.35 X - - -

2004  Möller & Stey215 X X ? ? ? ? - - X -

2014  Liu et al .176 - X Neo-Hookean 0.5 0 0.08

2018  Gorash et al .230 - X van der Waals 0.5 0.3(ii) 3 X - - X

2018  Morrison et al .233 - X Ogden-n3 0.499995 0.3 0.018 X - - X

2018  Hu et al .221 - X Yeoh 0.5 0.024, 0.045 2.3 X - - -

2018  Zhao et al .222 X - Mooney-Rivlin 0.5 0.21 0.04 X - - -

2018  Gong & Ding223 - X Mooney-Rivlin 0.5 0.5, 0.57 2.3 X - - -

2019  Gong et al .224 - X Mooney-Rivlin 0.5 0.5, 0.57 1.7 X - - -

2020  Gong, Ding, & Xie225 - X Mooney-Rivlin 0.4999 0.2-0.8 1.3 X - - -

2014  Slee et al .216 X? - N/A N/A N/A 450 X - X -

2014  Fernando & Karabelas218 - X N/A N/A N/A 200 - X - -

2016  Gorash et al .228 - X N/A N/A N/A 23 X X - -

2019  Tang et al .219 - X N/A N/A N/A 40 X - - -

2020  Tang et al .220 - X N/A N/A N/A 30 X - - -

Propagation Technique(i)

Not Attempted

AuthorsYear
Analysis
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4.  Novel Constitutive & Characterisation Models for Hyperelasticity 

4.1  Overview 

This chapter presents two novel contributions to the literature that are not related 

specifically to the problem of seal leakage. A strain-energy function is proposed that 

models large non-linearities in the stress-strain curves of highly filled sealing materials. 

Focus is given to the SEF’s behaviour at low strains (say, ≤ 10%) which have less attention 

in the modeling literature than the characteristic stiffening response that occurs at larger 

strains. The SEF has six model parameters, yet its mathematical structure is simple enough 

to allow curve fitting by inspection. This technique is demonstrated and shown to give 

results that are comparable to parameters that are algorithmically determined. Validation 

of subroutines to implement the SEF in Abaqus are also demonstrated. 

The second new contribution relates to the uniaxial tension test. In some cases, it may 

be necessary to approximate strain from the grip displacement, but this can introduce large 

errors when the rubber specimen is not prismatic. Hence, a method to correct stress-strain 

data when strain is measured from grip displacement is proposed. Numerical and 

experimental studies are used to validate the technique. 

4.2  A Novel Strain-Energy Function for Highly Filled Elastomers†† 

Strain-energy functions have received exhaustive attention in the literature,87 and 

particular attention has been given to the characteristic stiffening phenomenon at large 

strains (see Fig. 2.18). In Section 2.7, some complications due to reinforcing filler were 

introduced. For example, Fig. 4.1 shows Treloar’s unfilled data for NR220 compared to a 

filled industrial material from Yeoh.92 Yeoh’s material data is much stiffer, and the strain 

stiffening effect occurs at much lower strains due to molecular constraint that is imposed 

by the reinforcing filler. It is for this latter reason that Yeoh could not reasonably use the 

Neo-Hookean SEF, leading him to propose a new SEF that fit well to the data for his filled 

material. Yet, a key limitation remains in the Yeoh SEF and almost all other SEFs that have 

been proposed in the literature. To understand this limitation, one characteristic of high 

pressure oilfield seals must be discussed. 

Sealing materials in the oilfield often have extraordinary amounts of reinforcing filler 

to counter two types of failure: extrusion and rapid gas decompression (RGD, or 

synonymously, explosive decompression). The former failure mode has already been 

illustrated in Fig. 3.1c where a portion of a seal fractures through an extrusion gap. The 

latter mode is a consequence of gas diffusing into the rubber at a high pressure over a 

 
†† The work in this section is published in Rubber Chemistry & Technology, 92 (4), 653-686. 
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relatively long time. When pressure reduces quickly, the gas undergoes a volumetric 

expansion. Without sufficient time to diffuse out of the rubber matrix, the gas creates 

internal fractures that can cause complete failure of the seal. Both failure modes are 

mitigated by introducing large amounts of filler to increase the shear modulus, and this 

stiffness inherently resists deformation and fracture.75 Fig. 4.1b illustrates the exceptional 

stiffness of an oilfield sealing material by comparing a 90D (Shore A) HNBR to more 

conventional industrial elastomers. The strain stiffening response of the HNBR material is 

not exceptional, but the rapid reduction in the tangent modulus at low strains is. It is this 

characteristic that most SEFs model poorly. 

      
                                                  (a)                                                                             (b) 

Fig. 4.1: Stress-stretch response of: (a) a filled industrial material from Yeoh92 compared to Treloar’s 

uniaxial data220 for unfilled NR; (b) a highly filled oilfield sealing material (HNBR, 90D) and two 

filled industrial materials from Yeoh92 and Fujikawa et al.221 

To demonstrate how most SEFs are ill-suited for modelling oilfield seals, Fig. 4.2a 

shows the Neo-Hookean SEF with two different shear moduli when fit to the 90D HNBR 

material. If the shear modulus is chosen to fit the initial slope of the stress-strain curve, the 

model grossly overpredicts the stress magnitudes at all strains above 10%. If the shear 

modulus is reduced to better fit the overall profile, there are large underpredictions in stress 

magnitudes at low strains. The source of these mismatches lies in the fact that the 

mathematical form of the Neo-Hookean SEF precludes it from tracking the curvature of 

the stress-strain data at low strains. Turning to the Yeoh SEF in Fig. 4.2b, there is 

improvement in the curve fit with parameters determined by inspection or with a 

Levenberg-Marquardt (LM) algorithm222 (see Appendix G). However, even the Yeoh 

model poorly tracks the stress-strain data at low strains. The problem with both of these 

SEFs is that the low-strain behaviour is controlled by the (�� − 3)� term. In fact, almost all 

particular SEFs that have been proposed in the literature adopt this term or one similar, and 

it is why they poorly fit the low strain behaviour of sealing materials in the oilfield. 
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                                             (a)                                                                                  (b) 

Fig. 4.2: SEFs fit to data for HNBR seal material; (a) Neo-Hookean; (b) Yeoh: coefficients by inspection, 
(���, ���, ���) = (2.9, −0.15, 0.025) MPa, and by LM algorithm, (���, ���, ���) = (3.6, −0.84, 0.185) MPa. 

To address the fitting problem at low strains, Davies et al.91 proposed the so-called 

Davies-De-Thomas (DDT) SEF which may be cast as: 

 � = ��(�� − 3 + ��)� + ��(�� − 3)� (4.1) 

where 0 < � ≤ 1 acts on the leading term and 0 ≤ � ≪ 1 is introduced as a low strain 

correction parameter. In fact, this parameter is not necessary to correct low strain behaviour 

for many problems, so let � = 0. The real strength of the DDT SEF is the freedom of its 

parameter �. When � < 1, stresses at the lowest strains are amplified and a rapid 

diminution in the tangent modulus can be modelled accurately. This is illustrated in Fig. 

4.3 where (��, ��) = (2.78 , 0) MPa are fixed and � is incrementally reduced from 1 to 0.8. 

Of course, the upward inflection can be captured by setting �� > 0. Using the LM fitting 

algorithm, a curve fit using the DDT model is shown in Fig. 4.4, and it tracks the data 

remarkably well. 

     
                            (a)                                                      (b)                                                     (c) 

Fig. 4.3: Improvement in fitting the low strain behaviour of a 90D HNBR material by varying the para-
meter � in the DDT SEF: (a) � = 1 which returns the Neo-Hookean SEF; (b) � = 0.9; (c) � = 0.8. 
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Fig. 4.4: A curve fit using the LM algorithm; (��, ��) = (2.78 , 0.16) MPa and (�, �) = (0.78 , 0). 

The DDT SEF does introduce a problem during numerical implementation when a 

rubber is in an unstrained state. To illustrate, consider the uniaxial stress equation for the 

DDT SEF which may be derived by using the chain rule to differentiate Eq. 4.1 with respect 

to �:50 

 �� = 2(� − ���)[���(�� − 3 + ��)��� + 2��(�� − 3)] (4.2) 

where �� can denote uniaxial tension or compression stress. In the unstrained state, � = 1 

and �� = 3, and restricting to � < 1 (to address the low strain diminution of modulus as 

illustrated in Fig. 4.4) with � = 0, algebraic manipulation of Eq. 4.2 results in an 

indeterminate fraction of 0/0. Setting � > 0 alleviates this problem, but it leaves a finite 

energy in Eq. 4.1 even in the unstrained state. That is, strain-energy is positive with no load 

on the system. Both of these problems are avoided by enforcing � = 0, and then imposing 

logic (for instance, an IF-THEN statement) to assign zero stress to any rubber in an 

unstrained state. 

Building on concepts from the Yeoh and DDT SEFs that have been outlined, this thesis 

proposes and implements a novel SEF of the form: 

 � = ��(�� − 3)� + ��(�� − 3)� + ��(�� − 3)� (4.3) 

where (��, ��, ��) and (�, �, �) are real numbered fitting parameters. Typical constraints on 

the parameters are: �� > 0 ; �� ≤ 0 ; �� ≥ 0 ; �� > |��| > �� ; 0.7 ≤ � < 1 ; and � < � <

�. These give a form that is well-aligned with Yeoh’s model, so the model is designated 

the generalised Yeoh (gen-Yeoh) SEF. The flexibility in the exponents allows the function 

to accurately capture low and high strain non-linearities for highly filled sealing rubbers. 

4.2.1  Curve Fitting the gen-Yeoh SEF by Inspection 

Due to a simple mathematical structure, and using the constraints that have been 

suggested, the parameters of the gen-Yeoh SEF can be determined to a good degree of 
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accuracy by inspection. To illustrate, consider Fig. 4.5a which plots data from the HNBR 

sealing material on log axes. The �-axis is expressed in terms of the first invariant, and the 

�-axis uses a measure of stiffness called reduced stress which for uniaxial tension and 

compression is given by:‡‡ 

 �� =
��

�(�����)
 (4.4) 

For reference, the figure includes stretch values, ���, in uniaxial tension that correspond to 

log (�� − 3). The UT and UC data overlay one another fairly well, indicating that they are 

well conditioned for fitting with ��-based SEFs.91 This condition does not always occur (see 

Appendix K for further comment), so it is ideal to have data from more than one loading 

mode to confirm the approach.  

    
                                                 (a)                                                                              (b) 

    
                                                 (c)                                                                              (d) 

Fig. 4.5: Fitting the gen-Yeoh SEF by inspection for a 90D HNBR sealing material: (a) uniaxial data; 
(b) setting �� and �; (c) setting �� and �; (d) setting �� and �. 

 
‡‡ The factor of 2 in the denominator of Eq. 4.4 is missing in early versions of the RCT publication. 
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To fit the gen-Yeoh SEF to the data, first adjust the vertical position with �� and set the 

slope of the linear region with � (Fig. 4.5b). Next assign a guess value � = 2 and adjust �� 

to capture finite-extensibility. Slight adjustments to �� and � may also improve the fit (Fig. 

4.5c). Finally, adjust �� and � to better tune the overall fit and adjust other parameters as 

necessary (Fig. 4.5d). Bear in mind that the data points less than log(�� − 3) = -2.5 are 

subject to large measurement error, and the errors are amplified in the log plot. This 

becomes apparent when the data is converted back to linear axes as shown in Fig. 4.6a 

where the low strain fit looks good. 

For comparison with the method of fitting by inspection, the LM algorithm was also 

used to determine model parameters. Fig. 4.6b shows a seemingly trivial improvement in 

the curve fit, giving credence to fitting the model by inspection. Fig. 4.6b also shows a 

proper ordering of the predicted stress responses in planar and equibiaxial loading modes, 

and there are no intersections of the different loading mode curves that could cause 

problems with numerical stability.  

    
                                                 (a)                                                                            (b) 

Fig. 4.6: Stress-stretch plots with the gen-Yeoh SEF for HNBR sealing material on linear axes: (a) same 
parameters as Fig. 4.5d; (b) parameters from LM algorithm, (��, ��, ��) = (5.38, −2.85, 0.4) MPa, 

(�, �, �) = (0.89, 1.08, 1.85). 

4.2.2  A Summary of Errors with the Different Strain-Energy Functions 

Table 4.1 shows relative errors of various curve fits in this section using the following 

equation: 

 �� =
�

��
∑ �

���,������,�����
�

��,����
�

��

�
 (4.5) 

where N� is the total number of measurement points, ��,���� are stress data points, and ��,��� 

are stresses predicted by the SEF. The DDT and gen-Yeoh SEFs have the lowest errors, 

and using the LM algorithm reduces fitting errors as expected. 
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Table 4.1: Errors from Eq. 4.5 for different SEFs when fit to the HNBR sealing material data 

Model Fitting Method Comment Error 

Neo-Hookean Inspection � = 13 MPa 1.103 

Neo-Hookean Inspection � = 5.4 MPa 0.282 

Yeoh Inspection Fig. 4.2b 0.228 

Yeoh LM algorithm Fig. 4.2b 0.151 

DDT LM algorithm Fig. 4.4 0.061 

gen-Yeoh Inspection Fig. 4.5 0.074 
gen-Yeoh LM algorithm Fig. 4.6b 0.035 

4.2.3  Validation of the gen-Yeoh SEF Subroutines 

The UHYPER and VUMAT subroutines for the gen-Yeoh SEF were validated in 

Abaqus/Standard and Abaqus/Explicit, respectively, and the codes are in Appendices A 

and B. Some notes on using the routines are in Appendices P and Q. Abaqus/Explicit does 

not have a fully incompressible quadrilateral finite-element, so following the proposed 

deviatoric and volumetric decomposition of Eq. 2.47, a term to model slight compressibility 

is added to the gen-Yeoh SEF to give: 

 � = ��(��̅ − 3)� + ��(��̅ − 3)� + ��(��̅ − 3)� + �( � − 1)� (4.6) 

where � is the material’s bulk modulus. In the absence of a volumetric compression test to 

determine the bulk modulus, it may be estimated from linear elastic theory as: 

 � =
��(���)

�(����)
 (4.7) 

by assuming a Poisson’s ratio with 0.495 ≤ � ≤ 0.4995 typical. 

Eq. 4.6 assumes that the compressibility is a linear function of pressure (or stress), but 

as Fig. 2.10 indicates, the linearity is lost at high pressures. Thus, there are cases where it 

is appropriate to include an additional term for volumetric deformation: 

 � = ��(��̅ − 3)� + ��(��̅ − 3)� + ��(��̅ − 3)� + ��(� − 1)� + ��(� − 1)� (4.8) 

where �� describes the low-pressure (linear) volumetric response, and �� is a quadratic 

correction for higher pressures. It is perhaps confusing to describe ��(� − 1)� as a linear 

term since it raised to the power of two, but this occurs only because it is expressed with � 

instead of ��. When the latter is used, (� − 1)�� terms are replaced by (�� − 1)�, and the 

peculiarity of describing a quadratic term as linear is avoided. For the validation exercises 

that follow, the simpler form of Eq. 4.6 has been assumed. 

The UHYPER subroutine for the gen-Yeoh SEF was initially tested with the Yeoh 

parameters from Fig. 4.2b and compared to Abaqus’ built-in Yeoh model. A Poisson’s ratio 

of 0.495 was assumed, and it was converted to compressibility parameter �� according 

to:223  

 �� =
�

�
=

�(����)

�(���)
= 2.78707 ∗ 10�� MPa�� (4.9) 

where � = 2��� in the Yeoh model and � ≈ 2�� in the gen-Yeoh model. 
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Homogeneous modes of deformation, including simple shear, were tested on a unit cube 

with one linear, hybrid, reduced integration brick element (C3D8RH in Abaqus 

nomenclature). With only one exception, stresses, strains, energy density, and element 

volume matched to 9 decimal places, the maximum precision in Abaqus’ visualisation 

module. In the pure deformation modes (for instance uniaxial tension), finite stresses were 

computed in principal directions in which no load was applied. These were an artefact of 

the numerical solution and only amounted to 0.001% of the stress values in the directions 

of applied deformation. The artificial stresses also arose in tests with a fully incompressible 

element, so the issue did not arise solely from volumetric deformation. 

To test inhomogeneous deformations, a unit cube (1 mm�) was meshed with 20� 

elements. The cube was fixed on its bottom surface and twisted through 60° on its top 

surface. Fig. 4.7 shows maximum principal nominal strains in the cube. All maximum and 

minimum principal stresses and strains matched to 9 decimal places. Element volumes and 

energy densities also matched to 9 decimal places. 

 
Fig. 4.7: Maximum principal nominal strain contours in cube when twisted 60°. 

The gen-Yeoh model was then run using the algorithmically-determined parameters in 

Fig. 4.6b and �� = 1.86495 ∗ 10�� MPa��. Simulation times with the built-in Yeoh model, 

UHYPER Yeoh model, and UHYPER gen-Yeoh model were 161 s, 163 s, and 165 s, 

respectively, using full nodal precision and 8 processors on a 12 core Intel Xeon E5-2620 

CPU. 

In Abaqus/Explicit, inertia effects must be considered, so a density of 1 g/cm� was 

assigned to the material. Mass scaling224 was required to prevent the stable time increment 

from becoming too small for the computer’s numerical precision. Scaling factors up to 10� 

affected stress, strain, volume, and strain-energy density less than 1%. A factor of 10� was 

used for final validation of the VUMAT subroutine. 

When comparing the built-in and VUMAT Yeoh models in homogeneous modes of 

deformation, artificial stresses again occurred in the directions in which no loads were 

applied. However, they were two orders of magnitude lower than their Abaqus/Standard 

counterparts. Consequently, some small but negligible differences between the built-in and 

VUMAT solutions were found with homogeneous deformations. 
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Small discrepancies were found in the twisted cube solutions when using the built-in 

and VUMAT Yeoh models, though they were negligible in terms of practical engineering 

design. Table 4.2 summarises the percent differences for some selected field outputs with 

the different material solution techniques. 

Table 4.2: Percent difference in selected field output values using built-in and VUMAT Yeoh models. 

Field Output Built-In Yeoh VUMAT Yeoh Difference 

Principal stress / MPa 
Max. 8.7532 8.7839 0.35% 

Min. 1.3431 1.3477 0.34% 

Principal strain 
Max. 0.38557 0.38581 0.06% 
Min. −0.018584 −0.018599 0.08% 

Volume / mm� 
Max. 1.2580 ∗ 10�� 1.2582 ∗ 10�� 0.02% 

Min. 1.2458 ∗ 10�� 1.2459 ∗ 10�� 0.01% 

Energy density / 
��

���
 

Max. 1.3919 1.3913 0.04% 

Min. 5.6965 ∗ 10�� 5.7079 ∗ 10�� 0.20% 

Discrepancies were expected when testing inhomogeneous deformations because 

Abaqus/Explicit uses the Jaumann objective stress rate with built-in material models and 

the Green-Naghdi objective stress rate with VUMAT models. These have differences when 

finite rotations and shear occur simultaneously.225  Furthermore, Vorel & Bažant148 argue 

that both of these stress rates are not generally accurate in numerical simulations. They 

recommend converting to the Truesdell stress rate, but this has not been pursued here. 

Nevertheless, it is a topic worth further exploration as it may reconcile the discrepancies 

between the solutions of the built-in and VUMAT Yeoh models. This could become 

particularly important for problems with larger shear and rigid body rotation. 

The gen-Yeoh model ran without issue using the VUMAT and the same material 

parameters as the gen-Yeoh UHYPER subroutine. Using double precision with eight 

solution domains, simulation times with the built-in Yeoh, VUMAT Yeoh, and VUMAT 

gen-Yeoh models were 33.15 min, 31.35 min, and 39.32 min, respectively. The VUMAT 

Yeoh model ran faster than the built-in Yeoh model. This result was repeatable and 

indicates that the VUMAT code may be simpler than the built-in routine, perhaps because 

the VUMAT is written specifically for the 3D case. The gen-Yeoh model takes significantly 

longer because computations are more complex with non-integer exponents in the SEF. 

4.3  A Novel Model to Correct Uniaxial Tension Test Data§§ 

Section 2.5.2 introduced several loading modes that are used to characterise the 

mechanical response of rubbery materials. The mode that is most commonly used is the 

uniaxial tension test. This test specimen is often a flat or cylindrical dumbbell clamped at 

its ends and extended until fracture in its gauge section (Fig. 4.8a).226 Stress-strain response 

is determined from the axial force and displacement. A load cell measures force, and ideally 

 
§§ The work in this section is published in Rubber Chemistry & Technology, 95 (2), 218-240. 
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a mechanical or non-contact displacement transducer permits calculation of strain in the 

gauge section. Alternatively, strain can be approximated from grip displacement. The error 

in this approximation is minimised when the dumbbell is gripped at its gauge section (Fig. 

4.8b), but constraint at the narrow section usually causes premature fracture at the grip, a 

problem often encountered with rubbery materials. 

            
                                              (a)                                                                (b) 

Fig. 4.8: Tensile test specimens: (a) gripped at wide section (adapted from Veryst Engineering);226 
(b) gripped at gauge section. 

Even if displacement in the gauge section is directly measured, strain calculations can 

still introduce large error, for instance with metal plasticity.227 When necking (a local 

reduction in the cross-sectional area of the gauge section) occurs, axial strains in the necked 

region are much larger than those in the gauge section. In addition, the location of necking 

in the gauge section is not known a priori, complicating isolation of strain measurements 

to the necked region. Different authors have proposed modified specimen geometries,228 

analytical models,229 and finite-element methods230 to address these complications when 

used for measurements of metal plasticity. 

Techniques for correction of stress-strain data of polymers are scarce. Some studies on 

thermoplastics exist,231 but information on elastomers is generally restricted to mechanical 

testing itself, particularly the difficulties of equi-biaxial tension testing.232,233,234 Uniaxial 

tension testing has received little attention perhaps because it is relatively simple and 

standardised.235 Nevertheless, Brown236 described some pitfalls when testing rubber in 

uniaxial tension. Importantly, he noted that grip displacement is a poor choice for strain 

measurement because it has no “simple exact relationship to the elongation of rubber [in 

the gauge section].” 

One solution to the issue raised by Brown is to directly measure strain. There are 

techniques to do so, but these introduce different challenges. Extensometers with 

mechanical probes must translate large distances without imposing constraint at the 

attachment points. Non-contact equipment eliminates this problem, but the hardware and 
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processing software costs are of the order of £10,000. Optical measurement systems, such 

as those that track two dots in the gauge section or speckle interferometry which permits 

strain measurements in multiple directions, also require an unobstructed view of the test 

specimen. This poses a problem if a thermal or pressure test chamber is required. Sight 

glass mitigates the problem (Fig. 4.9), but strain data may still be noisy due to inadequate 

lighting or reflections (Fig. 4.10). High temperatures can also degrade or evaporate marks 

for optically tracking displacement in a test specimen. In summary, equipment to accurately 

measure strain in elastomeric dumbbells exists, but cost or experimental setup may preclude 

its use, and significant measurement errors are still possible. 

 
Fig. 4.9: Thermal test chamber with sight glass. 

 
Fig. 4.10: Inaccurate optical measurement of strain through the sight glass of a thermal test chamber. 

One can eliminate cost and equipment problems by solving the issue raised by Brown: 

establish an accurate relationship between grip displacement and elongation in the gauge 

section. To the author’s knowledge, the only work that describes a systematic handling of 

this problem is the PhD thesis of De Focatiis.237 He described a technique that discretises a 

dumbbell with variable cross-sectional areas into short pieces, and then uses an iterative 
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technique to adjust the modulus of the sections such that a measured stress-strain response 

is reproduced. In this thesis, an alternative to De Focatiis’ approach is developed. The 

model applies to any strain-energy function for incompressible isotropic rubbery materials 

in which nominal uniaxial stress has the form � = �(�) where � is stretch computed from 

grip displacement. The model works for filled and unfilled elastomers, uses an iterative 

solution scheme, and is validated with finite-element simulations and experimental testing. 

4.3.1  A Two-Block Model for a Dumbbell 

Consider two bonded rubber blocks with dimensions as shown in Fig. 4.11a. The body 

is a rough representation of a half-dumbbell with no radii transitions between the gauge 

and gripping sections. Let uniaxial force � stretch the body into a deformed configuration 

such that: 

 ���� = ���� + ���� (4.10) 

as required for displacement compatibility and �’s are the uniaxial stretches (Fig. 4.11b). 

Compatibility can also be expressed in terms of displacement, �, or nominal strain, �: 

�� = �� + �� 
 ↓ (4.11) 

���� = ���� + ���� 

where strain and stretch are related by definition, � = � − 1. Assuming incompressibility 

and no shear strains develop so that all block faces remain orthogonal, the deformed block 

widths and thicknesses may be computed from the axial stretch in each block. For 

simplicity, assume the material is Neo-Hookean with axial force:50  

� = ����(�� − ��
��) 

  (4.12) 
� = ����(�� − ��

��) 

where � is the material’s shear modulus, also assumed to be known. 

 
                                                      (a)                                                         (b) 

Fig. 4.11: Two-block representation of a dumbbell: (a) before stretching; (b) after stretching. 
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In Eqs. 4.10 and 4.12, �� and �� are unknown, and �� is of particular interest because it 

gives stretch in the narrow (gauge) section of the dumbbell. The equations can be solved 

by specifying either �� or �. Since displacement control is common in uniaxial tension 

testing, the procedure below assumes �� is known, assigns a guess value for �, and solves 

for �� and ��. The force equations (Eqs. 4.12) can each rearrange to a cubic function: 

 ��
� −

�

����
��

� − 1 = 0        ,        i = 1, 2 (4.13) 

Since �, �, �, and �� are always positive, the polynomials’ discriminants following the 

method of Zwillinger238 are always positive, so �� has one real root. In addition to 

Zwillinger’s solution, there are a variety of methods online to solve the cubic polynomial. 

Closed-form solutions for ��s are not possible for most strain-energy functions, but Eq. 

4.12 can be solved numerically for more complicated hyperelastic models. After �� and �� 

are solved, Eq. 4.10 checks displacement compatibility. If it is not satisfied to a desired 

accuracy, � is assigned an updated value and the procedure repeats. Fig. 4.12 illustrates the 

procedure; however, the following two sections show that some additional steps are 

required to render it more practically useful. 

 
Fig. 4.12: Solution procedure for solving force and displacement compatibility with a two-block model of a 

Neo-Hookean dumbbell with a known shear modulus. 

4.3.2  Geometric Considerations: An n-Block Model for a Dumbbell 

To address more complicated dumbbell geometry, the two-block model of Fig. 4.11 can 

be generalised to an arbitrary number of blocks, �, with accuracy improving as � increases. 

For instance, Fig. 4.13 shows a six-block model superimposed on top of a half-dumbbell. 

It must be noted that the test specimen geometry need not be a dumbbell, but such form is 

used in this paper. The principles underlying decomposition into an n-block model may be 

applied to any test specimen geometry that is fully determined, which is generally the case 

in a uniaxial tension test specimen. 
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Fig. 4.13: Half-dumbbell (black outline) decomposed into six blocks (red rectangles). 

To proceed, the dumbbell dimensioning scheme from ASTM D412235 is assumed (Fig. 

4.14a). The detailed calculations here may be applied to the different die sizes described in 

the specification. To construct the full �-block geometry, the widths of blocks in the curved 

sections must be solved, and this becomes possible after constructing Fig. 4.14b where half-

widths are indicated with prime superscripts. The dimensioning scheme in Fig. 4.14a 

implies that all ends of the radii in the curved sections are tangent, and hence the line joining 

the centers of �� and �� is perpendicular at the intersection of their arcs at (��, ��) in Fig. 

4.14b. The angle joining the centers is derived to be: 

 � = acos �
��������

� ���
�

�����
� (4.14) 

The half-widths of the dumbbell in the curved regions are thus: 

 � = �� + ��
� − ���

� − (� − ��)�                            �� ≤ � ≤ �� (4.15) 

    � = ��
� − �� + ���

� − (� − (�� + (�� + ��) sin �) )�          �� ≤ � ≤ �� (4.16) 

where �� and �� are given by: 

 �� = �� + �� sin � (4.17) 

 �� = �� + (�� + ��) sin � (4.18) 

           
                                   (a)                                                                           (b) 

Fig. 4.14: (a) ASTM D412 dumbbell dimensioning scheme; (b) geometry for determining �-block 
locations (��) and widths (��) in the curved regions of the dumbbell. 
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After discretising a dumbbell into ��’s as shown in Fig. 4.13, Eqs. 4.15–4.18 solve �� = 2�� 

at �� for each block. Thus, the �-block geometry is fully determined for the entire dumbbell. 

Generalising Eqs. 4.10 and 4.12 to � blocks, the system equations become: 

 ���� = ���� + ���� + ⋯ + ���� + ⋯ + ���� (4.19) 

� = ����(�� − ��
��) = ����(�� − ��

��) = ⋯ = ������� − ��
��� = ⋯ = ����(�� − ��

��) (4.20) 

These can be solved using the procedure in Fig. 4.12. Cylindrical dumbbells can be 

addressed with substitutions, ��′ → �� and ��� → ���
�, where �� is the radius of each 

cylindrical partition. 

4.3.3  Incorporating the Hyperelastic Model 

In the preceding analysis, a Neo-Hookean material with a known shear modulus has 

been assumed. However, the purpose of mechanical testing is typically to determine 

material model parameters (such as the shear modulus) which are not known a priori. Of 

course, this determination is more complicated as the number of model parameters 

increases. In any case, the preceding analysis requires a fully determined material model to 

initiate a solution with the procedure in Fig. 4.12. To address this need, this section 

describes how reasonably accurate material model data can be generated from stress-strain 

data based on grip displacement while gripping at a wide section of the dumbbell, and then 

algorithmically processing that material model to create an accurate representation of the 

stress-strain profile in the gauge section of a dumbbell. 

Fig. 4.15 illustrates the complete �-block model solution procedure when a hyperelastic 

material model is initially unknown. The first step is to collect force versus displacement 

data from a mechanical test. This is converted into stress versus strain data of the dumbbell 

with strain taken simply from the grip displacement. A suitable hyperelastic model is 

selected to fit to this data to provide a realistic representation of all the observed 

phenomena. The solution then proceeds through the upper loop of Fig. 4.15 until 

displacement compatibility is satisfied. 

Since the hyperelastic model is initially fitted to the stress-strain data based on grip 

displacement, the initial solution from the upper loop simply replicates this stress-strain 

profile; therefore, it too under predicts stretch in the gauge section. To correct the stretch 

in the gauge section, the total stretch in a second iteration of the upper loop is set equal to 

the gauge stretch from the initial solution, which naturally shifts the stress-strain curve in 

the direction of positive strain. To ensure a purely horizontal shift, the force from the initial 

solution must be recorded before restarting iterations in the upper loop. Once the entire 

routine is complete, the gauge stretch from the updated solution properly maps to the force 

from the initial solution. For this mapping to be accurate, the coefficients of the hyperelastic 
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model that were initially determined must reasonably represent the “average” stress-strain 

profile along the entire dumbbell and the actual stress-strain profile in the gauge section. 

That is, if an inappropriate material model or parameters are selected for the initial curve 

fit in the second block of Fig. 4.15, the material model output from the full solution 

procedure will be inaccurate. Examples of how to use this procedure with an accurate initial 

material model are shown in the next two sections. 

 
Fig. 4.15: Solution procedure for solving force and displacement compatibility with corrected stretch in the 

gauge section for an �-block model. 

4.3.4  Validation of the n-Block Model with Finite-Element Analysis 

A virtual experiment was conducted with the finite-element method in 

Abaqus/Standard R2017 to assess the accuracy of the �-block model. Treloar’s uniaxial 

tension data220 as reported by Steinmann et al.85 was used. A third-order Ogden strain-

energy function239 was used with coefficients as reported by Steinmann. Table 4.3 captures 

input information for an incompressible, isotropic model of a quarter-dumbbell fixed at its 

bottom plane of symmetry and stretched at its top (Fig. 4.16). The dumbbell for the FE 

model was truncated at the location of the grip, which importantly contains curved 

geometry defined by the transition radii, �� and ��. It was assumed that no deformation 

occurred above the grip, and that the grip imposed no horizontal constraint. Although 

neglect of the constraint was not physically realistic, it provided a better virtual test for the 

�-block model which itself does not consider horizontal constraint. Nevertheless, the error 

in this approximation is shown to be small in subsequent sections. Mesh-independence 

within 1% was confirmed by altering element sizes by factors of two. This required an 

element seed size of 0.1 mm. For reference, the Ogden strain-energy function and uniaxial 

pulling forces are given by: 

 � = ∑ �
��

��
���

�� + ��

�� + ��

�� − 3���
���  (21) 
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 �� = ��� ∑ ��� ��
�

������
− �

�

����
��

�
�
���

���  (22) 

where ��’s and ��’s are fitting parameters, (��, ��, ��) are principal stretches, � is stretch in 

the direction of uniaxial extension, and i’s represent individual �-blocks as shown in Fig. 

4.13. 

Table 4.3: Inputs for the finite-element model when testing an �-block model. 

Parameter Value 

��� , ����� , ��
� , ��

�  , �� , �� , �� – see Fig. 4.14 (16.5 , 42.01 , 3 , 12.5 , 14 , 25 , 2) mm 

Material model Ogden, 3rd-order 
Model parameters, (�� , �� , ��) (0.5649 , 3.856 × 10-� , 7 × 10-��) MPa 

                                   (�� , �� , ��) (1.297 , 4.342 , 15.13) 

Displacement (half-value) 185 mm 

Number of horizontal elements 30 

Number of vertical elements 421 

Element type 

Plane stress 
Linear quadrilateral 
Reduced integration 
Enhanced hourglass control 

 
Fig. 4.16: Finite-element mesh for a quarter-model dumbbell (mesh size enlarged for clarity). 

Fig. 4.17a shows the Ogden strain-energy function with Steinmann’s model coefficients 

fitted to Treloar’s data. Using Eq. 4.5 to compute errors, the average error of the fit is 

3.06%. The stress-strain curve predicted by FEA in the gauge section precisely follows the 

strain-energy function because the FE material model is defined by the Ogden SEF 

parameters. The error of 1.95 × 10��% can be attributed to numerical discretisation. 

In an experiment when strain is calculated from grip displacement, one typically does 

not know hyperelastic model parameters or strain in the gauge section. Therefore, one 

would not have access to any information in Fig. 4.17a. Instead, stress-strain data based 

only on grip displacement (that is, ‘FEA-grip’ in Fig. 4.17b), which artificially shifts the 

stress-strain response to the left (or alternatively, upward), would be available. However, 
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the generated ‘FEA-Grip’ curve can be used with the �-block model to recalculate back the 

original source Treloar data. 

    
                                               (a)                                                                             (b) 

Fig. 4.17: Stress-strain response of a dumbbell: (a) in the gauge section with Treloar’s data, Ogden strain-
energy function, and FEA (inset magnifies lower strain response); (b) shift in the response when strain is 

based on grip displacement. 

Fig. 4.18 shows a third-order Ogden model fit to the stress-strain curve based on grip 

displacement as defined by the ‘FEA-Grip’ curve in Fig. 4.17b. The fitting error from Eq. 

4.5 is 0.16%. It is important to note that the material parameters for this model (which are 

noted in the figure caption) are not the same as those that define the original hyperelastic 

model in Table 4.3. This is not surprising since the parameters in Table 4.3 are determined 

directly from the stress-strain profile in the gauge section, while those in Fig. 4.18 are 

determined directly from the grip displacement. After processing the ‘SEF-Ogden-3-Grip’ 

model through the �-block calculator, the corrected data points shift right along the strain 

axis as shown in Fig. 4.18. The points map well onto the ‘FEA-Gauge’ stress-strain curve 

to give a composite error of 2.38%. Clearly the �-block model accurately reproduces the 

desired stress-strain response in the gauge section, and the corrected data points can be used 

to curve fit an accurate hyperelastic model. 
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Fig. 4.18: 3rd-order Ogden strain-energy function fit to an FEA stress-strain curve based on grip 

displacement, (�� , �� , ��) = (0.08545 , -1.275 , 8.979 × 10-�) MPa , (�� , �� , ��) = (3.102 , -0.6306 , 10.95). 
The �-block model shifts points in the ‘SEF-Ogden-3-Grip’ curve toward the ‘FEA-Gauge’ curve. The inset 

magnifies lower strain response. 

4.3.5  Validation of the n-Block Model with a Non-contact Video Extensometer 

An unfilled natural rubber dumbbell was tested with a non-contact video extensometer 

in uniaxial extension. The narrow section of the dumbbell was 33 mm long, and initial grip 

separation was 55.7 mm. Fig. 4.19 shows the stress-strain response with strains based on 

the grip-displacement strain and the video extensometer strain. The gen-Yeoh SEF from 

Eq. 4.3 was fit to the curve based on grip displacement. The LM algorithm222 was used to 

give (��, ��, ��) = (0.1687 , -0.00305 , 0.000106) MPa and (�, �, �) = (0.967 , 1.699 , 2.854) 

with a fitting error of 1.15%. The strain-energy function is not plotted in Fig. 4.19 because 

it is indistinguishable from the grip displacement curve. 

Fig. 4.19 also shows �-block model corrected data points which match the video 

extensometer curve well. The errors of the �-block model and grip displacement curve with 

respect to the video extensometer are 2.24% and 12.6%, respectively. The error of the �-

block model is well within uncertainties inherent in the material (batch variation) and 

experimental setup. 

The maximum strain in Fig. 4.19 is limited to about 300% due to the video 

extensometer’s range. However, the accuracy of the �-block model in this and the 

preceding example in Section 4.3.4 gives confidence that, if necessary, one could 

accurately predict response at larger strains using the grip displacement alone. 



104 
 

 
Fig. 4.19: Stress-strain response of unfilled natural rubber with strain based on grip displacement, video 

extensometer, and �-block model correction. The inset magnifies lower strain response. 

4.4  Summary 

Building on the benefits of the Yeoh and DDT SEFS, the gen-Yeoh SEF has been 

introduced. It is well suited to capture both low and high strain nonlinearities in highly 

filled elastomeric materials such as those in oilfield seals. In particular, the SEF accurately 

models materials that have a rapid reduction in modulus at low strains. The gen-Yeoh SEF 

has been fit to stress-strain data with a good degree of accuracy by inspection, and a 

methodical approach for this fitting exercise has been shown. The manual curve fits have 

been found comparable to those that are algorithmically determined. Subroutines that 

implement the function with slight volumetric compressibility have been validated in 

Abaqus. Detailed codes and notes for their use are provided in Appendices A, B, P, and Q. 

An analytical model that correlates grip displacement to displacement in the gauge 

section of a dumbbell during uniaxial extension has been developed. This novel model is 

well-suited for correcting stress-strain data in elastomeric dumbbells when strain cannot be 

directly measured in the gauge section. An iterative scheme solves a user-specified 

constitutive equation to satisfy displacement compatibility. The procedure maps stress-

strain data based on grip displacement to stress-strain response in the gauge section. The 

model provides an inexpensive, viable alternative to equipment that directly measures 

strain. Furthermore, the model can be used when experimental setup complicates or 

precludes direct measurement of strain, such as when a thermal or pressure test chamber is 

required. The model is also useful for large displacement testing where strains can exceed 

the physical limits of optical measurement equipment. A Fortran implementation of the 

model is in Appendix C. 
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5.  Prediction of Elastic Leak with Fluid Pressure Penetration in Abaqus 

5.1  Overview 

This chapter lays some groundwork for experimental validation of fluid pressure 

penetration (FPP) algorithms in later chapters. Although commercial solvers package FPP 

capability in the context of seal leakage, these modules fundamentally address a contact 

problem: they determine the threshold at which forces change nodal contacts from opened-

to-closed, and vice versa. 

To proceed, a 2D finite-element model and applicable settings in Abaqus/CAE (a pre-

processor) are introduced before turning to some detailed studies of fluid pressure 

penetration at a contact interface in Abaqus/Standard and Abaqus/Explicit, both of which 

are FE solvers. The fluid is simulated only with a mechanical pressure; other details of the 

fluid are ignored. The primary objective is to identify leak pressure sensitivities to several 

parameters that are not well addressed in the literature, including the effects of the FE mesh, 

friction model, volumetric compressibility, and seal compression. Manual and automated 

FPP techniques are described. The automated techniques include algorithms that are native 

in Abaqus as well as novel user-defined subroutines. Importantly, a DLOAD subroutine for 

Abaqus/Standard is developed to remove pressure from nodes that change from open to 

closed contact as a seal deforms. This chapter also develops a VDLOAD subroutine to 

simulate FPP in Abaqus/Explicit, thereby overcoming contact convergence problems 

encountered when using the implicit solver. This latter subroutine appears to be the first 

publicly disclosed demonstration of such capability. 

5.2  Geometry 

The geometry for the finite-element model is shown in Fig. 5.1. It is a 2D axisymmetric 

seal between upper and lower plates. The seal is bonded to the lower plate and has a contact 

interface at the top; hence there is only one potential leak path. A gauge ring with height, 

hg, provides another contact interface to control the extrusion gap which is the region 

where the seal displaces when pressure is applied on the left side of the seal. The round on 

the gauge ring mitigates the risk of fracture when the seal deforms into the extrusion gap.  

 

Fig. 5.1: Geometry for the finite-element model; ℎ� = 6.35 mm. 
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5.3  Hyperelastic Material Model 

Uniaxial tension data for a 70D (Shore A) HNBR compound was provided by the 

project sponsor and used to generate the hyperelastic material model for the studies in this 

chapter. The Yeoh strain-energy function (Eq. 2.28) was used and matched the test data 

well up to strains of 150% (that is, � = 2.5), which was a reasonable upper limit for strains 

in the simulations (see Section 5.4.7 for confirmation of this statement). Model parameters 

were determined with a Levenberg-Marquardt algorithm adapted from Press et al.222 as 

shown in Appendix G. Volumetric compressibility was simulated with a Poisson’s ratio of 

0.495 which was converted to a compressibility parameter with Eq. 4.9. To simplify the 

analysis, viscoelastic and hysteretic effects were neglected. Fig. 5.2 shows the model fit to 

the uniaxial test data and the predicted responses in pure shear (that is, planar 

tension/compression) and equibiaxial loading modes. The ordering of the responses is 

physically realistic with |���| < ����� < |���| for any given stretch. 

 
Fig. 5.2: Yeoh SEF fit to uniaxial tension data for a 70D (Shore A) HNBR material; 

(��� , ��� , ���) = (0.75 , 0.071 , 0.0075) MPa. 

5.4  Initial Finite-Element Studies with Fluid Pressure Penetration 

5.4.1  Steps 

The main steps for all simulations in this work consisted of a vertical compression 

followed by a pressure on the left side of a seal. Fig. 5.3 shows the seal before compression, 

after compression by � = 15% of the nominal seal height (specifically, 1.905 mm), and after 

the application of pressure but before any leakage has occurred. 
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                          (a)                                                     (b)                                                      (c) 

Fig. 5.3: Axisymmetric seal with ℎ� = 6.35 mm: (a) before compression; (b) after 15% compression; 

(c) after compression and with 2.8 MPa applied to the left side of the seal. 

Unless otherwise specified, Abaqus/Standard was used with automatic incrementation 

in the implicit solver, and all inertial effects were neglected. The minimum allowable load 

increment was reduced from a default value of 10-� to 10-� because contact convergence 

often required smaller load increments. To achieve such small increments during automated 

load bifurcations, the number of iteration attempts was increased from the default value of 

5 to 10. This setting was found critical for simulating seal leakage, but the location of the 

controlling parameter is not intuitive (see Fig. 5.4). From the Step module, the path is Other 

 General Solution Controls  Manager…  [Select step, P-01 in this example]  

Edit…  Continue… [this loads the General Solution Controls Editor]  Specify:  Time 

Incrementation [the 2nd tab]  More [select the top one]  �� = 10. Different methods of 

pressure application were explored in this work and will be explained in other sections. 

 
Fig. 5.4: Path to change the maximum number of iteration attempts for an Abaqus implicit step. 

  



108 
 

5.4.2  Interactions 

At least two contact definitions were required for all simulations in this work. Fig. 5.5 

shows the master-slave contact surfaces. Following common conventions for surface-to-

surface contact definitions,240 slave surfaces were assigned to the seal because it used a 

smaller mesh and was a more compliant material than all countersurfaces. In simulations 

with large compression (say, 30%) or when the gauge ring was removed, additional contact 

definitions were required to prevent the sides of the seal from penetrating the bottom plate. 

 
Fig. 5.5: Master-slave surfaces for contact definitions. 

Fig. 5.6 shows some additional contact settings. For most pressure application steps, 

the default contact control was changed to allow automatic stabilisation which improved 

contact convergence. The technique introduces viscous energy dissipation in a system when 

contact instabilities occur,241 for instance when contact status changes rapidly. Because this 

viscous damping is artificial, it must be kept as small as possible, so exhaustive attention 

was given to this control before settling on a stabilisation factor of 0.01 between Master-

1/Slave-1 and 0.10 between Master-2/Slave-2 (note: lower values reduce damping but also 

converge more slowly, if at all). It was found that overdamping a sliding contact interface 

inhibited movement and gave unrealistic deformations. The damping parameters “Tangent 

fraction” and “Fraction of damping at end of step” were usually left at their default values 

of 1 and 0, respectively. The former scales damping in the tangential direction relative to 

the normal direction, and the latter determines the fraction of damping that remains at the 

end of a load step. 

When contact stabilisation is used, Obbink-Huizer242 suggests that the energy output 

ALLSD (all viscous dissipation in a static implicit analysis) be low compared to ALLIE 

(all internal energy). For the simulations in this work, ALLSD was of the order 10�-10� 

lower than ALLIE. In a limited number of cases, simulations converged with no 

stabilisation applied, and these were compared to leak pressures when stabilisation was 

applied. The results were the same within approximately 0.01 MPa, with the order of leak 

pressures being 10 MPa, so the impact of this artificial viscous dissipation is deemed 

negligible in this work. 
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Fig. 5.6: Contact settings and contact controls. 

Some alternative techniques242 to address contact convergence issues were attempted. 

Contact controls apply local damping at interaction surfaces, but alternatively Abaqus can 

apply global damping243 to the seal during a load step (Fig. 5.7). This sets a magnitude for 

energy dissipation to a user-specified fraction of the system energy. The default fraction is 

2 ∗ 10-�, but results in this work were unrealistic even with a value as low as 10-�. For 

example, Fig. 5.8 shows a local minimum in the predicted leak pressures as the coefficient 

of friction increases with a Coulomb (constant coefficient) friction model. The trend is as 

expected for � ≥ 0.2 because an increasing coefficient of friction is expected to better resist 

seal deflection into the extrusion gap and, hence, require a higher pressure for leakage. 

However, for � ≤ 0.15, the problem becomes increasingly unstable. The instability arises 

because friction itself dissipates energy which tends to stabilise the movement of the seal. 

When friction is insufficient to stabilise the sliding contact, the solver imposes a larger 

amount of viscous damping. To overcome the artificial dissipation, more total energy must 

be applied to displace the seal and cause leakage. Even at the lowest coefficients of friction 

(CoFs) in Fig. 5.8, ALLSD is of the order 0.1% of ALLIE, yet the unrealistic behaviour is 

still observed. So clearly, great care is required when applying global stabilisation. Section 

5.7.1 gives further evidence that the minimum in Fig. 5.8 is indeed artificial and not due to 

some other effect. 

Regardless of the damping technique employed (local or global), viscous stabilisation 

imposes a computational disadvantage. To converge, it may require such small load steps 

that solution times exceed those that can be achieved in Abaqus/Explicit, a solver that is 

otherwise less efficient than the implicit solver in Abaqus/Standard. 
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Fig. 5.7: Adding global stabilisation to a load step. 

 
Fig. 5.8: A physically unrealistic local minimum in the leak pressure as a function of the coefficient of 

friction with a Coulomb friction model. � = 5%; ℎ� = 6.35 mm. 

Augmented Lagrange and penalty formulations were studied for the normal component 

of contact. The latter was found to converge more easily, but this finding should not be 

generalised.244 With the penalty formulation, Abaqus allows the user to reduce contact 

stiffness which can help convergence, but the reductions required to help convergence in 

this work resulted in unrealistic contact penetrations. Of the options explored to facilitate 

contact convergence, only local contact control was deemed acceptable for the problem 

studied. 

5.4.3  Friction Modelling 

It is well-known that the coefficient of friction for elastomeric materials is contact 

pressure-dependent,181,182,183 yet it is rare to see pressure-dependent contact models in seal 

simulations. In fact, Gorash et al.212 are the only authors in Table 3.1 that used a formulation 

more sophisticated than the Coulomb model. The dominance of the model is probably for 

two reasons. First, the rubber seal simulations in Table 3.1 have at most 2.3 MPa of applied 

pressure, and the variation in the coefficient of friction in this range is limited. Second, 

coefficients of friction depend on many parameters such as the lubricating medium, rubber 



111 
 

compound ingredients, sliding velocity, temperature, and surface characteristics. This 

makes the characterisation of rubber friction behaviour taxing. Nevertheless, recent work 

by Yanes et al.245 indicates the criticality of using a contact pressure-dependent friction 

model for high pressure seals. Fortunately, their work also indicates that above, say 10 MPa, 

the coefficient of friction becomes nearly constant, and the variation across different 

materials and variables is diminished. Internal data from the project sponsor is consistent 

with this finding. 

The contact pressure-dependent friction model in this work (Fig. 5.9) is derived from 

correspondence246 with Yanes for a 75D (Shore A) HNBR material. The model assumes a 

slow sliding speed (of the order 0.1 mm/s) and a lubricated condition. It is worth noting 

that even with no contact pressure, the coefficient of friction in the present work is 

significantly lower than that used by most authors in Table 3.1. Possibly, some authors have 

adopted excessively high CoFs due to a lack of publicly available data. 

 
Fig. 5.9: Contact pressure-dependent coefficients of friction used for the frictional model. 

5.4.4  Application of Pressure 

When pressure is applied to elastomeric seals, it is common for the contact status of 

nodes at contacting surfaces to change. For example, Fig. 5.10a shows a seal after 

compression. The node indicated by the red dot initially has an open contact status, so it 

experiences pressure when the fluid pressure is initially applied. As the seal deforms, the 

node is pushed into the contact interface (Fig. 5.10b), and ideally pressure is removed from 

the node and all others where contact has closed. As more pressure is applied, contact at 

the highlighted node eventually opens as pressure propagates through the sealing interface 

(Fig. 5.10c). 
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                         (a)                                                    (b)                                                         (c) 

Fig. 5.10: The changing contact status of a node in a seal: (a) after compression, contact is open near the 
sealing front indicated by the red dot; (b) as pressure increases, the contact at the same node closes;  

(c) at an even higher pressure, the contact status at the node opens again. 

In Abaqus, pressure loads may be applied to surfaces in the Load module, but pressure 

does not automatically update at nodes with a changing (that is, opening or closing) contact 

condition. It is possible to manually remove or add pressure to nodes step-by-step, but the 

process is iterative and time-consuming. To overcome this problem, Abaqus/Standard has 

fluid pressure penetration algorithms that automatically propagate pressure; however, they 

are unable to remove pressure from nodes that change from open contact to closed contact 

(for instance, when changing from Fig. 5.10a to Fig. 5.10b). For simplicity, this section 

ignores this limitation in Abaqus’ native algorithms. Later sections will address the removal 

of pressure when contact closes. 

Before creating a fluid pressure penetration load, the surface interaction where pressure 

will be applied and monitored is first defined. Pressure penetration is then defined as a 

separate interaction (Fig. 5.11a) that calls the previously defined contact interaction. In this 

case, the contact definition “Int-Seal-Top” corresponds to the Master-1/Slave-1 definition 

in Fig. 5.5. The “Region on Master” and “Region on Slave” options determine the points 

where pressure initiates, and pressures at these locations immediately propagate to adjacent 

nodes with open contact. These regions are shown in Fig. 5.11b. The “Critical Contact 

Pressure” determines the threshold at which pressure propagates into a contact surface. The 

default value of zero is most frequently adopted in the literature, and it is also used in this 

work. This is at odds with the classical definition in which fluid pressure propagates when 

it is equal to contact pressure, but the generally adopted FE leak criterion (that is, when 

�������� = 0) appears necessary to achieve simulated leak pressures that align with most 

experimental results such as those in Table 3.1. This latter convention is adopted for most 

numerical studies in this thesis, but its use is challenged in Section 7.4.5. 

The last setting to mention is “Penetration time” (Fig. 5.11a). It defines how rapidly 

pressure increases to full scale when a node changes from closed to open contact during a 

load step. The default setting of 0.001 s was found to be acceptable for most studies in this 

work, but on occasion it was increased to facilitate convergence. Larger values smoothed 

the load transition and had negligible impact on final leak pressures reported in this work. 
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                                 (a)                                                                                (b) 

Fig. 5.11: (a) Options with a pressure penetration interaction/load; (b) pressure initialisation locations on 
the master and slave surfaces. 

Abaqus/Standard has two options for converting pressure (a surface load) to nodal 

forces when computing a numerical solution. The default behaviour in Abaqus R2018 and 

later versions is to truncate the pressure at the last element that is exposed to fluid pressure 

(Fig. 5.12a). Alternatively, the fluid pressure can be linearly ramped down across the last 

element that is exposed to fluid pressure (Fig. 5.12b). This latter option is the default and 

the only behaviour available in Abaqus R2017 and earlier versions. In Abaqus R2018 and 

later versions, the R2017 scheme is not accessible via Abaqus/CAE; it must be specified in 

the input file with the text “wetted front=mid element” as shown in Fig. 5.13. The 

R2018 scheme results in a higher total force at the sealing interface and therefore predicts 

lower leakage pressures than the R2017 scheme. Some quantitative differences between 

the schemes are highlighted in Sections 5.5 and 5.6. 

 
                    (a)                                                                                                                           (b) 

Fig. 5.12: Different pressure integration schemes in Abaqus: (a) R2018 scheme; (b) R2017 scheme. 

 
Fig. 5.13: Keyword to implement the R2017 integration scheme in R2018 and later versions of Abaqus. 
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5.4.5  Constraints and Boundary Conditions 

The bottom plate and gauge ring were modelled as rigid bodies and fixed in position 

for all steps. The top plate was modelled as rigid and displaced vertically to compress the 

seal before pressure was applied. The bottom surface of the rubber seal was fixed in 

position. All other seal surfaces were free or subjected to interactions and loads previously 

discussed.  

5.4.6  Meshing and Element Types 

A coarse mesh with global size ≈ 0.6 mm was used for some initial studies. The 

partitioned seal geometry and mesh are shown in Fig. 5.14. Local refinement of 0.06 mm 

was applied to a portion of the top of the seal where pressure would break through the 

contact interface. The free mesh regions were quad-dominant and had 367 quadrilateral and 

3 triangular elements. The structured regions used 484 quadrilaterals.  

 
Fig. 5.14: Partitioned seal (left) and FE mesh (right). The global seed size of 0.6 mm transitions to a 

maximum refinement that is one order of magnitude smaller. 

When modelling incompressible or nearly incompressible hyperelastic materials in 

Abaqus/Standard, the Abaqus theory manual247 recommends reduced integration hybrid 

elements with enhanced hourglassing control. Hybrid elements split deviatoric and 

volumetric element deformations into an additive decomposition. The split improves 

computational stability, but it comes at the expense of an extra internal constraint on the 

element. A fully integrated quadrilateral element has four integration points that, combined 

with the volumetric internal constraint, yield an overly stiff behaviour. However, the four 

integration points can be collapsed into one which relaxes stiffness at the expense of 

accuracy of integrated quantities such as stress. The inaccuracy can be partially corrected 

by imposing fictitious forces in the element with a feature called hourglassing control, but 

these forces generate artificial energy. The tradeoff is acceptable if artificial energy remains 

low compared to the total energy in the system. In summary, rubber incompressibility 

necessitates a hybrid element, and practice shows that this element performs well with a 

reduced integration element, which in turn necessitates hourglassing control. For more 

details on these effects, refer to Windslow.75 Abaqus/Explicit does not have hybrid 

quadrilateral elements, so it can encounter numerical instabilities when modelling nearly 

incompressible materials.247 
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5.4.7  Strain and Biaxiality Analyses 

Strain magnitudes and finite-element biaxialities (see Section 2.5.2) were analysed to 

understand the seal deformations during compression and pressure applications. Biaxiality 

was assessed with a UVARM subroutine248 that implements a modified version of Eq. 2.21. 

The code can be found in Appendix D. Fig. 5.15 shows contour plots of biaxialities in the 

seal after compression and with two differential pressures. Most finite-elements in the seal 

were not in perfect uniaxial tension (��� = -0.5), planar tension (��� = -1), or equibiaxial 

tension (��� = -2), so a decision was made to classify each element into one of the three 

loading modes. A natural choice is to bisect the range between each loading mode and 

assign each element into one of three bins. This is reflected in the contour scale in Fig. 5.15. 

Visually, it is apparent that the seal deformations are dominated by planar tension (green) 

followed by equibiaxial tension (blue). The uniaxial tension loading mode (red) is 

negligible during pressure application. Hence, when curve fitting a hyperelastic material 

model for this problem, the fit should be biased to the planar and equibiaxial loading modes. 

From a practical perspective, a contour plot will usually suffice to determine the dominant 

loading modes, but if desired, element biaxialities can be computed from principal strains. 

For the case of Fig. 5.15c, the percentages of biaxialities are �%��, %�� , %��� =

(3% , 76% , 21%). Similar numbers were computed for compression ratios from 5-30% and 

gauge ring heights from 0-9.5 mm (this height range covers 0-75% of the nominal seal 

height). 

 
                                 (a)                                          (b)                                                         (c) 

Fig. 5.15: Element biaxiality at different stages of deformation with Abaqus’ R2017 pressure penetration 
scheme: (a) after 15% compression; (b) with Δ� = 5 MPa; (c) near the leak pressure with Δ� ≈ 10 MPa. 

The risk of fracture in the seal was assessed through maximum principal stretches. Fig. 

5.16 shows that the maximum stretch is about 2.75 and occurs at the bottom left corner of 

the seal when leak is imminent. Fig. 5.15 shows that the loading mode at this location is 

planar tension, and direct computation gives � = -1.01. It is not surprising that an element 

at this bonded boundary is in near-perfect planar tension because tangential (that is, out-of-

plane) deformation is fully constrained at the bond interface. The magnitude of stretch 

raises some concern as it is near the fracture limit in uniaxial tension (see data in Fig. 5.2 

where ���.��� = 3), and the fracture limit in planar tension is usually lower than that in 

uniaxial tension. This location must be inspected for fracture in any physical testing based 

on this seal configuration. The principal stretch is an imperfect gauge to assess the risk of 
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fracture in rubber, but more elaborate methods were not employed here. For further 

discussion of rubber fracture, refer to Windslow’s PhD thesis75 and subsequent work by 

Windslow et al.84 

 
Fig. 5.16: Maximum principal stretch in the seal when leakage is imminent. � = 15%, ℎ� = 6.35 mm. 

When curve fitting a hyperelastic material model, it may be necessary to bias the fit to 

a particular region of strain, especially when dealing with highly filled rubbers that exhibit 

imperfect hyperelasticity. Therefore, it is necessary to understand the most typical strains 

encountered in a problem. To this end, Table 5.1 reports stretches in the seal for different 

loading modes (as determined from biaxiality analyses) in the finite-elements when leakage 

was imminent. Several compression ratios (�) and gauge ring heights (hg) are shown. 

Stretch values are reported with an average, one standard deviation (σ�), and a maximum. 

The last row reports average strains across several different compressions and gauge ring 

heights. Given that planar tension is the dominant loading mode for this problem, Table 5.1 

indicates that the most critical region of stretch for an accurate hyperelastic model when 

leakage is imminent is around � = 1.84. Referring to Fig. 5.2, the uniaxial tension data fits 

nicely at this stretch, but this does not guarantee that the predicted planar tension response 

is accurate. However, the use of a Yeoh material model mitigates this problem because �� 

only strain-energy functions generally have realistic responses even when fit to a single 

loading mode.223 In addition, the fit to the uniaxial tension data is good over a wide stretch 

range from 1-2.4. According to Table 5.1, average stretches are within this range, so the 

Yeoh strain-energy function in Fig. 5.2 is an appropriate material model for the problem. 

Table 5.1: Average, one standard deviation (σ�), and maximum stretches for different loading modes in the 
seal when leak is imminent. � is the compression ratio and ℎ� is the gauge ring height. 

 / hg /   (avg ± 1)  max 

% mm UT PT ET UT PT ET 

5 9.53 1.38 ± 0.02 1.91 ± 0.44 1.38 ± 0.16 1.40 2.73 1.75 

10 4.76 1.39 ± 0.04 1.63 ± 0.24 1.39 ± 0.07 1.44 2.27 1.55 

15 6.35 1.49 ± 0.06 1.98 ± 0.32 1.52 ± 0.20 1.59 2.73 1.78 

27.5 6.35 1.65 ± 0.04 2.23 ± 0.46 1.72 ± 0.24 1.70 2.89 2.14 

30 0 1.29 ± 0.05 1.44 ± 0.14 1.26 ± 0.05 1.39 2.07 1.34 

Average 1.44 ± 0.04 1.84 ± 0.32 1.45 ± 0.14 - - - 
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5.4.8  Effects of Compression Ratio and Gauge Ring Height 

Fig. 5.17a shows simulated leak pressures versus seal compression with no gauge ring. 

A curve fit based on Liu’s work159 (Eq. 3.6, repeated below) for rectangular plane strain 

seals is also shown. For the curve fit, � is estimated to be 1.5 MPa from Fig. 5.2. (� ≈ 2���) 

From the seal geometry, �/ℎ = 1. The curve fitting parameters are � = 0.16 and � = 3.6 

which are significantly different than those reported by Liu (3 and 2.9, respectively). This 

discrepancy probably arises from the different loading conditions (axisymmetric vs. plane 

strain) and geometries (curved seal vs. rectangular). Nevertheless, it appears that the 

modelling work done by Liu maps to the present work well when no gauge ring is used. 

 ����� = � �
�

���
�

�

�
� +

��

���
�

�

�
�

�

� (3.6, repeated) 

Fig. 5.17b shows that Eq. 3.6 (� = -0.1, � = 20) is not a good model when the gauge 

ring height is appreciable (4.76 mm) and compression is too high (> 25%). One reason for 

this could be the relatively higher strains in the seal when a gauge ring is used (see Table 

5.1). The seal material stiffens at these higher strains due to finite-extensibility, and this 

effect is not captured by Eq. 3.6 because the material is described solely by its shear 

modulus. However, inaccuracy due to the material model is probably small because, as Fig. 

5.2 indicates, there is not a great deal of stiffening in the range of strain that is encountered 

in this problem. The significant deviation at larger compressive strains primarily comes 

from the constraint of the gauge ring. Specifically, the leak pressure is a function of the 

extrusion gap, and the extrusion gap is a function of the compression (which Eq. 4.6 

addresses) and the gauge ring height (which Eq. 3.6 does not address). Presumably, Eq. 3.6 

can be modified to include an extrusion gap parameter. Such modification is not pursued 

here, but it is noted that the leak pressure transitions from an approximately linear form to 

a highly quadratic one. For instance, a 2��-order polynomial fit to the data in Fig. 5.17b 

over the range of strain from 0.25-0.40 has a correlation coefficient of �� = 0.998. 

             
                                               (a)                                                                               (b) 

Fig. 5.17: Leak pressures in FEA (R2017 scheme) vs. compressive strain and with a curve fit from Eq. 3.6: 
(a) with no gauge ring, (� , �) = (0.16 , 3.6); (b) with a 4.76 mm gauge ring, (�, �) = (-0.1 , 20). 

Fitting parameters are determined by visual inspection. 
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Fig. 5.18a shows leak pressures at different levels of compression for a variety of gauge 

ring heights. A linear-to-quadratic transition is evident with gauge ring heights from 

3.18-6.35 mm, but the curve for a 7.92 mm height is strictly quadratic with �� = 0.999. This 

reiterates that Eq. 3.6 is not a good model when the extrusion gap is sufficiently small, an 

observation that is not surprising. Eq. 3.6 was constructed based on analytical arguments 

that relate shear strains at the bottom corners of the seal to a critical leak pressure. When a 

gauge ring has sufficient height, the shear strains at these corners are drastically altered. In 

such case, it appears that a quadratic equation could replace the relatively complicated 

rational form of Eq. 3.6. However, it seems probable that a quadratic form must also break 

down when considering extrusion gaps in most industrial seals. The gaps become so small 

that local fracture at the extrusion gap leads to a coupled fracture-leakage problem. The 

present work is focused strictly on elastic leak, so numerical and experimental studies 

attempt to avoid any fracture regime. For further discussion and modelling of seal fracture, 

refer to the work of Wang et al.249 and Windslow.75 Fig. 5.18b shows the same data as Fig. 

5.18a but changes the abscissa from compressive strain to gauge ring height. 

     
                                     (a)                                                                                     (b) 

Fig. 5.18: Leak pressures for different compression ratios and gauge ring heights with Abaqus’ R2017 
pressure penetration scheme. The data in each plot are the same but expressed differently by changing 
the abscissa from (a) compressive strain to (b) gauge ring height. Compressions of 25% and 35% are 

omitted from (b) for clarity. 

5.5  Mesh Sensitivity Studies 

To the author’s knowledge, the criticality of mesh-size on the prediction of elastic leak 

was not addressed in the literature until this thesis. It will be shown that achieving mesh-

independent solutions is difficult and time-consuming because of the level of refinement 

required at the sealing interface. In this section, a single configuration with hg= 6.35 mm 

and � = 15% is used to demonstrate a systematic approach that achieves a mesh-

independent solution within 1% accuracy. 

Mesh-independent solutions were initially attempted with a structured-to-free mesh 

transition as shown in Fig. 5.19. This required four free mesh transition zones and often 
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resulted in poorly shaped elements due to the rapid growth across the partitions. To 

overcome this problem, structured transition zones were required. 

 
Fig. 5.19: An example of a free mesh transition to the sealing interface. 

Fig. 5.20 shows quadrilateral transitions to the sealing interface with a 3: 1 ratio 

between each level. This transition technique was found satisfactory for solution accuracy, 

but it has a notable disadvantage. When studying mesh independence, a common practice 

is to refine a mesh in factors of two and then check convergence of the desired output, in 

this case leak pressure. It is possible but extremely time consuming to refine a mesh with 

3: 1 transitions by a factor of two when a high level of refinement is required because a 

completely new mesh is required for each refinement. Alternatively, a 3: 1 refinement ratio 

can be maintained while increasing the convergence criterion from 1% (which is typically 

used) to something slightly larger, say 1.5%.  Another option is to use a transition technique 

that has a 2: 1 ratio with triangular elements, a shape that is usually avoided when 

simulating rubbery materials. Fig. 5.21 illustrates this technique with single-stage and two-

stage triangular transitions. Regardless of the transition technique (quadrilateral or 

triangular) that was used, the predicted leak pressures were practically identical in the mesh 

studies. For instance, with a 0.041 mm sealing interface mesh size, the leak pressure with 

the quadrilateral transition mesh was only 0.6% lower than the triangular transition mesh. 

The same difference was also found when the mesh size was reduced to 0.014 mm. One 

artefact to be aware of is the relatively poor continuity of contours through triangular mesh 

regions. Fig. 5.22 illustrates that the quadrilateral transitions have better continuity than the 

triangular transitions. These irregularities were found to have negligible impact on the 

pertinent leak results, so the triangular transition technique was used for most studies. A 

global seed size of 0.25 mm was sufficient to give mesh independence within 1% for strain 

contours through the body of the seal. As a final note on mesh transitions, Dragoni and 

Strozzi166 illustrated a technique that achieves a 2: 1 ratio with quadrilateral transitions, but 

this was not tested in this thesis. 
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Fig. 5.20: An example of a structured quadrilateral mesh transition to the sealing interface. 

 
                                       (a)                                                                                     (b) 

Fig. 5.21: Examples of structured triangular mesh transitions: (a) single-stage; (b) dual-stage. 

 
                    (a)                                                                                                                         (b) 

Fig. 5.22: Differences in nominal strain contour continuity across the mesh 
transitions: (a) quadrilateral transitions; (b) triangular transitions. 

Fig. 5.23 shows the convergence of leak pressures as a function of the mesh size at the 

sealing interface with the R2017 and R2018 pressure integration schemes. Due to the slow 

convergence, a logarithmic scale is used for the mesh size which is normalised by the seal 

height (12.7 mm). The smallest and largest sizes in the plot are 0.005 mm and 0.25 mm, 

respectively. The difference between the R2018 and R2017 solutions differ by 21% for the 

largest size, reducing to 0.9% at the smallest size. The R2017 scheme achieves a solution 
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that is mesh-converged within 1%, but the R2018 solution is slightly higher at 1.3%. An 

attempt to partition one more level to 0.0025 mm was not attempted and, based on the 

difficulty in constructing the mesh with size 0.005 mm, may not have been possible due to 

limitations with graphics and precision in Abaqus/CAE. Fig. 5.23 makes clear that 

achieving a mesh-independent solution based on leak pressures is difficult. In these 2D 

simulations, a mesh-converged solution was possible, but the computational costs in 3D 

could preclude mesh-independent solutions in practical contexts. A reasonable compromise 

may be to study the rate of convergence for larger mesh sizes and then extrapolate to 

estimate a mesh-independent solution. Yet, even this could be a time-consuming exercise 

due to noise in the convergence trends. Fig. 5.24 shows the mesh transitions required to 

achieve the 0.005 mm mesh size at the sealing interface. It requires six 2: 1 transitions, 

yielding 7 regions with significantly different element sizes. 

 
Fig. 5.23: Convergence of leak pressures as mesh size reduces. The convergence values listed for each 

scheme are computed with mesh sizes that differ by a factor of 2. The mesh 
size is normalised by the seal cross-section height of 12.7 mm. 

 
Fig. 5.24: Mesh transitions to achieve a 0.005 mm size at the sealing interface. There are 168,294 

quadrilateral and 11,812 triangular elements. 
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5.6  Fluid Pressure Penetration with Closing Contact 

5.6.1  Manually Closing Contact in Abaqus/Standard 

Section 5.4.4 shows that Abaqus’ FPP algorithms do not close contact if a node that 

initially has pressure is pushed into a contact interface. One solution to this problem is to 

manually update pressure surfaces step-by-step as contact status changes. This is an 

iterative, labour-intensive process.  

To proceed, it is important to understand how Abaqus decides when to propagate 

pressure in Abaqus/Standard. Fig. 5.25 shows a seal that is subjected to pressure when 

propagation from one node to the next is imminent. At ������ = 7.24 MPa, the contact 

pressure at the node just to the left of a node that is in physical contact has a finite contact 

pressure (that is, �������� > 0, Fig. 5.25a). It may seem odd for a node that is not in physical 

contact with the sealing interface to have a finite contact pressure, but this occurs because 

Abaqus distributes the nodal contact force due to contact pressure across the two adjoining 

elements. The load distribution to each node is not equivalent; rather, it is weighted by the 

solver, the details of which are not elucidated in Abaqus’ FPP documentation.197,250 On the 

next load step (Fig. 5.25b), the pressure increases to ������ = 7.25 MPa, and this is sufficient 

to reduce the contact pressure to zero; therefore, on the next load step with ������ =

7.26 MPa (Fig. 5.25c), the fluid pressure propagates to the next node, thereby breaking its 

contact. The algorithm proceeds in this manner until full leakage occurs. 

 
Fig. 5.25: Illustration of how Abaqus’ default FPP algorithm propagates pressure. 

A detailed explanation can be found in the text. 

To manually close contact, the inverse of the procedure in Fig. 5.25 can be 

implemented. To demonstrate, a mesh size of 0.03 mm (Fig. 5.26) was used at the sealing 

interface to achieve a reasonable computation time. The solution was not expected to be 

mesh-independent within 1%, but from Fig. 5.23 the order of error could be estimated as 

+4% based on the R2018 integration scheme. The R2018 scheme was chosen because it 

was easier to implement manually since it did not require a linear ramp-down of the 
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pressure at the sealing front. A gauge ring with height 6.35 mm and a compression ratio of 

15% were used. Two pressures are reported. The crack pressure is required to break nodal 

contact at the sealing front. Stated another way, it is the pressure threshold at which the 

nodal contact status at the sealing front changes from opening-to-closing to closing-to-

opening. The leak pressure is the final pressure that fully breaks through the seal. In this 

case, the crack and leak pressures are 14.87 MPa and 15.08 MPa, respectively (Fig. 5.27). 

The simulation required 109 pressure steps, and in between each of these, an additional 

step was required to relieve or propagate pressure across an element which gave a total of 

218 manually implemented pressure steps. The pressure propagation loads were not known 

a priori, so convergence errors aside, 109 of these steps required at least one additional 

iteration to determine where to break a step. Abaqus’ restart capability251 was used to 

shorten the total simulation time, but even so it required about 2 weeks to complete the 

solution. For reference, the final setup ran in about 2 hours on a single 2.6 GHz processer in 

Windows 10. Splitting the problem across multiple processors only increased simulation 

time. Appendix R provides more images of the seal deformation as a function of pressure. 

 
Fig. 5.26: Mesh transitions to achieve a 0.030 mm size at the sealing interface. There are 18,526 

quadrilateral and 1,744 triangular elements. 

 
                                                    (a)                                                                (b) 

Fig. 5.27: Seal deformation at: (a) ������ = 14.87 MPa; (b) ����� = 15.08 MPa. The simulation fails to 
converge before pressure fully breaks through the seal due to rapid changes in contact status, but the 

reported leak pressure is, for practical purposes, fully converged at this last point. 

5.6.2  Automating Contact Closure in Abaqus/Standard with a DLOAD Subroutine 

The iterative process in the preceding section was required because the native FPP 

algorithms in Abaqus do not address closing contact. However, it is possible to write a 

DLOAD subroutine252 that removes pressure from nodes with closing contacts, and when 

the sealing interface later transitions to opening contacts, the DLOAD can be swapped to 

Abaqus’ native FPP algorithm in a new load step. In the present example, nodal contacts 
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stopped closing when ������ = 11.80 MPa, and the node at the sealing front was stable until 

������ = 14.87 MPa. Therefore, at any pressure between these two limits, the DLOAD 

subroutine could be swapped to Abaqus’ FPP algorithm to complete the leak simulation. 

Two DLOAD subroutines for pressure penetration have been used in the 

literature,198,201 but detailed codes were not disclosed. To the author’s knowledge, this 

thesis presents the first publicly disclosed DLOAD subroutine that closes contact with 

pressure loads in Abaqus. The subroutine differs from Abaqus’ native algorithm in that it 

uses kinematic conditions instead of contact pressures to define where pressure is applied. 

This choice is made because it is difficult to extract nodal forces, and hence calculate 

contact pressures, in a DLOAD subroutine. The challenge occurs because the DLOAD 

subroutine does not call the necessary variables to directly compute contact pressures, but 

according to Moller & Stey,198 there is a complicated workaround for this. This was not 

pursued in this work, but it will be shown that the subroutine that is based on a kinematic 

definition has good agreement with Abaqus’ native FPP algorithms. 

More details on the DLOAD subroutine are given in Appendix H. Here, a conceptual 

explanation is sufficient. After the compression step, pressure application on the seal is split 

into 3 distinct load steps: 

1. Pressure is applied to the seal with the DLOAD subroutine until the nodal contact 
transitions from closing to opening contacts. 

a. The nodes that receive pressure are determined by their position with respect to 
the rigid (top) sealing interface. For a compression of 15%, any node below 
10.795 mm (that is, (12.7 −  0.15 ∗ 12.7) mm) receives pressure. This value is 
stored in “y_lim” in the subroutine. 

b. In this example, the transition can be assigned anywhere between 
11.80-14.87 MPa because the nodal contact is stable through this range. The 
transition point in Appendix H is arbitrarily set at 13.5 MPa and stored in the 
“F_lim” variable. 

2. An intermediate step swaps the DLOAD subroutine to Abaqus’ native FPP 
algorithm. In doing so, the DLOAD linearly ramps down pressure from 13.5 MPa 
to 0 MPa while the FPP interaction linearly ramps up from 0 MPa to 13.5 MPa. 

3. The solution progresses to completion with Abaqus’ FPP algorithm. 

With this technique and the R2018 integration scheme, ������ = 14.92 MPa, but 

convergence was not achieved for �����. This highlights a common problem in 

Abaqus/Standard: achieving converged solutions is difficult, and even seemingly trivial 

changes to the model affect convergence. The source of non-convergence is almost always 

a consequence of problems with contact forces and penetrations. Nevertheless, the crack 

pressure with this method only differed from the fully manual solution in the previous 

section by 0.3%. The slight discrepancy arises because the node at the sealing front shifted 

by one element when swapping from the DLOAD subroutine to Abaqus’ FPP algorithm. 
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With the DLOAD subroutine and the R2017 integration scheme, ������ = 13.62 MPa 

and ����� = 14.01 MPa. These were lower than the fully manual solution by 8.4% and 7.1%, 

respectively, and the differences can probably be attributed to the different integration 

schemes; that is, the R2018 scheme truncates pressure at the sealing front, whereas R2017 

uses a linear ramp-down. 

Finally, the DLOAD subroutine was run until full leakage instead of swapping to 

Abaqus’ native FPP algorithm. In this case, the simulation terminated before full leakage 

occurred, but ������ = 14.04 MPa which was 5.6% lower than the fully manual case. The 

lower crack pressure occurred because Abaqus assigns a finite contact pressure to nodes 

that are not in physical contact with the sealing interface (see Fig. 5.25), so it can more 

readily resist pressure penetration when compared to the kinematic definition in the 

DLOAD subroutine. In any case, all solutions fell within 10% of one another and would 

probably be in closer agreement with smaller mesh sizes according to trends in Fig. 5.23. 

5.6.3  Automating FPP in Abaqus/Explicit with a VDLOAD Subroutine 

Abaqus/Explicit does not have a built-in capability to propagate pressure, but such 

ability is highly desirable to overcome difficulties with contact convergence in 

Abaqus/Standard. Therefore, a VDLOAD subroutine253 was written to simulate pressure 

penetration with the explicit solver. To the author’s knowledge, this is the first publicly 

available demonstration of such capability. Like its DLOAD counterpart, the VDLOAD 

subroutine determines which nodes receive pressure based on their position relative to the 

sealing interface. The detailed code and notes on implementation are given in Appendix J, 

but there is one important point to make in this section. In both Abaqus/Standard and 

Abaqus/Explicit, default contact behaviours are assigned. The former uses a penalty 

method which allows nodes to penetrate a contact surface. The latter uses a kinematic 

method that practically eliminates nodal contact penetration.254 The differences in contact 

algorithms are visually evident in Fig. 5.28. As a result, nodes are more easily pulled away 

from the contact interface in Abaqus/Explicit, so leak pressures are systematically lower 

than those predicted in Abaqus/Standard. It will be shown that the impact on leak pressures 

may be minor. 

 
                              (a)                                                           (b)                                               (c) 

Fig. 5.28: Illustration of the difference in contact formulations: (a) the deformed seal; (b) with penalty 
contact in Abaqus/Standard, nodes on the seal can penetrate the countersurface; (c) with kinematic 

contact in Abaqus/Explicit, the nodal penetration is virtually eliminated. 
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The explicit solver has better contact convergence than the implicit solver, but careful 

attention must be given to timescales and material masses. Ideally, loading times and 

densities are set exactly as they occur in a real application, but this often results in 

impractical simulation times because there is an upper bound on the increment of time that 

advances the solution from a current state to the next one. The order of this time increment 

in an undamped system can be estimated as:255  

 Δ�� ≈
��

��
 (5.2) 

where �� is the length of the smallest edge in a mesh and �� is the dilational wave speed of 

the material. For a linearly elastic virtually incompressible material, the wave speed is: 

 �� = �
��

�
 (5.3) 

where � is the shear modulus and � is the mass density. For example, consider a typical 

rubber finite-element model with � = 1 MPa, � = 1 g/cm�, and �� = 0.01 mm. The critical 

time according to Eq. 5.2 is 10-� s. If pressure is ramped to 10 MPa at a rate of 1 MPa/s, 

then approximately 10� iterations are required to solve the problem, and this is a best-case 

scenario. Damping mechanisms and mesh deformation reduce the time increment further. 

Therefore, it may be impossible to achieve a solution with the explicit solver in a reasonable 

time because the solution advances too slowly. 

One option to shorten simulation time is to introduce mass scaling which artificially 

increases mass to increase Δ��. For example, Fig. 5.29a shows how increasing the density 

of the rubber by orders of magnitude reduces simulation time on a single 2.6 GHz processor. 

For the problem studied with a mesh size of 0.03 mm, mass scaling was required to achieve 

a solution in a reasonable time, but caution was exercised because mass scaling introduces 

kinetic energy in the model which can cause unwanted inertia effects. On one hand, higher 

inertia makes it more difficult to move the seal and can increase leak pressures. On the 

other hand, the extra mass can amplify inertia-driven elastic waves during deformation, 

disrupt the sealing front, and cause pressure to propagate prematurely. Such elastic waves 

in a seal are illustrated in Appendix R. Therefore, it is a good practice to confirm that 

desired outputs are not altered by mass scaling. For the studies in this work, Fig. 5.29b 

shows that the leak pressures were quite insensitive to mass scaling. 
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                                             (a)                                                                                   (b) 

Fig. 5.29: Impact of mass scaling with different mesh sizes on: (a) simulation time; (b) leak pressure. 

Table 5.2 summarises several results from this chapter and shows that: 

 The FPP method with the R2018 integration scheme and no consideration of closing 
contact on pressurised nodes gave crack and leak pressures about 30% lower than 
the techniques that address closing contact. This highlights the importance of using 
subroutines to address closing contact if it occurs. 

 The manual propagation solution was in excellent agreement with the DLOAD + 
R2018 solution. The slight differences arose from a 1-node offset in the pressurised 
surface after contacts began to open. 

 The R2017 scheme predicted lower pressures than the R2018 scheme which is 
consistent with trends in Fig. 5.23. 

 The crack pressures with the VDLOAD and DLOAD subroutines differed by 0.9%, 
indicating that the different solvers in Abaqus were in accord. The slightly lower 
pressure with the explicit solver arose due to the different contact formulations 
illustrated in Fig. 5.28. 

 The crack and leak pressures were nearly identical in the explicit analysis. This 
seems consistent with Druecke’s160 observation that seal leakage may be related to 
an elastic instability because pressure rapidly breaks through the seal after initial 
contact is broken. 

Table 5.2: Summary of leak pressures with a mesh size of 0.03 mm and a gauge ring height of 6.35 mm. 

Solver FPP Method ������ / MPa ����� / MPa 

Implicit R2018 10.03 10.18 

Implicit Manual 14.87 15.08 

Implicit DLOAD + R2018 14.92 n/a 

Implicit DLOAD + R2017 13.62 14.01 

Implicit DLOAD 14.04 n/a 

Explicit VDLOAD 13.92 13.93 
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5.7  Further Sensitivity Analyses 

This section explores how the friction model, volumetric compressibility, and seal 

compression affect leak pressures. Some trends with Coulomb friction models are 

illustrated since, despite being physically unrealistic, they are commonly used in the 

literature (see Table 3.1). The results with Coulomb friction are compared to contact 

pressure-dependent friction models. The impact of volumetric compressibility is presented 

with simulations that vary Poisson’s ratio, even to unrealistic (that is, overly compressible) 

values. This gives insight into the validity of adopting an incompressible material model, 

another common practice in the literature (Table 3.1). Finally, these model sensitivities are 

combined with some studies on the effect of seal compressions at 5%, 10%, and 15%. The 

latter two values are encountered in some O-ring designs of the financial sponsor. The 

sensitivity analyses are demonstrative and should not be generalised to other sealing 

systems. 

5.7.1  Friction Model 

When using a constant CoF model and the implicit solver, converged solutions were 

not consistently achieved at compression levels above 10% due to poor contact 

convergence. However, the VDLOAD subroutine enabled the study of how a constant CoF 

model affected leak pressures. 

One benefit of the explicit solver was that it did not require contact stabilisation which, 

as Fig. 5.8 shows, can result in physically unrealistic behaviour when a Coulomb friction 

model is specified. Fig. 5.30 shows that the leak pressures scale linearly with the CoF until 

� = 0.2. Above this value, stick-slip causes erratic movement of the seal, and pressure can 

suddenly break through the contact interface. The explicit solver gave a more accurate 

representation of leak pressures at the lower range of CoFs considered here, but results 

were erratic at the higher CoFs. It must be noted that these results scale mass by 10�, but 

the preceding section suggests that the leak pressures are reasonably converged with this 

level of scaling. Yet, it is conceivable that a reduction in mass scaling could mitigate the 

erratic behaviour by reducing inertia effects that disrupt the sealing front. The “Contact 

Pressure-Dependent” trend uses the friction model from Fig. 5.9. It shows stable behaviour 

over the entire CoF range and reiterates the benefit of using a contact pressure-dependent 

friction model when simulating rubber. The trend also shows less variation in leak 

pressures, a consequence of the diminution of CoFs with increasing contact pressures. This 

diminution also resulted in lower leak pressures with the contact pressure-dependent 

friction model. 
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Fig. 5.30: Effect of CoFs on leak pressures in Abaqus/Explicit with a mesh size of 0.03 mm, � = 15%, and 

ℎ� = 6.35 mm. “Coulomb” assumes a constant CoF. “Contact Pressure-Dependent” uses a contact 

pressure-dependent CoF with the maximum value capped to the value on the �-axis. For instance, 
“Contact Pressure-Dependent” at a CoF of 0.1 uses the model shown in Fig. 5.9. Other CoFs for 

the “Contact Pressure-Dependent” series linearly scale all data points in Fig. 5.9 by the same 
value. For example, the “Contact Pressure-Dependent” model with � = 0.2 scales all data in 

Fig. 5.9 by a factor of 2. 

5.7.2  Volumetric Compressibility 

The effect of volumetric compressibility on leak pressures is significant when a seal is 

highly confined, but Fig. 5.31 shows that the effect may be important even when a seal has 

a large extrusion gap. Leak pressures with 15% compression and a gauge ring height of 

6.35 mm scale linearly with Poisson’s ratio. Artificially low Poisson’s ratios for rubbery 

materials are also simulated. The bottom of the range is set to � = 0.475 (�: � = 20: 1) 

which is the default value in Abaqus/Explicit. Realistically, industrial rubber seals should 

probably be limited to a minimum value of 0.495 (�: � = 100: 1),256 so Fig. 5.31 may give 

an exaggerated view of the sensitivity of leak pressures to volumetric compressibility. 

 
Fig. 5.31: Effect of Poisson’s ratios on leak pressure in Abaqus/Standard with a DLOAD subroutine and the 

R2017 FPP algorithm. Mesh size is 0.03 mm, � = 15%, and ℎ� = 6.35 mm. 
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5.7.3  Seal Compression 

Fig. 5.32 illustrates the effect of seal compression on leak pressures for different 

Poisson’s ratios and contact pressure-dependent CoFs. The numbers in parentheses express 

the variation in leak pressures with respect to pressures indicated by the ○ symbols. Varying 

Poisson’s ratio from 0.49 to 0.4995 affects the leak pressures by about ±10% for the 

different levels of compression (Fig. 5.32a). The trends on the impact of friction are less 

straightforward (Fig. 5.32b). There is little difference in the solutions with ���� = 0.1 and 

���� = 0.05 for all compression levels because the friction model curves were both low 

(trending toward a frictionless case), so they gave similar behaviour. With � = 5%, all three 

friction models gave similar leak pressures because the contact interface was small as 

illustrated in Fig. 5.33. Therefore, friction forces contributed less resistance to the pressure, 

and the leak pressure was dominated by the stiffness of the seal. At the two larger 

compression ratios, the friction model with the largest CoFs increased the leak pressures 

by similar amounts, roughly 10%. 

     
                                            (a)                                                                                    (b) 

Fig. 5.32: Effects of compression ratio on leak pressure with a DLOAD subroutine and the R2017 FPP 
algorithm: (a) with varying Poisson’s ratios; (b) with varying contact pressure-dependent friction 

models capped as explained in Fig. 5.30. 

 
Fig. 5.33: Small contact interface at the top of the seal after 5% compression (compare to Fig. 5.3b). 
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5.8  Summary 

A 2D axisymmetric finite-element model of a bonded rubber face seal subjected to 

compression and differential pressure has been presented in this chapter. The seal was 

treated as a perfectly hyperelastic material. The hyperelastic model was generated from 

uniaxial tension data for a filled sealing material, and strain and biaxiality analyses were 

completed. The material model neglected complications that arise from viscoelasticity, 

plasticity, and cyclic stress softening. Metal sealing surfaces were treated as rigid bodies. 

These limitations are further assessed in chapters that follow. 

To address the problem of contact convergence in Abaqus/Standard, three different 

controls were studied: local surface-to-surface contact stabilisation, global stabilisation, 

and contact stiffness. Of these, local contact control gave the most realistic results over a 

broad range of studies. Global stabilisation resulted in unrealistic trends in leak pressures 

in models with low friction, and an important finding was that a low ratio of viscous 

dissipation energy (ALLSD) to internal energy (ALLIE) is necessary but not sufficient to 

ensure a physically realistic result. Reducing contact stiffness helped convergence, but the 

reductions were so large that unrealistic contact penetrations occurred. Recently, Abaqus 

added a general contact algorithm257 that may improve contact convergence, but this was 

not studied in the present work. 

Different methods of simulating fluid pressure penetration have been presented. In 

Abaqus/Standard, pressure loads may be specified on a surface in the Load or Interaction 

modules. The latter option allows the pressurised surface to update when nodes change 

from closed to open contact, but it does not remove pressure when they change from open 

to closed contact. To study this problem, pressure removal and propagation were simulated 

manually across each element, and results showed that removal of pressure from nodes 

significantly increased the leak pressure. 

To overcome the drawbacks of manually adjusting the location of pressure loads, a 

DLOAD subroutine was created for Abaqus/Standard. The routine can simulate leakage as 

a standalone code or run as a complement to Abaqus’ native FPP algorithms. The predicted 

leak pressures with and without the subroutine were similar. Small discrepancies were 

attributed to differences in the pressure integration scheme (truncation vs. linear ramp-

down at the sealing front), the mesh size, and the leak criterion (specifically, the use of 

nodal position or contact pressure to determine when pressure should propagate). 

Contact convergence in Abaqus/Standard was not always possible, so Abaqus/Explicit 

was used as a remedy. This required the development of a VDLOAD subroutine since the 

explicit solver does not have a native FPP capability. Leak pressures from the VDLOAD 

subroutine were in accord with those from the DLOAD subroutine, with slight 

discrepancies explained by different contact formulations (penalty in Abaqus/Standard vs. 
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kinematic in Abaqus/Explicit). Crack and leak pressures in the explicit solver were nearly 

identical which suggests a link between seal leakage and elastic instability. Leak pressures 

were remarkably insensitive to mass scaling which was required to achieve solutions in a 

reasonable time. Such large scaling was probably acceptable due to the simulation 

timescales being of order up to 10 s, significantly longer than impact simulations where 

explicit analysis are often employed. The VDLOAD subroutine for FPP appears to be the 

first of its kind in publicly available literature. 

Leak pressures were found to reduce significantly as mesh size reduced, and 

convergence to a mesh-independent value was slow. Consequently, element size transitions 

were required from the bulk of the seal to the sealing interface to achieve solutions within 

a practical time. With free mesh transitions, element shapes were often unacceptable. 

Therefore, structured quadrilateral and triangular transitions were explored. Both options 

took significantly more time to construct than a free mesh but reduced the total number of 

elements. Across transition zones, quadrilaterals gave smoother field contours than 

triangles, but the quadrilateral transition was more difficult to systematically adjust when 

studying mesh-independence. Fortunately, leak pressures were largely unaffected by the 

transition shape, so triangular transitions were employed in most studies. A surface mesh 

size of 0.005 mm was required for mesh-independence within 1%, but a size of 0.03 mm 

was used in most studies to shorten simulation time. For reference, the nominal height and 

width of the seal were both 12.7 mm. 

Coulomb and contact pressure-dependent friction models were studied in detail. 

Several deficiencies in the Coulomb model must be reiterated. First, the model is physically 

unrealistic for rubbery materials when contact pressures have large variation. Second, it 

introduced inaccuracies in the prediction of leak pressures at both low and high CoFs in 

this work. The problem at the low range was specific to Abaqus/Standard and related to 

global stabilisation. Abaqus/Explicit performed better with low CoFs. With high CoFs, 

contact convergence was extremely difficult in Abaqus/Standard, especially for 

compression ratios above 10%. In some cases, the node at the sealing front would stick on 

the countersurface, resulting in unrealistic deformations. In Abaqus/Explicit, the contact 

interface became unstable at high CoFs due to stick-slip, and this caused an unpredictable 

trend in leak pressures. The contact pressure-dependent friction models converged better 

than the Coulomb models in both solvers over the entire range of CoFs and compression 

ratios in this work. Contact pressure-dependent friction models are more physically realistic 

and numerically stable, so based on the studies in this work, a Coulomb friction model is 

highly discouraged when simulating rubber seals. 

Leak pressures increased linearly as volumetric compressibility decreased. Sensitivity 

of leakage to bulk modulus is expected for highly constrained seals, but even the relatively 
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unconstrained seals in this work showed sensitivity. This suggests that careful attention 

should be given to the volumetric stiffness of seals even when some surfaces are not 

constrained or loaded. 

As expected, leak pressures increased as the compression ratio and gauge ring height 

increased. When no gauge ring was used, or when a short gauge ring was used at 

sufficiently low compression, leak pressures were modeled well by Liu’s159 plane strain 

leak equation; however, his model became inaccurate as the extrusion gap decreased due 

to extra constraint from the gauge ring. Leak pressures as a function of compression ratio 

transitioned from an approximately linear to highly quadratic behaviour and depended on 

the gauge ring height. 

In closing this chapter, it is evident that accurately simulating seal leakage with FPP is 

no trivial task. Leak predictions are sensitive to a litany of model settings, and many 

parameters have been adopted in the literature without careful thought. When seal 

performance is critical, a more comprehensive approach is in order, and the lessons herein 

provide guidance; yet, the sensitivities that have been demonstrated raise questions 

regarding the accuracy of leak predictions by other researchers. Studies that have validated 

FE solutions could be merely fortuitous, representing a bias toward publishing only positive 

results. To better assess the accuracy of the FPP modelling methods, Chapter 6 presents an 

experimental test fixture that is based on the preceding FE models. Hence, the seal that is 

physically studied is designed to fail by elastic leak. Leak pressures are measured and then 

correlated to FE-based leak predictions to further assess the accuracy of FPP techniques. 
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6.  Experimental Testing of Bonded Rubber Face Seals 

6.1  Overview 

This chapter develops an experimental basis to assess the accuracy of pressure 

penetration modelling capabilities in Abaqus in the next chapter. It introduces a test fixture 

that mirrors the FE geometry of Chapter 5. The fixture is analysed to ensure appropriate 

safety factors prior to physical testing. An unfilled NR material and a filled EPDM material 

are introduced. Cure rheology and mechanical characterisations of both materials are 

presented, and curve fitting of hyperelastic models based on pure, homogeneous 

deformations is demonstrated. The models are then validated with force-deflection data 

taken from compression testing of the bonded seals. An experimental test plan for elastic 

leak of the seals under different compression ratios and extrusion gaps is summarised, and 

the chapter closes with a presentation of the leak pressure results. 

6.2  Experimental Test Fixture 

The test fixture (Fig. 6.1) replicates the finite-element geometry previously shown in 

Fig. 5.1. Table 6.1 identifies components in the fixture. When testing, the top plate (Item 

1) provided a sealing countersurface for the bonded seal (Item 6). This seal was bonded to 

a seal carrier (Item 5) that was fixed to the bottom plate (Item 3) with a bolt (Item 12). An 

O-ring (Item 7) in the seal carrier prevented leakage along the bottom plate. The seal carrier, 

which was not used in the previous chapter, provided a simple, economical means for 

redressing bonded seals. The spacer ring (Item 2), which was fixed between the upper and 

lower plates with bolts (Item 8), controlled compression of the bonded seal. Spacer ring 

heights were varied to achieve nominal seal compressions of 5%, 10%, and 15%. A single 

notch was machined on top of the spacer rings to prevent a face seal with the top plate. 

Without this feature, pressure could have been trapped between the bonded seal and the 

spacer ring, thereby increasing leak pressures. The gauge ring (Item 4) controlled the 

extrusion gap. Heights were chosen to achieve gaps equivalent to 50%, 75%, and 100% of 

the nominal seal height which, referring to Fig. 5.1, correspond to hg = (6.35 , 3.18 , 0) mm, 

respectively. The gauge ring had a 3.17 mm radius to prevent fracture as the seal deformed 

into the extrusion gap. ANSI/ASME B1.1258 grade 8 (�y= 896 MPa minimum) screw 

hardware was used per the project sponsor’s internal design standards. 
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Fig. 6.1: Assembly drawing of the experimental test fixture. 

Table 6.1: Test fixture components. 

Item No. Qty. Description 

1 1 Top Plate 
2 1 Spacer Ring 
3 1 Bottom Plate 
4 1 Gauge Ring 
5 1 Seal Carrier 
6 1 Bonded Seal 
7 1 O-ring #216 
8 8 Bolt, 1/2-13 X 3.75 UNC, Socket Head 
9 8 Nut, 1/2-13 UNC 

10 16 Washer, 1/2 
11 8 Bolt, 5/16-18 X 5/8 UNC, Low Head Socket 
12 1 Bolt, 1/2-13 X 0.75 UNC, Button Head 

 

The bonded seal was pressurised through a port at the centre of the top plate as 

illustrated by the red region in Fig. 6.1. This caused the bonded seal to displace into the 

extrusion gap until leakage occurred. During pressurisation, the seal was required to avoid 

contact with the counterbore in the gauge ring; otherwise leakage could have occurred 

prematurely. Prior to building the fixture, simulations determined an appropriate offset 

between the fixture’s centreline and the counterbores. A distance of 54.6 mm (Fig. 6.2) was 

suitable for all assembly conditions. 

 
Fig. 6.2: Offset between the fixture centerline and the counterbore in the gauge ring. Units are mm. 

All metal components in the fixture were 4140 steel with the following properties: �y 

= 758 MPa, � = 206.8 GPa, and � = 0.3 where � is Young’s modulus. A 3D linear elastic 

FE half-model was used to determine a maximum working pressure (Fig. 6.3a). For 

simplicity, only the meshed components were used in the analysis. Partitions permitted the 
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use of quadratic brick elements for all parts. The top plate was subjected to a pressure of 

52 MPa over the circular area defined by the radius of 54.6 mm in Fig. 6.2. The bottom plate 

was fixed along the circular area defined by the seal carrier. 

      
                                 (a)                                                                                    (b) 

Fig. 6.3: (a) Mesh for an FE half-model of the test fixture. Unmeshed parts are illustrated but not included 
in the analysis. (b) Pressure and fixed displacement boundary conditions for the FE model. 

Fig. 6.4 shows von Mises stress contours in the fixture with 20X magnification of the 

displacement. Maximum stress in the top plate is just above 600 MPa at the pressure port, 

giving a safety factor of approximately 1.26 against yielding. Due to their higher yield 

strength, the bolts have a slightly higher safety factor despite having larger stresses. With 

the pressure load, the plates separate approximately 0.9 mm at the pressure port and 0.6 mm 

at the gauge ring counterbore. The influence of this plate deflection on the seal leakage is 

discussed in Section 7.4.4. 

     
Fig. 6.4: von Mises stress contours in the FE model. Contours are capped at 900 MPa which corresponds to 

the bolt yield strength. 

6.3  The Bonded Seals 

Table 6.2 shows two rubber compound formulations for the elastic leak test fixture. The 

sulphur cured unfilled natural rubber was designed by Guangzhou JST Seals Technology259 

in China. With a Shore A hardness of 33 durometer, the material would not be well-suited 

for industrial sealing, but it was used to minimise inelastic effects such as stress relaxation 

and cyclic stress softening. Fig. 6.5a shows the bonded NR seal. 

To provide a better model material for an industrial seal, a filled compound was 

provided by Cameron Brookshire,260 a subsidiary of the financial sponsor. The facility had 
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a range of EPDM, NBR, and HNBR elastomers available for use. EPDM (KELTAN 2450) 

was selected for its relatively low glass transition temperature (see Table 2.1) to mitigate 

inelastic effects. The ethylene content of this EPDM is about 50% which yields an 

amorphous material, mitigating potential complications related to crystallinity. The 

compound was peroxide cured and used a silane-treated silicon dioxide (silica) reinforcing 

filler. The resultant Shore A hardness was 84 durometer. 

The bonded EPDM seal is shown in Fig. 6.5b. An earlier version of this compound was 

mixed and found lighter in colour than the NR material, so it appears that the batch used 

for bonded seal manufacturing collected some trace amounts of carbon black from the 

mixer. This could have implications on the final mechanical properties and is mentioned in 

case a researcher attempts to reproduce this compound. For the purposes of this work, the 

batch variation was inconsequential because the same batch was used for mechanical 

characterisation of coupons and experimental testing of bonded seals. 

Table 6.2: Bonded seal rubber compound formulations in parts (weight) per hundred rubber. 

Ingredient Type NR EPDM 

Natural rubber Elastomer 100  

KELTAN 2450 Elastomer  100 

Insoluble sulphur Curing agent 2  

Vulcup Curing agent  7 

TAIC DLC Curing coagent  3 

Silane 174 DLC Silica coupling agent  1 

Hi-Sil 190 Reinforcing filler  50 

Stearic acid Activator 1.2 1 

Zinc oxide Activator 5  

Accelerator CZ Accelerator 1  

Accelerator NS Accelerator 0.5  

N-phenyl-1-naphthylamine Antioxidant 1.8  

TMQ / Antioxidant RD Antioxidant 2  

IPPD / 4010 NA Antioxidant 2  

NAUGARD 500 Antioxidant  2 

ZF10 paraffin Mold release agent 1.8  

                     
                                        (a)                                                                                     (b) 

Fig. 6.5: Bonded rubber seals: (a) the unfilled natural rubber; (b) the silica-filled EPDM rubber. 
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6.4  Cure Rheology Characterisation of the Bonded Seal Materials 

To generate an accurate material model for FEA, it is essential that the mechanical 

properties of coupons that are used in characterisation tests be representative of those in the 

bonded seals. Although well-known in industrial settings, this issue is often not discussed 

in academic literature (for instance, in the studies of Table 3.1), and not taking it into 

account can lead to inconsistent mechanical properties that result in undesirable variations 

in performance. Hence, further discussion is warranted here. 

Fig. 6.6a shows a rheometer curve for the NR compound. It was cured at 165℃ and 

exhibited reversion. That is, the torque during curing reached a local maximum where the 

mechanical properties were optimal. This phenomenon is a consequence of the instability 

of sulphur crosslinks and is common in sulphur cured compounds. An ideal manufacturing 

process achieves a state-of-cure that is at or near the local maximum. For rubber 

components with small cross-sections, which is the case in this work, it is not difficult to 

achieve a cure near this maximum by imposing a cure time and temperature that closely 

follow the rheometer curve, but it will be seen that some adjustments may be required. 

Fig. 6.6b shows the rheometer curve for the EPDM compound at 160℃, a temperature 

that was recommended based on the experience of the manufacturer. The peak torque was 

much higher than that in the NR compound due to the silica filler, and a marching cure 

occurred. The illustrated timescale is short, so it is possible that the curve would stabilise 

over longer times. Reversion is unlikely in this compound since the curing temperature was 

not aggressive for EPDM and the material was peroxide cured. 

    
                                               (a)                                                                                 (b) 

Fig. 6.6: Rheometer curves for: (a) the unfilled natural rubber; (b) the filled EPDM rubber. 

After manufacturing first articles with NR and EPDM, JST used DSC to verify that the 

state-of-cure in the seals was sufficient. Fig. 6.7a shows three heat flow curves for NR with 

a temperature ramp of 10℃/min up to 300℃. The curing reaction occurred over a 

temperature range of 150-240℃, and the heat, captured in the area under the reaction curve, 
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was 14.0 J/gm. To assess the state-of-cure of the bonded seals, a small sample was cut from 

the centre of their cross-sections. The NR seal was initially cured at 165℃ for 5 min which, 

based on Fig. 6.6a, was expected to put it into a region with slight reversion. However, the 

heat of reaction was 3.1 J/gm (78% cured) as indicated by the blue curve in Fig. 6.7a. Such 

discrepancy between a rheometer test and a physical part are common in manufacturing 

due to the complex thermal history encountered in real components during curing. This is 

why it is a good practice to verify the state-of-cure in manufactured components. To 

achieve an acceptable level of cure, the time was increased to 15 min and the temperature 

was decreased to 160℃ to mitigate reversion. This resulted in a reaction heat of 0.9 J/gm, 

or 94% cured which is an acceptable limit for practical purposes.  

The curing condition for the EPDM seals was 160℃ for 25 min with a post-cure (that 

is, after removal from the mold) of 180℃ for 1 hr. This latter stage is common with peroxide 

cured compounds and mitigates the effects of marching cure. Fig. 6.7b shows that the 

bonded seal was 100% cured by this process. 

    
                                               (a)                                                                                 (b) 

Fig. 6.7: Normalised heat flow during a temperature sweep with DSC using a ramp of 10℃/min: 
(a) the unfilled NR compound; (b) the filled EPDM compound.  

6.5  Mechanical Characterisation of the Bonded Seal Materials 

First cycle stress-strain responses were measured for both rubber materials. Little 

material was available for this exercise due to high consumption when building first articles 

and verifying sufficient cure, so priority was given to planar tension testing which was the 

most critical loading mode in the test fixture (for evidence, refer to the biaxiality analysis 

in Section 5.4.7). Uniaxial compression was also important for the application, so a 

compression test was done for each material. Fig. 6.8 shows the stress-strain responses with 

a strain rate of 1%/s. 
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                                             (a)                                                                                  (b) 

Fig. 6.8: Stress-strain responses for planar tension and uniaxial compression loading modes with a strain 
rate of 1%/s: (a) the unfilled NR compound; (b) the filled EPDM compound. 

Only two samples could be prepared for planar testing of NR. The grip design is shown 

in Fig. 6.9. To assess the possibility of anisotropy, the samples were cut in two different 

directions. The first specimen was nominally 150 mm ×  2 mm with a gauge height of 

15 mm whereas the second was shorter at 120 mm × 2 mm with a gauge height of 12 mm. 

After clamping in the grips and removing slack due to compression, the actual gauge 

heights increased slightly to 17.22 mm and 14.35 mm, respectively. To control the clamping 

force, a bolt torque of 2 N∙mm was found sufficient to prevent slippage of the specimen 

without introducing premature fracture. A video extensometer was used to compute strain 

in the taller specimen, but it was not able to resolve strain in the shorter specimen. As shown 

in Fig. 6.8a, this was not a problem because the stress-strain curves generated from the 

video extensometer matched well with those generated from grip displacement. The stress-

strain trends from the two different tensile specimens were nearly indistinguishable, so 

repeatability was good. In-plane anisotropy was negligible which is not surprising for an 

unfilled NR compound. Only one uniaxial compression test was conducted, and since the 

mode was less critical, it was given a smaller bias when generating a hyperelastic material 

model in the next section. The compression button was 12.5 mm in height and 28 mm in 

diameter. 

Fig. 6.8b shows planar tension and uniaxial compression data for the EPDM compound. 

One planar curve is computed as the average of upper and lower bounds from three test 

specimens. The upper bound fractured at a fairly low strain due to the grip constraint. The 

trend for the lower bound became noisy above 100% strain due to slippage of the specimen. 

Two 150 mm wide and one 120 mm wide sample were tested with a bolt torque of 4 N∙mm. 

The narrow specimen was cut in a direction transverse to the other two, and it defines the 

lower bound in Fig. 6.8b. The figure indicates that some anisotropy may have been in the 
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plaque, though experimental variation cannot be ruled out. As expected, the stiffness of the 

filled EPDM compound was much higher than that of the NR compound. It also exhibited 

an inflection in the uniaxial compression data that is common in filled rubber 

compounds.261 Presumably, this was due to breakdown of the filler network as the rubber 

deformed.  

 
Fig. 6.9: Planar tension grip. 

In Chapter 7, inelastic effects in the bonded rubber seals are discussed, so some 

characterisation of these behaviours was necessary. Fig. 6.10a shows a stress-strain curve 

for the EPDM material after stretching a planar specimen to 10% strain at a rate of 1%/s, 

holding at a fixed displacement for 1 hr, stretching to 100%, and then holding fixed for 

another hour. At both hold positions, stress relaxation occurred. When stretching from 10% 

to 100%, the stress rapidly recovered to track the virgin stress-strain path as if the relaxation 

step had never occurred. This phenomenon is commonly referred to as the Mullins 

effect.106,136 Fig. 6.10b shows stress, normalised by the peak stress at the beginning of each 

hold period, as a function of time. The relative relaxation with 10% strain was greater than 

that with 100% strain, a common observation in engineering rubbers even in the absence 

of any Mullins effect.262 

The stress at any strain for EPDM in Fig. 6.10a is lower than that at any respective 

strain in Fig. 6.8b. The difference arises from batch variation or something else 

uncontrolled during the manufacturing process, not test variability or inelastic effects. The 

batches were manufactured about 12 months apart, and the latter (which was used for 

manufacturing bonded seals) clearly picked up carbon black from the mixer. It is also 

possible that the silane coupling reaction was inadequate in the first batch. Either of these 

could contribute to the stiffer response in the second batch. Nevertheless, the normalised 

relaxation curves of the softer batch are deemed suitable for arguments that are developed 

later in this work. 

Fig 6.11 shows normalised stress relaxation in the NR compound when held in planar 

tension with 10% strain. The relaxation was 5% after 15 min which was much lower than 

that in the EPDM (>30% at the same time), a consequence of the former being an unfilled 

rubber. Further comment on inelastic behaviours is deferred to Chapter 7. 
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                                             (a)                                                                                   (b) 

Fig 6.10: Stress relaxation in the EPDM compound: (a) with 1 hr holds at � = 10% and � = 100% and a 
Mullins effect present between the displacements; (b) normalised by the peak stress at the beginning 

of each hold period. The inset magnifies the response during the first 5 min. 

 
Fig. 6.11: Stress relaxation in the NR compound with � = 10%. 

6.6  Hyperelastic Material Models for the Bonded Seal Materials 

Fig. 6.12 shows gen-Yeoh SEF curve fits to the stress-strain data from Fig. 6.8. The fits 

were determined by inspection. The NR material was simple to fit, but the EPDM was more 

challenging because it exhibited a rapid reduction in modulus at tensile strains below 25%. 

As described in Section 4.2, this phenomenon is typical for highly filled rubbers, is difficult 

to model, and was the motivation for development of the gen-Yeoh SEF. In a recent paper 

by Robertson & Hardman,263 this characteristic feature is attributed to the Payne effect125 

which is a consequence of the breakdown of polymer-filler or filler-filler interactions as 

deformation increases. The authors also discussed the well-known upturn in modulus, often 

attributed to finite chain extensibility, which began around � = 0.5 in the EPDM compound. 

The NR compound did not exhibit this upturn until tensile strains above 200% which were 

beyond the region of interest for the problem. 
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                                               (a)                                                                                (b) 

Fig. 6.12: gen-Yeoh hyperelastic material models fit to stress-strain data from Fig. 6.8: (a) the unfilled NR 
compound with (�� , �� , ��) = (0.19 , -0.02 , 0.005) MPa and (� , � , �) = (1 , 1.5 , 1.85); (b) the filled 

EPDM compound with (�� , �� , ��) = (1.8 , 0 , 0.06) MPa and (� , � , �) = (0.77 , 0 , 2). Positive 
strain is planar tension and negative strain is uniaxial compression. 

Table 6.3 shows relative errors of the fits in each loading mode for each material using 

Eq. 4.5. The composite error of the NR in planar tension is 1.5% which is well within 

material and experimental variation. The 10% error for NR in uniaxial compression is 

deceptively large because it is skewed by a few points at the lowest strains where there was 

large uncertainty in measurements. High relative errors at low strains are common and have 

been observed by other authors,264 but they are of little consequence for the current problem 

since strains at leakage will be shown to be much larger than those at the low strains where 

uncertainty is high. As discussed in Chapter 5, curve fits should be biased to the dominant 

loading mode in an application, and it has been established that planar tension is the most 

important mode in the bonded seal. This bias is evident in the NR composite errors. The 

bias in EPDM is smaller because it was not possible to improve the fit in planar tension 

without creating a physically unrealistic material model. Specifically, to capture the rapid 

reduction in modulus at low strains, the first exponent, �, in the gen-Yeoh SEF had to be 

less than one, but it could not be reduced to an arbitrarily low value without violating the 

condition of ��� > ��� > ��� at any particular strain.*** Fig. 6.13b shows that for the 

parameter choices in Fig. 6.12b, the planar and equibiaxial curves nearly intersect. Fig. 

6.13a shows this was not a problem with the NR compound. For further discussion on 

parameter restrictions with the gen-Yeoh SEF, refer to Section 4.2 and a recent work by 

Heczko et al.265 The latter authors show that the gen-Yeoh SEF is unstable with � < 0.5. 

  

 
*** To be precise, this ordering must only be satisfied with respect to true stresses, not nominal stresses. 
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Table 6.3: Relative errors of the curve fits in Fig. 6.12. 

Material Loading Mode �� / %  

NR Planar tension 1.5 
 Uniaxial compression 10 

EPDM Planar tension 6.1 

 Uniaxial compression 9.4 

 

    
                                              (a)                                                                                  (b) 

Fig. 6.13: Hyperelastic material models with the gen-Yeoh SEF in different tensile loading modes for: 
(a) the unfilled NR compound; (b) the filled EPDM compound in which the planar and equibiaxial 

loading modes nearly intersect. 

6.7  Validation of the Hyperelastic Material Models 

The hyperelastic material models were validated by axially compressing bonded seals 

to 50% average strain (based on the nominal seal height) at a rate of 1%/s in a uniaxial test 

machine. WD-40 was used as a lubricant. Both NR and EPDM readily absorb hydrocarbons 

and soften, so compression was started immediately after applying the lubricant. The tests 

lasted about 1 minute. Using a swell prediction calculator that was developed by the project 

sponsor,266 the maximum dimensional change in the EPDM rubber, a material known for 

high swelling potential,179 was calculated to be about 0.063 mm which is 0.5% of the 

nominal cross-sectional dimensions of the rubber. This is a worst-case scenario because it 

assumes the rubber is fully immersed in a solvent which was not the case in these tests. 

Fig. 6.14a shows experimental compression of the NR seal, and Fig. 6.14b shows the 

corresponding deformation in FEA using the model parameters from Fig. 6.12a and the 

contact pressure-dependent friction model from Fig. 5.9. Volumetric compressibility was 

included in the FE model with a compressibility parameter of �� = 0.006002 MPa�� which 

assumed � = 0.4995. The Poisson’s ratio corresponds to �: � = 1000, a reasonable assign-

ment for unfilled NR.50 The shear modulus (required per Eq. 4.9) was estimated from the 

initial slope of the UT curve in Fig. 6.13a through the relation � = �/3 ≈ 0.33 MPa. Two 

deformed distances of 90.6 mm and 5.33 mm are shown in Fig. 6.14b, and the 
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corresponding values based on pixels from the photo in Fig. 6.14a are 90.2 mm and 5.21 mm 

giving differences of 0.4% and 2.3%, respectively. Therefore, experimental and FE 

correlations based on deformation of the NR seal are excellent. For safety reasons related 

to large compression loads, a clear photo of the EPDM seal was not possible because this 

would have required opening the test chamber. Nevertheless, it is noted that the EPDM was 

visually observed through sight glass and the deformations appeared similar to the NR seal. 

     
                                        (a)                                                                                   (b) 

Fig. 6.14: A bonded NR seal compressed to � = 0.5: (a) experimental test; (b) FE solution. 

As further model validation, force-displacement data were analysed for both materials. 

Fig. 6.15a shows the results for NR with displacement converted to an average axial strain 

based on the height of the rubber seal. Two experimental data sets are shown. “Data, Run 

1” is for a new NR bonded seal, and “Data, Run 2” is for a seal that had been previously 

compressed 15% and tested to full leakage with a gauge ring height of 6.35 mm. Both trends 

agree well down to -30% strain and then deviate. From -30% to -50% strain, the force 

magnitudes are the opposite of expectation because, presumably, the previously tested seal 

would have undergone stress softening if any were present, which would yield lower forces 

than the seal that was not previously tested. However, repeated compression cycles on both 

seals gave results that were bound by the two experimental trends in Fig. 6.15a. 

To investigate the unexpected variation in experimental force magnitudes below -30% 

strain, friction sensitivity studies were conducted with FEA. Referring again to Fig. 6.15a 

for NR, “FEA, CoF = Baseline” corresponds to the result using the friction model in Fig. 5.9.  

The other FE results scale the baseline friction model by multiplying all the CoFs by the 

factor indicated in the legend. The following observations and conclusions are made: 

 The baseline FE curve matches the experimental data well down to -37% strain. 

 From -37% to -50% strain, the baseline FE curve qualitatively matches the 
experimental trends. There is a softening behaviour, but the FE trend exaggerates 
the rate of this effect. 

 All the friction models predict a similar force-strain response down to -30% strain. 
This gives confidence that the hyperelastic model was accurate at least to this strain. 

 The force-strain trends are very sensitive to the friction model over a narrow range 
of CoF scaling factors from 1X-1.2X (refer to the caption of Fig. 5.30 for an 
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explanation of how contact pressure-dependent CoFs were scaled). In addition, the 
curve with a 1.2X multiplier shows a non-smooth force peak and a rapid diminution 
around � = -0.4. In the FE model, this transition corresponds to a point at which the 
seal suddenly and rapidly slid in the radial direction, suggesting an instability in the 
system that was sensitive to the friction model. This instability could also be visually 
detected during experimental compression of the NR seals. They compressed 
smoothly in the vertical direction, and then they transitioned to significantly increase 
their rate of movement in the radial direction beyond -30% strain. 

 With sufficiently high friction, the force peak is not observed, and rapid movements 
in the radial direction do not occur. Moreover, CoF multipliers in the broad range of 
2X-5X only slightly change the force-strain curves. 

In summary for the NR compound, the deformation and force-strain correlations give 

high confidence in the hyperelastic material model. They also suggest that inelastic effects 

such as relaxation and cyclic stress softening were negligible during testing. Deviations 

between the experimental and FE results at strains below -30% are attributed to a friction-

dependent instability in the system.  

   
                                   (a)                                                                                    (b) 

Fig. 6.15: Experimental and FE force-strain responses for bonded seals with: 
(a) the unfilled NR compound; (b) the filled EPDM compound. 

For the EPDM material, the compressibility parameter was �� = 5.998 ∙ 10-� MPa�� 

which corresponded to a Poisson’s ratio of 0.4975, a value that has been found accurate for 

a variety of filled sealing materials used by the project sponsor. Similar to the NR case, the 

Poisson’s ratio was converted to a �� parameter via the modulus of the UT stress-strain 

curve in Fig. 6.13b where � = �/3 ≈ 16.7 MPa. As Fig. 6.15b shows, force-strain 

correlations for the EPDM compound are accurate down to -15% compression, but then 

both qualitative and quantitative problems arise. Below this limit, the “FEA, CoF = Baseline” 

trend overpredicts the force magnitude until a softening behaviour, which is not observed 

in the experimental data, brings it back into agreement at about -42% strain (at which point 

the simulation failed to converge). In an effort to eliminate the softening behaviour in the 
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FE model, the “FEA, CoF = 2X” curve doubled the friction coefficients but showed no sign 

of removing the effect. Furthermore, a frictionless case in FEA (which admittedly 

terminated prematurely due to problems with convergence) predicted a stiffer response than 

the experimental data. This suggests that the discrepancy between the data and FE results 

does not arise from frictional uncertainties. 

A possible explanation for a less satisfactory correlation with the EPDM compound 

might be that the hyperelastic model was determined from a loading mode that was not 

dominant in the experimental test, or the range of strain for curve fitting was not properly 

chosen. However, Figs. 6.16 and 6.17 suggest these scenarios are unlikely. The green 

contour in Fig. 6.16 corresponds to planar tension, and the blue contour corresponds to 

equibiaxial tension, confirming that the most dominant loading modes were fit in Fig. 

6.12b. In addition, the strain levels are mostly less than 100%, so the fitting range for strain 

was acceptable. It is also unlikely that strain rate sensitivity explains the correlation 

problems in Fig. 6.15b because on average it was 1%/s in the validation tests.  

It is more likely that the lower correlation for the EPDM compound arose from non-

ideal hyperelasticity. Recall from Chapter 2 that in ideal hyperelasticity, a compressive 

loading mode is equivalent to a tensile loading mode. For instance, the energy consumed 

during a uniaxial compression can be expressed as an equivalent equibiaxial tension. 

Although the dominant loading mode in the present study was planar, which is theoretically 

equivalent in tension and compression, it is possible that the experimental characterisation 

was “compression dominant” and did not map well onto the planar tension characterisation 

test. If this is true, it is almost certainly a consequence of the material being highly filled. 

For further evidence of this claim, refer to Appendix K which shows imperfect 

hyperelasticity for a filled HNBR material. 

Another potential problem with the EPDM correlation is that only pure modes of 

deformation were used in material characterisation tests. As Ansarri-Benham et al.264 

pointed out, sometimes it is necessary to introduce non-pure deformations such as simple 

shear or torsion to accurately characterise the hyperelastic response of a rubbery material. 

Regardless, this subject is not explored further because the maximum error of ≈12% at � =

-0.3 is not entirely unacceptable for a filled compound, especially one that is difficult to 

curve fit. 
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                                          (a)                          (b)                              (c)                                (d) 

Fig. 6.16: Biaxiality using a compressible form of Eq. 2.21 (see Appendix D) in the EPDM bonded seal at 
different levels of compression: (a) 10% compression; (b) 20% compression; 

(c) 30% compression; (d) 40% compression. 

 
                                       (a)                            (b)                               (c)                                   (d) 

Fig. 6.17: Engineering strain in the EPDM bonded seal at different levels of compression: (a) 10% 
compression; (b) 20% compression; (c) 30% compression; (d) 40% compression. 

6.8  Experimental Test Plan and Results for Elastic Leak of the Bonded Seals 

The detailed test plan is given in Appendix L. Some important points to highlight are: 

 Critical fixture and seal dimensions were measured prior to assembly. 

 A hydrocarbon grease was used to lubricate sealing contact interfaces. Negligible 
absorption of the grease occurred as the time between assembly and full leakage 
ranged from 3-9 min for NR and 9-20 min for EPDM, with one outlier of 38 min for 
EPDM. 

 The test fixture was maintained in an environment of 23 ± 1℃. 

 Pressure was applied to the seals until leakage was detected via a plateau or drop in 
pressure. Before disassembly, the seals were pressured to leakage two more times to 
assess cyclic stress softening. 

The test matrix and leak pressures for the seals are shown in Table 6.4. The extrusion 

gap, which is a function of the gauge ring height, is expressed as a percent of the nominal 

seal height. For instance, when no gauge ring was used, the extrusion gap was 100%. The 

compression is expressed as an average axial compressive strain based on the rubber seal 

height. For simplicity, the extrusion gaps and compressions are reported as nominal values, 

but values as tested are captured in Appendix L. Twenty seals of each material were made, 

but the table indicates that only 9 of each were tested with no repeats of any assembly 

condition. Therefore, the test matrix does not address statistical variation. This limitation 

is discussed later. 

Fig. 6.18 shows leak pressures with identical assembly conditions (SNs 9 in Table 6.4) 

for the NR and EPDM seals and are representative of other conditions. The leak pressures 
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were an order of magnitude higher in the EPDM compound which is consistent with its 

modulus being an order of magnitude higher than the NR modulus. Three plateaus at 

1.5 MPa in the NR compound indicated sustained leakage with the pump on. The material 

showed no signs of softening while leaking or with subsequent pressure cycles. The EPDM 

compound showed a softening behaviour when sustained leak occurred which is attributed 

to stress relaxation. The material also exhibited cyclic stress softening. 

Table 6.4: Experimental test matrix and leak pressure results. “SN” indicates the serial number for the test. 
Each SN was pressured to full leakage three times without any disassembly between pressure cycles. 

Extrusion 
gap / % 

Compression / 
% 

NR leak pressure / MPa EPDM leak pressure / MPa 

SN �� �� �� SN �� �� �� 

100 

(no gauge 
ring) 

5 1 0.04 0.04 0.03 1 1.79 1.45 1.41 

10 2 0.12 0.12 0.12 2 1.92 1.74 1.69 

15 3 0.19 0.19 0.19 3 2.09 1.93 1.83 

75 

5 4 0.04 0.04 0.04 4 2.03 1.67 1.64 

10 5 0.22 0.22 0.22 5 2.50 2.25 2.20 

15 6 0.34 0.34 0.34 6 2.96 2.72 2.65 

50 

5 7 0.52 0.52 0.51 7 3.83 3.40 3.33 

10 8 0.84 0.84 0.82 8 5.98 5.31 5.03 

15 9 1.54 1.54 1.54 9 10.07 9.02 8.69 

    
                                             (a)                                                                                  (b) 

Fig. 6.18: Leak pressures with 15% compression and a 50% extrusion gap for: 
(a) the unfilled NR compound; (b) the filled EPDM compound. 

Fig. 6.19 plots the first-cycle leak pressures for both materials as a function of nominal 

compression with different nominal extrusion gaps. Refer to Appendix L for actual 

compressions and gaps. As expected, leak pressures increased with higher compressions 

and smaller extrusion gaps. In addition, two qualitative trends from Fig. 5.18 were 

observed. First, the extrusion gaps of 75% and 100% (which correspond to “hg= 3.18 mm” 

and “No Gauge” in Chapter 5) had leak pressures that were linearly dependent on 

compression, whereas the extrusion gap of 50% (which corresponds to “hg= 6.35 mm” in 

Fig. 5.18) predicted a non-linear dependence. Second, there was a much larger increase in 
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leak pressure when the extrusion gap was reduced from 75% to 50% as opposed to the 

change from 100% to 75%. These qualitative alignments somewhat mitigate the uncertainty 

of measuring only one data point per assembly condition. Exceptions are made for the two 

lowest pressures with the NR seal at � = 5% because the transducer was not capable of 

accurately resolving them. The sensor resolution was 0.001 MPa with an accuracy of 

±0.075 MPa. For this reason, linear trends are not illustrated for the data sets. The trends in 

Fig. 6.19 are discussed further in the next chapter where they are compared to FE solutions. 

    
                                             (a)                                                                                   (b) 

Fig. 6.19: Elastic leak pressures as a function of compression for different nominal extrusion gaps: (a) the 
unfilled NR compound; (b) the filled EPDM compound. The linear trends are fit to the data points at 5%  

and 10% compression to illustrate whether the point at 15% compression remains linear. 

6.9  Summary 

An experimental test fixture has been designed and tested with NR and EPDM bonded 

seals that had nominal heights of 12.7 mm. The seals were subjected to compression ratios 

within the range of 5-15% and nominal extrusion gaps within the range of 50-100%. This 

range for the extrusion gaps corresponds to a range of gauge ring heights from 6.35 mm to 

0 mm, respectively. 

Cure rheology characterisations of both materials was shown. The NR compound 

exhibited reversion which is common in sulphur cured rubber. DSC analysis gave 

confidence that the NR seals were suitably cured. The EPDM material exhibited a slight 

marching cure which is not uncommon for peroxide cured rubbers. A post-curing process 

was implemented to mitigate this effect. DSC analysis showed that the EPDM seals were 

sufficiently cured. 

Both rubbers were characterised with planar tension and uniaxial compression tests, the 

two most critical loading modes according to biaxiality analyses. The unfilled NR 

compound exhibited minimal inelastic effects. The filled EPDM, being more typical of an 

industrial sealing material, had significant inelasticities. The hyperelastic characterisation 
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data were fit with the gen-Yeoh SEF. The fitting accuracy was excellent for the NR but less 

accurate although reasonable for the EPDM. 

The hyperelastic material models were validated with compression tests of the bonded 

seals down to � = -50%. An FE model of the EPDM seal matched the experimental results 

well down to -15% compression, and the NR model fit well down to -30%. The former 

model probably deviated at a lower strain magnitude due to imperfect hyperelasticity. That 

is, the deformation mode during the validation exercise did not match well with that of the 

characterisation tests. The deviations of the NR seals at larger strain magnitudes were due 

to an elastic instability that was dependent on friction in the system. 

The bonded seals were pressure tested, and experimental leak pressures were measured 

from 0.1-10 MPa. The EPDM seals had significantly higher leak pressures than the NR seals 

due to their stiffer stress-strain response. Significant inelasticities were observed in the 

EPDM tests but not in the NR tests. Only one test per assembly condition (that is, 

compression level and extrusion gap) was conducted, but based on expectations from 

Chapter 5, the experimental trends appear reliable. Thus, qualitative agreement between 

the numerical and experimental leak studies is established. The next order of business is to 

determine if quantitative agreement can also be made. To this end, Chapter 7 uses FPP 

modelling in Abaqus to predict leak pressures based on the rubber materials and physical 

measurements that are reported in this chapter and Appendix L. 
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7.  Correlation of Experimental & Numerically Simulated Leak Pressures 

7.1  Overview 

This chapter applies lessons learned from the FPP simulations in Chapter 5 to 

numerically predict leak pressures for the experimental test conditions in Chapter 6. The 

simulated pressures are 10% to 55% higher than the test pressures. At low leak pressures 

with the NR material, the error is attributed to inaccuracies in the pressure transducers. 

With the EPDM seals, some of the error may arise from strain rate sensitivity. However, 

the large errors are not generally explained by these effects or any of the following: the 

friction model; volumetric compressibility; numerical discretisation; stress relaxation; the 

Mullin’s effect; dynamic effects; deformation of the test fixture; asymmetries in the test 

configuration; and inhomogeneity of the rubber materials. The primary source of error 

appears to arise from the leak criterion itself, and this claim is supported by applying two 

different leak criteria that result in simulated leak pressures bounding experimental 

pressures. 

7.2  The FE Models 

All simulations in this chapter are built upon work in Chapters 5 and 6 as follows: 

 The seal geometry was exactly as shown in Fig. 5.1, but the compression ratios and 
extrusion gaps were adjusted to match the precise conditions that were tested based 
on the measurements in Appendix L. This approximation eliminated the labourious 
exercise of partitioning the seal for trivial changes in its geometry while preserving 
the more critical features of compression ratio and extrusion gap. 

 The hyperelastic material models from Fig. 6.12 were used with compressibility 
parameters as described in Section 6.7. Inelasticities were not simulated unless 
otherwise stated. 

 The load steps and contact controls in Sections 5.4.1 and 5.4.2 were used. 

 The contact pressure-dependent friction model from Fig. 5.9 was used since it had 
reasonable accuracy for the validation exercises in Section 6.7. 

 Unless otherwise specified, pressure penetration was simulated with the DLOAD 
subroutine in Abaqus/Standard as described in Section 5.6.2. This ensured that 
contact closures were simulated. It also gave results that were better aligned with 
Abaqus’ native R2017 FPP scheme which was demonstrated in Section 5.5 to be less 
sensitive to mesh sizing than the R2018 scheme. 

 The metal components were simulated as rigid bodies. This will be justified based 
on the FE analysis of the test fixture in Section 6.2 and arguments in Section 7.4.4. 

 Unless otherwise stated, the mesh from Fig. 5.26 which has a 0.03 mm mesh size 
along the sealing interface was used. Hence, simulated leak pressures were probably 
a few percent higher than a 1% mesh-converged solution. 
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7.3  Comparison of Experimental and FE Leak Pressures 

Fig. 7.1 plots peak experimental (● symbols) and simulated (× symbols) leak pressures 

for both rubber materials during their first pressure cycle. The percentage differences for 

different test conditions are indicated next to the simulated pressures. 

 
                                                                                          (a) 

 
                                                                                          (b) 

Fig. 7.1: Comparison of experimental and FE leak pressures for the bonded seals with: (a) the unfilled NR 
compound; (b) the filled EPDM compound. “Gap” refers to the nominal extrusion gap. 
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The accuracy of the pressure transducer for all tests was ±0.075 MPa and significant for 

some conditions. Table 7.1 summarises the maximum potential errors that may be 

attributed to the accuracy of the pressure transducer. 

Table 7.1: Maximum potential errors for the first cycle leak pressures (��) due to the accuracy of the 
pressure transducer. 

Extrusion 
gap / % 

Compression / 
% 

NR pressure error / % EPDM pressure error / % 

SN �� SN �� 

100 
(no gauge 

ring) 

5 1 190 1 4.2 
10 2 65 2 3.9 
15 3 39 3 3.6 

75 
5 4 190 4 3.7 

10 5 34 5 3.0 
15 6 22 6 2.5 

50 
5 7 14 7 2.0 

10 8 8.9 8 1.3 
15 9 4.9 9 0.7 

 

Based on the table and figures, the following observations are made: 

 All simulated leak pressures are significantly higher than experimental pressures. 

 The simulated leak pressures follow qualitative trends from Chapters 5 and 6. With 
extrusion gaps of 75% and 100%, leak pressure increases linearly with respect to the 
compression ratio. However, for an extrusion gap of 50%, leak pressure increases 
non-linearly with the seal compression. 

 Comparing Table 7.1 and Fig. 7.1a, it is evident that the transducer accuracy 
introduces large uncertainties in the NR seal leak pressures for all cases when the 
extrusion gap is 75% and 100%. Potential errors due to the transducer diminish as 
leak pressures increase. 

 For NR seals, the measurement error due to the transducer is much lower with 
extrusion gaps of 50% and cannot fully explain the systematically higher simulation 
pressures. 

 Potential errors due the transducer are less than 5% for every EPDM seal and cannot 
explain the large differences between experimental and simulated leak pressures. 

 In the EPDM tests, the percent differences between experimental and simulated leak 
pressures increase as the compression ratios increase and the extrusion gaps 
decrease. That is, the simulation errors increase as experimental leak pressures 
increase. An exception occurs with � = 15% and an extrusion gap of 50%. This latter 
case would not converge with the implicit solver, so the VDLOAD subroutine from 
Section 5.6.3 was used in Abaqus/Explicit. As previously explained, the explicit 
solver handles contact differently, resulting in lower leak pressures. Inertia effects 
can also disrupt the sealing front in the explicit solver and pull nodes out of contact 
sooner than the implicit solver. See Appendix R for an illustration of this. 

 Qualitative trends for the NR seals with an extrusion gap of 50% are similar to those 
with the EPDM seals. Presumably, the alignment occurs because the measurement 
errors do not significantly affect the NR seals at higher pressures. As with the EPDM 
seal, the VDLOAD subroutine was required to achieve convergence at the highest 
level of compression. 
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Overall, the results in Fig. 7.1 indicate that something is systematically and significantly 

incorrect with the simulated leak pressures, and it is for this reason that test repeats have 

not yet been conducted. That is, experimental uncertainty and statistical variation appear 

unlikely to reconcile the experimental and simulated results, so additional seals are being 

preserved for future testing. The sections that follow explore possible sources for the large 

discrepancies. 

7.4  On Some Sources of Error in the Simulated Leak Pressures 

7.4.1  Friction, Volumetric Compressibility, and the FE Mesh 

Model sensitivities to friction and volumetric compressibility were assessed in Section 

5.7. It was shown that reducing friction by a factor of two had almost no effect on leak 

pressures. In fact, the CoFs for rubber at high contact pressures in a lubricated condition 

approach the frictionless limit, so frictional uncertainty is not significant in the cases 

considered. What is particularly telling is considering the EPDM seal with 5% compression 

and an extrusion gap of 50%. The numerical result is 52.2% larger than the experimental 

results, yet the friction sensitivity study in Fig. 5.32b only shows 2.5% variation due to 

frictional sensitivity. Clearly this cannot explain the error. 

Turning to compressibility and assuming a practical range of 0.495-0.4995 for 

Poisson’s ratio, Fig. 5.32 suggests uncertainties lie in a range of ±5%. In reality, the 

potential errors due to compressibility are lower. It is well established that unfilled NR has 

approximately � = 0.4995, and data from the project sponsor supports the value of 0.4975 

that is used for the filled EPDM. Consequently, uncertainties in the volumetric 

compressibility cannot explain the large discrepancies in Fig. 7.1. 

The FE mesh chosen for this chapter resulted in leak pressures that were not mesh-

independent within 1%, and results were biased high. The comprehensive studies in Section 

5.5 suggest that the mesh error was in the range of 2-6% which is also not adequate to 

explain the large overpredictions in this chapter. 

7.4.2  Inelastic Effects 

During the experimental tests for NR seals, the average time between seal compression 

and full leakage was 7 minutes. Fig. 6.11 shows that the maximum stress relaxation during 

this time span is 4.5%. Simulations were conducted with �� material model parameters 

relaxed by this amount, and the leak pressures scaled down in almost exact proportion with 

the moduli. In reality, full stress relaxation was not present when the seals leaked. Some 

recovery occurred during pressure application due to the Mullins effect, and the material 

tracked a virgin stress-strain path once strains became sufficiently large. Fig. 6.18a also 

provides strong evidence that stress relaxation was insignificant in the NR seals because 
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there was no appreciable change in the sustained leak pressure over the ≈1.5 minute time 

interval during the first cycle. Cyclic stress softening is also not observed in the figure. 

Therefore, it is improbable that inelasticities explain the large discrepancies in Fig. 7.1a. 

(Note: the potential for inaccuracies due to strain rate sensitivity is discussed later.) 

Inelasticities must be considered in the EPDM seals. Neglecting one outlier, the average 

time between seal compression and leakage was 14 minutes during experimental testing. 

Over this time interval, Fig. 6.10b suggests that the worst-case seal relaxation is about 30%. 

Scaling the �� moduli in simulations again found that leak pressures decreased in almost 

exact proportion to the model parameters. Yet, even this worst-case relaxation cannot 

explain the magnitude of discrepancies in Fig. 7.1b. In addition, Fig. 6.10a shows that the 

relaxed EPDM material rapidly recovers to a virgin stress-strain path when larger strains 

occur, so some of the relaxation after compression in the experimental tests may have been 

recovered as the seal was pressurised. 

Because the EPDM material showed significant inelasticity, an analysis of 

experimental strain rates is necessary. The strain rates could not be measured directly, but 

they could be approximated from FE results and experimental times. For instance, the 

average strain rate ranged from 0.1-0.9%/s when the seal was pressurised with � = 15% 

and an extrusion gap of 50%. This was determined by sampling the maximum principal 

strains at the locations highlighted in Fig. 7.2 at times beginning near the point of full 

compression and ending near the point of leakage. The difference in strains at the time 

points was divided by the experimentally measured time between compression and leakage 

to estimate the strain rate. The average strain rate for all points in Fig. 7.2 was 0.3%/s. 

Strains in the lower right region of the seal were not considered because deformations there 

were small. Strain rates with the other test conditions and materials were similar to those 

illustrated here. Importantly, the average experimental strain rates were about one-third of 

those in the material characterisation tests. This is of little consequence for the NR material 

where inelastic effects are small, but the same cannot be said for the EPDM seals. 

 
Fig. 7.2: Sampling locations for average strain rates during pressure application. 

Although the Mullins effect mitigated the complication of stress relaxation due to pre-

compression, the EPDM seals almost certainly exhibited a softer response than that in Fig. 

6.8b due to a lower average strain rate. Unfortunately, only one strain rate was characterised 
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due to limited material for testing, but the order of the error can be established with data 

from another Shore A 80D commercially sensitive sealing material that was provided by 

the financial sponsor. Fig. 7.3 shows stress-strain curves for the material with strain rates 

of 1%/s and 15%/s, more than an order of magnitude different. The curves are normalised 

by the peak stress at the faster rate. The difference between the curves varies between 

20-25% for strains above 25%. Since the average experimental strain rates were less than 

an order of magnitude different from the characterisation strain rates, it is reasonable to 

expect the order of the model error due to excessive stiffness to be within 25%. Referring 

to Fig. 7.1b, this is not sufficient to explain discrepancies in the experimental and simulated 

leak pressures. 

 
Fig. 7.3: Typical strain rate sensitivity for an 80 durometer (Shore A) sealing material. 

It is tempting to suggest that the simulated errors arise from a combination of stress 

relaxation and the low experimental strain rate. Collectively, their sum gives an upper 

bound of 55% for the error which would bring the experimental and simulated pressures in 

good agreement for the two lower compression ratios with an extrusion gap of 50%. 

However, the two effects cannot be additively summed because they are not mutually 

independent.90 Specifically, stress relaxation and strain rate sensitivity in a filled rubber 

arise primarily from a single physical phenomenon: constraints on polymer chain mobilities 

due to interactions with the filler. When a deformed rubber is held at constant strain, this 

manifests as stress relaxation. When deformations are continuous but strain rates vary, it 

manifests as a vertical shift in the stress magnitude for a given strain. The leak pressures 

would be overcorrected if both effects were applied to the numerical simulations. 

To summarise the arguments in this section, inelasticities in the NR are demonstrably 

small and cannot explain the larger discrepancies between experimental and simulated leak 

pressures. Inelastic effects certainly contribute to some of the discrepancies for EPDM 

seals. The effect of stress relaxation is deemed small due to recovery from the Mullins 

effect, but the lower strain rate in the experimental cases probably results in non-trivial 
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errors in the simulated leak pressures. However, an order of magnitude analysis suggests 

that, as a worst case, ≈25% of the simulation error can be explained by strain rate 

sensitivity. Yet, even this pessimistic assumption does not account for the observed 

discrepancies. 

7.4.3  Dynamic Effects Due to Inertia and Mass Scaling 

In Table 5.2, dynamic effects have a small impact on the crack pressure, reducing it 

from 14.04 MPa to 13.92 MPa which is -0.9%. Differences in the implicit and explicit 

solutions are more significant in this chapter. As mentioned, there is a general trend for the 

simulation errors to increase as the leak pressures increase, but the two highest pressures 

for each material deviate from this trend. This occurs because the explicit scheme was 

required to solve these load cases. The difference is particularly notable for the EPDM seal 

and not entirely surprising since the mass was scaled by 10�. This created elastic waves in 

the material that disrupted the sealing interface, pulling the node at the sealing front out of 

contact at a lower pressure than in the quasi-static simulation. Fig. 7.4 illustrates this 

phenomenon with mass scaled by 10�, a large factor that was chosen to amplify the elastic 

waves. Perhaps counterintuitively, the leak pressure (19.1 MPa) with this mass scaling is 

much higher than that in Fig. 7.1b even though the sealing front was disrupted by elastic 

waves. This occurred because the mass significantly impeded deformation into the 

extrusion gap, raising the leak pressure. Therefore, dynamic effects can raise or lower leak 

pressures. For the case at hand, a scaling factor of 10� is clearly not physically realistic for 

the rates of pressure application in the experimental testing. The factor of 10� used for one 

point in Fig. 7.1b was also not physically realistic, but Table 5.2 does give merit for its use. 

Reducing the factor to a lower magnitude would probably increase simulated leak pressures 

due to a more stable sealing front. Further studies on mass scaling are not pursued here 

because the simulation errors are too large to be attributed to this issue alone. 

 
               (a)                                  (b)                                       (c)                                          (d) 

Fig. 7.4: Illustration of elastic waves in Abaqus/Explicit with mass scaled by a factor of 10�: (a) at 7.5 MPa, 
the nominal strain contours are smooth, but the sealing front is unstable as indicated by the void that is 
circled red; (b) at 8.1 MPa, strain contours become unstable, presumably due to an imbalance between 

the forces from friction, inertia, and strain-energy; (c) at 14.6 MPa, the seal has largely stabilised, 
and the contours are smoother; (d) at 19.1 MPa, pressure rapidly breaks through the seal. 

(see also Appendix R.)  
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7.4.4  Deflection of the Test Fixture 

As shown in Fig. 6.4, the separation between the top and bottom plates must increase 

when the test fixture is pressurised, so an analysis of this breathing effect is warranted. For 

simplicity, the plates were modelled as rigid, and their expected elastic displacement was 

addressed by reducing the seal compression by an equivalent amount. Because the test 

fixture remained in an elastic regime, it was reasonable to linearly scale the displacement 

of the top plate with the applied pressure instead of modelling its actual deformation. An 

upper bound for the simulation error due to breathing was established by adopting the 

worst-case deflection of 0.9 mm when �� = 52 MPa from Section 6.2, and then scaling this 

deflection by the simulated leak pressure. For example, the simulated leak pressure was 

9.25 MPa for the EPDM seal with � = 10% and an extrusion gap of 50%, so the 

displacement of the top plate in the FE model was reduced by 0.9 mm × (9.25/52) =

0.16 mm to simulate the breathing effect. This resulted in a simulated leak pressure of 

8.31 MPa, a 10.7% reduction. Unsurprisingly, test conditions with lower leak pressures gave 

less error due to breathing. For instance, the leak pressure of 1.96 MPa for the EPDM seal 

with � = 5% and an extrusion gap of 100% was only 1.6% lower when breathing was 

considered. Hence, the breathing effect was only significant for some of the test conditions 

with EPDM seals. It was not critical for the NR seals because the highest leak pressure was 

only 1.54 MPa. In all cases, breathing effects do not fully account for the large discrepancies 

between experimental and simulated leak pressures. 

7.4.5  The Critical Contact Node and the Leak Criterion for FPP 

As illustrated in Fig. 5.25, the native FPP schemes in Abaqus/Standard monitor the 

contact pressure at a node that is not in physical contact with the sealing countersurface to 

determine when to propagate pressure. Another natural choice for the critical node is the 

one that is in physical contact with the sealing countersurface. Yet if this were chosen while 

maintaining a critical contact pressure of zero, it would amplify errors in the simulated leak 

pressures because the node that is in physical contact always has a larger contact pressure 

than the one that is not in contact. Clearly, choosing the node that is in physical contact 

with the sealing countersurface as the critical node for FPP (with Abaqus’ default leak 

criterion of 0 MPa) cannot rectify the large errors in Fig. 7.1. 

The preceding argument is premised on adopting Abaqus’ default leak criterion of 

0 MPa, and despite the common adoption of this criterion in most FE studies in Table 3.1, 

there is no physical basis for it. In fact, this criterion is never mentioned when analytical 

arguments are made; rather, leakage is stated to occur when the contact pressure equals the 

fluid pressure. Testing this criterion in Abaqus is not a trivial matter because the arguments 

that are called into the DLOAD and VDLOAD subroutines do not allow simple 
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computation of nodal contact pressures. Nevertheless, the leak criterion can be tested with 

manual implementation to determine if it gives better agreement with experimental results. 

Such a scheme is illustrated in Fig. 7.5 where the leak criterion of Fig. 5.25 is changed from 

�������� = 0 to �������� ≤ �� (recall that �� is the fluid pressure). Such a scheme is expected 

to give a lower leak pressure than that with Abaqus’ default criterion because as the contact 

pressure reduces, it must momentarily match the fluid pressure before it reaches zero. 

 
Fig. 7.5: Illustration of a manually implemented leak criterion where fluid pressure (��) propagates when 
the contact pressure at the sealing front is less than or equal to the fluid pressure. (a) The fluid pressure,  

���, is applied to the left node but not the right. (b) The fluid pressure is incremented by a small 
amount from ��� to ���, causing the contact pressure at the right node to drop below the fluid 

pressure. (c) Since the leak criterion has been met, the fluid pressure is propagated to the 
next node which breaks contact at the node, and the scheme continues. 

To explore the scheme in Fig. 7.5, the EPDM seal with � = 5% and an extrusion gap of 

50% was chosen. The lower compression was beneficial because, owing to its relatively 

low leak pressure, it reduced the number of manual iterations to cause leakage; yet the leak 

pressure was sufficiently high to limit transducer error to 2% (see Table 7.1), a small value 

compared to the simulation error of +52.2%, in Fig. 7.1b. The mesh size at the sealing 

interface was increased from 0.03 mm to 0.25 mm, again to reduce the number of manual 

iterations. This corresponded to the mesh that is illustrated in Fig. 5.21a and, depending on 

the FPP scheme (see Fig. 5.12), was expected to overpredict the leak pressure by 12-22% 

based on the mesh convergence studies in Fig. 5.23. Manual implementation of the classical 

leak criterion gave a simulated leak pressure of 2.32 MPa which is 39% lower than the 

experimental leak pressure in Fig. 7.1b. Based on previous arguments, refining the mesh 

would reduce the simulated leak pressure, further increasing the error. 

It is conceivable that adopting the classical leak criterion and setting the critical node 

for FPP to the one just right of the sealing front would resolve the issue. This somewhat ad 

hoc adjustment is illustrated in Fig. 7.6. When the scheme was implemented, the simulated 

leak pressure increased to 3.18 MPa, still 17% lower than the experimental leak pressure. 

Refining the mesh to a size of 0.125 mm confirmed the expected trend: the simulated leak 
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pressure reduced to 2.85 MPa, or 26% lower than that from the experiment. Further mesh 

refinement would increase the error. It can be stated with reasonable confidence that neither 

the classical nor the Abaqus default leak criteria are physically accurate for the problem 

considered in this work, but they do establish bounds between which the seal actually leaks. 

 
Fig. 7.6: Illustration of a manually implemented leak criterion where fluid pressure (��) propagates when 
the contact pressure at the sealing front is less than or equal to the fluid pressure. (a) The fluid pressure,  
���, is applied to the left node but not the right, the latter of which is the sealing front. The leak scheme 
monitors the node to the right of the sealing front instead of the node at the sealing front. (b) The fluid 

pressure is incremented by a small amount from ��� to ���, causing the contact pressure at the node 

where the leak criterion is applied to drop below the fluid pressure. (c) Since the leak criterion has 
been met, the fluid pressure is propagated to the next node which breaks contact at the sealing 
front. The leak criterion also propagates to the right by one node, and the scheme continues. 

7.4.6  Asymmetries in the Experimental Test Fixture 

To the author’s knowledge, all visual evidence suggests that seal leakage and failure 

are not symmetric even when a nominally symmetric test configuration is used.159,160,161 

For example, see Fig. 7.7. Internal data from the sponsor also supports this observation. 

This is not surprising given that a mechanical failure seeks the path of least resistance. 

Geometric variation and material anisotropy on a microstructural level always provide 

these paths, and the consequence is that axisymmetric models tend to overpredict sealing 

capability. Yet for the problem at hand, these uncertainties seem unlikely to explain the 

order of the errors in the simulated leak pressures. The metal components were machined 

within ±0.01 mm, and the previous section establishes that even with 0.16 mm variation in 

the compression (which is much too large for most test pressures in this work), the 

simulation of the leak pressure only changed by ≈10%. Although the EPDM material did 

not appear to follow ideal hyperelastic theory (see Section 6.7), it is unlikely that this 

explains errors as large as those in Fig. 7.1b. And certainly, the NR material closely 

followed ideal hyperelastic theory, yet its simulation errors are also large. Therefore, 

geometric and material variations cannot adequately account for the large simulation errors. 
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                                     (a)                                                                                           (b) 

 
                                     (c)                                                                                           (d) 

Fig. 7.7: Examples of asymmetric failures in axisymmetric seals: (a) a mini swell packer (see Fig. 3.10 for 
a full-scale schematic) with differential pressure from left to right and shortly before fracture; (b) the mini 
swell packer showing extrusion that is not axisymmetric; (c) an O-ring seal with pressurised fluid; (d) the 

O-ring seal exhibiting a non-axisymmetric leak. (Adapted from Druecke et al.)161 

7.5  The Impact of Cumulative Errors on the Simulated Leak Pressures 

Clearly, many factors can contribute to the errors in the simulated leak pressures in Fig. 

7.1, so an attempt to assess these from a broader perspective is given in this section. Table 

7.2 shows maximum potential errors based on evidence from this thesis alongside errors 

that the author deems more likely. The latter, subjective as they may be in some cases, are 

reasonably substantiated by trends that are observed in this work. These errors are discussed 

in greater detail in previous sections, so only brief notes are made in the table. 

Table 7.2: Summary of the maximum and probable errors in the simulated leak pressures. 

 
* The value assigned here only applies for the two highest leak pressures with NR. 
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The main takeaway from Table 7.2 is this: the largest source of error lies in the finite-

element implementation of fluid pressure penetration. Most troubling, neither the Abaqus 

default criterion nor the classical leak criterion have provided leak pressures that are 

reasonable, but it is encouraging that the experimental leak pressures were bounded by the 

two criteria. It is plausible to suggest that, at least where numerical implementation is 

concerned, reality lies somewhere between them. 

7.6  Summary 

There is poor correlation between numerically simulated leak pressures and their 

experimental counterparts. Even cumulative errors cannot fully explain the poor 

correlation, and this is especially true for the NR seals at their highest two leak pressures. 

The EPDM seals introduced some complexities in the material model that can account for 

a portion of the total error, but these uncertainties cannot fully account for the observed 

discrepancies. The large errors appear to arise primarily from inaccuracies in the leak 

criterion itself. This idea is supported by the fact that two different leak criteria, namely 

when �������� = 0 and �������� = ��, resulted in leak pressures that bound the experimental 

leak pressures. The former predicted leak pressures that were too high, and the latter gave 

pressures that were too low. A leak criterion between these two limits seems more 

appropriate to adopt, for instance: 

 �������� = ��� (7.1) 

with 0 < � < 1. Exploring this criterion is a natural next step to extend the work in this 

thesis and is discussed in the next chapter. 
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8.  Conclusions and Outlook 

As this thesis draws to a close, it is helpful to frame the current work on the prediction 

of seal leakage within the broader perspective of previous research. Analytical treatments 

of leak prediction, although qualitatively useful, appear incapable of accurately solving the 

leak problem, especially when finite deformations occur. Complications that arise in rubber 

material models, including hyperelasticity and viscoelasticity, also make analytical 

solutions intractable. Percolation theories have been proposed for modelling seal leakage, 

but these do not appear applicable for high pressure seals that, at least in practical terms, 

have near-zero leak rates. In these cases, leakage is abrupt (essentially an on-off 

mechanism) and often linked to an elastic instability. Therefore, the only recourse to tackle 

the general leak problem is numerical simulation. Different numerical techniques exist in 

the literature, and fluid pressure penetration modelling with mechanical FEA has received 

the most attention in industrial settings. Academics have explored more complicated 

methods that consider fluid-structure interactions, but these do not fundamentally resolve 

many complications that have been exposed in the present work. Hence, the focus of this 

research has been to assess and attempt to validate FPP algorithms in the commercial FE 

software Abaqus. In the next section, good modelling and test practices that are buttressed 

by the present work are consolidated and reiterated. The chapter closes the author’s 

thoughts on a path forward, including a discussion of the leak criterion which has been 

shown to be the weakest link in FPP simulations. 

8.1  Best Practices for Simulating and Testing Leak Problems with FPP 

This section presents some best practices based on the findings in this thesis. The most 

relevant points from FE modelling, material characterisation, and experimental testing are 

revisited, and justifications for the practices are provided where applicable. 

8.1.1  Material Characterisation and Curve Fitting a Hyperelastic Model 

1. Before determining which characterisation tests are most suitable for a given 
problem, conduct a biaxiality analysis (Section 5.4.7 and 6.7) with FEA to 
determine the dominant loading modes. The hyperelastic material model for this 
exercise need not be exact, as strains (from which biaxiality is computed) are 
primarily determined by the geometry of deformation. In fact, a Neo-Hookean 
material model with an appropriate order for the rubber’s shear modulus will 
usually suffice for the exercise. 

2. Consider loading mode equivalencies (Section 2.5.2) when choosing character-
isation tests. For example, the ET test is quite difficult to execute, but the UC test 
(ET’s theoretical equivalent) is simple on a uniaxial test machine. The equivalency 
of these two modes is particularly important for high temperature testing because 
ET specimens can fracture at very low (and practically useless) strains due to grip 
constraint. UC compression buttons are much more robust. The drawback of UC 
tests is that they are sensitive to friction, but this is often a reasonable tradeoff for 
modelling purposes. 
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3. Conduct characterisation tests to levels of strain that are experienced in actual parts. 
The strain limits can be readily determined while conducting an FE biaxiality 
analysis. The levels of strain should also be considered with respect to the loading 
modes that occur (Section 5.4.7). 

4. Material characterisation data in UT is the worst choice for building an FE material 
model for axisymmetric seals. They are better approximated by a plane-strain 
condition. The equibiaxial loading condition can also be significant in axisymmetric 
seals with large deformation. Therefore, it is usually best to build a hyperelastic 
material model from PT and ET (or UC) stress-strain data, with a fitting bias toward 
the former. 

5. When characterising a material in planar tension, compensate for the change in 
gauge height due to grip compression because it is a non-trivial portion of the 
nominal height (Section 6.5). 

6. When determining a hyperelastic material model for FEA, plot the model’s UT, PT, 
and ET stress-strain responses on a single graph to ensure that ��� < ��� < ��� for 

all positive strains (Section 5.3). Strictly speaking, this criterion must only hold for 
true stresses, not engineering stresses. 

7. A rubber’s volumetric compressibility should be accurately modelled even when a 
seal has unloaded surfaces (Section 5.7.2). In the absence of characterisation data, 
a range of Poisson’s ratio from � = 0.495 to 0.4975 should be considered for a filled 
rubber. For an unfilled rubber, assigning � = 0.4995 is generally acceptable and 
more computationally stable than assuming an incompressible material. 

8. To mitigate the variability that is inherent in rubber compounds, use the same batch 
of material for characterisation coupons and manufactured test components. If the 
same batch cannot be used, try to assess variability by reviewing historical 
manufacturing data (Sections 6.3 and 6.5). 

9. Ensure that manufactured parts have a state-of-cure that is comparable to 
characterisation coupons. Try to achieve a state-of-cure of 90% or better in both 
(Section 6.4). 

10. When characterising and modelling rubber compounds, consider inelastic 
phenomena such as stress relaxation, the Mullins effect, compression set, and the 
strain rate. This is especially important for filled rubber, but may be negligible for 
unfilled compounds (Sections 6.5 and 7.4.2). 

11. Validate hyperelastic material models by conducting physical tests with 
inhomogeneous deformations. Use loads, displacements, and where possible, 
measurements on the deformed sample. Compare all measurements with FE 
predictions to assess the accuracy of the material model (Section 6.7). 

8.1.2  General Finite-Element Considerations 

1. Use a contact pressure-dependent friction model. Multiple sources suggest a large 
diminution of the CoF at high pressures, and in the absence of better data use or 
scale the data from Fig. 5.9 (Section 5.4.3 and 5.7.1). 

2. To prevent premature termination of a solution in Abaqus/Standard: (a) reduce the 
minimum load increment from 10-� to 10-8; (b) increase the number of iteration 
attempts from 5 to 10 (Section 5.4.1). 

3. In Abaqus/Standard, the penalty contact formulation appears to converge better 
than the Augmented Lagrange formulation, but the accuracy of different 
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formulations for leak problems (including the kinematic formulation in 
Abaqus/Explicit) was not assessed in this work (Section 5.4.2). 

4. When meshing, use reduced integration hybrid quadrilateral elements and conduct 
mesh sensitivity studies. Use partitions to highly refine the mesh at sealing 
interfaces. When mesh-independent solutions are not possible, it is still helpful to 
monitor convergence trends as the mesh size reduces (Section 5.5). 

5. Quadrilaterals should be the dominant element shape, but limited and careful use of 
triangular elements is acceptable, especially if they are sufficiently far from sealing 
surfaces. When element sizes or types transition, monitor field contour plots such 
as stress and strain for discontinuities (Sections 5.4.6 and 5.5). 

6. When assessing the possibility of fracture in FEA, use experimentally measured 
fracture strains as a first proxy, but realise that this method is imperfect. Also 
recognise that the fracture strain is loading mode dependent; for instance, the 
fracture strain in planar tension is lower than that uniaxial tension (Section 5.4.7). 

7. When using mass scaling in Abaqus/Explicit, conduct a sensitivity analysis to 
understand if inertia is affecting the solution (Section 5.6.3). 

8. Use rigid boundaries for metal countersurfaces with caution, especially for high 
pressure applications. Even if metal sealing surfaces are expected to deform, it may 
be possible to preserve them as rigid bodies by adjusting kinematic boundary 
conditions (Sections 6.2 and 7.4.4). 

8.1.3  Specific Considerations for FPP in Finite-Element Analysis 

1. In Abaqus/Standard, one should first attempt FPP solutions without contact 
controls. If contact convergence is a problem, apply local contact stabilisation to 
troublesome interfaces. Use as small a damping factor as possible. Compare 
undamped solutions (prior to their failure to converge) to damped solutions to check 
for excessive energy dissipation. Review ALLSD for a low order relative to ALLIE. 
If convergence still cannot be achieved, or the load increment is cut back 
excessively, try to simulate the problem in Abaqus/Explicit (which requires a 
subroutine or manual FPP). Adjusting contact stiffness can also be explored but was 
not helpful in this research (Sections 5.4.2 and 5.6.3). Abaqus recently released a 
general contact algorithm that has not been explored in this work.   

2. When using Abaqus’ native FPP algorithms, monitor pressure penetration solutions 
for contact closure because the default schemes cannot address the closure of 
pressurised surfaces. This shortcoming lowers simulated leak pressures, but when 
the default leak criterion is adopted (that is, �������� = 0), the inaccuracy can be 
artificially masked by the leak criterion itself. Problems with contact closure require 
particularly careful judgement (compare results in Sections 5.4.4 and 5.6.1). 

3. When using Abaqus’ native FPP algorithms, the default penetration time of 
0.001 s is usually acceptable. If convergence problems are encountered when 
pressure is advanced from one node to the next, increase the penetration time by an 
order of magnitude to try smoothing the transition and facilitate convergence 
(Section 5.4.4). 

4. In Abaqus, a subroutine (or manual pressure manipulation) is required to close 
contact on nodes that are exposed to fluid pressure (Sections 5.4.4 and 5.6).  

5. Regardless of the solution scheme, it appears that the greatest source of error is the 
leak criterion. To date, no generally reliable leak criterion has been established or 



167 
 

implemented in Abaqus for the problem that has been studied (Section 5.6). 

6. When conducting FPP simulations, monitor for rapid changes in contact status. 
They may be indicative of an elastic instability in the problem, so even if full 
convergence is not achieved, the pressure at an unconverged step may be practically 
equivalent to the leak pressure. 

8.2  Toward a Better Leak Criterion for Modelling FPP 

As previously highlighted, two criteria that are commonly employed in the literature, 

namely �������� = 0 and �������� = ��, yield leak pressures that bound the experimental leak 

pressures. Based on this observation, it is suggested to explore a leak criterion according to 

�������� = ��� (Eq. 7.1). Applying this equation with 0 < � < 1 to the problem studied in 

this work would yield numerical leak pressures that fall between those that were reported 

with the conventional leak criteria. 

The use of Eq. 7.1 may seem ad hoc, but there are arguments that it has a physical basis. 

In a finite-element solver, there is a discontinuity in the nodal force due to fluid pressure at 

the sealing front (see Fig. 3.17a for this definition). That is, a nodal force due to fluid 

pressure in FE solvers is applied as an “on-off” mechanism according to the leak criterion. 

This means that a distributed load (the pressure) is not smoothly distributed in a discretised 

model. Furthermore, Sections 5.5 and 7.4.5 suggest that this problem is not a consequence 

of the mesh size itself; even mesh-converged leak pressures are inaccurate. In an actual 

seal, there is probably a smooth fluid pressure gradient near the sealing front, and the net 

force due to this gradient lies somewhere between the forces that arise from the two 

conventional leak criteria. The factor � in Eq. 7.1 acts as a “lumped” parameter to capture 

this effect, and it could be calibrated with FE methods. The author suspects that � would 

depend on the seal geometry and perhaps the sealing material. 

Possibly, a more physically realistic model would implement a shape function where 

� = �(�) and � is the distance along the sealing front (see Fig. 3.18 for a typical illustration 

of this variable �). This more complicated form could arise from fluid partially penetrating 

through the sealing interface due to the surface roughness. If this were the case, it may be 

appropriate to adapt percolation theories185-187 to mechanical FE models of seal leakage. 

The shape function could possibly take a form of � = �(�, ��) where �� is a surface 

roughness parameter. In any case, experimentally determining the shape of �(�) or �(�, ��) 

would be difficult if not impossible for most high pressure seals because, even if pressure 

gradients could be resolved at small scales near the sealing front, measurements would have 

to discern between contact pressure and fluid pressure near the sealing front. Setting this 

complication aside, a first step could be to assume a linear shape function at the sealing 

front. 
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Experimental evidence supports the notion of a fluid pressure gradient along a sealing 

interface. This is most apparent by observing swell packers (see Fig. 3.10) that have been 

damaged during pressure testing. Fig. 8.1 shows a swell packer with damage imparted by 

fluid penetrating though the inner diameter of the rubber seal. This type of damage may 

occur without leakage across the seal because the fluid does not fully penetrate the entire 

length of rubber. Partial leakage could also occur along the outer diameter of the rubber 

without completely bypassing the seal. Presumably, this partial leak phenomenon (which 

implies development of a fluid pressure gradient) may occur on a smaller scale with seals 

that have more typical length-to-diameter aspect ratios. The presence of pressure gradients 

across a sealing interface is also supported by the work of Wang et al.,267 though these 

authors demonstrated the concept with partial leakage across discrete sealing elements 

instead of a continuous one. 

 
Fig. 8.1: Evidence of fluid penetration along the inner diameter of a swell packer. The leak paths are 

indicated by the pink curves. (Adapted from Eatwell.)268  
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To motivate a plan forward, Table 8.1 summarises strengths and areas for improvement 

in this thesis. The table also notes where novel contributions to the literature are made. 

Table 8.1: Summary of strengths and weaknesses in the FE models of this thesis. 

Feature Novel  Comments 

Model type = 2D No 

 2D is acceptable because the large modelling errors 
cannot be fully attributed to 3D effects. 

 3D modelling of FPP is cost prohibitive due to the mesh 
size that is required for accurate leak predictions. 

SEF = gen-Yeoh Yes 
 A new SEF and subroutines have been developed for 

highly filled rubber seals. 

Hyperelastic characterisation Yes 

 The most critical loading modes (PT, UC) were deter-
mined with biaxiality analyses. 

 Mechanical characterisation used these most critical 
modes. 

Volumetric compressibility No 

 Realistic values based on measurements by the project 
sponsor were adopted. 

 Most studies in the literature assume � = 0.5. 

Rheology characterisation Yes 
 DSC was used to validate the state-of-cure in the 

bonded seals, giving confidence that their material 
properties matched those of the test coupons. 

Hyperelastic model validation Yes 
 Compression tests on bonded rubber seals gave good 

confidence in the material models. 

Viscoelastic modelling Yes 

 Inelastic effects were quantified and considered but not 
explicitly modeled. 

 They were insignificant for the unfilled NR seals. 

 The order of error due to inelasticities was established 
for the filled EPDM seals. 

 Other studies in the literature on modelling seal 
leakage have not addressed these effects. 

Friction model = variable CoF Yes 

 A contact pressure-dependent model was developed 
from tests on FKM, FEPM, and HNBR materials.245,256  

 Characterisation testing of the NR and EPDM materials 
would be beneficial. 

 Most studies in the literature assume a Coulomb model. 

Max. leak pressure ≈10 MPa Yes 
 Test pressures were an order of magnitude higher than 

those in previous rubber seal literature. 

FPP modelling Yes 

 New subroutines removed pressure from nodes with 
closing contact. 

 The first mesh sensitivity studies were reported. 

 Systematic comparisons of the Abaqus R2017 and 
R2018 pressure integration schemes were reported. 

 The FPP subroutine for Abaqus/Explicit enabled the 
study of dynamic effects on seal leakage. 

 Different leak criteria were studied, and none were 
found satisfactory for the problem studied. 

Test fixture deformation No 
 Deformation of the test fixture was not explicitly 

modeled. 

Statistical variation No 
 Only one leak pressure was measured for each experi-

mental test condition. 
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To advance the present work, an accurate leak propagation criterion must be 

established. This can be studied by developing a subroutine††† to implement the leak 

criterion given in Eq. 7.1. If an Abaqus subroutine is developed, it will require computation 

of nodal contact pressures at the sealing front. This is not a straightforward exercise but 

should be possible. Alternatively, the leak criterion could be implemented by manually 

propagating pressure, but this method would be too cumbersome to be generally useful. In 

either case, deformation of the test fixture could be readily included in these models 

because leakage would not be dictated by the kinematic location of a node at the sealing 

front. 

Because the leak prediction errors in this thesis are too large to be explained by anything 

other than the leak criterion itself, the experiments in this work provide a basis for other 

researchers to study the leak equation of Eq. 7.1 without generating new experimental data. 

Once the error due to the leak criterion is reduced to a reasonable level, statistical variation 

can be addressed by conducting replicate experimental tests. To minimise uncertainties due 

to viscoelasticity, it would be most appropriate to restrict future tests to an unfilled 

compound, at least until there is confidence in the chosen leak criterion. If filled materials 

are tested, inelastic effects will require more careful attention, especially those related to 

strain rate sensitivity. 

 

  

 
††† Personal correspondence with Abaqus indicates that an option to update the critical contact pressure during 
a load step may be incorporated in a future software release, in which case a user-defined subroutine may no 
longer be necessary. 
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Appendix A: A gen-Yeoh SEF UHYPER 
Subroutine for Abaqus/Standard 

C ********************************************************************** 
C  Author:   Travis Hohenberger 
C  Date:     2021-10-06 
C  E-mail:   twhohen@gmail.com 
C  Version:  0 (see bottom of code for version history) 
C ********************************************************************** 
C 
C  This subroutine is built from the template in Simulia (2020) (see re- 
C  ferences at bottom of page). The strain-energy function is the gener- 
C  alized-Yeoh model described in Hohenberger et al. (2019) and has the 
C  form: 
C 
C  W = K1*(I1-3)^m + K2*(I1-3)^p + K3*(I1-3)^q + (1/D1)*(J-1)^2 
C 
C  where K1, K2, K3, m, p, q are distortional fitting parameters and D1 
C  is a volumetric fitting parameter. I1 is the first invariant of the 
C  modified stretch tensor. J is the volumetric ratio. Refer to Holzapf- 
C  el (2000) for theoretical details. 
C 
C ********************************************************************** 
      SUBROUTINE UHYPER(BI1,BI2,AJ,U,UI1,UI2,UI3,TEMP,NOEL,CMNAME, 
     1                  INCMPFLAG,NUMSTATEV,STATEV,NUMFIELDV, 
     2                  FIELDV,FIELDVINC,NUMPROPS,PROPS) 
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      CHARACTER*80 CMNAME 
      DIMENSION U(2),UI1(3),UI2(6),UI3(6),STATEV(*),FIELDV(*), 
     1          FIELDVINC(*),PROPS(*) 
C 
C     PARAMETERS 
C     ---------- 
      REAL*8     zero,      one,      two,      three 
      PARAMETER( zero=0.d0, one=1.d0, two=2.d0, three=3.d0 ) 
C 
C     LOCAL VARIABLES 
C     --------------- 
      REAL*8 k1, k2, k3, em, pe, qu, d1 
C 
C ********************************************************************** 
C -------------------------- MODEL PARAMETERS -------------------------- 
C ********************************************************************** 
      k1 =  props(1) 
      k2 =  props(2) 
      k3 =  props(3) 
      em =  props(4) 
      pe =  props(5) 
      qu =  props(6) 
      d1 =  props(7) 
C 
C ********************************************************************** 
C ----------------------- STRAIN-ENERGY FUNCTION ----------------------- 
C ********************************************************************** 
      IF (d1.GT.zero) THEN 
         U(1) =   k1*(BI1-three)**em + 
     $            k2*(BI1-three)**pe + 
     $            k3*(BI1-three)**qu + 
     $            1/d1*(AJ-one)**two 
      ELSE 
         U(1) =   k1*(BI1-three)**em + 
     $            k2*(BI1-three)**pe + 
     $            k3*(BI1-three)**qu 
      END IF 
C 
C ********************************************************************** 
C -- IF-THEN statement initializes dU/dI1 to finite value if EM < 1.0 -- 
C ********************************************************************** 
      IF (BI1.EQ.three .AND. em.LT.one) THEN 
        UI1(1) = one 
      ELSE 
        UI1(1) = em*k1*(BI1-three)**(em-one) + 
     $           pe*k2*(BI1-three)**(pe-one) + 
     $           qu*k3*(BI1-three)**(qu-one) 
      END IF 
C 
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C ********************************************************************** 
C ---------- IF-THEN statement prevents d2U/dI1 --> Infinity ----------- 
C ********************************************************************** 
      IF (BI1.EQ.three .AND. 
     $   (em.LT.two .OR. pe.LT.two .OR. qu.LT.two)) THEN 
        UI2(1) = zero 
      ELSE 
        UI2(1) = em*(em-one)*k1*(BI1-three)**(em-two) + 
     $           pe*(pe-one)*k2*(BI1-three)**(pe-two) + 
     $           qu*(qu-one)*k3*(BI1-three)**(qu-two) 
      END IF 
C 
C ********************************************************************** 
C ------------------ DERIVATIVES OF COMPRESSIBLE TERM ------------------ 
C ********************************************************************** 
      IF (d1.GT.zero) THEN 
         UI1(3) = two/d1*(AJ-one) 
         UI2(3) = two/d1 
      ELSE 
         UI1(3) = zero 
         UI2(3) = zero 
      END IF 
C 
C ********************************************************************** 
C ----------------- SET NON-ESSENTIAL VARIABLES TO ZERO ---------------- 
C ********************************************************************** 
      U(2)   = zero 
      UI1(2) = zero 
      UI2(2) = zero 
      UI2(4) = zero 
      UI2(5) = zero 
      UI2(6) = zero 
      UI3(1) = zero 
      UI3(2) = zero 
      UI3(3) = zero 
      UI3(4) = zero 
      UI3(5) = zero 
      UI3(6) = zero 
C 
      RETURN 
C 
      END SUBROUTINE UHYPER 
C  ********************************************************************* 
C  References: 
C   
C  T.W. Hohenberger, R.J. Windslow, N.M. Pugno, & J.J.C. Busfield, (2019 
C  ). “A Constitutive Model for both Low and High Strain Nonlinearities 
C  in Highly Filled Elastomers and Implementation with User-Defined Mat- 
C  erial Subroutines in Abaqus”. Rubber Chemistry and Technology, 92 (4) 
C  , 653-686. 
C   
C  G.A. Holzapfel, (2000). Nonlinear Solid Mechanics: A Continuum Appro- 
C  ach for Engineering. John Wiley & Sons, Ltd. 
C 
C  SIMULIA, (2020). “UHYPER” In: Abaqus R2020 User Subroutines Manual.  
C  Dassault Systèmes Simulia Corp., Providence, RI, USA. 
C 
C  ********************************************************************* 
C  Revision History 
C 
C  0: Initial release. 
C 
C  ********************************************************************* 
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Appendix B: A gen-Yeoh SEF VUMAT 
Subroutine for Abaqus/Explicit 

C ********************************************************************** 
C  Authors:  Travis Hohenberger & Richard Windslow 
C  Date:     2021-10-06 
C  E-mail:   twhohen@gmail.com 
C  Version:  4 (see bottom of code for version history) 
C ********************************************************************** 
C 
C  This subroutine builds on the Neo-Hookean VUMATs published in Bergst- 
C  rom (2015), Chester (2008), and Simulia (2020) (see references at bo- 
C  ttom of page). The strain-energy function is the generalized-Yeoh mo- 
C  del described in Hohenberger et al. (2019) and has the form: 
C 
C  W = K1*(I1-3)^m + K2*(I1-3)^p + K3*(I1-3)^q + (1/D1)*(J-1)^2 
C 
C  where K1, K2, K3, m, p, q are distortional fitting parameters and D1 
C  is a volumetric fitting parameter. I1 is the first invariant of the 
C  modified stretch tensor. J is the volumetric ratio. Refer to Holzapf- 
C  el (2000) for theoretical details. 
C 
C ********************************************************************** 
      SUBROUTINE VUMAT( 
     1     nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal, 
     2     stepTime, totalTime, dt, cmname, coordMp, charLength, 
     3     props, density, strainInc, relSpinInc, 
     4     tempOld, stretchOld, defgradOld, fieldOld, 
     5     stressOld, stateOld, enerInternOld, enerInelasOld, 
     6     tempNew, stretchNew, defgradNew, fieldNew, 
     7     stressNew, stateNew, enerInternNew, enerInelasNew ) 
C 
      INCLUDE 'vaba_param.inc' 
C 
      DIMENSION props(nprops), density(nblock), coordMp(nblock,*), 
     1          charLength(nblock), strainInc(nblock,ndir+nshr), 
     2          relSpinInc(nblock,nshr), tempOld(nblock), 
     3          stretchOld(nblock,ndir+nshr), 
     4          defgradOld(nblock,ndir+nshr), 
     5          fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr), 
     6          stateOld(nblock,nstatev), enerInternOld(nblock), 
     7          enerInelasOld(nblock), tempNew(nblock), 
     8          stretchNew(nblock,ndir+nshr), 
     9          defgradNew(nblock,ndir+nshr), 
     1          fieldNew(nblock,nfieldv), 
     2          stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev), 
     3          enerInternNew(nblock), enerInelasNew(nblock) 
C 
      CHARACTER*80 cmname 
C 
C     PARAMETERS 
C     ---------- 
      REAL*8    oneThrd, half, twoThrd, zero, one, two, three, 
     $          thresh 
      PARAMETER(oneThrd=1.d0/3.d0, half=0.5d0, twoThrd=2.d0/3.d0, 
     $          zero=0.d0, one=1.d0, two=2.d0, three=3.d0, 
     $          thresh=10.d0**-12.d0) 
C 
C     LOCAL VARIABLES 
C     --------------- 
      REAL*8 g0      , k0     , twoG   , lmda   , trace  , d1      , 
     $       k1      , k2     , k3     , em     , pe     , qu      , 
     $       Bxx     , Byy    , Bzz    , Bxy    , Bxz    , Byz     , 
     $       BbarXX  , BbarYY , BbarZZ , BbarXY , BbarXZ , BbarYZ  , 
     $       dBbarXX , dBbarYY, dBbarZZ, dBbarXY, dBbarXZ, dBbarYZ , 
     $       J       , J23    , duDi1  , duDi3  , I1     , g1      , 
     $       p0      , j1     , u1 
C 
      k1 = props(1) 
      k2 = props(2) 
      k3 = props(3) 
      em = props(4) 
      pe = props(5) 
      qu = props(6) 
      d1 = props(7) 
C 
      g0 = two * k1 
      k0 = two / d1 
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C 
C     ****************************************************************** 
C     ------------ INITIALIZE MATERIAL AS LINEARLY ELASTIC-------------- 
C     ****************************************************************** 
C 
      twoG = two * g0 
      lmda = k0 - twoG * oneThrd 
C 
      IF (totalTime.EQ.0.0) THEN 
C 
         DO k = 1,nblock 
            trace = strainInc(k,1) + strainInc(k,2) + strainInc(k,3) 
            stressNew(k,1) = stressOld(k,1) + twoG*strainInc(k,1) + 
     $                       lmda*trace 
            stressNew(k,2) = stressOld(k,2) + twoG*strainInc(k,2) + 
     $                       lmda*trace 
            stressNew(k,3) = stressOld(k,3) + twoG*strainInc(k,3) + 
     $                       lmda*trace 
            stressNew(k,4) = stressOld(k,4) + twoG*strainInc(k,4) 
         END DO 
C 
         RETURN 
C 
      END IF 
C 
C     ****************************************************************** 
C     ----------- START LOOP FOR MATERIAL POINT CALCULATIONS ----------- 
C     ****************************************************************** 
C 
      DO k = 1,nblock 
C 
C        CALCULATE LEFT CAUCHY-GREEN STRAIN TENSOR, B = U*U 
C        -------------------------------------------------- 
         Bxx = stretchNew(k,1) * stretchNew(k,1) + 
     $         stretchNew(k,4) * stretchNew(k,4) 
         Byy = stretchNew(k,2) * stretchNew(k,2) + 
     $         stretchNew(k,4) * stretchNew(k,4) 
         Bzz = stretchNew(k,3) * stretchNew(k,3) 
         Bxy = stretchNew(k,1) * stretchNew(k,4) + 
     $         stretchNew(k,4) * stretchNew(k,2) 
C 
C        CALCULATE J = |F| = |U| 
C        ----------------------- 
C 
         J = stretchNew(k,1) * (stretchNew(k,2)*stretchNew(k,3)) - 
     $       stretchNew(k,4) * (stretchNew(k,3)*stretchNew(k,4)) 
C 
C        CALCULATE MODIFIED STRAIN TENSOR, Bbar = J^(-2/3)*B  
C        --------------------------------------------------- 
         J23 = J**(-twoThrd) 
C 
         BbarXX = J23 * Bxx 
         BbarYY = J23 * Byy 
         BbarZZ = J23 * Bzz 
         BbarXY = J23 * Bxy 
C 
C        FIRST INVARIANT OF Bbar = tr(Bbar) 
C        ---------------------------------- 
         I1 = BbarXX + BbarYY + BbarZZ 
C 
C        DEVIATORIC PART OF Bbar 
C        ----------------------- 
         p0 = I1 * oneThrd 
C 
         dBbarXX = BbarXX - p0 
         dBbarYY = BbarYY - p0 
         dBbarZZ = BbarZZ - p0 
         dBbarXY = BbarXY 
C 
C        DERIVATIVES OF STRAIN-ENERGY FUNCTION 
C        ------------------------------------- 
         j1 = I1 - three 
C 
         IF (j1.LT.thresh) THEN 
            duDi1 = zero 
         ELSE 
            duDi1 = em * k1 * j1**(em-one) + 
     $              pe * k2 * j1**(pe-one) + 
     $              qu * k3 * j1**(qu-one) 
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         END IF 
C 
         duDi3 = two/d1 * (J - one) 
C 
C        COROTATIONAL CAUCHY (TRUE) STRESSES 
C        ----------------------------------- 
         g1 = two/J * duDi1 
C 
         stressNew(k,1) = g1 * dBbarXX + duDi3 
         stressNew(k,2) = g1 * dBbarYY + duDi3 
         stressNew(k,3) = g1 * dBbarZZ + duDi3 
         stressNew(k,4) = g1 * dBbarXY 
C 
C        UPDATE SPECIFIC INTERNAL ENERGY 
C        ------------------------------- 
         u1 = half * ( (stressOld(k,1)+stressNew(k,1))*strainInc(k,1) + 
     $                 (stressOld(k,2)+stressNew(k,2))*strainInc(k,2) + 
     $                 (stressOld(k,3)+stressNew(k,3))*strainInc(k,3) + 
     $                  two * (stressOld(k,4)+stressNew(k,4))* 
     $                         strainInc(k,4) ) 
C 
         enerInternNew(k) = enerInternOld(k) + u1 / density(k) 
C 
      END DO 
C 
      RETURN 
C 
      END SUBROUTINE VUMAT 
C 
C  ********************************************************************* 
C  References: 
C   
C  J.S. Bergstrom, (2015). Mechanics of Solid Polymers: Theory and Comp- 
C  utational Modeling. Elsevier, Inc. 
C 
C  S.A. Chester, (2008). VUMAT and UMAT for a neo-Hookean material. htt- 
C  ps://web.njit.edu/~sac3/Software.html 
C 
C  T.W. Hohenberger, R.J. Windslow, N.M. Pugno, & J.J.C. Busfield, (2019 
C  ). “A Constitutive Model for both Low and High Strain Nonlinearities 
C  in Highly Filled Elastomers and Implementation with User-Defined Mat- 
C  erial Subroutines in Abaqus”. Rubber Chemistry and Technology, 92 (4) 
C  , 653-686. 
C   
C  G.A. Holzapfel, (2000). Nonlinear Solid Mechanics: A Continuum Appro- 
C  ach for Engineering. John Wiley & Sons, Ltd. 
C 
C  Simulia, (2020). “VDLOAD”. In: Abaqus R2020 User Subroutines Manual. 
C  Dassault Systèmes Simulia Corp., Providence, RI, USA. 
C 
C  ********************************************************************* 
C  Revision History 
C 
C  0: Initial version for beta testing performance of the VUMAT in diff- 
C     erent modes of deformation with different material models (Neo-Ho- 
C     okean, Yeoh, and gen-Yeoh). 
C 
C  1: Removed 'IF-THEN statements to enter loops for 3D case. The code 
C     was converted to only cover 3D geometry. A separate 2D code will 
C     be written to optimize computational efficiency. 
C 
C     In LOCAL VARIABLE declarations, dBbarYZ was dvBbarYZ. This did no- 
C     t have significant impact on the code because later declaration of 
C     the correct variable, dBbarYZ, would initialize the variable to 0. 
C 
C     Updated with introductory content, references, revision history, 
C     and general clean-up for release to Schlumberger.  
C 
C  2: BUG FIX: When testing a unit cube with twist on its top face (and 
C     no extension), it was found that tr(Bbar)=3 which makes j1=0 which 
C     makes duDi1 --> Infinity. This was a known issue when developing 
C     the UHYPER subroutine, but it was thought that the linear elastic 
C     step in the VUMAT would always introduce some strain along the di- 
C     agonal of Bbar; this is not the case. Therefore, an 'IF-THEN' sta- 
C     tement has been added to assign a finite value to duDi1 if j1 is 
C     less than 1e-12. Ideally, this value would be 0, and 0 was found  
C     to work with single-precision accuracy. However, when double-prec- 
C     ision was used, the solution was found to be unstable. If problems 
C     occur when running this VUMAT, the first thing to check is the be- 
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C     havior of duDi1 (and possibly duDi3). It may be necessary to chan- 
C     ge 1e-12 to a larger value. 
C 
C  3: Added PARAMETER thresh=10.d0**-12.d0 to control the threshold @ w- 
C     hich duDi1=zero. This had been previously specified by manually t- 
C     yping out 0.000000000001. 
C 
C     Removed local variable jInv since it is not used in the code. 
C 
C  4: Added missing parameter "zero=0.d0". The code can have problems r- 
C     unning if left implicitly defined. 
C 
C  ********************************************************************* 
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Appendix C: An n-Block Model Fortran 
Code for Correction of UT Data 

PROGRAM nBlock11                                                 ! v11.0 
! 
!   ******************************************************************** 
!   Author:    Travis Hohenberger 
!   Date:      2019-11-04 
!   E-mail:    twhohen@gmail.com 
!   System:    Windows 10 
!   Software:  Netbeans IDE Dev (201804200002) 
!              Java 1.8.0_101; Java Hotspot 64 Bit Server VM 25.101-b13 
!              Java Runtime Environment 1.8.0_101-b13 
!   ******************************************************************** 
! 
!   Dumbbells are often stretched in uniaxial extension to collect stre- 
!   ss-strain data. When a dumbbell is gripped at a section wider than 
!   its gage section, and strain is computed from displacement of the g- 
!   rips, the calculated strain is lower than the actual strain in the 
!   gage section. This program corrects stress-strain data when direct 
!   measurement of strain (for instance, with a video extensometer) in 
!   the gage section is not possible, and therefore must be estimated f- 
!   rom grip (ie. crosshead) displacement. The program decomposes a dum- 
!   bbell into a series of blocks as illustrated in SCHEMATIC 1. As cur- 
!   rently written, the code creates 200 'n-blocks' between the upper ( 
!   ie. tab) and lower (ie. gage) sections. 
!                                         ____________________ 
!    &&&&&&&&&&&&&&&&&&                   |                  | 
!    &&&&&&&&&&&&&&&&&&                   |                  | 
!    &&&&&&&&&&&&&&&&&&                   |                  | 
!    &&&&&&&&&&&&&&&&&&                   |       UPPER      | 
!    &&&&&&&&&&&&&&&&&& ==> Tab section   |       BLOCK      | 
!    &&&&&& TAB &&&&&&&                   |    index = 202   | 
!    &&&&&&&&&&&&&&&&&&                   |      in code     | 
!    &&&&&&&&&&&&&&&&&&                   |__________________| 
!    &&&&&&&&&&&&&&&&&                    |_________________| 
!    &&&&&&&&&&&&&&&&  ==> Smooth radius  |________________| 
!    &&&&&&&&&&&&&&&                      |_______________| 
!    &&&&&&&&&&&&& ==> Tangent of radii   |_____________|   Seven 
!    &&&&&&&&&&&&                         |___________| ==> n-Block 
!    &&&&&&&&&&& ==> Smooth radius        |_________|       transitions, 
!    &&&&&&&&&                            |________|     index = 2, 3, . 
!    &&&&&&&&                             |       |      .., 201 in code 
!    &&&&&&&&                             |       | 
!    &&&&&&&&                             |       | 
!    &&&&&&&&                             | LOWER | 
!    & GAGE &                             | BLOCK | 
!    &&&&&&&&                             |       | 
!    &&&&&&&& ==> Gage section            | index | 
!    &&&&&&&&                             |  = 1  | 
!    &&&&&&&&                             |  in   | 
!    &&&&&&&&                             |  code | 
!    &&&&&&&&                             |_______| 
! 
!      (a)                                   (b) 
! 
!    SCHEMATIC 1: (a) Quarter-dumbbell with "smooth" geometry; 
!                 (b) dumbbell decomposed into "block" geometry 
! 
!   ******************************************************************** 
! 
!   The code uses the incompressible form of the generalized Yeoh strai- 
!   n-energy function: 
! 
!   W = K1*(I1-3)^m + K2*(I1-3)^p + K3*(I1-3)^q 
! 
!   which can be replaced by the user by changing the force equation. S- 
!   ee the user guide at the end of this code for more details. 
! 
!   References: 
! 
!   Hohenberger et al, (2019). A constitutive model for both low and hi- 
!   gh strain nonlinearities in highly filled elastomers and implementa- 
!   tion with user-defined material subroutines in Abaqus. Rubber Chemi- 
!   stry and Technology, 92 (4), 653-686. 
! 
!   Hohenberger & Busfield, (2022). A method to generate accurate elast- 
!   ic and hyperelastic uniaxial tension stress-strain data without an 
!   extensometer. Rubber Chemistry and Technology, In press. 
! 
!   Disclaimer: This code is not computationally optimal, but it has wo- 
!               ked for multiple cases tested by the author. 
! 
!   ******************************************************************** 
! 
      IMPLICIT NONE 
! 
      REAL K1    , K2    , K3    , deL(202), w(202)   , t     , Delta ,& 
           Fo    , Lam0  , F(202), Lam(202), ErrF(202), delNew, Fout  ,& 
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           deLtot, ErrDel, R1      , R2    , w0       , wTab  , SigOut,& 
           alpha , h1    , h2    , L0      , dh1      , dh2   , y(202),& 
           Lgrip , Lbell , em    , pe      , qu       , MxErrF, DelEnd,& 
           SigStore(200) , LamStore(200)   , LamFact  , ForcFac 
! 
      INTEGER i, j, k, int1, int2 
! 
!     ****************************************************************** 
!     - MATERIAL MODEL PARAMETERS FOR GEN-YEOH STRAIN-ENERGY FUNCTION -- 
!     ****************************************************************** 
! 
      K1 =  5.38   ! MPa  
      K2 = -2.85   ! MPa 
      K3 =  0.40   ! MPa 
      em =  0.89 
      pe =  1.08 
      qu =  1.85 
! 
!     ****************************************************************** 
!     ------ CONVERGENCE FACTORS FOR STRETCH AND FORCE ITERATIONS ------ 
!     ****************************************************************** 
! 
      LamFact = 10.     ! Increasing values speed up convergence but can 
      ForcFac = 0.1     ! result in unacceptable error. Monitor 'ErrDel' 
!                       ! and 'MaxErrF' in the output window to ensure 
!                       ! they remain << 1. 
! 
!     ****************************************************************** 
!     ----------- DUMBBELL DIMENSIONS (mm), SEE SCHEMATIC 2 ------------ 
!     ****************************************************************** 
! 
      Lbell  =  57.5      ! Dumbbell length (half-length, die C = 57.5) 
      Lgrip  =  27.899    ! Grip separation (half-length) 
      L0     =  16.5      ! Gage length (half-length, die C = 16.5) 
      w0     =  3.12305   ! Width of gage section (half-width) 
      wTab   =  12.5      ! Width of tab (half-width, die C = 12.5) 
      t      =  2.3335    ! Dumbbell thickness (not illustrated) 
      R1     =  14.       ! Dumbbell radius at gage (die C = 14) 
      R2     =  25.       ! Dumbbell radius at tab (die C = 25) 
      Delta  =  0.078     ! Initial displacement for starting iterations 
      DelEnd =  32.       ! Target end displacement (half-displacement) 
! 
!                                |               |       
!                                |<--- wTab ---->|    Delta, DelEnd 
!                                |               |          ^ 
!           -------------------- &&&&&&&&&&&&&&&&&          | 
!              ^                 &&&&&&&&&&&&&&&&&          | 
!              |                 &&&&&&&&&&&&&&&&&          | 
!              |                 &&&&&&&&&&&&&&&&&          | 
!              |                 &&&&&&&&&&&&&&&&&          | 
!              |     ----------- &***************&  ------------ 
!              |       ^         &&&&&&&&&&&&&&&&& 
!              |       |         &&&&&&&&&&&&&&&&& 
!              |       |         &&&&&&&&&&&&&&&& <---- R2 
!              |       |         &&&&&&&&&&&&&&& 
!              |       |         &&&&&&&&&&&&& 
!            Lbell     |         &&&&&&&&&&&& 
!              |       |         &&&&&&&&&& <---------- R1 
!              |       |         &&&&&&&&& 
!              |     Lgrip       &&&&&&&& ----------- 
!              |       |         &&&&&&&&         ^ 
!              |       |         &&&&&&&&         | 
!              |       |         &&&&&&&&         | 
!              |       |         &&&&&&&&         | 
!              |       |     --->&  w0  &<---     L0 
!              |       |         &&&&&&&&         | 
!              |       |         &&&&&&&&         | 
!              v       v         &&&&&&&&         v 
!           -------------------- &&&&&&&& ----------- 
! 
!        SCHEMATIC 2: Illustration of dimensions to be input by user 
! 
!     ****************************************************************** 
!     ------------------- INITIALIZE SOME VARIABLES -------------------- 
!     ****************************************************************** 
! 
!     NOTE: The guess values for 'Lam0' and 'Fo' affect convergence and 
!           in addition to 'LamFact' & 'ForcFac', may result in unaccep- 
!           table error if they are too large. If large errors are enco- 
!           untered even with very small 'LamFact' & 'ForcFac', try red- 
!           ucing the initial guess values for 'Lam0' and 'Fo'. 
! 
      Lam0 = 1.000001   ! Initial guess value for stretch 
      Fo = 0.1          ! Initial load increment (units = Newtons) 
      Lam = Lam0        ! Initialize all Lam(i)'s to Lam0 
      F = 0.            ! Initialize pulling force to 0 
      ErrF = 500.       ! Initialize force error to a large value 
! 
!     ****************************************************************** 
!     ---------- CALCULATION OF HEIGHTS & WIDTHS OF n-BLOCKS ----------- 
!     ****************************************************************** 
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! 
      int1 = 100   ! Number of intervals in which to decompose dumbbell 
      int2 = 100   ! radius transitions. This code must be updated if 
                   ! '100' is not specified for 'int1' or 'int2'. When 
!                  ! testing the code, 100 intervals were found to give 
!                  ! less than 0.1% discretization error. 
! 
!     The geometric calculations below do not require modification if t- 
!     he default dimensioning scheme for an ASTM dumbbell applies. 
! 
      alpha = ACOS((R1+R2+w0-wTab)/(R1+R2))  ! Angle b/t horizontal and 
                                             ! the line connecting the  
                                             ! centers of R1 & R2. 
! 
      h1 = L0 + R1*SIN(alpha)       ! Height to tangent of R1 and R2 
      h2 = h1 + R2*SIN(alpha)       ! Height to transition b/t R2 & wTab 
      dh1 = (h1-L0) / int1          ! n-block interval height in R1 zone 
      dh2 = (h2-h1) / int2          ! n-block interval height in R2 zone 
      y(1) = L0                     ! Set y(1) equal to gage length 
      w(1) = w0                     ! Set w(1) equal to gage width 
      w(202) = wTab                 ! Set w(202) equal to tab width 
! 
      DO i=2,101                      ! Loop to calculate the height to 
          IF (i.EQ.2) THEN            ! the n-blocks and respective wid- 
              y(i) = y(i-1) + dh1/2.  ! ths in the R1 transition zone. 
          ELSE 
              y(i) = y(i-1) + dh1 
          END IF 
          w(i) = -((R1**2 - (y(i)-L0)**2))**0.5 + w0 + R1 
      END DO 
! 
      DO i=102,201                    ! Loop to calculate the height to 
          IF (i.EQ.102) THEN          ! the n-blocks and respective wid- 
              y(i) = h1 + dh2/2.      ! ths in the R2 transition zone. 
          ELSE 
              y(i) = y(i-1)+dh2 
          END IF 
          w(i) = (R2**2 - (y(i) - (L0 + (R1+R2)*SIN(alpha)))**2)**0.5& 
                 + wTab - R2 
      END DO 
! 
      IF (Lgrip.GT.h2) THEN    ! Compute the height of the upper tab se- 
          y(202) = Lgrip - h2  ! ction. Neglect this section if the grip  
      ELSE                     ! location is below the upper tab region. 
          y(202) = 0. 
      END IF 
! 
!     ****************************************************************** 
!     --------- ITERATIVE CALCULATIONS FOR FORCE AND STRETCH ----------- 
!     ****************************************************************** 
! 
      k = 1          ! Index k is used for data storage / output. 
! 
 220  j = 1          ! Restart location if the current target displace- 
!                    ! ment, 'Delta', has not been reached after force 
!                    ! and stretch iterations. 
! 
 210  DO i = j,202   ! Loop for force calculations in each n-block. 
! 
!     Force from generalized Yeoh strain-energy function: 
! 
          F(i) = 2*w(i)*t*(Lam(i)-1/(Lam(i)**2))*& 
                 (em * K1 * (Lam(i)**2 + 2/Lam(i) - 3)**(em-1.) + & 
                  pe * K2 * (Lam(i)**2 + 2/Lam(i) - 3)**(pe-1.) + & 
                  qu * K3 * (Lam(i)**2 + 2/Lam(i) - 3)**(qu-1.)) 
! 
          ErrF(i) = Fo - F(i)                 ! Residual force error 
! 
          IF (ErrF(i).GT.500.0) THEN          ! Convergence check 
              WRITE(*,*) 'ErrF = ' , ErrF(i) 
              WRITE(*,*) 
              WRITE(*,*) 'Force error > 500. Try adjusting Fo.' 
              STOP 
          END IF 
! 
          IF (ErrF(i).GT.0.) THEN                    ! If error in force 
              IF (ErrF(i).LT.0.05) THEN              ! is positive, incr- 
                  Lam(i) = Lam(i) + 0.000001*LamFact ! ement stretch and 
              ELSE IF (ErrF(i).LT.0.5) THEN          ! use the GOTO stat- 
                  Lam(i) = Lam(i) + 0.00001*LamFact  ! ement to recalcul- 
              ELSE IF (ErrF(i).LT.5.) THEN           ! ate the force unt- 
                  Lam(i) = Lam(i) + 0.0001*LamFact   ! il the force resi- 
              ELSE IF (ErrF(i).LT.50.) THEN          ! dual, 'ErrF(i)', 
                  Lam(i) = Lam(i) + 0.001*LamFact    ! becomes negative. 
              ELSE IF (ErrF(i).LT.500.) THEN 
                  Lam(i) = Lam(i) + 0.01*LamFact 
              END IF 
              GO TO 210 
          END IF 
! 
      j = j+1      ! Increment j so that later, if necessary, the outer 
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      END DO       ! loop will restart until the final target displacem- 
!                  ! ent, 'DelEnd', is reached or exceeded. 
! 
      deL(1)   =  L0*(Lam(1)-1)          ! Displacement of gage section 
      deL(202) =  y(202)*(Lam(202)-1)    ! Displacement of tab section 
! 
      DO i=2,101                         ! Displacement of each n-block 
          deL(i) = dh1*(Lam(i)-1)        ! in R1 section 
      END DO 
! 
      DO i=102,201                       ! Displacement of each n-block 
          deL(i) = dh2*(Lam(i)-1)        ! in R2 section 
      END DO 
! 
      DO i = 2,201                       ! Set each n-block displacement 
          IF (y(i).GT.Lgrip) THEN        ! to 0 if the n-block is above 
              deL(i) = 0.                ! the grip location. 
          END IF 
      END DO 
! 
      deLtot = 0.                       ! Initialize total displacement. 
! 
      DO i=1,202                        ! Compute total displacement. 
          deLtot = deLtot + deL(i)       
      END DO 
! 
      ErrDel = Delta - deLtot           ! Compare the sum of all n-block 
!                                       ! displacements to the target d- 
      IF (ErrDel.GT.0.) THEN            ! isplacement, 'Delta'. If error 
          IF (ErrDel.LT.0.1) THEN       ! is positive, increment force & 
              Fo = Fo + 0.01*ForcFac    ! restart the force and stretch 
          ELSE IF (ErrDel.LT.1.) THEN   ! iteration loops with the GOTO 
              Fo = Fo + 0.1*ForcFac     ! statement. 
          ELSE IF (ErrDel.LT.10.) THEN 
              Fo = Fo + 1.0*ForcFac 
          ELSE IF (ErrDel.LT.100.) THEN 
              Fo = Fo + 10.*ForcFac 
          ELSE IF (ErrDel.LT.1000.) THEN 
              Fo = Fo + 100.*ForcFac 
          END IF 
          GO TO 220 
      END IF 
! 
!     ****************************************************************** 
!     --------- END OF ITERATION LOOPS FOR FORCE AND STRETCH ----------- 
!     ****************************************************************** 
! 
      DO i = 1,202                         ! Store the maximum force er- 
          IF (ErrF(i+1).LT.ErrF(i)) THEN   ! ror of all the n-blocks. 
              MxErrF = ErrF(i+1) 
          ELSE 
              MxErrF = ErrF(i) 
          END IF 
      END DO 
! 
      Fout = F(1)            ! Store the force in the gage section. 
      SigOut = F(1)/w(1)/t   ! Store the stress in the gage section. 
! 
      LamStore(k) = Lam(1)   ! Store stress and stretch as output that 
      SigStore(k) = SigOut   ! the user can copy from output window. 
! 
!     This next sequence of commands may seem confusing. The desired st- 
!     ress & stretch outputs are stored in arrays LamStore(k) & SigStor- 
!     e(k), but a stress corresponding to an n-block corrected stretch 
!     is stored one increment behind the current increment due to the m- 
!     anner in which this code increments displacement from 'Delta' to 
!     'DelEnd'. Specifically, stress and stretch during the first itera- 
!     tion are not n-block corrected. The code forces the crosshead str- 
!     etch at iteration 'k+1' to equal the gage stretch at iteration 'k' 
!     , and then maps the updated gage stretch (at 'k+1') to the stress 
!     at 'k', creating an n-block corrected (stretch, stress) pair. 
! 
      IF (k.EQ.1) THEN    ! Write headings for stress & stretch outputs. 
          WRITE(*,*) 
          WRITE(*,*) '  Gage Stretch' , '     Nominal Stress / MPa',& 
                     '      ErrDel     ' , '     MaxErrF     ' 
          WRITE(*,*) '  ------------     ' , '--------------------',& 
                     '    ------------    ' , '-------------' 
      ELSE 
          WRITE(*,360) LamStore(k),SigStore(k-1),&  ! Write stress, str- 
                       ErrDel,MxErrF                ! etch, and errors. 
      END IF 
! 
      k = k+1                      ! Increment k for the next target di- 
!                                  ! displacement, 'Delta'. 
! 
      delNew = Lgrip*(Lam(1)-1.)   ! Set the next displacement incremen- 
!                                  ! t, 'Delta', so that the stretch ba- 
      IF (delNew.LT.delEnd) THEN   ! sed on crosshead displacement in i- 
          Delta = delNew           ! ncrement 'k+1' is equal to the str- 
          Fo = Fout                ! etch in the gage section at increm- 
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          GO TO 220                ! ent 'k'. If the total target displ- 
      END IF                       ! acement, 'DelEnd', has not been re- 
!                                  ! ached, conduct another iteration of 
!                                  ! the entire sequence. 
      WRITE(*,*) 
      WRITE(*,*) 'Final errors, force, displacement, & average stretch' 
      WRITE(*,*) '----------------------------------------------------' 
      WRITE(*,310) 'ErrDel = ' , ErrDel ,' mm   Max. displacement error' 
      WRITE(*,320) 'MxErrF = ' , MxErrF ,'N' , 'Max. force error' 
      WRITE(*,330) 'F = '    , Fout     ,'N' , 'Pulling force' 
      WRITE(*,340) 'Delta = ', Delta    ,'mm','Crosshead displacement' 
      WRITE(*,350) 'LamT = ' , Delta/Lgrip+1.,'Crosshead (avg) stretch'  
      WRITE(*,*) 
! 
 310    FORMAT(A10,F12.6,A29) 
 320    FORMAT(A10,F12.6,A3,A19) 
 330    FORMAT(A10,F12.3,A3,A16) 
 340    FORMAT(A10,F12.3,A3,A25) 
 350    FORMAT(A10,F12.4,A29) 
 360    FORMAT(F12.4,F18.3,F26.6,F17.6) 
! 
END PROGRAM nBlock11 
! 
!  ********************************************************************* 
!  --------------------- USER GUIDE / INSTRUCTIONS --------------------- 
!  ********************************************************************* 
! 
!  1. Plot uniaxial tension stress-strain data with strain based on grip 
!     (ie. crosshead) displacement. 
! 
!  2. Fit a strain-energy function to the stress-strain data and record 
!     model parameters. 
! 
!  3. Input model parameters in the n-block code, and update the force 
!     equation if the generalized Yeoh strain-energy function is not us- 
!     ed. 
! 
!  4. Run the program to generate corrected stress-strain data for the 
!     material. If more data points are desired, adjust inputs 'Delta' 
!     and 'DelEnd' to result in different starting and ending points in 
!     the calculator. See SCHEMATIC 3 for an illustration of n-block co- 
!     rrected stress-strain data. 
! 
! 
!      |                                             /                / 
!      |   Hyperelastic model                      _/              __/ 
!      |   fit to stress-strain ___             __/           ____/ 
!      |   data based on cross-    |        ___/         ____/ 
!      |   head displacement       |    ___/        ____/ 
!      |                         __V___/    _______/ 
!    S |                     ___/     _____/   ^ 
!    T |                  __/     ___/         | 
!    R |               __/    ___/             |__ n-block corrected 
!    E |            __/   ___/                     stress-strain output 
!    S |          _/   __/ 
!    S |        _/  __/ 
!      |      _/  _/ 
!      |     /   / 
!      |    /  _/ 
!      |   / _/ 
!      |  / / 
!      | /_/ 
!      |/_______________________________________________________________ 
!                                    STRAIN 
! 
!      SCHEMATIC 3: Illustration of n-block corrected stress-strain data 
!                   which, via a hyperelastic material model, shifts st- 
!                   ress-strain data based on grip (ie. crosshead) disp- 
!                   lacement. 
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Appendix D: A Biaxiality UVARM 
Subroutine for Abaqus/Standard 

C ********************************************************************** 
C  Authors:  Richard Windslow & Travis Hohenberger 
C  Date:     2021-10-06 
C  E-mail:   twhohen@gmail.com 
C  Version:  0 
C ********************************************************************** 
C 
C  This subroutine computes element biaxiality for a hyperelastic mater- 
C  ial. The definition is described in Windslow et al. (2020) (see below 
C  for references) and given here: 
C 
C        B = log(L_min) / log(L_max) 
C 
C  where B is the element biaxiality, L_min is the minimum principal st- 
C  retch, and L_max is the maximum principal stretch in an individual e- 
C  lement. When a material is compressible, B must be scaled by the Jac- 
C  obian, J_vol, according to: 
C 
C        J_vol = L_min * L_mid * L_max 
C 
C        B_comp = log(L_min * J_vol^(-1/3)) / log(L_max * J_vol^(-1/3)) 
C 
C  where L_mid is the middle principal stretch and B_comp is the scaled 
C  biaxiality. 
C 
C ********************************************************************** 
      SUBROUTINE UVARM(UVAR,DIRECT,T,TIME,DTIME,CMNAME,ORNAME,NUVARM, 
     1                 NOEL,NPT,LAYER,KSPT,KSTEP,KINC,NDI,NSHR,COORD, 
     2                 JMAC,JMATYP,MATLAYO,LACCFLA)  
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      DIMENSION UVAR(NUVARM),DIRECT(3,3),T(3,3),TIME(2) 
      CHARACTER*80 CMNAME,ORNAME  
      DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*),COORD(*) 
      CHARACTER*3 FLGRAY(15) 
C 
C  ********************************************************************* 
C  ----------------- COMPUTE MIN, MID, & MAX STRETCHES ----------------- 
C  ********************************************************************* 
      CALL GETVRM('NEP',ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,MATLAYO, 
     1             LACCFLA) 
      L_min = ARRAY(1) + 1.0 
      L_mid = ARRAY(2) + 1.0 
      L_max = ARRAY(3) + 1.0 
C 
C  ********************************************************************* 
C  ----------------------- COMPUTE THE JACOBIAN ------------------------ 
C  ********************************************************************* 
      J_vol = L_min * L_mid * L_max 
C 
C  ********************************************************************* 
C  ------------------- COMPUTE DEVIATORIC STRETCHES -------------------- 
C  ********************************************************************* 
      L_minC = L_min * ((J_vol) ** (-1.0 / 3.0)) 
      L_midC = L_mid * ((J_vol) ** (-1.0 / 3.0)) 
      L_maxC = L_max * ((J_vol) ** (-1.0 / 3.0)) 
C 
C  ********************************************************************* 
C  ------------------------ COMPUTE BIAXIALITY ------------------------- 
C  ********************************************************************* 
      uvar(1) = log(L_minC) / log(L_maxC) 
C 
      RETURN 
      END SUBROUTINE UVARM 
C 
C  ********************************************************************* 
C  References: 
C   
C  R.J. Windslow, T.W. Hohenberger, & J.J.C. Busfield, (2020). “Determi- 
C  nation of the Loading Mode Dependence of the Proportionality Paramet- 
C  er for the Tearing Energy of Embedded Flaws in Elastomers under Mult- 
C  iaxial Deformations”. In: Fatigue Crack Growth in Rubber Materials.  
C  Eds. G. Heinrich, R. Kipscholl, & R. Stocek. 
C 
C  Simulia, (2020). “UVARM”. In: Abaqus R2020 User Subroutines Manual. 
C  Dassault Systèmes Simulia Corp., Providence, RI, USA. 
C  ********************************************************************* 
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Appendix E: Conversion of ET 
Stress to Equivalent UC Stress 

Treloar50 presented the equivalence of equibiaxial tension and uniaxial compression for an 
incompressible rubbery material in terms of true stress, but (in this author’s opinion) his 
nomenclature was somewhat convoluted. He did not illustrate the transformation in terms of 
nominal stress, so this gap is closed here. 

Consider the compression button in Fig. 2.14 with initial height, ℎ�, and initial diameter, ��. 
When subjected to uniform (nominal) radial stress, ���, the button undergoes equibiaxial extension 
(Fig. 2.14b) and the stress is given by: 

 ��� =
��

��
=

��

�����
        (E.1) 

where �� is total radial force and �� is the initial radial surface area of the cylindrical wall. For this 
exercise, true radial stress ���� will be needed: 

 ���� =
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���
=

��

�����
 (E.2) 

where ���, ��, and ℎ� are final area, diameter, and height of the cylinder, respectively. �� follows 
from measurements of radial strain ��: 

 �� =
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��
     ⇒     �� = (�� + 1)�� = ���� (E.3) 

where the stretch ratio �� = �� + 1 has been substituted for notational convenience. ℎ� follows from 
incompressibility (that is, conservation of volume): 
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where �� and �� are volumes before and after deformation, respectively. The last equality is obtained 
by rearranging and substituting Eq. E.3. With initial and final geometry fully described, axial strain 
�� is computed: 

 �� =
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��
� (E.5) 

where �� = �� + 1 and the last equality follows from Eq. E.4. 

The next step is key to transform radial stress to equivalent uniaxial stress. Superimposing 
hydrostatic pressure � = −���� on the specimen cancels ���� on the radial surface, leaving only 
compressive stress ���� = ���� on the top and bottom faces (Fig. 2.14c). It is critical to realize this 
step must use true stresses, and it is valid strictly for incompressible, isotropic materials. 

At this stage, there are expressions for ����, ���, ����, ��, and ��. To arrive at ���, first construct 
expressions analogous to Eqs. E.1 and E.2 in the axial direction: 
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where �� and ��� are initial and final areas of the axial faces, respectively, and �� is the axial force. 
Solving for �� in Eq. E.7, substituting in Eq. E.6, and invoking Eq. E.3: 
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A similar manipulation of Eq. E.1 and Eq. E.2 gives: 
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where the relationships for stretch ratios follow from Eq. E.3 and Eq. E.5. Since ���� = ����, Eqs. E.8 
and E.9 give: 

 ��� = ��
���� (E.10) 

Axel Physical Testing Services269 has published the strain form of this equation without derivation. 
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Appendix F: Proof of the Uniformity 
of Stress in Equibiaxial Tension 

A radial stress distributed about the perimeter of a disc is given. To illustrate, consider a quarter 
section of a cylindrical disc that is subjected to a uniform radial force, ��, along its outer perimeter 
with reaction forces, �� and ��, in orthogonal directions (Fig. N.4a). All forces can be converted to 
distributed loads (that is stresses) through the areas on which they act. Hence, the force on a 
differential element along the perimeter of the disc is: 

 d�� = ��d�� (F.1) 

Decomposing the force into � and � components, Eq. F.1 becomes: 

 d��.� = �� cos(�) d�� (F.2a) 

 d��.� = �� sin(�) d�� (F.2b) 

where � is an angle measured counterclockwise from the �-axis. The differential area is given by: 

 d�� = ℎ��d� (F.3) 

so that the net force in the � and � directions due to �� becomes: 

 ��.� = ����ℎ ∫ cos(�) d�
�/� 

�
= ����ℎ (F.4a) 

 ��.� = ����ℎ ∫ sin(�) d�
�/� 

�
= ����ℎ (F.4b) 

The solutions are identical due to the symmetry of the problem. Summing all forces in the � and � 
directions: 

 ����ℎ = ����ℎ (F.5a) 

 ����ℎ = ����ℎ (F.5b) 

from which it follows that �� = �� = ��. This proves that the applied radial stress is equal to the 
tangential reaction stresses, but it does not prove that the radial stress at an arbitrary location inside 
the disc equals the applied radial stress. To prove the equivalence of the latter, consider a partition 
of the quarter geometry as given in Fig. N.4b. By analogy with Eqs. F.4a,b, the net forces in the � 
and � directions due to the internal force, ��, are: 

 ��.� = ��.� = ����ℎ (F.6) 

Summing all forces in the � direction: 

 ����ℎ − ��(�� − ��)ℎ − ����ℎ = 0 (F.7a) 

 ���� − ���� + ���� − ���� = 0 (F.7b) 

Since it has already been shown that �� = ��, then Eq. F.7b reduces to �� = ��. It immediately 
follows that �� = ��; hence, for a uniform, homogeneous equibiaxial deformation, the radial stress 
applied at the perimeter equals the radial stress at any location that has a diameter smaller than the 
perimeter. 
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Appendix G: Levenberg-Marquardt Code to 
Determine SEF Model Parameters 

THE TOP-LEVEL PROGRAM 

PROGRAM LvMrqGenYeohUni   !  Travis Hohenberger  |  2019-04-04   |  v1.1 
! 
!  ********************************************************************* 
!  This program uses the Levenberg-Marquardt curve-fitting method for n- 
!  on-linear functions to fit uniaxial tension and/or compression data 
!  to a generalized Yeoh strain-energy function (gen-Yeoh SEF) which has 
!   
!               W = K1(I1-3)^m + K2(I1-3)^p + K3(I1-3)^q 
! 
!  where (K1,K2,K3,m,p,q) are fitting parameters and I1 is the first in- 
!  variant of the stretch tensor. The algorithm and subroutines are imp- 
!  lemented precisely as described in Press et al. 1992. See the bottom 
!  of this program for more details. 
! 
      IMPLICIT NONE 
      INTEGER   NDATA,NCA,I,MA,NITER,IA(6),KK 
      REAL      X,Y,SIG,A(6),COVAR(6,6),ALPHA(6,6),CHISQ,& 
                ALAMDA,ACC,C1,C2 
      EXTERNAL  FUNCS 
! 
!     ****************************************************************** 
!     -----------------  START OF USER INPUT SECTION  ------------------ 
!     ****************************************************************** 
! 
      DIMENSION   X(876),&        !  Set each dimension = NDATA 
                  Y(876),& 
                SIG(876) 
! 
      NDATA =      876            !  Enter # of lines in input data. 
! 
!    (A1,A2,A3,A4,A5,A6) = (K1,K2,K3,m,p,q) 
      A(1)  =   1.35 
      A(2)  =  -0.07 
      A(3)  =   0.051 
      A(4)  =   0.75 
      A(5)  =   1.505 
      A(6)  =   1.97 
! 
      IA(1) =   0                !  Parameter solve switches. 
      IA(2) =   1                ! 
      IA(3) =   1                !  Set = '0' to fix a parameter. 
      IA(4) =   0                !  Set = '1' to iterate a parameter. 
      IA(5) =   1                ! 
      IA(6) =   1                !  IA(J) corresponds to A(J). 
! 
      OPEN(16,FILE='DataNewX1')  !  Enter file name for STRETCH data. 
      OPEN(17,FILE='DataNewY1')  !  Enter file name for stress data. 
! 
!     ****************************************************************** 
!     -----------------  END OF USER INPUT SECTION  -------------------- 
!     ****************************************************************** 
! 
      READ(16,*)(X(KK),KK=1,NDATA)    !  Load stretch test data. 
      READ(17,*)(Y(KK),KK=1,NDATA)    !  Load stress test data. 
      CLOSE(16)                       !  Close stretch test data. 
      CLOSE(17)                       !  Close stress test data. 
! 
      DO 20 I=1,NDATA    !  SIG(I)'s are StDev's (weight functions) for 
        SIG(I)=1.        !  data points used in MRQMIN. In this code 
  20  ENDDO              !  all weights are equal. 
! 
      CHISQ=100          !  Initialize fitting error to large value. 
      NITER=0            !  Initialize iteration count for MRQMIN. 
! 
!     ****************************************************************** 
!     -------  SET UP DISPLAY FOR OUTPUT OF PARAMETERS & ERROR  -------- 
!     ****************************************************************** 
! 
      WRITE(*,110) 
 110    FORMAT(2X,'ITER',8X,'K1',12X,'K2',12X,'K3',13X,'m',13X,'p',& 
               13X,'q',10X,'CHISQ') 
      WRITE(*,120) 
 120    FORMAT(2X,'----',4X,'----------',4X,'----------',4X,& 
               '----------',4X,'----------',4X,'----------',& 
               4X,'----------',4X,'----------') 
      WRITE(*,130)NITER,A,CHISQ 
 130    FORMAT(2X,I3,4X,F11.6,3X,F11.6,3X,F11.6,3X,F11.6,3X,F11.6,3X,& 



200 
 

               F11.6,3X,F11.6) 
! 
!     ****************************************************************** 
!     -------------------  START MRQMIN SUBROUTINE  -------------------- 
!     ****************************************************************** 
!                     ---------------------------------- 
!     ----------------| Initialization Call for MRQMIN |---------------- 
!                     ---------------------------------- 
! 
      ALAMDA=-1.         !  Set ALAMDA < 0 to initialize MRQMIN. 
      MA=6               !  Number of parameters in gen-Yeoh model = 6. 
      NCA=MA             !  Variable req'd for some subroutines. 
! 
      CALL MRQMIN(X,Y,SIG,NDATA,A,IA,MA,COVAR,ALPHA,NCA,CHISQ,& 
                  FUNCS,ALAMDA) 
! 
!                       ----------------------------- 
!     ------------------| Iteration Call for MRQMIN |------------------- 
!                       ----------------------------- 
! 
  27  CONTINUE                       !  Start of iteration loop. 
      WRITE(*,130)NITER+1,A,CHISQ    !  Display parameters & error. 
      NITER=NITER+1 
      C1=CHISQ                       !  Error before iteration. 
! 
      CALL MRQMIN(X,Y,SIG,NDATA,A,IA,MA,COVAR,ALPHA,NCA,CHISQ,& 
                  FUNCS,ALAMDA) 
! 
      C2=CHISQ                       !  Error after iteration. 
      ACC=ABS((C2-C1)/C2)            !  Change in error. 
      IF(ACC.GT.1.E-06)THEN          !  Set convergence criterion. 
          IF(NITER.LT.50)GOTO 27     !  Cap max. # of iterations. 
      ENDIF 
!                  --------------------------------------- 
!     |------------|Final Call for MRQMIN (to sort COVAR)|-------------| 
!                  --------------------------------------- 
! 
      ALAMDA=0. 
! 
      CALL MRQMIN(X,Y,SIG,NDATA,A,IA,MA,COVAR,ALPHA,NCA,CHISQ,FUNCS,& 
                  ALAMDA) 
! 
!            ---------------------------------------------------- 
!     |------|Write Final Values for Easy Transcription in Excel|------| 
!            ---------------------------------------------------- 
! 
      WRITE(*,*)'--------------------------' 
      WRITE(*,140)A(1) 
 140    FORMAT(' K1 = ',F7.3) 
      WRITE(*,141)A(4) 
 141    FORMAT('  m = ',F7.3) 
      WRITE(*,142)A(2) 
 142    FORMAT(' K2 = ',F7.3) 
      WRITE(*,143)A(5) 
 143    FORMAT('  p = ',F7.3) 
      WRITE(*,144)A(3) 
 144    FORMAT(' K3 = ',F7.3) 
      WRITE(*,145)A(6) 
 145    FORMAT('  q = ',F7.3) 
! 
      STOP 
! 
END PROGRAM LvMrqGenYeohUni 
! 
!  ********************************************************************* 
!  --------------------------  MORE DETAILS  --------------------------- 
!  ********************************************************************* 
! 
!  The function fit by this program is the uniaxial stress equation: 
! 
!        S = 2*(L-1/L^2)*[K1*m*(L^2+2/L-3)^(m-1) + 
!                         K2*p*(L^2+2/L-3)^(p-1) + 
!                         K3*q*(L^2+2/L-3)^(q-1)] 
!         
!  where L is the stretch ratio at a given uniaxial stress S. 
! 
!  The following subroutines from Press et al. 1992 are required: 
!  MRQMIN, MRQCOF, GAUSSJ, & COVSRT. The program also requires a user- 
!  defined subroutine FUNCS that contains the function to be fit. Press 
!  et al. 1992 describes one such function, but this has been replaced 
!  by the stress equation above. See comments in FUNCS for details on h- 
!  ow to adjust the FUNCS subroutine for different functions. 
! 
!  De 1994 adopted and published a program similar to this one for the 
!  Davies-De-Thomas SEF (Davies et al. 1994) in his PhD thesis. The ori- 
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!  ginal author of that code was James Busfield, and the program could 
!  fit multiple loading modes by using so-called 'reduced' stress and s- 
!  train data. See De 1994 for guidance on how to adjust the current pr- 
!  ogram if multiple modes must be fit simultaneously. 
! 
!  ********************************************************************* 
!  ---------  DEVELOPMENT NOTES & INSTALLATION INSTRUCTIONS  ----------- 
!  ********************************************************************* 
! 
!  This code was developed with NetBeans IDE Dev (Build 201804200002) r- 
!  unning on top of packages from MinGW with the gfortran compiler. f90 
!  codes replace the f77 codes in Press et al. 1992. This required repl- 
!  acement of PAUSE commands with WRITE(*,*)('TEXT INFORMATION') follow- 
!  ed by READ(*,*). Some useful links on software installation are: 
! 
!  Install video:  https://www.youtube.com/watch?v=wGv2kGl8OV0 
!  MinGW link:     https://sourceforge.net/projects/mingw/ 
!  Netbeans link:  http://137.254.56.27/download/trunk/nightly/latest/ 
! 
!  Follow the steps in the installation video, stopping at 3:20 where i- 
!  nstructions about the terminal window are given. Try to run a simple 
!  'Hello World' application. If the code will not compile, you may need 
!  to manually specify the location of the Fortran compiler by going th- 
!  ru the top menu: Tools --> Options --> C/C++. Make sure the gfortran 
!  compiler is specified. If not, search for the compiler on your compu- 
!  ter (defaults to C:\MinGW\bin\gfortran.exe) and provide a link to it. 
!  Also make sure as.exe (assembler command), make.exe (make command),  
!  and gdb.exe (debugger) are properly linked. 
! 
!  To run the program: 
! 
!  1. Create a new project in Netbeans thru the top menu: File -->  
!     C/C++ Application --> Next --> Fortran90 Free (specify this from 
!     the drop-down box) --> Finish. 
! 
!  2. Expand the application tree in the project panel on the left (de- 
!     fault name is CppApplication1).  
! 
!  3. Expand 'Source Files'.  
! 
!  4. Copy text from LvMrqGenYeohUni.txt and paste over all text in 
!     source file 'main.f90' (or another title if you changed the de- 
!     fault name). 
! 
!  5. For each subroutine file: 
! 
!        a. Right click 'Source Files' and select: New --> Fortran File 
!           (Free Format)... 
! 
!        b. Name the file according to the subroutine that will be 
!           pasted, and then paste all text over any default text in 
!           the file that is generated. Ensure file extension is .f90. 
! 
!  6. Right click 'Source Files' and select: New --> Empty File... 
! 
!  7. Name the file for stretch test data, for instance 'DataX'. 
! 
!  8. Paste stretch test data into the file. 
! 
!  9. Repeat steps 6 thru 8 for stress data, for instance 'DataY'. 
! 
!  10. The Netbeans output panel may not allow keyboard input which is 
!      required for some programs. Although the current program does not 
!      require keyboard input, it is still recommended to activate outp- 
!      ut in an external terminal window where keyboard input is possib- 
!      le. To do this, right click the project name in the project panel 
!      and select: Properties --> Run --> Console Type --> 
!      External Terminal. 
! 
!  11. Follow steps in the USER GUIDE below for further instructions. 
! 
!  ********************************************************************* 
!  ---------------------------  USER GUIDE  ---------------------------- 
!  ********************************************************************* 
! 
!  1. The program requires stretch data instead of stain data. 
! 
!  2. Test data are read from 2 separate files. Create different files 
!     for stretch and stress data, for instance with file names 'DataX' 
!     and 'DataY', respectively. These are read into variables X(NDATA) 
!     and Y(NDATA). The number of points in each file must match. 
! 
!  3. Enter the number of data points to define variable dimensions for 
!     X, Y, and SIG (lines 25, 26, & 27, respectively). Also record this 
!     number in NDATA (line 29). 
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! 
!  4. Using line 31 as a guide, enter values for K1, K2, K3, m, p, and 
!     q. 
! 
!  5. Set the IA switches (lines 39 thru 44) to determine which paramet- 
!     ers, if any, to keep fixed (IA=0) and which to iterate (IA=1). 
! 
!  6. Enter the name of the stretch data file (for instance 'DataX') on 
!     line 46. Do similar for the stress data file on line 47. 
! 
!  7. Run the program to solve the parameters. In general, best fit sol- 
!     utions are not unique (ie. outputs will depend on initial guesses. 
!     Errors may occur during computation if initial guesses are far fr- 
!     om stable values and/or the test data is poorly represented by the 
!     SEF. 
! 
!  8. Inspect output parameters. In practice, the following constraints 
!     often work well for modeling oilfield sealing materials: 
! 
!       (K1 > |K2| > K3)       (K2 < 0)           (K3 > 0) 
!         (m < p < q)       (0.5 < m < 1.1)     (1 < p < 1.5) 
! 
!     None of these constraints are algorithmically enforced. Manual ad- 
!     justment of parameters and selective manipulation of the IA switc- 
!     hes may be required to achieve 'sensible' parameters. 
! 
!  9. The Neo-Hookean SEF can be solved with inputs: 
! 
!                   (K1,K2,K3,m,p,q) = (1,0,0,1,2,3) 
!          (IA1,IA2,IA3,IA4,IA5,IA6) = (1,0,0,0,0,0) 
! 
!  10. The Yeoh SEF can usually be solved with inputs: 
! 
!                   (K1,K2,K3,m,p,q) = (1, -0.1, 0.01, 1, 2, 3) 
!          (IA1,IA2,IA3,IA4,IA5,IA6) = (1,1,1,0,0,0) 
! 
!  11. If all 6 parameters are not known reasonably well a priori, achi- 
!      eving an accurate solution with all parameters initially free is 
!      unlikely. If initial guess values cannot be estimated, one techn- 
!      ique to proceed is to: 
! 
!         a. Fit a Yeoh SEF (see preceding step for details). 
!         b. Enter the Yeoh parameters as new guess values. Set IA4=1. 
!            Run the program to get updated parameters. 
!         c. Repeat step b, but unlock p by setting IA5 = 1. 
!         d. Repeat step c, but unlock q by setting IA6 = 1. 
! 
!  12. If step 11 is unsuccessful, retry the technique with initial gue- 
!      sses: 
! 
!                   (K1,K2,K3,m,p,q) = (5, -1.5, 0.2, 0.9, 1.2, 2) 
!          (IA1,IA2,IA3,IA4,IA5,IA6) = (1,1,1,0,0,0) 
! 
!  ********************************************************************* 
!  --------------------------  KNOWN ISSUES  --------------------------- 
!  ********************************************************************* 
! 
!  1. A singularity occurs in the stress equation at no load if m, p, or 
!     or q are less than 1. To avoid computational errors (for instance 
!     IEEE_INVALID_FLAG and IEEE_DIVIDE_BY_ZERO), delete any data point 
!     at (and possibly near) a stretch of 1. 
! 
!  2. Setting m, p, or q = 0 causes a computation error (for instance 
!     IEEE_INVALID_FLAG and IEEE_DIVIDE_BY_ZERO) even if their correspo- 
!     nding parameters (K1,K2,K3) are also set to zero. Always ensure f- 
!     inite values for the exponents. 
! 
!  ********************************************************************* 
!  -------------------------  VERSION NOTES  --------------------------- 
!  ********************************************************************* 
! 
!    v1.0: initial release 
!    v1.1: corrected ‘n’ to ‘p’ and ‘p’ to ‘q’ on write output, lines 
!          132 & 136, respectively; removed write(*,*)chisq from line 
!          138. 
! 
!  ********************************************************************* 
!  ---------------------------  REFERENCES  ---------------------------- 
!  ********************************************************************* 
! 
!  C. Davies, D. De, & A. Thomas, (1994). "Characterization of the Beha- 
!  vior of Rubber for Engineering Design Purposes. 1. Stress-Strain Rel- 
!  ations". Rubber Chemistry and Technology 67(4), 716. 
! 
!  D. De, (1994). "The effect of particulate fillers on the strain ener- 
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!  gy function and crack growth in rubbers". PhD Thesis. Queen Mary Uni- 
!  versity of London Library. Contact James Busfield (j.busfield@qmul.a- 
!  c.uk or Travis Hohenberger (twhohen@gmail.com) for an electronic cop- 
!  y. 
! 
!  T.W. Hohenberger, R.J. Windslow, N.M. Pugno, & J.J.C. Busfield, (2019 
!  ). “A Constitutive Model for both Low and High Strain Nonlinearities 
!  in Highly Filled Elastomers and Implementation with User-Defined Mat- 
!  erial Subroutines in Abaqus”. Rubber Chemistry and Technology, 92 (4) 
!  , 653-686. 
!   
!  W. Press, B. Flannery, S. Teukolsky, & W. Vetterlin, (1992). Numeric- 
!  al Recipes in FORTRAN. 2nd Ed. Cambridge University Press. See secti- 
!  on 15.5. 
! 
!  ********************************************************************* 

SUBROUTINES CALLED BY THE TOP-LEVEL PROGRAM 

!  ********************************************************************* 
! 
SUBROUTINE MRQMIN(X,Y,SIG,NDATA,A,IA,MA,COVAR,ALPHA,NCA,CHISQ,FUNCS,& 
                  ALAMDA) 
! 
!  Subroutine transcribed from Numerical Recipes in Fortran, 2nd Ed. (P- 
!  ress et al. 1992) with no significant alterations. Each call of the 
!  subroutine conducts one solution iteration. The initial call uses AL- 
!  AMDA < 0 to initialize a solution. Iteration scaling parameter ALAMDA 
!  is automatically altered for subsequent iterations. When convergence 
!  is satisfied, the subroutine must be called one last time with ALAMDA 
!  = 0 to finalize the solution. The routine calls the following variab- 
!  les: 
! 
!     X:      array of stretch test data with DIMENSION = NDATA 
! 
!     Y:      array of stress test data with DIMENSION = NDATA 
! 
!     SIG:    St.Dev. weight functions for the solution algorithm which 
!             are set to 1 for the current application 
! 
!     NDATA:  number of test data points in input files 
! 
!     A:      array of parameters to solve with DIMENSION = MA 
! 
!     IA:     switches to fix (IA=0) or iterate (IA=1) model parameters 
! 
!     MA:     number of parameters in the model 
! 
!     COVAR:  covariance matrix that characterizes 'components' of error 
!             between the model parameters 
! 
!     ALPHA:  curvature matrix which is the inverse of COVAR; used for 
!             iteration calculations 
! 
!     NCA:    equal to MA in this application 
! 
!     CHISQ:  overall error metric for the model fit 
! 
!     FUNCS:  user-defined subroutine that contains function to be mini- 
!             mized 
! 
!     ALAMDA: scaling parameter that determines step size between param- 
!             eter calculation iterations 
! 
      IMPLICIT NONE 
      INTEGER   MA,NCA,NDATA,IA(MA),MMAX,J,K,L,MFIT 
      REAL      ALAMDA,CHISQ,FUNCS,A(MA),ALPHA(NCA,NCA),& 
                COVAR(NCA,NCA),SIG(NDATA),X(NDATA),Y(NDATA),OCHISQ 
! 
!  ********************************************************************* 
      PARAMETER (MMAX=20)         !  Set to largest number of parameters 
!                                    that the algorithm can fit. 
! 
      REAL      ATRY(MMAX),BETA(MMAX),DA(MMAX) 
      SAVE      OCHISQ,ATRY,BETA,DA,MFIT 
! 
      IF(ALAMDA.LT.0.)THEN                !  Initialization statement 
          MFIT=0 
          DO 11 J=1,MA                    !  Set # of parameters to fit 
              IF(IA(J).NE.0)MFIT=MFIT+1 
 11       ENDDO 
          ALAMDA=0.001       !  Set initial value for scaling parameter 
! 



204 
 

          CALL MRQCOF(X,Y,SIG,NDATA,A,IA,MA,ALPHA,BETA,NCA,CHISQ,FUNCS) 
! 
          OCHISQ=CHISQ       !  'Old' error metric 
! 
          DO 12 J=1,MA 
              ATRY(J)=A(J) 
 12        ENDDO 
      ENDIF 
! 
      DO 14 J=1,MFIT                 !  Alter linearized fitting matrix 
          DO 13 K=1,MFIT             !  by augmenting diagonal elements 
              COVAR(J,K)=ALPHA(J,K) 
 13       ENDDO 
          COVAR(J,J)=ALPHA(J,J)*(1.+ALAMDA) 
          DA(J)=BETA(J) 
 14   ENDDO 
 ! 
      CALL GAUSSJ(COVAR,MFIT,NCA,DA,1,1)   !  Matrix solution for COVAR 
 ! 
      IF(ALAMDA.EQ.0.)THEN                   !  Once converged, evalu- 
          CALL COVSRT(COVAR,NCA,MA,IA,MFIT)  !  ate the covariance ma- 
          RETURN                             !  trix. 
      ENDIF 
      J=0 
      DO 15 L=1,MA                           !  Did the trial succeed? 
          IF(IA(L).NE.0)THEN 
              J=J+1 
              ATRY(L)=A(L)+DA(J) 
          ENDIF 
 15   ENDDO 
! 
      CALL MRQCOF(X,Y,SIG,NDATA,ATRY,IA,MA,COVAR,DA,NCA,CHISQ,FUNCS) 
! 
      IF(CHISQ.LT.OCHISQ)THEN      !  Success. Accept the new solution. 
          ALAMDA=0.1*ALAMDA 
          OCHISQ=CHISQ 
          DO 17 J=1,MFIT 
              DO 16 K=1,MFIT 
                  ALPHA(J,K)=COVAR(J,K) 
 16           ENDDO 
              BETA(J)=DA(J) 
 17       ENDDO 
          DO 18 L=1,MA 
              A(L)=ATRY(L) 
 18       ENDDO 
      ELSE 
          ALAMDA=10.*ALAMDA    !  Failure, increase ALAMDA and proceed. 
          CHISQ=OCHISQ 
      ENDIF 
! 
      RETURN 
! 
END SUBROUTINE MRQMIN 
! 
!  ********************************************************************* 
! 
SUBROUTINE MRQCOF(X,Y,SIG,NDATA,A,IA,MA,ALPHA,BETA,NALP,CHISQ,FUNCS) 
! 
!  Subroutine transcribed from Numerical Recipes in Fortran, 2nd Ed. (P- 
!  ress et al. 1992) with no significant alterations. This routine is c- 
!  alled by MRQMIN to evaluate the linearized fitting matrix ALPHA and 
!  vector BETA as well as calculate CHISQ. 
! 
      IMPLICIT NONE 
      INTEGER    MA,NALP,NDATA,IA(MA),MMAX,MFIT,I,J,K,L,M 
      REAL       CHISQ,A(MA),ALPHA(NALP,NALP),BETA(MA),SIG(NDATA),& 
                 X(NDATA),Y(NDATA),DY,SIG2I,WT,YMOD 
      EXTERNAL   FUNCS 
      PARAMETER (MMAX=20) 
      REAL       DYDA(MMAX) 
 
      MFIT=0 
! 
      DO 11 J=1,MA 
          IF(IA(J).NE.0)MFIT=MFIT+1 
 11   ENDDO 
! 
      DO 13 J=1,MFIT           !  Initialize (symmetric) ALPHA and BETA 
          DO 12 K=1,J 
              ALPHA(J,K)=0. 
 12       ENDDO 
          BETA(J)=0. 
 13   ENDDO 
! 
      CHISQ=0. 
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! 
      DO 16 I=1,NDATA                   !  Summation loop over all data 
          CALL FUNCS(X(I),A,YMOD,DYDA,MA) 
          SIG2I=1./(SIG(I)*SIG(I)) 
          DY=Y(I)-YMOD 
          J=0 
          DO 15 L=1,MA 
              IF(IA(L).NE.0)THEN 
                  J=J+1 
                  WT=DYDA(L)*SIG2I 
                  K=0 
                  DO 14 M=1,L 
                      IF(IA(M).NE.0)THEN 
                          K=K+1 
                          ALPHA(J,K)=ALPHA(J,K)+WT*DYDA(M) 
                      ENDIF 
 14               ENDDO 
                  BETA(J)=BETA(J)+DY*WT 
              ENDIF 
 15       ENDDO 
          CHISQ=CHISQ+DY*DY*SIG2I                    !  Calculate CHI^2 
 16   ENDDO 
! 
      DO 18 J=2,MFIT                      !  Fill in the symmetric side 
          DO 17 K=1,J-1 
              ALPHA(K,J)=ALPHA(J,K) 
 17       ENDDO 
 18   ENDDO 
! 
      RETURN 
! 
END SUBROUTINE MRQCOF 
! 
!  ********************************************************************* 
! 
SUBROUTINE GAUSSJ(A,N,NP,B,M,MP) 
! 
!  Subroutine transcribed from Numerical Recipes in Fortran, 2nd Ed. (P- 
!  ress et al. 1992) with no significant alterations. This routine is c- 
!  alled by MRQMIN to solve an error matrix. It is a linear equation so- 
!  lution via Gauss-Jordan elimination. Argument A is an NP X NP input 
!  matrix. B is an N X M input matrix containing M vectors stored in an 
!  array of dimension NP X MP. On output, A is replaced by its inverse, 
!  and B is replaced by solution vectors. 
! 
      IMPLICIT NONE 
      INTEGER   M,MP,N,NP,NMAX,I,ICOL,IROW,J,K,L,LL 
      REAL      A(NP,NP),B(NP,NP) 
      PARAMETER (NMAX=50)             !  Largest anticipated value of N 
      INTEGER   INDXC(NMAX),INDXR(NMAX),IPIV(NMAX)     !  Pivot indices 
      REAL      BIG,DUM,PIVINV 
! 
      DO 11 J=1,N 
        IPIV(J)=0 
  11  ENDDO 
! 
      DO 22 I=1,N               !  Start main loop for column reduction 
          BIG=0. 
          DO 13 J=1,N                       !  Start loop to search for 
              IF(IPIV(J).NE.1)THEN          !  pivot element. 
                  DO 12 K=1,N 
                      IF(IPIV(K).EQ.0)THEN 
                          IF(ABS(A(J,K)).GE.BIG)THEN 
                              BIG=ABS(A(J,K)) 
                              IROW=J 
                              ICOL=K 
                          ENDIF 
                      ELSEIF(IPIV(K).GT.1)THEN 
                          WRITE(*,'(''Warning! Singular matrix...'')') 
                          READ(*,*) 
                      ENDIF 
 12                ENDDO 
              ENDIF 
 13       ENDDO 
! 
!         Pivot element is now identified. Next, interchange rows, if n- 
!         eeded, to put the pivot element on the diagonal. Columns are 
!         not physically interchanged, only relabeled: INDXC(I), the co- 
!         lumn of Ith pivot element, is the Ith column that is reduced, 
!         while INDXR(I) is the row in which that pivot element was ori- 
!         ginally located. If INDXR(I).NE.INDXC(I) there is an implied 
!         column interchange. With this form of bookkeeping, the soluti- 
!         on B's will end up in the correct order, and the inverse matr- 
!         ix will be scrambled by columns. 
! 
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          IPIV(ICOL)=IPIV(ICOL)+1   
          IF(IROW.NE.ICOL)THEN 
              DO 14 L=1,N 
                  DUM=A(IROW,L) 
                  A(IROW,L)=A(ICOL,L) 
                  A(ICOL,L)=DUM 
 14            ENDDO 
              DO 15 L=1,M 
                  DUM=B(IROW,L) 
                  B(IROW,L)=B(ICOL,L) 
                  B(ICOL,L)=DUM 
 15           ENDDO 
          ENDIF 
          INDXR(I)=IROW                !  Now ready to divide pivot 
          INDXC(I)=ICOL                !  row by pivot element located 
          IF(A(ICOL,ICOL).EQ.0.)THEN   !  at IROW and ICOL. 
              WRITE(*,'(''Warning! Singular matrix in GAUSSJ.'')') 
              READ(*,*) 
          ENDIF 
          PIVINV=1./A(ICOL,ICOL) 
          A(ICOL,ICOL)=1. 
         DO 16 L=1,N 
             A(ICOL,L)=A(ICOL,L)*PIVINV 
 16      ENDDO 
         DO 17 L=1,M 
             B(ICOL,L)=B(ICOL,L)*PIVINV 
 17      ENDDO 
         DO 21 LL=1,N                 !  Reduce the rows... 
             IF(LL.NE.ICOL)THEN       !     ...except for the pivot one. 
                 DUM=A(LL,ICOL) 
                 A(LL,ICOL)=0. 
                 DO 18 L=1,N 
                     A(LL,L)=A(LL,L)-A(ICOL,L)*DUM 
 18              ENDDO 
                 DO 19 L=1,M 
                     B(LL,L)=B(LL,L)-B(ICOL,L)*DUM 
 19              ENDDO 
             ENDIF 
 21      ENDDO 
 22   ENDDO 
! 
!   The main loop is now complete. Next, unscramble the solution in lig- 
!   ht of any column interchanges. This is done by interchanging pairs 
!   of columns in the reverse order in which the permutation was built 
!   up. 
! 
      DO 24 L=N,1,-1 
          IF(INDXR(L).NE.INDXC(L))THEN 
              DO 23 K=1,N 
                  DUM=A(K,INDXR(L)) 
                  A(K,INDXR(L))=A(K,INDXC(L)) 
                  A(K,INDXC(L))=DUM 
 23           ENDDO 
          ENDIF 
 24   ENDDO 
! 
      RETURN 
! 
END SUBROUTINE GAUSSJ 
! 
!  ********************************************************************* 
! 
SUBROUTINE COVSRT(COVAR,NPC,MA,IA,MFIT) 
! 
!  Subroutine transcribed from Numerical Recipes in Fortran, 2nd Ed. (P- 
!  ress et al. 1992) with no significant alterations. This routine is c- 
!  alled by MRQMIN to organize the COVAR matrix in proper rows and colu- 
!  mns with 0 variances / covariances for parameters held fixed. 
! 
      IMPLICIT NONE 
      INTEGER MA,MFIT,NPC,IA(MA) 
      REAL    COVAR(NPC,NPC)      !  Expand dimension of COVAR, if nec- 
      INTEGER I,J,K               !  essary, to account for parameters 
      REAL    SWAP                !  that were held fixed. 
! 
      DO 12 I=MFIT+1,MA 
          DO 11 J=1,I 
              COVAR(I,J)=0. 
              COVAR(J,I)=0. 
 11       ENDDO 
 12    ENDDO 
! 
      K=MFIT 
! 
      DO 15 J=MA,1,-1 
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          IF(IA(J).NE.0)THEN 
              DO 13 I=1,MA 
                  SWAP=COVAR(I,K) 
                  COVAR(I,K)=COVAR(I,J) 
                  COVAR(I,J)=SWAP 
 13           ENDDO 
              DO 14 I=1,MA 
                  SWAP=COVAR(K,I) 
                  COVAR(K,I)=COVAR(J,I) 
                  COVAR(J,I)=SWAP 
 14            ENDDO 
              K=K-1 
          ENDIF 
 15   ENDDO 
! 
      RETURN 
! 
END SUBROUTINE COVSRT 
! 
!  ********************************************************************* 
! 
SUBROUTINE FUNCS(XS,A,YS,DYDA,NA) 
! 
!  This function only applies to the uniaxial stress equation with the 
!  gen-Yeoh SEF. If pure shear or equibiaxial data should be fitted, th- 
!  e function must be modified as follows: 
! 
!     Pure Shear:   AO = 2 * (XS - 1/XS**3) 
!                   BO = XS**2 + 1/XS**2 - 2 
! 
!     Equibiaxial:  AO = 2 * (XS - 1/XS**5) 
!                   BO = 2 * XS**2 + 1/XS**4 - 3 
! 
!     AO and BO are effectively constants so the partial derivatives re- 
!     main unchanged. 
! 
      IMPLICIT NONE 
      INTEGER NA 
      REAL    XS,YS,A(NA),DYDA(NA),AO,BO 
! 
      AO=2*(XS-1/XS**2)           !  Variables defined for more compact 
      BO=XS**2+2/XS-3             !  expression of stress equation. 
! 
      YS=AO*(A(1)*A(4)*BO**(A(4)-1)+&      !  Uniaxial stress equation 
             A(2)*A(5)*BO**(A(5)-1)+&      !  derived from SEF. 
             A(3)*A(6)*BO**(A(6)-1)) 
! 
!     Partial derivatives with respect to each model parameter are requ- 
!     ired, ie. d(YS)/d(A1), d(YS)/d(A2), ... , d(YS)/d(A6): 
! 
      DYDA(1)=AO*A(4)*BO**(A(4)-1) 
      DYDA(2)=AO*A(5)*BO**(A(5)-1) 
      DYDA(3)=AO*A(6)*BO**(A(6)-1) 
      DYDA(4)=AO*A(1)*(A(4)*BO**(A(4)-1)*LOG(BO)+BO**(A(4)-1)) 
      DYDA(5)=AO*A(2)*(A(5)*BO**(A(5)-1)*LOG(BO)+BO**(A(5)-1)) 
      DYDA(6)=AO*A(3)*(A(6)*BO**(A(6)-1)*LOG(BO)+BO**(A(5)-1)) 
! 
      RETURN 
! 
END SUBROUTINE FUNCS 
! 
!  ********************************************************************* 
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Appendix H: A DLOAD Subroutine 
for FPP in Abaqus/Standard 

C ********************************************************************** 
C  Author:   Travis Hohenberger 
C  Date:     2021-10-07 
C  E-mail:   twhohen@gmail.com 
C  Version:  0 
C ********************************************************************** 
C 
C  This subroutine is built from the template in Simulia (2020) (see re- 
C  ference below). It has been developed to apply fluid pressure penetr- 
C  ation to the surface of an axisymmetric seal that is compressed betw- 
C  een two plates. A bonded interface is used to fix the seal to the bo- 
C  ttom plate. A frictional interface is used with the top plate. When 
C  developed, the plates were assumed to be rigid bodies, so plate defl- 
C  ection is not accounted for. The geometry used when developing this 
C  code is in Schematic 1. Some important notes: 
C 
C    1. The schematic is shown after the seal has been compressed. 
C 
C    2. Pressure of magnitude “F_Lim” is applied to the left surface of 
C       the seal. 
C 
C    3. As the seal deforms under pressure, nodes on the seal that init- 
C       ially contact the top plate may be pulled out of contact. If th- 
C       ese nodes fall below the user-defined y-coordinate “y_Lim”, pre- 
C       ssure propagates to that node. Therefore, this code uses a kine- 
C       matic definition to propagate pressure, as opposed to the built- 
C       -in pressure penetration schemes in Abaqus/Standard which use n- 
C       odal contact pressure. The different solutions have similar res- 
C       ults when a sufficiently small mesh is used. 
C 
C    4. For the problems tested, it was found acceptable to set “y_Lim” 
C       exactly equal to the y-coordinate of the top plate. 
C 
C    y (Axis of Symmetry) 
C    ^ 
C    | 
C    |_________________________________________________ 
C    |                                                 | 
C    |         TOP PLATE        FRICTIONAL INTERFACE   | 
C    |_________________________________________________| _____ 
C    |                        ----->/**********\            ^ 
C    |                        ---->/************\           | 
C    |                        --->|* COMPRESSED *|          | 
C    |                  F_Lim --->|**** SEAL ****|          | 
C    |                        --->|**************|        y_Lim 
C    |                        --->|**************|          | 
C    |--------------------------------------------------    | 
C    |        BOTTOM PLATE        BONDED INTERFACE     |    | 
C    |_________________________________________________|    | 
C    |----------------------------------------------------------> x 
C 
C     Schematic 1: Fixture geometry for developing the subroutine. 
C 
C  REFERENCE: 
C  --------- 
C     SIMULIA, (2020). “DLOAD”. In: Abaqus R2020 User Subroutines Manua- 
C     l. Dassault Systèmes Simulia Corp. Providence, Rhode Island, USA. 
C 
C ********************************************************************** 
      SUBROUTINE DLOAD(f, kstep, kinc, time, noel, npt, layer, kspt, 
     1                 coords, jltyp, sname) 
C 
      INCLUDE 'aba_param.inc' 
C 
      DIMENSION time(2), coords(3) 
      CHARACTER*80 sname 
C 
C     PARAMETERS 
C     ---------- 
      REAL*8    one, two 
      PARAMETER(one=1.d0, two=2.d0) 
C 
C     LOCAL VARIABLES 
C     --------------- 
      REAL*8 y_Lim, F_Lim, y 
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C 
C     ****************************************************************** 
C     ----------------- USER INPUTS (SEE SCHEMATIC 1) ------------------ 
C     ****************************************************************** 
      y_Lim = 11.177 
      F_Lim = 11. 
C 
C     ****************************************************************** 
C     ------ ASSIGN THE VARIABLE y TO y-COORDINATES IN THE MODEL ------- 
C     ****************************************************************** 
      y = coords(2) 
C 
C     ****************************************************************** 
C     |    IN A FIRST STEP, APPLY PRESSURE TO NODES BELOW “y_Lim”,     | 
C     |         AND THEN DEPRESSURIZE IN THE FOLLOWING STEP.           | 
C     |      FOR MORE DETAILS, SEE THE NOTES BELOW THIS SECTION.       | 
C     ****************************************************************** 
      IF (time(2).LE.two) THEN 
         IF (y.LT.y_Lim) THEN 
            F = F_Lim * time(1) 
         END IF 
      ELSE IF (time(2).GT.two) THEN 
         IF (y.LT.y_Lim) THEN 
            F = F_Lim * (one-time(1)) 
         END IF 
      END IF 
C 
      RETURN 
      END SUBROUTINE DLOAD 
C 
C ********************************************************************** 
C -------------------------- SOME MORE NOTES --------------------------- 
C ********************************************************************** 
C 
C   1. With the code as currently written, the pressurization step must 
C      be defined with a step time of 1. The same time must be assigned 
C      for the depressurization step to give a total time of 2. 
C 
C   2. The variable “time” stores the current step time in “time(1)” and 
C      the total time in “time(2)”. 
C 
C   3. During the pressurization step, the pressure ramps up from 0 to 
C      “F_Lim”. During the depressurization step, the pressure ramps do- 
C      wn from “F_Lim” to 0. 
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Appendix J: A VDLOAD Subroutine 
for FPP in Abaqus/Explicit 

C ********************************************************************** 
C  Author:   Travis Hohenberger 
C  Date:     2021-10-07 
C  E-mail:   twhohen@gmail.com 
C  Version:  0 
C ********************************************************************** 
C 
C  This subroutine is built from the template in Simulia (2020) (see re- 
C  ference below). It has been developed to apply fluid pressure penetr- 
C  ation to the surface of an axisymmetric seal that is compressed betw- 
C  een two plates. A bonded interface is used to fix the seal to the bo- 
C  ttom plate. A frictional interface is used with the top plate. When 
C  developed, the plates were assumed to be rigid bodies, so plate defl- 
C  ection is not accounted for. The geometry used when developing this 
C  code is in Schematic 1. Some important notes: 
C 
C    1. The schematic is shown after the seal has been compressed. 
C 
C    2. Pressure of magnitude “F_Lim” is applied to the left surface of 
C       the seal. 
C 
C    3. As the seal deforms under pressure, nodes on the seal that init- 
C       ially contact the top plate may be pulled out of contact. If th- 
C       ese nodes fall below the user-defined y-coordinate “y_Lim”, pre- 
C       ssure propagates to that node. Therefore, this code uses a kine- 
C       matic definition to propagate pressure, as opposed to the built- 
C       -in pressure penetration schemes in Abaqus/Standard which use n- 
C       odal contact pressure. The different solutions have similar res- 
C       ults when a sufficiently small mesh is used. 
C 
C    4. For the problems tested, a kinematic contact definition (as opp- 
C       osed to the penalty option that is also available in Abaqus/Exp- 
C       licit) was used at the top interface. To prevent premature seal 
C       leakage, it was found necessary to set “y_Lim” slightly below t- 
C       he y-coordinate of the top plate in some cases. As one example, 
C       when the compressed seal height was 10.619 mm, y_Lim=10.6185 was 
C       used. The lower value is required because elastic waves due to 
C       inertia can cause the sealing front to be unstable. 
C 
C    y (Axis of Symmetry) 
C    ^ 
C    | 
C    |_________________________________________________ 
C    |                                                 | 
C    |         TOP PLATE        FRICTIONAL INTERFACE   | 
C    |_________________________________________________| _____ 
C    |                        ----->/**********\            ^ 
C    |                        ---->/************\           | 
C    |                        --->|* COMPRESSED *|          | 
C    |                  F_Lim --->|**** SEAL ****|          | 
C    |                        --->|**************|        y_Lim 
C    |                        --->|**************|          | 
C    |--------------------------------------------------    | 
C    |        BOTTOM PLATE        BONDED INTERFACE     |    | 
C    |_________________________________________________|    | 
C    |----------------------------------------------------------> x 
C 
C     Schematic 1: Fixture geometry for developing the subroutine. 
C 
C  REFERENCE: 
C  --------- 
C     SIMULIA, (2020). “VDLOAD”. In: Abaqus R2020 User Subroutines Manu- 
C     al. Dassault Systèmes Simulia Corp. Providence, Rhode Island, USA. 
C 
C ********************************************************************** 
      SUBROUTINE VDLOAD(nBlock, ndim, stepTime, totalTime, amplitude, 
     1                  curCoords, velocity, dirCos, jltyp, sname, value) 
C 
      INCLUDE 'vaba_param.inc' 
C 
      DIMENSION curCoords(nBlock,ndim)   , velocity(nBlock,ndim), 
     1          dirCos(nBlock,ndim,ndim) , value(nBlock) 
      CHARACTER*80 sname 
C 
C     LOCAL VARIABLES 
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C     --------------- 
      INTEGER  km 
      REAL*8   y_Lim , F_Lim , y 
C 
C     ****************************************************************** 
C     ----------------- USER INPUTS (SEE SCHEMATIC 1) ------------------ 
C     ****************************************************************** 
      y_Lim = 10.6185 
      F_Lim = 17. 
C 
C     ****************************************************************** 
C     ---------- APPLY PRESSURE TO THE ELEMENTS IN THE MODEL ----------- 
C     ****************************************************************** 
 
      DO 100 km = 1,nBlock      
         IF (curCoords(km,2).LT.y_Lim) THEN 
            value(km) = amplitude * F_Lim 
         END IF 
  100 CONTINUE 
C 
      RETURN 
      END SUBROUTINE VDLOAD 
C ********************************************************************** 
C -------------------------- SOME MORE NOTES --------------------------- 
C ********************************************************************** 
C 
C   There are various ways of implementing this type of pressure penetr- 
C   ation subroutine in Abaqus/Explicit. One simple method is to set the 
C   step time for pressurization equal to the target pressure that is s- 
C   pecified by “F_Lim”, and then define an amplitude with a time inter- 
C   val that begins at 0 and ends at the same value as “F_Lim”. The mag- 
C   nitudes at each time are then specified as 0 and 1, respectively. 
C 
C   Using the method described thus far, the default amplitude called i- 
C   nto the VDLOAD subroutine will be incorrect. The correct amplitude 
C   cannot be specified in Abaqus/CAE, so it must be manually entered in 
C   the input file. Below is some example text from an input file. It s- 
C   hows an amplitude definition from 0 to 17 seconds with magnitudes of 
C   0 and 1. The step time is 17 which matches the amplitude time. The 
C   bold red text is manually added to the input file to call the corre- 
C   ct amplitude into the Dsload pressure (which is itself defined by a 
C   VDLOAD subroutine. 
C 
C   *Amplitude, name=Amp-P01-0000-1700 
C            0.,              0.,             17.,              1. 
C   ** ---------------------------------------------------------------- 
C   **  
C   ** STEP: P-01 
C   **  
C   *Step, name=P-01, nlgeom=YES 
C   *Dynamic, Explicit, element by element 
C   , 17. 
C   *Bulk Viscosity 
C   0.06, 1.2 
C   **  
C   ** LOADS 
C   **  
C   ** Name: P-01   Type: Pressure 
C   *Dsload, amplitude=Amp-P01-0000-1700 
C   Surf-Pressure, PNU, 0. 
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Appendix K: A Rubber Compound 
with Imperfect Hyperelasticity 

Fig. K.1 shows uniaxial tension and compression data for a sealing compound. The “Equivalent 
ET” dots are computed from the uniaxial compression data according to the theory in Appendix E. 
In Fig. K.1a, the curve fits to the uniaxial compression data and equivalent equibiaxial data are 
good. The good fit in both modes is a consequence of their theoretical equivalence. However, the 
fit to the uniaxial tension data is poor. Due to the large separation between the equivalent equibiaxial 
“data” and the uniaxial tension data, the material is not well-conditioned for fitting with a 
hyperelastic strain-energy function. That is, the material exhibits imperfect hyperelastic behaviour. 
Fig. K.1b adjusts the model parameters to achieve a good fit to the uniaxial tension data which 
results in a poor fit to the uniaxial compression data. If the uniaxial tension and compression test 
data were converted to a reduced form according to Eq. 4.4, they would not overlap in the linear 
region (on a logarithmic scale) as was the case in Fig. 4.5a. 

    
                                            (a)                                                                               (b) 

Fig. K.1: Illustration of imperfect hyperelasticity in a rubber material: (a) a gen-Yeoh SEF fit to uniaxial 
compression data (and by corollary the equivalent equibiaxial data that is computed from the uniaxial 
compression data as described in Appendix E); (b) a gen-Yeoh SEF fit to the uniaxial tension data. 
No set of model parameters can achieve a good fit to both uniaxial compression and tension data 

because the rubber material does not follow ideal hyperelastic model theory. 
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Appendix L: Test Fixture Dimensions and Test Plan 
for Experimental Testing 

Critical test fixture dimensions are illustrated in Fig. L.1. The components are identified in Fig 
6.1 and Table 6.1.  Table L.1 shows actual measurements that were determined with digital calipers. 
For simulations in Chapter 7, average dimensions were used when multiple measurements of a 
single feature were recorded. 

 
Fig. L.1: Critical dimension locations for test fixture components. 

Table L.1: Critical test fixture dimensions for experimental testing. Units are mm. 
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Assembly Procedure 

1. Lubricate O-ring #216 with Krytox GPL 206 grease and install the seal carrier that has 
natural rubber (NR) and serial number 1. 

2. Fix the seal carrier to the bottom plate with the button head cap screw. 

3. Install the 0.300” (7.62 mm) gauge ring on the bottom plate with 8 low profile socket head 
screws. 

4. Lubricate the top of the gauge ring with Lubriplate L0161-05 or Krytox GPL 206 grease 
because the seal will contact this surface when pressure forces it into the extrusion gap. 

5. Position the 0.775” (19.7 mm) spacer on the bottom plate. 

Note: Both EPDM and NR swell in hydrocarbon fluids. There is no need to rush the 
following steps, but do not allow the seals to sit in the fixture for an extended period of 
time (for instance during a lunch break or overnight) after installation. 

6. Lubricate the bonded seal and the sealing countersurface of the top plate with Lubriplate 
L0161-05 or Krytox GPL 206 grease. Be sure to also apply grease to the region of the top 
plate that will sit above the gauge ring as the seal will contact this surface when pressure 
forces it into the extrusion gap. 

7. Install the top plate and secure with 8 socket screws), 16 washers, and 8 nuts. These 
hardware items must be grade 8 for adequate strength. Be sure to fully compress the bonded 
seal until the top and bottom plates are flush with the spacer ring. Record the time. 

8. Connect a pressure line to the top plate. The test medium shall be water to prevent swelling 
of the rubber. 

9. Place the device under test (DUT) in a thermally controlled environment such as a test 
chamber with a temperature of 23±1oC. 

Pressure Test Procedure 

1. Slowly apply pressure to the DUT, trying to maintain the curve as smooth as reasonably 
possible. There may be pressure fluctuations (stick-slip) as the seal displaces. Continue 
adding pressure until there are indications of leakage across the seal. Stop increasing 
pressure if 5,400 psi (37.2 MPa) is reached. No pressure hold time is required for this step. 
Simply try to capture the peak pressure when leakage occurs. 

2. Record the leak pressure “P1”. If no leak occurred, write “No Leak”. 

3. Bleed pressure to atmosphere. 

4. Repeat steps 1 and 2 in this section two times, recording pressures in columns “P2” and 
“P3”. 

5. Disassemble and reassemble the fixture according to the test matrix, taking note of the 
following: 

a. If at any time elastomer fracture is found, put the test on hold and contact Schlumberger 
for further instruction. 

b. Be sure to match the serial numbers of the seal assemblies to the correct spacers and 
gauge rings. 

c. Remember to apply the required grease to the bonded seal, top plate, and gauge ring 
when changing seal assemblies. 

d. For the gauge ring indicated as 0.425”+0.125” (10.8 mm + 3.18 mm), be sure to place 
the 0.125” (3.18 mm) gauge ring under the 0.425” (10.8 mm) gauge ring. 
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Appendix M: Some Notes on Sources of 
Error in the Uniaxial Tension Test 

A uniaxial tension test is commonly used for constructing a hyperelastic material model. The 
test specimen is often a flat or cylindrical dumbbell clamped at its ends and extended until it 
fractures in its gauge section. Fig. 4.8 shows two different test configurations, each with its own 
benefits which are discussed in Section 4.3. Dumbbell geometry is governed by ASTM D412,235 
and it includes tolerances on the geometric form, such as width variation in the gauge section. 
Obviously, the width varies along the length of the dumbbell, but in some cases, it also varies 
through the thickness; that is, the cross-sections may be trapezoidal instead of rectangular. This is 
a problem particularly when dies are used to cut dumbbells from rubber plaques and the material is 
resistant to cutting. The rubber is subjected to non-uniform compression during the cutting which 
develops the trapezoidal shape. For the sealing materials in this work, the width variation through 
the thickness is about ±3%, admittedly small but easily corrected with careful measurements as 
shown in Fig. M.1. 

 
Fig. M.1: Measurement of the dumbbell width with the tip of the calipers positioned at the  

top face of the specimen. The bottom face would also be measured. Multiple positions  
along the length, for instance 6 total places, can be measured and averaged. 

Thermal expansion is an important consideration when testing rubber, but it is difficult to 
address it properly when testing at high temperatures. For example, when HNBR dumbbells at 
163℃ are removed from a thermal chamber, they start to cool down and contract immediately, 
rendering cross-sectional measurements inaccurate. Therefore, one must measure dimensions 
inside the thermal chamber, or estimate them from an independent measure of their thermal 
expansivity. The first solution is not always possible. The second solution is complicated by 
rubber’s non-linear thermal expansivity, as well as anisotropy that is inherent in thin rubber 
sheets.121,270,271 These complications aside, consider an HNBR dumbbell with nominal cross-
sectional gauge dimensions of 6 mm ×  2 mm and a thermal expansion coefficient (assumed linear) 
of 0.000245 mm/(mm ∙ ℃) over the temperature range of 20– 163℃.256 Under such conditions, 
thermal expansion can introduce up to 7% error in the cross-sectional area (and hence, stress) if not 
properly addressed. 

When dumbbells are gripped at their narrow section and strain is computed from grip 
displacement, constraint at the grips introduces uncertainty in the nominal length that is used for 
strain calculations. For the sealing materials tested in this work, the length increased about 
0.5– 1 mm when compressed by the grips. It is simple enough to use this to offset the nominal length 
for strain calculations, but it does not address the fact that the rubber width cannot contract at the 
grip constraint when the dumbbell is stretched. This source of error decreases as the nominal length 
increases, but the maximum length of the dumbbell should not exceed the length of the straight 
portion of the dumbbell, about 30 mm for an ASTM (die C) dumbbell.235 Therefore, it is plausible 
to assume that the order of this error is 1 mm / 30 mm ≈ 3%. By itself, this error is negligibly low 
for practical purposes, but it becomes problematic when coupled with other errors. The composite 
error based on the three sources above is 13%, a more concerning number. Thus, there are two 
points to emphasise. First, even the well-known uniaxial tension test has nontrivial complications 
when testing rubber. Second, attention must be given to small sources of error when testing rubber 
because they collectively generate larger composite errors. 
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Appendix N: Assessment of the Equibiaxial 
Tension Test with a Disc Specimen 

The biaxial tension test is difficult to execute because it requires loading in two perpendicular 
directions. Treloar’s233 pioneering work in this regard (Fig. N.1a,b) has been enduring with the 
concept still being used and refined to this day. (Note: It appears that the image of Treloar’s biaxial 
test piece did not make it into the digital scan for the online version of his article from 1948, but it 
can be found in his textbook50 published in 1975.) He attached wires to tabs extending from a 
nominally square test section. Weights were hung from the wires to stretch the rubber in two 
directions. 

                     
                        (a)                                                    (b)                                                       (c) 

Fig. N.1: Biaxial test specimens: (a) an unstretched specimen as proposed by Treloar;50 (b) a specimen with 
tabs loaded by weights; (c) a more recent specimen in equibiaxial tension as given by Fujikawa et al.234 

Various contraptions have been proposed for biaxial testing. One concept that transforms a 
uniaxial extension into a biaxial deformation is shown in Fig. N.2.272 When the green bar and 
linkages are pulled vertically, blue cylinders traverse along the red linkages to pull the test specimen 
in a horizontal direction. The ratio of vertical to horizontal extension is controlled by the angle of 
red linkages with respect to the horizontal bracket on which they mount. The primary drawbacks of 
such contraptions are that they are kinematically complicated, and tight machine tolerances are 
required to minimise play between interacting components. 

 
Fig. N.2: A biaxial test contraption for a uniaxial tension test machine. (Adapted from Brieu et al.)272 

Axel Physical Testing Services provides a unique solution for equibiaxial testing. The company 
uses a disc-shaped specimen with radial tabs that are pulled by wires (Fig. N.3a). Pulleys redirect 
the radial loads into an axial direction so that a uniaxial load causes a radial stretch. The test piece 
geometry is shown in Fig. N.3b. Strain is optically measured across a ∅25 mm section of the 
specimen. A finite-element study by Day & Miller232,273 indicates that the strain through this 
location is indeed uniform (Fig. N.3c). Nominal (engineering) stress is reported as � = ��/�� where 
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�� is the total radial force (assumed equivalent to the total axial force), �� = π�ℎ, � = 50 mm, and 
ℎ is the specimen thickness. However, Fig. N.3c shows that the strain at the location nominally 
defined by � = 50 mm is not uniform in the deformed configuration; therefore, stress cannot be 
uniform. In addition, the nominally cylindrical area, ��, does not remain cylindrical in the deformed 
configuration.  

       
                           (a)                                              (b)                                                               (c) 

Fig. N.3: Disc-shaped equibiaxial test specimen: (a) undergoing deformation at Axel Physical Testing 
Services; (b) nominal specimen dimensions; (c) FE study showing that strain is uniform in the 
location nominally defined at � = 25 mm, but strain at the location nominally defined by the 

location at � = 50 mm is not uniform. (Adapted from Day & Miller.)232,273  

Inhomogeneous deformation through the tab transition casts doubt on the validity of reporting 
stress in the equibiaxial test specimen as � = ��/��, but force equilibrium offers some justification. 
It can be shown that, given a radial stress applied to the perimeter of a disc with known dimensions, 
the internal stress at any interior location is equal to the applied radial stress. Referring to Fig. N.4, 
the proof, which is shown in Appendix F, shows that �� = �� = �� = ��. To quantify how well this 
result, which is what Axel’s calculation is based on, applies to the actual test specimen, a finite-
element study with a finer mesh and larger strain than that shown in Fig. N.3c has been conducted 
as part of this work. 

      
                                                     (a)                                                                            (b) 

Fig. N.4: Free body diagrams of a quarter of a disc held in equibiaxial tension: (a) before 
a cut along an internal radial surface; (b) after a cut along an internal radial surface. 

2D plane stress and 3D analyses of Axel’s equibiaxial specimen were conducted, and the results 
differed by less than 2%. The detailed results presented here refer to 2D models with the settings 
shown in Table N.1. To reduce the number of elements, a 1/16�� model was used with tangential 
symmetry constraints. Incompressible Neo-Hookean and Yeoh SEFs were used. The former used a 
shear modulus typical of unfilled rubber, and the latter used model parameters for the 90D (Shore 
A) HNBR sealing material from Section 4.2. The tabs were loaded at their centres with ∅5 mm 
circular imprints to simulate clamp surfaces. Mesh independence was confirmed to be within 0.5% 
by comparing radial force reactions while using element seed sizes of 0.125 mm and 0.0625 mm. 
Fig. N.5 shows the undeformed and deformed geometry, with strain based on nodal displacement 
(which is an average across the test specimen) also indicated. For reference, the maximum 
equivalent uniaxial compression (see Eq. 2.20) for the specimen is �̅ ≈ −0.75. 
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Table N.1: 2D plane stress finite-element model settings for an equibiaxial test specimen. 

Parameter Value 

Strain-energy function 
Neo-Hookean, ��� = �/2 = 1 MPa 
Yeoh, (���, ���, ���) = (2.9 , −0.15 , 0.025) MPa 

Volumetric behaviour Incompressible 
Element type CPS4R (quadrilateral, linear, reduced integration) 
Test type Displacement controlled 
Tab displacement ∅90 mm 
Mesh seed size 0.0625 mm 

 
Fig. N.5: An equibiaxial test specimen with clamp displacements in ∅18 mm increments, up to a total 

displacement of ∅90 mm. �  ̅denotes average strain across the specimen. 

      

                                                    (a)                                                                            (b) 

Fig. N.6: Maximum principal strains (nominal) in an equibiaxial test specimen with a clamp displacement 
of ∅90 mm: (a) with a broad contour band to show inhomogeneous strain through the tab transition zone; 

(b) with a narrow contour band to illustrate the homogeneity in the gauge section. The dashed line 
indicates the location of marks that were initially at ∅25 mm. 

Fig. N.6 shows maximum principal strain contours in the equibiaxial specimen when stretched 
by ∅90 mm. There is a rapid transition through the tab section. The contour scale is reduced in Fig. 
N.6b to illustrate that the strain in the central region of the specimen is uniform over a 0.001 range, 
and the diameter defined by Axel’s gauge marks (indicated by the dashed circle) falls well within 
this range. Therefore, measurement of strain along a nominal diameter of 25 mm is justified. 

Fig. N.7 shows stress-strain responses predicted by inspection of elements nominally located 
at ∅25 mm in the finite-element models. The stress-strain response is also computed from Axel’s 
equation, � = ��/��, with �� determined by the force reaction at the tab and �� = 50π for a specimen 
of unit thickness. The errors indicated along the curves show that the calculation systematically 
overpredicts stress, but it reproduces all salient features of the FE models. 
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                                            (a)                                                                                 (b) 

Fig. N.7: Stress-strain responses as predicted by an incompressible finite-element solution and Axel’s 
approximate calculation. Some typical errors are shown assuming the FE solution is exact. (a) Neo-

Hookean SEF; (b) Yeoh SEF. 

To explain why Axel’s calculation overpredicts stress, it is easiest to analyse true stress. 
Referring to Fig. N.7a, the true stress according to Axel’s model at the maximum strain is computed 
as �� = (1 + �)� = 9.46 MPa.50 When comparing this value to true stress in the finite-element 
model, a problem is encountered because, as Fig. N.8 shows, the diameter nominally defined at 
50 mm is variable in the deformed configuration, so selecting an area for the true stress calculation 
is not straightforward. Using the minimum and maximum extents of the red curve in Fig. N.8b to 
define cylindrical areas, the range of true stress is computed as 9.01– 9.76 MPa which are limits that 
bound Axel’s solution. Using the average diameter along the red curve, which is not the arithmetic 
average of the range but is determined from measurements in the FE model, the true stress is 
computed to be 9.45 MPa, nearly identical to Axel’s calculation. Hence, it appears that Axel’s 
calculation systematically overpredicts stress because it relies on an averaging assumption that does 
not strictly apply to an equibiaxial specimen with tabs. Regardless, the error is acceptable for most, 
if not all, practical applications. It is worth commenting that the systematic error is not restricted to 
Axel’s equibiaxial test specimen; it arises from the inherently complex boundary conditions 
required for all equibiaxial test setups. For completeness, it is noted that some authors274,275 have 
used inflation of rubber sheets to approximate the equibiaxial loading condition. These test rigs are 
also prone to complications at the clamp boundary. 

 
                                          (a)                                                                     (b)  

Fig. N.8: 1/8�� model of an equibiaxial specimen with elements removed to show how the initially circular 
curve at ∅50 mm deforms when a load is applied: (a) undeformed configuration; (b) deformed 

configuration. 
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Appendix P: User Guidelines for a UHYPER Subroutine 

Implementing the gen-Yeoh SEF with a UHYPER subroutine276 only requires a user to specify 
Eq. 4.6 and appropriate derivatives which for the gen-Yeoh SEF are: 

 
��

���̅
= ���(��̅ − 3)��� + ���(��̅ − 3)��� + ���(��̅ − 3)��� (P.1) 

   
���

���̅
� = (�� − �)��(��̅ − 3)��� + (�� − �)��(��̅ − 3)��� + (�� − �)��(��̅ − 3)��� (P.2) 

 
��

��
=

�

��
(� − 1) (P.3) 

 
���

��� =
�

��
 (P.4) 

A mathematical indeterminacy arises if �, �, or � are less than one (see Section 4.2). Because 
the UHYPER subroutine requires the second derivative of the SEF, the numerical issue also arises 
if �, �, or � are non-integer and less than two. The following logic can address the indeterminacy: 

IF ���̅ = 3 AND (� < 1  OR  � < 1  OR  � < 1)� THEN 
��

���̅

= 1 

ELSE 
��

���̅

= ���(��̅ − 3)��� + ���(��̅ − 3)��� + ���(��̅ − 3)��� 

END IF 

IF ���̅ = 3 AND (� < 2  OR  � < 2  OR  � < 2)� THEN 

���

���̅
� = 0 

ELSE 
���

���̅
� = (�� − �)��(��̅ − 3)��� + (�� − �)��(��̅ − 3)��� + (�� − �)��(��̅ − 3)��� 

END IF 

Even though ��/���̅ → ∞ when, for instance, � < 1, the first IF-THEN statement assigns a 
finite value to ��/���̅ because Abaqus will not initialise a solution if ��/���̅ is too close to zero 
or tends to infinity. The choice of finite value does not appear to affect the solution as long as 
convergence is achieved. Abaqus can initialise a solution with ∂��/ ∂��̅

� = 0, so that has been used. 
The full code for the UHYPER subroutine is in Appendix A. 
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Appendix Q: User Guidelines for a VUMAT Subroutine 

VUMATs have been implemented by many researchers, but detailed codes are rarely published. 
Some Neo-Hookean VUMATs can be found. Bergström provides a partially complete but obsolete 
example,97 and Chester277 gives a partial code that, while correct, is not computationally optimal. 
Simulia also provides some code blocks for the Neo-Hookean SEF in training materials in its 3DS 
Academy.278 However, finding a complete and validated code for a hyperelastic VUMAT is not 
easy.  

Guidelines on writing a VUMAT can be found in Abaqus documentation.279 The Cauchy stress 
tensor, stretch tensor, and strain increment tensor are stored in vectors with six components. For 
instance, Cauchy stress components are: 

 �� = �

���� ���� ����

���� ���� ����

���� ���� ����

� = (����, ����, ����, ����, ����, ����) = (���, ���, ���, ���, ���, ���) (Q.1) 

where the symmetry of ���� = ���� has been invoked to reduce storage space.  

In Abaqus/Explicit, VUMAT subroutines require stresses to be expressed in the reference 
(undeformed) configuration. This is achieved by using the rotation tensor to convert the Cauchy 
stress to its corotational form with the definition: 

 ���� = ����� (Q.2) 

Another useful definition for numerical implementation is the modified stretch tensor: 

 �� = ���/�� (Q.3) 

Combining Eqs. 2.37, 2.45, 2.49, Q.2, Q.3 and applying the properties ��� = ��� = � and 
tr(������) = tr(���), corotational stresses may be expressed as: 

 ���� =
�

�
�

��

���̅
� ���� −

�

�
tr(���)�� +

��

��
� (Q.4) 

The forms of Eq. 2.49 and Eq. Q.4 are identical, but it is important to recognize that �� ≠ ���; each 
tensor returns stress in different configurations. The following steps will execute a hyperelastic 
VUMAT with the gen-Yeoh SEF in Abaqus: 

1. Compute the strain tensor, �∗ = ��. 

2. Compute the volume ratio, � = det �. 

3. Compute the modified strain tensor, �� ∗ = ���/��∗. 

4. Compute derivatives of the strain-energy function, 
��

���̅
 and 

��

��
. 

5. Compute corotational stresses, ���� =
�

�
�

��

���̅
� ���∗ −

�

�
tr(��∗)�� +

��

��
�. 

6. Compute the internal energy density, for instance with direct application of the SEF. 

As a mathematical shortcut, the strain tensor �∗ has been defined to remove rotations from the left 
Cauchy-Green strain tensor of Eq. 2.37, and a slightly altered version of Eq. Q.4 is used. The 
corotational stresses computed in the fifth step are identical to those from Eq. Q.4. 

When a model uses more than one finite-element, Abaqus may process multiple material points 
during a VUMAT call. These are stored in an Abaqus-defined parameter, nblock, that increases the 
dimension of the stress, stretch, and strain increment vectors. 

Explicit analyses require calculation of a stable time increment to advance the solution. The 
increment is initialised with a linearly elastic approximation for the material during the first call of 
the VUMAT. This is completed by using Abaqus-defined strain increments (���), the initial stress 
vector (��

�), and elastic material parameters (�, �) to calculate the new stress vector (��
��) as shown 

in the following logic: 
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IF (totalTime = 0) THEN 
DO k = 1, nblock 

��,�
�� = ��,�

� + 2�����,�� + �� −
2

3
�� ���,� + ��,� + ��,�� 

��,�
�� = ��,�

� + 2�����,�� + �� −
2

3
�� ���,� + ��,� + ��,�� 

��,�
�� = ��,�

� + 2�����,�� + �� −
2

3
�� ���,� + ��,� + ��,�� 

��,�
�� = ��,�

� + 2�����,�� 

��,�
�� = ��,�

� + 2�����,�� 

��,�
�� = ��,�

� + 2�����,��  

END DO 
RETURN 

END IF 

Next, the hyperelastic block of the code executes with the six steps previously outlined in this 
section. In some cases, the linear elastic step does not sufficiently deform elements and stress 
indeterminacy occurs in the hyperelastic coding block due to numerical precision or truncation. To 
avoid this, the following logic can be applied: 

IF �(��̅ − 3) < 10���� THEN 
∂�

∂��̅
= 0 

ELSE 
∂�

∂��̅

= ���(��̅ − 3)��� + ���(��̅ − 3)��� + ���(��̅ − 3)��� 

END IF 

The user must set the threshold at which ∂�/ ∂��̅ = 0. Larger values help convergence but 
introduce larger rounding error. Smaller values do the opposite. 

Parameters for the hyperelastic material model can be directly specified in the subroutine, read 
from the input file, or read from Abaqus’ .cae file. If this latter option is preferred, the material 
properties must be specified as shown in Fig. Q.1.  

 
Fig. Q.1: Material parameters read by props(n) variable in a VUMAT. 
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The material properties are then read with the following statements in the subroutine: 

C     MATERIAL PROPERTIES 
C     ------------------- 
      k1 = props(1) 
      k2 = props(2) 
      k3 = props(3) 
      em = props(4) 
      pe = props(5) 
      qu = props(6) 
      d1 = props(7) 

When updating the internal energy density, the strain-energy function can be directly applied. 
Alternatively, the following equation adopted from Abaqus documentation correctly increments the 
energy: 

� =
1

2
����,�

� + ��,�
�� ����,� + ���,�

� + ��,�
�� ����,� + ���,�

� + ��,�
�� ����,� + 2����,�

� + ��,�
�� ����,� + ���,�

� + ��,�
�� ����,� + ���,�

� + ��,�
�� ����,��� 

Finally, plane strain and axisymmetric versions of the code can be built by removing any 
references to the fifth and sixth elements of the stress, stretch, and strain increment vectors. 
Alternatively, one can follow Bergström’s example97 and implement logic to handle 2D and 3D 
cases with a single subroutine. A plane stress subroutine requires additional modification to account 
for out-of-plane strains. 
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Appendix R: More Illustrations of Seal Deformations‡‡‡ 

This appendix illustrates seal deformations as pressure increases. Figs. R.1–R.6 show a 
simulation that was completed in Abaqus/Standard. Nodes at a sealing front (see Fig. 3.11) had 
fluid pressures manually removed or added to them as their contact status changed. The captions 
provide more details. 

 
Fig. R.1: A seal in isometric view with the top plate removed and strain contours (top) and in section view 
with the top plate shown and fluid pressure contours (bottom). Gauge ring height is 6.35 mm. �� = 0 MPa. 

 
Fig. R.2: The seal immediately after compression. �� = 0 MPa. 

 
Fig. R.3: The seal with �� < 11 MPa. 

 
Fig. R.4: The seal with �� = 12 MPa. 

 

 
‡‡‡ The images in this section are taken from the following videos, available online as of October 2022: 

https://www.youtube.com/watch?v=SsQt0vBJn2U 
https://www.youtube.com/watch?v=qp1fB17OhsE 
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Fig. R.5: The seal with �� = 14.8 MPa. 

 
Fig. R.6: The seal at its last converged step and �� = 15.08 MPa, a point at which leak is imminent. 

Figs. R.7–R.13 show images from a video in Abaqus/Explicit. The VDLOAD subroutine from 
Appendix J was used to propagate fluid pressure. Elastic instabilities are observed over two 
different ranges of pressure. 

 
Fig. R.7: The seal with �� = 6.20 MPa. Strain contours are smooth. 

 
Fig. R.8: The seal with �� = 8.25 MPa. Elastic waves due to an instability significantly disrupt the strain 

contours. 

 
Fig. R.9:  The seal with �� = 12.07 MPa. The instability has largely vanished due to viscous dissipation that 

is present in the Abaqus/Explicit solver. 
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Fig. R.10: The seal with �� = 12.28 MPa. Another elastic instability is encountered. 

 
Fig. R.11: The seal with �� = 14.60 MPa. Again the instability has dissipated. 

 
Fig. R.12: The seal with �� = 18.85 MPa. The sealing front is largely stable at this point, but the fluid 

pressure is close to the leak pressure. 

 
Fig. R.13: The seal with �� = 19.20 MPa. The fluid pressure has completely bypassed the seal. 


