
Deep Learning Applied to the
Assessment of Online Student

Programming Exercises

Benjamin Trevett

Submitted for the degree of Doctor of Philosophy

Heriot-Watt University
Institute of Sensors, Signals and Systems

January, 2022

Primary Supervisor: Dr. Donald Reay
Secondary Supervisor: Prof. Nick Taylor

The copyright in this thesis is owned by the author. Any quotation from the
thesis or use of any of the information contained in it must acknowledge this
thesis as the source of the quotation or information.



 
Research Thesis Submission
Please note this form should be bound into the submitted thesis.

Name: BENJAMIN TREVETT

School: EPS ISSS (INSTITUTE OF SENSORS, SIGNALS AND SYSTEMS)

Version:  (i.e. First, 
Resubmission, Final)

FINAL Degree Sought: PHD

Declaration 

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1. The thesis embodies the results of my own work and has been composed by myself
2. Where appropriate, I have made acknowledgement of the work of others
3. The thesis is the correct version for submission and is the same version as any electronic versions submitted*.  
4. My thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for 

loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian 
may require

5. I understand that as a student of the University I am required to abide by the Regulations of the University and to 
conform to its discipline.

6. I confirm that the thesis has been verified against plagiarism via an approved plagiarism detection application e.g. 
Turnitin.

ONLY   for submissions including published works  
Please note you are only required to complete the Inclusion of Published Works Form (page 2) if your thesis contains 
published works)

7. Where the thesis contains published outputs under Regulation 6 (9.1.2) or Regulation 43 (9) these are accompanied
by a critical review which accurately describes my contribution to the research and, for multi-author outputs, a 
signed declaration indicating the contribution of each author (complete)

8. Inclusion of published outputs under Regulation 6 (9.1.2) or Regulation 43 (9) shall not constitute plagiarism.  

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted.

Signature of 
Candidate:

BENJAMIN TREVETT Date: 12/01/2022

Submission 

Submitted By (name in capitals): BENJAMIN TREVETT 

Signature of Individual Submitting: BENJAMIN TREVETT

Date Submitted: 12/01/2022

For Completion in the Student Service Centre (SSC)

Limited Access Requested Yes No Approved Yes No

E-thesis Submitted (mandatory for final 
theses)

Received in the SSC by (name in capitals): Date:

Page 1 of 2
RDC Clerk/Apr 2019



 
Inclusion of Published Works
Please note you are only required to complete the Inclusion of Published Works Form if your thesis contains 
published works under Regulation 6 (9.1.2)

Declaration 

This thesis contains one or more multi-author published works. In accordance with Regulation 6 (9.1.2) I hereby declare 
that the contributions of each author to these publications is as follows:

Citation details Ben Trevett, Donald Reay, Nick Taylor (2017) Automatically Correcting 
Semantic Errors in Programming Assignments. 10th European Conference 
on Machine Learning & Principles and Practice of Knowledge Discovery in 
Databases (ECML PKDD 2017)

Author 1: Ben Trevett Primary Author

Other Authors: Donald Reay and 
Nick Taylor

Supervision

Signature: BENJAMIN TREVETT

Date: 12/01/2022

Citation details Ben Trevett, Donald Reay, Nick Taylor (2020) The Effectiveness of Pre-
Trained Code Embeddings. 16th International Conference on Data Science 
(ICDATA'20)

Author 1: Ben Trevett Primary Author

Other Authors: Donald Reay and 
Nick Taylor

Supervision

Signature: BENJAMIN TREVETT

Date: 12/01/2022

Please included additional citations as required.

Page 2 of 2
RDC Clerk/Apr 2019



Abstract

Massive online open courses (MOOCs) teaching coding are increas-
ing in number and popularity. They commonly include homework as-
signments in which the students must write code that is evaluated by
functional tests. Functional testing may to some extent be automated
however provision of more qualitative evaluation and feedback may
be prohibitively labor-intensive. Provision of qualitative evaluation at
scale, automatically, is the subject of much research effort.

In this thesis, deep learning is applied to the task of performing
automatic assessment of source code, with a focus on provision of
qualitative feedback. Four tasks: language modeling, detecting id-
iomatic code, semantic code search, and predicting variable names are
considered in detail.

First, deep learning models are applied to the task of language mod-
eling source code. A comparison is made between the performance of
different deep learning language models, and it is shown how language
models can be used for source code auto-completion. It is also demon-
strated how language models trained on source code can be used for
transfer learning, providing improved performance on other tasks.

Next, an analysis is made on how the language models from the
previous task can be used to detect idiomatic code. It is shown that
these language models are able to locate where a student has deviated
from correct code idioms. These locations can be highlighted to the
student in order to provide qualitative feedback.

Then, results are shown on semantic code search, again comparing
the performance across a variety of deep learning models. It is demon-
strated how semantic code search can be used to reduce the time taken
for qualitative evaluation, by automatically pairing a student submis-
sion with an instructor’s hand-written feedback.

Finally, it is examined how deep learning can be used to predict
variable names within source code. These models can be used in a
qualitative evaluation setting where the deep learning models can be
used to suggest more appropriate variable names. It is also shown that
these models can even be used to predict the presence of functional
errors.

Novel experimental results show that: fine-tuning a pre-trained
language model is an effective way to improve performance across a
variety of tasks on source code, improving performance by 5% on av-
erage; pre-trained language models can be used as zero-shot learners
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across a variety of tasks, with the zero-shot performance of some ar-
chitectures outperforming the fine-tuned performance of others; and
that language models can be used to detect both semantic and syn-
tactic errors. Other novel findings include: removing the non-variable
tokens within source code has negligible impact on the performance of
models, and that these remaining tokens can be shuffled with only a
minimal decrease in performance.
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1 Introduction

1.1 Motivation

Massive online open courses (MOOCs) have become a popular method for
distance learning, the most popular of which are related to programming and
computer science related topics 1. Most MOOCs are offered by universities
or high-profile companies working with collaborators, for example the ARM
University Program 2 – which sponsors this work – collaborates with com-
panies in its ecosystem to provide online courses in embedded programming.
With the large number of students – potentially in the thousands – enrolled
in a MOOC, providing detailed feedback at scale becomes an interesting
challenge. Many MOOCs offer a coarse level of feedback for programming
assignments in the form of test suites in which the student’s code is executed
with an input and the output is compared against the expected value. These
test suites allow for quantitative feedback, in which the student is simply
given a numerical score – however, they do not provide any form of qual-
itative feedback. The most common form of qualitative feedback is when
an instructor hand-grades the student’s submission by providing annotations
and comments on the student’s submission where appropriate. A student
submission that receives a low score on a set of test suites (quantitative feed-
back), and no qualitative feedback, provides little information to the student
– they know their submission is incorrect, but are either not sure why or
were unable to reach a correct solution; in this case, qualitative feedback can
be used to explain the mistakes made by the student, so they can learn from
them. Similarly, a student submission that receives a high score on a set of
test suites – again, with no qualitative feedback – also receives little infor-
mation, they know their submission is correct but have received no feedback
on where their submission could potentially be improved in terms of qualita-
tive metrics, e.g. if they are using idiomatic code or using appropriate data
structures.

The downside of qualitative feedback is that it is time-consuming and must
be carried out manually, unlike quantitative feedback, which can be done
automatically without the instructor’s input. This issue is exacerbated in
MOOCs due to the potentially large number of students enrolled. One so-

1http://www.onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/
2https://www.arm.com/resources/education/education-kits
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lution to this would be to create a fully automated system which would
provide qualitative feedback on student submissions with no input from the
instructor. Unfortunately, creating an automatic qualitative feedback system
is significantly challenging compared to a quantitative system. An infinite
number of test inputs and expected outputs can be created for the quanti-
tative feedback system using a single correct submission – provided by the
instructor – whereas no such analogy exists for qualitative feedback – it must
be uniquely created for each submission depending on its contents. However,
what if there existed a system that could learn from a corpus of student
submissions that have been qualitatively graded? This system could take
what it has learned from these submissions and then extrapolate what it has
learned to new, unseen submissions and apply relevant qualitative feedback.
If this system is able to learn when and where appropriate qualitative feed-
back should be applied, then it could be used as a fully automatic qualitative
feedback system – solving the issue of applying qualitative feedback at scale.

Machine learning is a method of learning from a collection of examples
and then inferring learned features to unseen data. Framing the automatic
qualitative feedback problem in terms of machine learning involves: using
a collected dataset of qualitatively graded submissions, training a machine
learning algorithm on these submissions in order to replicate the instructor’s
method of providing qualitative feedback, and then applying the machine
learning algorithm on unseen student submissions – which would then have
qualitative feedback automatically inferred. Machine learning has gained a
large amount of interest in recent years due to the rise of deep learning – a
subset of machine learning that focuses on artificial neural networks – which
has shown promising breakthroughs in research areas such as computer vi-
sion and natural language processing, and has successfully been applied to
source code for applications including: detecting bugs, improving code auto-
completion and translation between source code and natural language. These
techniques can now be applied to the task of learning how to provide quali-
tative feedback.

Assuming it is possible to develop a machine learning system that can au-
tomatically apply qualitative feedback, what type of feedback should it pro-
vide? The aim of feedback is to provide information which can be used, by
the student, to improve their performance in terms of grades received. This
information, when provided by human graders, usually consists of multiple
natural language comments, each of which have a given location – e.g. "in-
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correct type used here", "a ’for’ loop would be more appropriate here" –
and a general comment on the submission as a whole with a grade – e.g.
"good overall but some small mistakes, 8/10". Feedback provided can be
broken down into two main categories, feedback on errors and feedback on
inefficiencies.

Errors come in two types – syntax errors and semantic errors (also known as
functional errors). Syntax errors occur when the source code does not follow
the correct language syntax, e.g. not ending a line with a semicolon. Modern
integrated development environments (IDEs) are able to continuously check
syntax for correctness whilst the user is writing code and any syntax errors
detected are then usually highlighted to the user. If not detected by the IDE,
then the syntax errors will be detected by the compiler. Semantic errors
arise when the source code is syntactically correct but produces an incorrect
output, e.g. an off-by-one error. These cannot be checked by IDEs, however
in the common case of a student being able to compile and run their code
locally as many times as they want, they are able to check for semantic errors
themselves – provided that there are example inputs and outputs. Syntax
and semantic errors are also tested by the quantitative analysis obtained from
test suites. As both types of errors already have existing methods in place
to detect them and provide quantitative feedback on them, this work focuses
more on the provision of qualitative feedback in regard to inefficiencies within
code.

In this work an inefficiency within code is defined as a section of code which:
a) does not contain a syntax error, b) does not contain a semantic error,
and c) would cause most human graders to apply qualitative feedback to
this section of code – usually in the form of a natural language comment,
e.g. "be sure to use consistent naming conventions". This definition implies
that inefficiencies should be dealt with via qualitative feedback techniques as
quantitative feedback techniques, i.e. test suites, cannot detect them.

A major challenge faced by a system that learns how to apply qualitative
feedback from human examples is the level of subjectivity and variance in
the feedback. Qualitative feedback is subjective in that multiple instructors
may not agree on what counts as inefficient, and the feedback also varies
widely due to the comments provided being in a natural language with no
standardization, i.e. even if the instructors agree on which sections of a sub-
mission are deemed inefficient there is little chance their associated natural
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language comments will be identical. The desired use of the source code also
determines where qualitative feedback should be given, as what counts as
inefficient in one scenario may not be inefficient in another, e.g. code written
to optimize execution time is inefficient if the goal is to optimize for memory
consumption, and vice versa.

The techniques presented in this work attempt to solve these challenges not
by directly learning from pairs of source code and relevant feedback, but
instead learning from source code only. Specifically, this work focuses on
three main areas: appropriate naming of functions, appropriate naming of
variables, and detecting unnatural coding conventions. Features learned by
these techniques can then be used to highlight areas of code which poten-
tially require qualitative feedback. One potential use of this is that a human
instructor can then review these highlighted areas only, providing natural
language comments where appropriate – thus significantly reducing the time
taken to provide qualitative feedback.

It is also shown how machine learning models can be used on examples of
code and natural language pairs. Using these techniques, a human instructor
can provide qualitative feedback to a subset of all student submissions, and
this feedback can be propagated to all similar student submissions. This
greatly reduces the amount of submissions that need to be manually graded,
and also reduces the time taken to provide qualitative feedback.

Challenges. Locating inefficient source code within a program poses numer-
ous challenges. To locate inefficiencies, both the syntax and the semantics of
the programming language must be understood. Syntax is consistent across
all programs within a language, no matter what their application is, however
the range of syntactic constructs used can be diverse. Thus, the proposed
system needs to understand correct syntax of a given program. Semantics
require understanding the control flow of a program in order to determine
both what the most suitable control flow should be and locating where the
student has deviated from this. There is also the issue of multiple programs
being semantically equivalent, yet syntactically diverse, through multiple dif-
ferent solutions to a single problem, giving a wide range of different control
flow graphs to a particular problem.

Encouraging Progress. Despite the potential difficulty of automatically
locating inefficiencies within code, there has been a large amount of work in
this area recently due to the popularity of deep learning. Using architectures
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such as recurrent neural networks (RNNs) and inspired by natural language
processing (NLP) techniques, such as neural machine translation (NMT),
deep learning has been used to locate and correct a wide variety of syntax
errors in a range of applications.

Remaining Challenges. Although rapid progress has been made on de-
termining syntax errors, both semantic errors and inefficiencies still pose a
challenge. It can be argued that using deep learning for syntax errors, al-
though useful, is not entirely necessary, as IDEs and compilers have robust
syntax error checking due to their rigorous parsing which has been built on
for decades. However, compiler error messages are not always exact, as some-
times the error cascades down a program, causing multiple errors to appear
from a single fault.

Long-term motivations. The long-term applications can be seen from
both the machine intelligence and practical point-of-view. Having a model
that can automatically determine and correct errors and inefficiencies in code
allows a step to be taken toward fully automatic programming where the
user can write a brief outline of their code with the desired functionality and
the remaining code can automatically write itself. From the practical side,
having the ability for all errors and inefficiencies to be instantly highlighted
with the correction already prepared would vastly increase the speed in which
programs are written, as well as reducing the number of bugs which make it
into production code.

Short-term motivations. In terms of what can be reachable in the near fu-
ture, determining the location of errors and inefficiencies, and automatically
pairing code to feedback, is useful from a pedagogical view. Inefficiencies
can be highlighted to an instructor, reducing the time spent to searching for
them, allowing instructors to focus on providing detailed feedback. These ar-
eas can also be highlighted to the student, allowing them to see which areas of
their code need improvement before submission. Automatically pairing code
with relevant feedback also significantly reduces the time taken to hand-grade
student submissions.

1.2 Research Aims and Objectives

The aim of the work in this thesis is to develop machine learning based
methods that will assist in providing qualitative feedback for programming
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languages. Specifically, the aims are to provide qualitative feedback assis-
tance methods which focus on three main areas: suggesting relevant existing
qualitative feedback, automatic detection of deviation from standard naming
conventions, and automatic detection of unnatural code which does not fit
common coding conventions.

Thus, the objectives are to implement several machine learning models and
apply them to three tasks: learning to pair relevant source code and natural
language pairs, learning correct naming conventions by training models to
predict function and variable names from surrounding context, and learning
coding conventions by learning to predict code from surrounding context.

1.3 Outline of Contributions

This work aims to study techniques which can be used to improve the per-
formance of models using natural language processing techniques applied to
programming assignments in provide feedback on code. Concretely, the novel
contributions of this thesis are:

• Showing how masked language modeling outperforms standard lan-
guage modeling on code

• Confirming the results of Hindle et al. [109], that programming lan-
guages achieve a lower perplexity than natural languages, on the Code-
SearchNet dataset [116]

• Showing that pre-training on either natural language data, program-
ming language data which matches the downstream task, or program-
ming language data consisting of multiple programming languages im-
proves performance for semantic code search and variable name predic-
tion

• Demonstrating that multi-task learning improves performance for se-
mantic code search and variable name prediction, both when no down-
stream task data is used and when using a dataset consisting of multiple
programming languages

• Analyzing the effect that two data augmentation techniques (stripping
punctuation and shuffling tokens) has on the performance of semantic
code search and variable name prediction

6



1.4 Thesis Outline

Chapter 2 provides an overview of the current research on applying machine
learning models to programming languages for a variety of different tasks.

In Chapter 3, the four main models used throughout this thesis: neural bag-
of-words, recurrent neural networks, convolutional neural networks and the
Transformer, are all described in detail.

The following three chapters focus on the applications of models introduced
in Chapter 3, to different tasks. Each task is designed to align with the
overall goal of helping provide quantitative feedback at scale.

In Chapter 6, semantic code search is examined. This task involves learning
to automatically pair programming language code with a relevant natural
language description. It is shown how models trained on semantic code search
can be used to automatically pair new submissions with existing qualitative
feedback. Experiments also show how: transfer learning can be used to
improve performance of models, exploring how pre-training on different data
affects the performance; how multi-task learning can be successfully used
even when no examples in the desired programming language are used to
train the models; and, how the models rely on information contained within
the source code, shown by applying two data augmentation techniques.

In Chapter 7, the models are applied to the task of predicting variable names
from a given method body. It is shown how this can be applied to the task of
providing qualitative feedback for variable naming conventions, suggesting
a more suitable name if applicable, or even finding a potential semantic
error when the predicted variable name does not match to the variable name
actually used. Experiments also show the effectiveness of transfer learning
for improving the performance of models; the use of multi-task learning to
improve performance; and, how this task uses more information contained
within the existence of non-variable tokens 3 and the order of tokens than in
semantic code search.

3A token is an atomic part of a sequence and is determined by a tokenization function.
For example the string "Hello, world!" can be represented as the four tokens Hello, ,,
world and !. See Chapter 4 for further discussion on tokenization functions used in this
thesis.
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Chapter 8 contains the conclusions of the work contained in this thesis, where
the experimental findings are summarized and ideas for future directions are
presented.

1.5 Publications

The work in this thesis builds on the following peer-reviewed publications:

1. Ben Trevett, Donald Reay, Nick Taylor (2017) Automatically Cor-
recting Semantic Errors in Programming Assignments. 10th European
Conference on Machine Learning & Principles and Practice of Knowl-
edge Discovery in Databases (ECML PKDD 2017)

2. Ben Trevett, Donald Reay, Nick Taylor (2020) The Effectiveness of
Pre-Trained Code Embeddings. 16th International Conference on Data
Science (ICDATA’20)
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2 Background

Machine learning applied to source code has seen a rapidly increasing popu-
larity in recent years. ml4code 4, a website that attempts to list all research
papers that apply machine learning to source code, shows that the number
of papers published has increased from nine papers in 2013 to 87 in 2020.

Figure 1: Number of machine learning for code publications since 2013. Data
taken from https://ml4code.github.io.

This chapter separates research on applying machine learning to code into
seven sections: feedback generation; bug finding, correcting and verifica-
tion; language modeling; predicting method and variable names; sequence-
to-sequence models; code mining; and code search. Also included is a section
on "meta" research for machine learning applied to source code, i.e. research
specifically examining artefacts in machine learning for code datasets, repre-
sentations or models.

4https://ml4code.github.io
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2.1 Automatic Feedback Generation for Code

Ideally, a system used for providing qualitative feedback on code would be
trained in a supervised learning setting, with code as input and feedback
serving as the labels. Unfortunately, there is a limited number of systems
that directly learn to apply feedback to source code. This is mostly due to
the lack of a suitable dataset – both in size and in quality. The systems below
do provide feedback directly to code, however they suffer from limitations in
terms of the size of the dataset used, the complexity of the data, and the
quality of the data.

Automata [249] is believed to be the first system that uses machine learning
for automatically grading code. They use hand-crafted features that are
built on counting the occurrence of the number of certain keywords, the
number of certain expressions, the number of data-dependency statements,
the number of lines of source code, etc. They feed these features into shallow
machine learning models which predict the numerical grade, between 1 and
5, given to a program by an expert human grader. Initially, a separate
model needed to be trained for each task, however further work [245] builds
a task independent model for grading source code. The authors show that
if Automata is trained on a set of ’good’ code spanning across multiple
tasks, then task independent features are learned. Automata can then use
these task independent features to accurately predict grades across tasks not
seen in the training set. As these methods only use shallow machine learning
models they require significantly fewer data – 3500 examples across 8 tasks
– however are limited by their ability to only produce a numerical grade,
whereas the work in this thesis is more interested in providing a form of
qualitative feedback.

Instead of predicting a numerical grade, Piech et al. [207] use neural networks
to propagate feedback given to a small sample of code submissions. This is
similar to OverCode [79] which used static and dynamic analysis tools.
Piech et al., however, use a two-step process where they first use a recursive
neural network to transform their code into a sparse representation using
input-output examples and then, using a sample of hand-graded code, learn
how to use this sparse representation to predict which hand-written feedback
should be applied to it. They show that they are able to propagate up to 214
examples for each one hand-graded whilst maintaining over 90% precision.
The downside is that Piech et al.’s work is only applied to a toy language
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which has control flow – if/else statements and for loops – but no variable
declaration, whilst OverCode uses real Python code.

DeepCodeReviewer [90] learns from a dataset made of code snippets
paired with code reviews, which can be viewed as feedback. Their model,
an LSTM, is trained to take the code snippet – which includes the line in-
dicated by the review as well as lines above and below – and the review as
input and produce a binary output indicating if the review is relevant or not.
The model is trained on both positive and negative examples scraped from
open-source repositories. During inference, a submitted code snippet is fed
through the model with each review in the dataset of code reviews. The
most relevant reviews, above a threshold value, are shown to the user. In
theory, this method does not require any hand-written feedback, providing
the dataset of code snippets and code reviews in the desired domain already
exists. However, the number of examples required for training deep learning
models is significant – DeepCodeReviewer itself is trained on over 30,000
examples. Using a model trained on examples scraped from open-source
repositories would raise issues where the feedback from code reviews are not
necessarily suitable for pedagogical feedback. There is also the issue of the
model being unable to produce original feedback, it can only provide feed-
back already in the dataset. There is room for further research on this work,
exploring how many examples are required for sufficient domain adaptation.

Ahmed et al. [6] propose a three stage model for automatically parsing, cor-
recting and typing incomplete, and potentially erroneous code from Stack-
Overflow. They train a Transformer model on correct code that has synthetic
errors inserted to generate correct code. They find it beneficial to split their
correction into two stages: one for correcting the nesting of code, and the
other to fix syntax errors. This is following by a third stage in which they
predict the correct types of variables.
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2.2 Automatic Bug Finding, Correcting and Verifica-
tion

A popular application for machine learning applied to source code is learning
how to locate, correct and verify bugs/errors. These traditionally used su-
pervised machine learning methods using a large annotated dataset in which
the inputs are the source code and the targets are, e.g., the line number of
the bug, the correct line of code without a bug, or a binary label denoting if
the code compiles or not.

2.2.1 Automatic Bug Location and Correction

The ability to automatically locate bugs can either be used by other bug
correction and verification techniques or the location of the discovered bugs
presented to the user, so they can correct and verify the bugs themselves.
Correcting bugs is more challenging, but is the most commonly researched
area relating to machine learning on code for bugs.

In regard to providing feedback, consider a model which can accurately lo-
cate bugs in submitted code. Feedback can be provided by highlighting the
location of the bugs found by the model and by allowing the user to fix the
bug themselves. This could also potentially find bugs which would not be
caught by unit tests, such as obscure edge cases. If the model is also able
to generate corrections for the found bugs, a pedagogical aspect could be
implemented in which the user has to choose between a valid correction and
two invalid corrections.

Kremenek et al. [141] propose a system that builds a factor graph using static
program analysis in order to build a specification – the rules that must be
obeyed – from a program. They use these specifications to find bugs within
a program.

sk_p [212] uses a neural sequence-to-sequence model to correct syntactic
and semantic errors within student submissions. It is trained to output the
correct line of code using the previous and following lines of code as context.
They find that their approach corrects 29% of all incorrect submissions, out-
performing current state-of-the-art approaches which require manual input
by the user.

12



DeepRepair [283] fixes bugs in source codes by selecting and transforming
statements using the redundancy assumption – that large programs already
contain the exact lines of code available within them to be used for their
repair. They use deep leaning to rank the potential repairs using a learned
code similarity metric.

The Share, Specialize and Compete (SSC) network by Devlin et al. [67] is
designed to correct semantic errors in code without having access to the
information about the intended correct behavior of a program. SSC uses a
RNN over the AST and then scores each candidate repair with a specialized
module, before comparing scores from each of the specialized modules and
performing the predicted correction.

DeepFix [93] uses an LSTM with attention mechanisms trained to fix syntax
errors within source code. The model takes in source code annotated with
line numbers and outputs both a line number and generated line of code. The
original source code at the line number output by the model is replaced with
the generated line of code. This process is repeated until all the syntax errors
are removed – determined when the code is compiled without errors – or a
maximum number of iterations are reached. DeepFix manages to completely
fix 27% of programs within their dataset, and partially fixes another 19%.

SynFix [32] uses a recurrent neural network to correct syntax errors within
code. The model is first trained on a corpus of code without any syntax
errors. Inference is performed by starting at the line number parsed from the
compiler error, where the model outputs tokens using the previous tokens in
the code as context. They find that their model can fix 32% of all syntax
errors within their dataset.

Santos et al. [234] use a language model to detect and correct syntax errors
within code. They test their model to automatic fix syntax errors in a dataset
consisting of student code before and after a syntax error has been fixed.
They find that their models can correctly predict the token type and location
around 30% of the time, but can only predict the correct identifier name
around 3% of the time.

DeepBugs [210] uses a simple feed-forward neural network to learn embed-
dings on source code tokens in order to predict three different types of bugs:
swapped arguments, incorrect operator and incorrect operand. They test
their model on a synthetic dataset, which consists of real code with the bugs
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artificially seeded, as well as real-world code – where they find 102 previously
undiscovered bugs. They show that pre-training the embedding layer on the
source code tokens with the word2vec algorithm improves performance
over randomly initialized embedding weights.

Bhatia et al. [31] combine SynFix [32] and AutoProf [246]. The fixes
proposed by SynFix are then used with the error model of AutoProf to
find the minimal program repair for the submitted program to be functionally
correct.

Harer et al. [96] apply generative adversarial networks (GANs) [82] to correct
errors in source code. The GAN’s generator is taught to generate correct
code conditioned on incorrect code, whilst simultaneously trying to fool the
discriminator, which is trained to predict if the generated code is output by
the generator or is actual correct code.

Ratchet [98] uses a sequence-to-sequence model to learn how to fix errors
via the changes between two versions of a given source code. They find that
their model almost always generates valid statements and improves upon
existing pattern-matching techniques, however Ratchet is limited in that
it must be told the line containing an error and can only generate a single
line of code.

Tufano et al. [265] develop a method that learns to mutate, i.e. adds bugs,
to correct code, by learning from bug fix commits. These mutants can be
used for assessing the effectiveness of test suites. They find their model is
able to generate a diverse set of mutants.

RLAssist [92] uses reinforcement learning techniques to find and correct
errors. The agent navigates through the code using a cursor, and actions
consist of either moving the cursor or modifying the token at the current
cursor position – using a restricted set of modifications. Their agent can be
provided expert demonstrations to speed up the training time. They compare
their model against DeepFix [93], which it outperforms.

Codeit [50] is a tree-to-tree model which learns from changes in source code
in order to automatically generate patches. They show that their tree-based
model beats traditional sequence-to-sequence models used in NLP applica-
tions. The authors show that, even though not explicitly trained to, Codeit
can correct 43% of bugs in a dataset of defects.
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Tufano et al. [263] develop a method that trains on a dataset of code changes
scraped from open-source repositories. They turn the task of fixing bugs to a
translation problem, translating from buggy code to fixed code. They show
that, with enough time, their model can fix 82% of bugs in their dataset.

Chen et al. [53] apply sequence-to-sequence learning to the problem of cor-
recting bugs in source code. They focus on fixing bugs that appear in larger
classes and methods which require their model to learn long-range dependen-
cies, however their model can only correct bugs which occur across a single
line. For the buggy line, which they get from a compiler error message, they
generate multiple candidate correct lines which they check against the com-
piler in turn. They find that the use of a direct copy mechanism significantly
improves the performance of their model.

SampleFix [95] is a tool for correcting errors within programs. The tool
outputs the line of the potential fix as well as the corrected line. It gen-
erates multiple candidate solutions with a generative model – a variational
auto-encoder [137] – however, in contrast to other approaches which generate
multiple candidates, the authors bias their model towards generating solu-
tions which are diverse as possible which is supposed to reflect the fact that
each bug can have multiple valid fixes. They show that their model beats
the previous state-of-the-art, DeepFix [93], on the same dataset.

Tufano et al. [266] argue that most work in automated bug fixing measure
quantitatively (e.g. how many bugs can be fixed?) rather than qualitatively
(e.g. what kind of bugs can be fixed?). They train an RNN model on methods
obtained before and after a pull request and find that their model is able to
perfectly predict the fixed code up to 21% of the time with one prediction and
36% of the time with ten predictions. By examining the perfect predictions
they find that the majority of them are refactoring or bug fixes – however
their experiments are only on "small" and "medium" methods (under 50 and
between 50-100 tokens, respectively).

Habib and Pradel [94] examine an LSTM’s ability to predict if a method
contains a bug or not. They find that some classes of bugs are easy for a
neural network to predict, whereas others are not. They find that the types
of bugs where the neural network performs poorly are usually rarer, although
some bug patterns can be accurately detected with a relatively small amount
of examples.
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NeuralBugLocator [91] uses a CNN over the AST represented as paths
– similar to [19] – in order to localize a bug given a method and the test case
it failed. It is able to correctly localize the bug 80% of the time when using
the top 10 predictions, though this rapidly decreases to 57% and 20% when
using top 5 and top 1 predictions, respectively.

Vasic et al. [268] expand on the work by Allamanis on the VarMisuse task
– for each variable in a method, predict if the correct variable is used. They
find their model, an RNN with two pointer networks, beats the GNN used
by Allamanis on the VarMisuse task.

Hellendoorn et al. [103] introduce GREAT combines GNNs and Transform-
ers for bug location and correction. They find that neural network architec-
tures which combine local and global information outperform previous graph
neural networks, which are only able to leverage local information.

2.2.2 Automatic Program Verification

Program verification is the task of predicting if a code snippet contains a bug
or not, a less popular task due to compilers and unit tests already being able
to detect syntax and semantic errors, respectively. However, research in this
area also focuses on highlighting patterns in code which cause the verification
process to fail.

A system that is able to highlight why a code fails program verification
could be used in a pedagogical setting. For example, using the output of the
program verification model, students can find the causes of failure in their
own code submissions, or in the submissions provided by other students.

Gated Graph Sequence Neural Networks [154] are designed to be used in
program verification. They are applied to the heap of a program using the
memory addresses accessed by the program to form a graph.

Wang et al. [278] train a deep belief network on the AST of a program to
perform binary classification on code in order to determine if it contains a
bug or not. They find that their model is able to learn features that are
common across multiple projects.

Murali et al. [187] use an RNN to encode source code into a "reference dis-
tribution", they then compare the reference distribution of correct code and
provided code. The distance between these distributions is used to produce
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an "anomaly score" which indicates the probability that a given program
contains potential bugs.

Koc et al. [138] use machine learning along with a static code analysis (SCA)
tool on source code in order to predict whether the output of the SCA tool
is a false positive. They use their results to identify common coding patterns
that lead to false positives.

Russel et al. [230] use a CNN on the obfuscated tokens of source code to
detect whether the code contains a security vulnerability. They find that
their model significantly outperforms static analysis tools.

2.3 Language Modeling for Code

Language modeling source code is the most popular area of research for ma-
chine learning on source code. The task is to learn a probability distribution
over source code, usually achieved by training a language model to predict
the next token from the previous tokens. Trained language models have nu-
merous applications for source code, such as: detecting idioms, finding bugs,
autocompletion, and code generation.

2.3.1 Language Models for Code

Initially, language modeling was performed using n-gram language models.
These have now been replaced with neural language models which use re-
current neural networks. Recently, recurrent neural networks have found
themselves being replaced by Transformer models trained as masked lan-
guage models. See Sections 3.3 and 3.5 for a description of the recurrent
neural network and Transformer architectures, and Chapter 5 for a descrip-
tion of standard and masked language modeling.

The loss per token over a given sequence can be used to calculate the perplex-
ity per token. Higher perplexity, also known as "surprise", over a sequence
of tokens implies that the sequence is uncommonly encountered within the
training data. Thus, by training the language model only on correct, bug-
free code the model should, in theory, produce higher perplexity for code
containing bugs than code without bugs. Thus, perplexity can be used to
find potential bugs in code and provide feedback to students by highlighting
areas of their code with a high perplexity value. Experiments on this task
are detailed in Section 5.4.
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Hindle et al. [108] were the first to apply language models to source code.
They propose the hypothesis that "programming languages, in theory, are
complex, flexible and powerful, but the programs that real people actually
write are mostly simple and rather repetitive, and thus they have usefully
predictable statistical properties that can be captured in statistical language
models" which can be "leveraged for software engineering tasks". They show
that programming languages are more predictable than natural languages,
such as English, and can be modeled with simple n-gram language models.
This is because software is not unique, and that for a sequence of six code
tokens there is over 50% chance of finding the exact same sequence in another
project [75].

Allamanis and Sutton [12] expand on work by Hindle et al. by showing that
the performance of a language model scales with the amount of data (in
terms of lines of code) it is trained on.

Syzygy [201] is a tool for modeling source code that models code as syntax
trees, using information about syntax, types and program context. Using
this information, it is constrained to output a conditional distribution that
has non-zero probability only for valid outputs.

SLAMC [199] use an n-gram language model to not only model the lex-
emes (the individual tokens) but also the sememes (semantic information
and common idioms that occur in code). They find that their SLAMC
model significantly outperforms standard n-gram language models that only
take lexemes into account.

Hsiao et al. [114] perform n-gram language modeling on the program de-
pendence graphs of code. They use their language model to obtain a mea-
surement of "importance" for a given code snippet. Commonly occurring
sequence of code tokens have low importance, whilst rare sequences have
high importance. An example use-case of using high importance areas to
indicate likely faults is proposed.

Campbell et al. [47] show a similar finding, where code that contains errors
– specifically syntax errors in this case – is more "unnatural" – has low
probability of being predicted by an n-gram language model. They argue
that an n-gram language model should be used to "enhance a compiler’s
ability to locate missing tokens, extra tokens and replaced tokens."

Maddison and Tarlow [175] create a model that learns probabilistic context-
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free grammar over the abstract syntax tree of source code. This can then be
used for code generation. They show that, in terms of log probabilities, their
model outperforms n-gram generative models.

Tu et al. [262] hypothesize that n-gram language models do not take the
localness of software into account – that code is locally repetitive, i.e. a
variable will most likely be used several times within multiple consecutive
lines. They propose adding a cache to an n-gram language model, which
increases the output distribution over recent tokens. The show that their
cache language model significantly improves performance over standard n-
gram language models. Later, CACHECA [74] use a cache n-gram language
model for auto-completion of code. They find that by combining the sugges-
tions with the IDE’s native code suggestion tool, they double the accuracy
of suggestions.

Naturalize [14] learns an n-gram language model for modeling coding con-
ventions of a code-base. It can then be used to suggest variable names that
fit the current conventions used in the project. Their novel contribution is
the introduction of cross-project language models, which use two language
models: one trained globally across many projects and one trained locally
across the current project only.

Instead of training a language model in an autoregressive style Slang [221]
is trained by learning to fill in gaps within code. It gains context from
the code both preceding and following the gap. They find that a recurrent
neural network language model achieves higher performance than an n-gram
language model, though it takes considerably longer to train, hours rather
than seconds.

Hellendoor et al. [100] evaluate n-gram language models on GitHub pull
requests. They find that: rejected pull requests are less natural than accepted
ones, debated pull requests are less natural than undebated ones, code added
during revisions is less natural, and that experienced contributors’ code is
more natural.

Karpathy et al. [133] visualize the activations of a character RNN language
model on a dataset consisting of the entire Linux kernel. They find several in-
terpretable neurons which activate in certain conditions, such as: when inside
an ’if’ statement, when inside comments and quotations, with a sensitivity
depends on current nesting depth, and at the end of lines. They show that
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the reason RNNs achieve superior performance to n-gram language models
is their ability to correctly model long range structural dependencies.

White et al. [284] also show that RNN language models beat n-gram lan-
guage models on the task of modeling source code. They find that the perfor-
mance improvements offered by RNNs increases drastically for lower sequence
lengths.

Saraiva et al. [235] analyze n-gram language models across different devel-
opers, time periods and applications. They conclude that: a) an application
specific language model performs better on that application than one trained
across the entire code base, b) a language model trained on a single devel-
oper’s code still performs better when it is application specific, implying that
developers do not re-use patterns and idioms across applications, and c) lan-
guage models trained on the latest version of the code base performs as well
as ones trained on the entire code base across all versions.

Ray et al. [219] use n-gram language models to measure the unnaturalness
of "buggy" code by comparing the entropy between code before and after
a bug fix. They find that code containing bugs has a higher entropy than
correct code, and that a static bug finder which prioritizes searching lines by
their entropy value improves its performance over the standard heuristics.

Allamanis et al. [13] train a bi-modal language model which jointly models
code and natural language. They find that modeling from code to natural
language is easier than natural language to code. They also show that models
which take the structure of code into account consistently beat models which
do not.

PHOG [34] builds a probabilistic model of code by modeling the probabilistic
context-free grammar of code. It encodes source code tokens via modeling
context-free grammar of underlying the programming language, conditioned
on the context of the AST.

BugGram [279] also applies n-gram language models to the task of discov-
ering bugs within code. They find that their approach is complementary to
existing methods that use rule-based techniques.

Hellendoorn and Devanbu [101] argue that explicit language models, such
as n-gram language models, are superior to implicit language models, such
as RNNs and LSTMs, for modeling source code. This is because explicit
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language models are better at handling the locality of source code and can
deal with the out-of-vocabulary problem easier. They also state that the
limited vocabularies used by implicit models misleadingly boost performance
in terms of evaluation metrics, but not actual performance on the task of
auto-suggestion.

Lanchantin and Gao [147] perform a similar experiment as Ray et al. [219],
but use an LSTM language model instead of an n-gram language model.
They find that the findings of Ray et al. still hold, that lines containing bugs
have a higher entropy than those which do not.

Craic [167] aims to remove uninformative code comments by proposing the
comment entailment task – predicting if the code snippet logically implies the
natural language comment. The task is carried out for each of the individual
sentences within the comment. They train a language model on the natural
language comments, conditioned on the associated source code. The per-
plexity over each sentence determines how predictable the sentence is, with
easier to predict sentences deemed to be uninformative and thus removed.

Parvez et al. [202] propose a model to improve the performance of neural
language models for code tokens. Their model is augmented with a second
language model that predicts the token type. Their model beats the perplex-
ity of SLP-Core [101] by 22%.

Alon et al. [21] use a language model over the AST of code by generating
paths from the root to the leaves. They use the Transformer [270] model aug-
mented with the ability to directly copy sub-tokens, which they find greatly
benefits the model’s performance.

Lin et al. [156] examine the "naturalness" of refactored code. Although
"buggy" code is less natural than correct code, they investigate whether refac-
toring code improves naturalness. They find that refactoring does not nec-
essarily improve naturalness, and that different refactoring methods change
the naturalness in different ways.

Rahman et al. [218] revisit the work of Hindle et al. [108] by: increasing
the size of the training corpora, expanding the experiments to six more lan-
guages, investigating the removal of syntax tokens (parentheses, semi-colons,
etc.), examining the naturalness of API calls, and measuring the naturalness
of code represented as ASTs instead of a sequence of code tokens. They find
that the naturalness hypothesis holds – code is repetitive and predictable
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– across all languages used, but the amount of repetition varies across lan-
guages. With the removal of syntax tokens – which account for up to 60%
of tokens in a programming language, the naturalness of programming lan-
guages significantly decreases, closing the gap between programming lan-
guages and natural languages. However, Java API calls are predictable as
they are repetitive across programs. Finally, they find that AST representa-
tions of code are more repetitive than sequential representations, and argue
that researchers use graph model that correctly capture how control and data
flow within code.

Brockschmidt et al. [39] perform language modeling on source code using the
AST. They use learned representations of each note to output to iteratively
generate subsequent nodes using expansion rules to ensure generated code is
semantically correct.

CuBERT [129] is a Transformer model trained as a masked language model
on source code. When fine-tuned, CuBERT outperforms an LSTM model
trained for 100 epochs on the five classification tasks described in the paper,
even after only being trained for two epochs.

CodeBERT [73] is a masked language model trained on both source code
and natural language doc-strings simultaneously. They show that using this
bi-modal data allows them to achieve state-of-the-art results on semantic
code search and code to doc-string generation.

2.3.2 Code Auto-completion

Once a language model has been trained, it can be used to generate code by
repeatedly sampling from the learned conditional probability distribution.
This can be used for code auto-completion, i.e., suggesting the next code
token based on the previous code tokens. Related to locating areas of high
perplexity using a language model, potential bugs can be found in cases
where the token suggested by the auto-completion model differs from the
actual token used in a student submission.

Bruch et al. [41] compare three different methods of automatic code comple-
tion – one based on uni-gram frequency, one based on association rules and
another based on the k-nearest-neighbors (kNN) algorithm. They find the
kNN algorithm, which predicts the next token by ranking the nearest "con-
texts" and predicting the most commonly used token within each context.
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Bhoopchand et al. [33] train a neural language model augmented with a
sparse pointer network over a neural memory consisting of representations
from the last few identifiers. They find the addition of the pointer network
allows their model to more effectively capture long-term dependencies.

Li et al. [153] train an LSTM as a language model for auto-completion of
AST leaf nodes. They find that an LSTM augmented with a pointer network
[271] helps modeling out-of-vocabulary (OoV) words more accurately, leading
to improved performance. OoV words are common in source code as they
have significantly larger number of unique identifiers.

Murali et al. [186] use a Gaussian Stochastic Neural Network (GSNN) for
auto-completion. Their model learns to output a distribution which is used
to select code templates which they combine together to write code.

Pythia [255] is a code autocompletion system for Python code. The authors
train an LSTM on the extracted AST from code with a focus on usability
via low-latency inference. To accommodate this, they use techniques such as
model quantization and weight sharing. Using their Markov Chain baseline,
they find that the frequency of methods inside if statements is considerably
different from those outside of if statements.

Hussain et al. [117] use transfer learning to perform code autocompletion.
They first pre-train two language models, an RNN and a GRU, as language
models, then fine-tune them by concatenating the representations from both
language models and training a learned attention layer to predict the next
code token in a given sequence of code tokens.

2.3.3 Code Generation

Code generation is related to code auto-completion – both are performed
by sampling a language model – however, the task of auto-completion is to
predict the next token that would have been input by the user, whereas the
code generation task involves generating an entire code snippet, usually from
scratch.

Abstract Syntax Networks (ASNs) [213] generate source code – conditioned
on an input – by iteratively generating nodes within the AST of the desired
output language.
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In Learning to Execute [297] the authors propose using LSTMs that take in
a sequence of code tokens and generate the output of that code on character
at a time. The code examples are simple and generated via some heuristics,
with operations being limited to: addition, subtraction, multiplication, con-
ditional statements and loops that only have a single statement within their
body. They find that the model’s performance improves if it is trained using
a curriculum of data that gets progressively more difficult.

CLGen [61] learns a code generation model from a suite of OpenCL bench-
marks to test the optimization of GPU parallelization. They find that models
trained on their generated benchmarks have a 4.3 times increase in perfor-
mance (although subsequent work [80] has shown that this performance in-
crease could be improved further by simply using the data mined to train
CLGen). The authors follow up on CLGen with DeepTune [60], an LSTM
based model which takes source code as input and predicts whether it should
be run on the CPU or GPU. In 89% of cases, DeepTune surpasses state-of-
the-art hand-crafted features, providing up to 14% improved performance.

DeepSmith [59] train a language model on code that performs unit tests in
order to generate novel unit tests. They find that as well as finding more
errors than hand-written test cases, their generated tests were shorter and
thus evaluated faster.

2.4 Predicting Method and Variable Names

Predicting method and variable names is another common task for machine
learning applied to source code. This task involves scraping data from open-
source repositories and creating a dataset using the method/variable names
as targets and the code – with the relevant method/variable names removed
– as the input.

2.4.1 Method and Variable Name Prediction

The main use-case for method and variable name prediction models is to sug-
gest appropriate method/variable names given the context of the surrounding
code. This can be applied to provide feedback by indicating where a model’s
predicted method/variable name differs from the method/variable name used
by the student. This could potentially highlight the use of a poorly chosen
variable name, or perhaps even a bug where the incorrect variable has been
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used. See Sections 7.1 and 7.2 for a description of the approach taken to
predicting method/variable names used in this thesis.

Allamanis et al. [16] introduce the ’method naming problem’, with the goal of
automatically predicting a descriptive name for a method or class. They use
a log-bilinear language model which incorporates non-local information from
the method’s body. They also train a sub-token model which can generate
neologisms, names that do not appear within the training set.

Raychev et al. [220] present an approach to predict method and variable
names from obfuscated code. Their method first constructs an AST of the
code in question, before building a dependency graph between the variables
and then predicting the missing identifiers.

Allamanis et al. [10] use deep learning to predict method name sub-tokens
from the associated method body. They call this task "extreme summariza-
tion" as it can be thought of as summarizing the method body in to a small
amount of tokens – three on average – which make up the sub-tokens of the
method name. They find that their model performance improves when the
model is augmented with the ability to copy tokens directly from the method
body.

Allamanis et al. [9] propose using graph neural networks for the variable
naming task. They argue that graph neural networks take advantage of the
structured information inside ASTs within source code, and show that their
model beats those which treat source code as a flat sequence of tokens. They
also show how their model can be used to detect errors in code by searching
for where their model’s predicted variable does not match the one used within
the source code.

Liu et al. [161] train two models in order to predict method names in an
unsupervised way. The first model directly converts the method name into
a vector and then looks up similar method names based on cosine similarity.
The second model, that has been trained to predict the method name from
the method body, outputs a vector which is also used to look up method
names based on cosine similarity. If these two sets have no intersection, then
the method name is deemed inconsistent with the method body and a new
one is chosen as the closest method name from the method body embedding.

code2vec [20] learn to represent method names from their corresponding
method bodies. They represent their methods as a bag-of-paths, as in [19],
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and train a relatively simple attention-based model which allows them to
train on significantly more data than previous models which they find con-
siderably improves performance over more complex models.

code2seq [18] improves on code2vec [20] by now predicting method names
as a sequence of sub-tokens by using the output of a code2vec model as
the initial state of an LSTM. They find that this significantly improves the
performance of code2vec whilst still being relatively lightweight and out-
performing more complex models.

MNire [197] is a tool for predicting a method name from a method body
and also checking the consistency of a method name with its method body.
The authors achieve improved performance over code2vec [20] by including
information from the method’s parameter and return types, and the method’s
class name.

2.4.2 Code De-obfuscation

Models that predict method and variable names can also be used for code
de-obfuscation – to convert an obfuscated/minified source code back into a
human-readable form. This task is more difficult than the previous method
and variable name prediction task as models are unable to rely on existing
method or variable names for context.

JSNaughty [269] builds upon Autonym and JSNice and uses SMT tech-
niques to de-obfuscate code. Context2Name [29] uses an LSTM to learn
how to de-obfuscate code by learning from source code and its automati-
cally obfuscated equivalent. It has comparable performance to JSNaugty
whilst only taking a fraction of the time. JSNeat [261] improves on the
performance of JSNaughty and Context2Name and is faster than both
of them.

2.5 Sequence-to-Sequence Models for Code

There are many ways that sequence-to-sequence based models can be applied
to source code. They are commonly used to translate from source code to
natural language, and vice versa. They’re also used to translate from source
code in one language to source code in another.
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2.5.1 Sequence-to-Sequence Models for Code and Natural Lan-
guage

The most common use of sequence-to-sequence models for source code and
natural language is automatically generating comments/doc-strings for a
method given the code tokens, or vice versa. This would allow programmers
to write code and have the documentation automatically written for them,
or alternatively, write the documentation which specifies what the relevant
method should do and have the code automatically generated.

For providing feedback, one of the most straightforward applications is by
generating natural language feedback given a method submitted by a student.
Unfortunately, this requires a large dataset of method-feedback pairs, and
one does not exist yet. However, advancements in this research path will be
useful for generating feedback when such a dataset does become available.

Kushman and Barzilay [146] present a technique that parses natural language
text searches into regular expressions.

Movshovitz and Cohen [185] use an n-gram model to predict comments from
the relevant source code. They use this similarly to code auto-complete
systems, with the goal of reducing the characters a programmer needs to
write to produce relevant comments.

Oda et al. [200] present the first work on translating from code to pseudo-
code. They use SMT tools to generate English descriptions from lines of
Python code. They show that the addition of their automatically generated
pseudo-code increases how well developers understand code compared to code
snippets without any pseudo-code or comments.

Code-NN [122] use a neural attention LSTM model to translate from source
code to natural language – for automatic captioning of code – as well as from
natural language to source code – for code retrieval from a natural language
query. They find their model significantly outperforms previous work [13].

Ling et al. [160] present their Latent Prediction Network, similar to the
Pointer Network [271] used in [153], with the goal of translating from meta-
data to source code. Their model allows for character generation, directly
copying a field from the input or partially copying a field from the input.

DeepAPI [88] is used to translate natural language sequences to API calls.
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The Code2Text Challenge dataset [227] is a dataset consisting of a
parallel corpus of code and documentation, designed to be used for training
models on automatically producing documentation from a provided code
snippet and vice versa. The authors followed up this work with a larger
dataset [226] which they then used to create FunctionAssistant [225], a
toolkit for building an API on a corpora of source code allowing users to build
their own search API that takes in a natural language query and produces
the relevant code snippet from the provided corpora.

Tellina [159] is a system designed to generate code from natural language
snippets. It first uses an entity recognition model to extract the names of files
and directory or quantities such as size or time from the natural language
snippet. These entities are then obfuscated within the snippet and an RNN
is used to generate a program template. The arguments in the template are
then filled in with nearest neighbor classification.

The neural attribute machine (NAM) [22] is a variant of an RNN designed
for generating source code. It explicitly contains methods which forces the
generation of grammatically correct sequences.

Jiang et al. [126] set up the task of generating commits from changes between
two versions of a given source code as a NMT task. They find that most
commit messages are of low quality and impact the model’s performance.
They solve this by only using a small subset of their dataset – the ones in
which the commit messages begin with a verb-direct object. Loyola et al.
[169] also aim to generate natural language commits from source code changes
using the model proposed in [123]. They do not filter out any low-quality
commit messages and note that their model has a "tendency to choose more
general terms over specific ones, meanwhile also avoiding irrelevant words
such as numbers or names".

Barone and Sennrich introduce a parallel corpus of Python functions and
their doc-strings [28]. They show that translating from code to doc-string is
easier than doc-string to code.

Yin and Neubig [294] directly generate source code AST nodes from a natural
language input. They model the natural language with a bi-directional LSTM
before feeding it into a grammar aware decoder RNN.

Richardson et al. [224] performed experiments on translating natural lan-
guage to code across ten different programming languages. Their experi-

28



ments show that polyglot models (trained across all languages) exceeded the
performance of monolingual models.

NNGen [165] examine the results of Jiang et al. [126] and discover that
there is a large overlap between training and testing data, and that a signifi-
cant portion of the commit messages within the dataset are noisy or contain
little information. Removing the noisy and low information examples causes
a large drop in the model’s performance. They propose a new model which
takes advantage of the training/test data overlap by simply finding the near-
est example from the training set which is similar to the proposed example
and then outputting that example. This significantly outperforms the results
from Jiang et al.

NL2Bash [158] is a dataset comprised of bash scripts with human-annotated
labels. The two baselines put forth by the authors show that a sequence-to-
sequence network augmented with a copying mechanism [86] beats existing
approaches based on heuristics.

CONCODE [121] is a dataset of over 100,000 examples of code, natural
language and context tuples – with the task of generating code from natu-
ral language and context. The authors propose a new model – that takes
context into account and produces code as a set of production rules – which
outperforms all the proposed baseline models.

Wan et al. [273] use reinforcement learning on the AST of source code
to generate a natural language description. They argue that sequence-to-
sequence models suffer from exposure bias – that they are not repeatedly
given the ground-truth next token in the output sequence when testing, but
are during training – which cause them to greedily output the next token
in a sequence without maximizing the overall sequence accuracy. The use
of reinforcement learning solves this issue by having the agent attempt to
maximize the overall sequence accuracy, in terms of BLEU score. They
find that their model significantly outperforms their baseline sequence-to-
sequence models.

Loyola et al. [170] study the generation of commit messages from the changes
between two versions of a given source code. Their hypothesis is that the doc-
string is as important as the source code itself as it describes the functionality
of the code, whilst the changes are only used to describe what has changed
in the file.
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Hashimoto et al. [97] propose using a retrieval model to aid in translating
from natural language to code. They first train the retrieval model as an auto-
encoder, which encodes the natural language and attempts to reconstruct it.
This can be used to retrieve the closest natural language and code pair within
the dataset. Then, they train the code generation model that is conditioned
on both the natural language and the retrieved code, but not the retrieved
natural language snippet. They show that this model does not beat AST
methods, but outperforms all non-AST based methods.

LeClair and McMillan [151] argue that a lack of standardized datasets con-
sisting of parallel examples of code and natural language provide a barrier
in terms of research, making it difficult to compare the performance of mod-
els. As well as introducing a standardized dataset, they also examine the
effect of splitting code datasets by project vs. by method, and the effect of
removing automatically generated code. They find that splitting by method
leaks information into the test set, artificially inflating BLEU scores, and
that automatically generated code should also be removed. They also find
that tokens in code are used more often than in natural language, but this
repetition is within the same method and not across methods, and that 70%
of words in code summary comments do not appear in the code tokens, where
the comments represent a high-level summary and the code tokens represent
a low-level representation.

Iyer et al. [120] improve on CONCODE [121] by learning to mapping natural
language queries directly to source code, using learned code idioms. They
define an idiom as a commonly occurring depth-two sub-tree of the AST.
Now, instead of decoding their encoded natural language directly as nodes
in the AST, they instead decode either a node or an idiom. They find that
augmenting their model to generate idioms significantly reduces the training
time as well as improving performance.

Agashe et al. [4] introduce JuICe, a dataset of interleaved natural language
and code that requires using a long context history. Using baseline neural
network models, LSTM with attention and a Transformer, they find that
the performance significantly improves with longer context history and the
amount of training data used.

CORE [247] learns to pair appropriate code reviews with code changes. They
use four bi-directional LSTMS, one for the tokens and one for the characters
in both the code tokens and the natural language review. They find that
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using characters helps their model handle out-of-vocabulary tokens. The
output of each pair of LSTMs is concatenated together and fed through an
attention layer, and the output of both attention layers are used to calculate
similarity. They show their approach significantly outperforms DeepMem
[90].

CoDiSum [288] learns to generate commit messages from changes between
versions of a given source code. They encode the source code tokens with
a bi-directional GRU and then decode the commit message tokens using a
GRU with an attention layer and copying mechanisms. They find it beneficial
to replace variable names with placeholder tokens, learn separate represen-
tations of the variable names and sum them with the GRU output of the
placeholder token.

Shido et al. [242] propose a multi-way Tree-LSTM for generating natural
language from code ASTs. Their novel multi-way Tree-LSTM architecture
does not impose limitations on the number of children within the nodes of
the tree and natural language decoder uses attention over the sub-trees of
the AST representation, both of which improve performance over standard
Tree-LSTM based approaches.

Kacmajor and Kelleher [128] propose using unit tests as a method of auto-
matically extracting code and natural language descriptions. They hypothe-
size that unit test method names are an apt description of the method being
tested and should be used as the natural language description as they are
usually self-documenting.

LeClair et al. [150] introduce a model for code to natural language that uses
both the code tokens and the AST representation, encoding each separately
and then allowing the decoder to apply attention to both individually. They
find that their method marginally outperforms a model that only uses the
code tokens, however by ensembling a model that uses the code tokens only
and one that uses both code tokens and the AST they find they are able to
improve performance.

Sun et al. [251] propose generating code from natural language by using a
grammar-based CNN. Their model generates code by iteratively generating
AST nodes by predicting grammar rules. They show that their approach
significantly outperforms recurrent neural network based models.

TAG [45] learns to generate comments from code by using an augmented
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AST which has type information embedded within the nodes. The decoder
also has a copying mechanism that is type restricted, i.e. it can only copy
valid tokens from the input representation.

2.5.2 Sequence-to-Sequence Models for Code to Code

Sequence-to-sequence models can also be used to "translate" between two
programming languages. Although not directly related to providing feed-
back, major advances in encoding or decoding source code with sequence-
to-sequence models would also be applicable to sequence-to-sequence models
between source code and natural languages.

Nguyen et al. [194] build a SMT system that translates between C# and
Java. They note that although they achieve a high translation accuracy of
over 80% they find that over 50% of their translations contain basic syntax
errors. They note that future models should be constrained when generating
translations in order to reduce the amount of syntax errors. StatMiner
[195] follows on from that work by translating between C# and Java using a
learned mapping between API usage in both languages. They further build
on this with mppSMT [193] that translates between programming languages
in three steps: first it produces a high level DSL that represents the syntax
required, then it maps desired variables with their data and types, finally it
maps the desired variable names from the input API call.

An SMT system was also used by Karaivanov et al. [131] who explicitly
used the grammar of the desired output programming language to ensure
translated code parses correctly. They find that whilst the model without
explicit grammar produced similar BLEU scores, it produced significantly
fewer programs that parsed and compiled correctly. This leads them to the
conclusion that BLEU scores are not necessarily a good indicator of quality
in SMT systems for programming languages.

Aggarwal et al. [5] show a pilot study on translating between Python 2
and Python 3. They find their SMT method provides a small performance
improvement over a rule-based system.

api2vec [198] uses the word2vec algorithm to learn representations for
API elements within API calls within source code. They show that API
elements that are nearby in the vector space of the learned representations
reflects the similar usage contexts of the API calls used by those elements.
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DeepAM [89] uses bi-directional LSTMs to map APIs from one program-
ming language to another. They first train the LSTM, jointly on both lan-
guages, to produce natural language documentation from a relevant API call.
To translate the APIs they use the trained model to extract the representa-
tions from the code tokens in the API call of the input language and then find
the closest API call, by taking the cosine similarity of the representations, in
the desired output language.

SAR [43] aims to train an API translator from a source language to a target
language using less parallel data. They train a generative adversarial network
(GAN) [81] to generate embeddings from the AST of the source language and
train them to be close together – in vector space – to the embedded AST of
the matching target language snippet.

TraFix [134] is a sequence-to-sequence model designed to decompile pro-
grams, i.e. go from a low-level representation, such as assembly, to a high-
level representation, such as C. They use a novel technique of dynamically
increasing the size of the training set by adding in incorrect high-level rep-
resentation outputs and their matching low-level representations obtained
from passing the outputs through a compiler. They state that this teaches
the model the correct translations for those high-level representations, thus
reducing the chances that the model will generate those translations again
when given the original low-level representation.

TransCoder [229] performs unsupervised translation between program-
ming languages. They first train a single masked language model using data
from all three languages considered (Python, Java and C++), Then they
use the masked language model weights as the initial weights to a de-noising
auto-encoder trained to produce a given sequence of code which has been
corrupted. Finally, they use back-translation – using a sequence-to-sequence
model to translate from one language to another and then back to the origi-
nal language – to generate supervised data to be used for translation. They
find their model significantly outperforms existing rule-based transcompilers.

AthenaTest [267] learns to generate test cases for a given method. They
find that pre-training their code-to-test model as a masked language model
on a combination of English and Java outperforms pre-training on either
language individually, or training their model from scratch.

Wei et al. [281] investigate both code summarization (code to natural lan-
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guage) and code generation (natural language to code). They propose a tech-
nique which performs code summarization and generation simultaneously,
enforcing that the outputs of each model – an LSTM with attention – are
similar by using regularization. They find this regularization allows their
models to outperform previous approaches in both code summarization and
code generation.

2.6 Mining Source Code

Mining source code allows patterns within source code to be extracted. There
are a wide variety of applications that involve mining source code, such as:
extracting code snippets, detecting common idioms, predicting types, and
classifying programs.

2.6.1 Mining Idioms from Source Code

Mining code idioms is commonly used to perform exploratory analysis on
source code by finding common patterns of code tokens which frequently
occur. This could potentially be used in a pedagogical setting by applying
automatic exploratory data analysis techniques on a corpus of student sub-
missions and then using the results of this data analysis in order to provide
feedback to a large group of students.

On a study of repetitiveness in code changes [196] the authors find that the
vast majority, over 70% of changes made by programmers are small changes
that are identical to another change made in the history of that project.

Irish [49] is a system designed to extract code snippets that are embedded
within natural language documents, e.g. e-mails. Irish achieves comparable
performance to other systems, without the need to manually write regular
expressions or grammars.

Haggis [11] mines idioms from source code, an idiom being an abstract
syntax tree fragment that is commonly used. From a large dataset of source
code they learn a probability distribution over abstract syntax trees which
they model as a probabilistic context-free grammar.

Allamanis et al. [15] mine loop idioms, discovering that 90% of loops have
fewer than 15 lines of code, 90% of them have no nesting and that 50 idioms
covered 50% of all loops within their dataset.
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StaQC [292] is a dataset of programming related question and answer pairs.
A bidirectional LSTM was used to mine the correct code snippet provided in
the answer to the question. Their approach is over 15% more accurate than
previous methods which rely on heuristics.

The CoNaLa Corpus [295] is an improved version of the StaQC dataset
[292], where heuristics have been added to remove extraneous lines of code
which appeared in the answer to the provided question.

Louis et al. [168] perform the task of predicting which code blocks should be
commented or not.

Another aspect of feedback that can be applied to code is formatting. Gen-
erally, formatting should follow conventions that are consistent throughout
the entirety of a student submission. By training models which can auto-
matically detect inconsistent formatting and apply the correct formatting
conventions, feedback in terms of code formatting can be provided.

Style-Analyzer [178] trains a random forest to correctly format code by
creating examples from functions with their formatting removed. They train
their model on a per-project basis, which allows it to adapt to the specific
formatting conventions used within the project.

2.6.2 Predicting Types

Feedback can also be applied to the variable types used in static programming
languages. By training a model to predict types and then applying it to
student code and examining where the model and the code disagree it can
potentially highlight areas where the students have used the incorrect variable
types.

RefiNym [64] mines and assigns meta-types to variables within source code.
Variables with the same meta-type are assumed to be used in a similar
context within the source code and thus can be explicitly typed and type-
checked.

DeepTyper [102] explores the task of applying optional types to dynamic
programming languages, such as Python or JavaScript. They use a two-layer
bidirectional LSTM with a novel consistency layer between the two layers
of the LSTM. The consistency layer causes the hidden state for a token
to be equal to the average hidden states of all occurrences of that token.
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This allows the model to predict types based on both a sequentially local
representation and the consensus judgment for all other locations where this
identifier occurs.

TypeWriter [211] learns to predict argument and return types for dynamic
languages, such as Python and JavaScript. The model uses both static anal-
ysis – to extract the AST of the code – followed by a neural network applied
to the code and doc-strings to predict missing type annotations, which have
incorrect predictions filtered out by a second stage of static analysis. They
find their approach outperforms DeepTyper [102] and NL2Type [176].

Schrouff et al. [238] compare graph convolutional networks (GCNs) and
gated graph neural networks (GGNNs) to predict types in JavaScript code
from the relevant AST using the type, property and value of each node. They
find that the GGNN has marginally improved performance over the GCN,
although they propose this could be due to the simplicity of the task.

Typilus [17] uses a GGNN to predict type annotations in Python code. It is
able to predict a type in 70% of cases, and out of those predictions is correct
enough to pass a type-checker 95% of the time.

2.6.3 Classifying Programs

Programs can also be classified using supervised learning. The most com-
mon use-case of classifying programs is detecting which algorithm was im-
plemented by a student. This can potentially be used to provide feedback
by detecting if an inefficient algorithm was used, e.g. bubble sort, and auto-
matically applying feedback to suggest a more efficient implementation.

Peng et al. [204] present one of the first uses of deep learning in programming
languages. They teach a deep neural network to classify programs based on
their abstract syntax tree. They qualitatively show that the deep neural
network has learned to cluster similar abstract syntax tree nodes together
within its intermediate – hidden – representations. Furthermore, they show
their deep neural network performs better than linear regression or an SVM.
The authors later apply convolutional neural networks [184] to the same task
and find that it significantly outperforms their previous work.

Bui et al. [42] apply the model of Mou et al. [184] to the tasks of determining
if two programs implement the same algorithm, where the programs are in
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different programming languages.

Bui et al. [192] propose the dependency tree-based convolutional neural net-
work (DTBCNN) for the task of classifying programs. Their model, as well as
using the AST, uses the dependency tree for calculating the representations
for each node. They show that their model outperforms the graph neural
network (GNN) [154] and the previous state-of-the-art, the TBCNN model
[184].

TreeCaps [125] uses a capsule network [110, 231] to classify programs. The
work is the first to apply capsule networks to trees and beats the performance
of the GNN, TBCNN and DTBCNN.

Tan et al. [172] use graph neural networks to classify programs, improving
on the gated graph neural network by adding attention mechanisms.

Sharma et al. [241] classify code, with the predicted class being the occur-
rence of a "code smell". A code smell is an indication of quality issues within
the code. They find that the performance of deep learning models is smell-
specific. RNNs are better at detecting some smells than CNNs, however take
considerably longer to train. They also find that it is possible to train a
model to detect smells in one programming language and perform transfer
learning, applying it to a second programming language, achieving similar
results to directly training on the second programming language.

DyPro [277] is a neural network model designed for classifying source code.
DyPro differs from previous approaches by not classifying code based on
their source code tokens or AST, but by using the sequence of variable states
as the program is tested with random inputs.

2.7 Source Code Retrieval

Source code retrieval covers using source code, either as an input or a target,
to look up a relevant entry from a database. This can be used to: look up
a natural language snippet from a source code snippet (or vice versa), and
look up a source code snippet from another source code snippet – such as in
the task of clone detection for plagiarism. See Sections 6.1 and 6.2 for how
source code retrieval is used in this thesis.

37



2.7.1 Semantic Code Search

Semantic code search involves training a model which can find the most
relevant source code example when given a natural language query, or vice
versa. This can be used to save developers time by having them search
through a database of previously implemented methods instead of writing
their own from scratch. For applying feedback, if a dataset of code-feedback
pairs existed then a model could be trained to automatically find the most
relevant human-written feedback when given a student submission. This is
significantly easier than generating human-written feedback using a sequence-
to-sequence model so would require significantly less training data, and hence
is a more realistic short-term goal for providing automatic feedback.

CODEnn [87] is a tool used to search for relevant code snippet given a
natural language query. Instead of using traditional information retrieval
techniques, they use machine learning. The model transforms both the code
and the query into a high dimensional representation. The cosine similar
between these high dimensional representations is used to tell how similar
the code and query are. Their model outperforms non-machine learning
based approaches.

NCS (Neural Code Search) [232] work on the hypothesis that "tokens in
source code contain enough natural language information to make retrieval
possible". They use the FastText [37] embeddings to get an embedding vector
for each token within a given function and then take a weighted average
over these embedding vectors to get a final vector representation of that
function. They find that this simple approach works well when retrieving
a paired natural language query that has been processed in the same way,
showing that unsupervised learning of code representations is able to achieve
acceptable performance for the code retrieval task.

Cambronero et al. [46] perform an evaluation for code retrieval across NCS
[232], CODEnn [87], SCS [115] and their own novel model, UNIF – which
is the NCS model with added supervision. They find that their UNIF model
outperforms the other three models and that performance of the supervised
models significantly improves when the supervised dataset consists of actual
queries instead of using the method doc-strings as queries – which is the
default in code retrieval tasks due to the ability easily harvest vast amounts
of examples.
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Kulal et al. [144] focus on mapping pseudo-code to actual source code. They
note that previous metrics used to measure the quality of code generation are
insufficient as they provide a value that represents what percentage of the
target code was successfully generated, whereas the actual metric of interest
is functional correctness. For each pseudo-code input, they generate multiple
candidate source code translations, each of which they run against a suite
of test cases. They find that performance, in terms of the number of passed
tests, can be improved by using a neural network across the generated code
and the error messages provided by the test suite to localize which lines are
causing an error and down-weight candidates containing that line.

MMAN [274] uses the sequential tokens, the AST and the CFG of source code
to create a representation of a method to be used for source code retrieval.
The sequence of tokens is fed through an LSTM, the AST through a Tree-
LSTM and the CFG through a GGNN. These three representations have
self-attention applied and are then concatenated together and fed through a
single layer linear network to get a final representation. They show this multi-
modal representation outperforms previous source code retrieval methods.

CodeSearchNet [116] is a dataset of code and doc-string pairs designed
for training semantic code search systems. The dataset consists of over two
million code-doc-string pairs in six different programming languages. The
authors of CodeSearchNet experiment with different models, using an
identical model to encode the code and doc-strings, and find that the per-
formance on CodeSearchNet improves with model complexity, i.e. using
a pair of Transformer models performs better than a pair of NBoW models.
However, they find that most of this complexity is required by the doc-strings
as using an NBoW model to encode the code tokens and a Transformer to
encode the doc-strings provides comparable performance to using a pair of
Transformer models.

CoaCor [291] combines code retrieval (obtaining a relevant code using a nat-
ural language) and code annotation (generating a natural language snippet
from a code snippet). Their model first performs code annotation and then
uses the resulting natural language to perform code retrieval, using both the
original code and the generated natural language. By training their model
using reinforcement learning to optimize the mean reciprocal rank (MRR)
they find their generated natural language captures more of the semantic
meaning of code and improve performance over previous approaches.
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TranS3 [280], like CoaCor [291], performs code annotation for improv-
ing code retrieval. Unlike CoaCor, which uses an LSTM on code tokens,
TranS3 uses a Transformer over the AST of the code. TranS3 significantly
outperforms CoaCor in both the code annotation and code retrieval tasks.

2.7.2 Clone Detection

Clone detection is similar to semantic code search, however instead of the
using code-query pairs the dataset is now code-code pairs and the largest the
similarity between two code examples the higher the probability that they are
clones, i.e. perform the same functionality. This could potentially be used
for plagiarism detection, or assist in classifying programs by determining if
they perform the same functionality as some provided reference method.

White et al. [282] are the first to apply neural language models for code clone
detection. They first use a recurrent neural network to obtain embeddings of
the individual tokens before feeding these embeddings, along with the AST,
to a recursive neural network. They compare the final output of the recursive
neural network between two potential clones to determine if they are actually
clones, or not.

Oreo [233] uses Siamese neural network to detect if two functions are se-
mantic clones or not. They do not input the tokens of the suspected clone
programs, but instead the inputs are results obtained via static analysis of
the two programs.

Tufano et al. [264] develop a machine learning clone detection algorithm that
uses the source code at multiple levels of abstraction, namely: identifiers,
ASTs, CFGs, and byte-code. It is the first work to apply machine learning
simultaneously to multiple levels of source code abstraction. They show that
each representation is complementary to each other, and the addition of each
improves performance.

2.8 Meta

There is also research focused on adapting machine learning techniques to the
domain of programming languages. These involve research on learning rep-
resentations of source code, which improve the performance of applications,
and examining the closed vocabulary problem which is an issue in source
code.
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2.8.1 Code Datasets

The majority of machine learning on source code research uses data scraped
from open-source repositories. These open-source repositories allow a large
unlabeled dataset to be collected easily, however it is non-trivial to ob-
tain the exact dataset used by researchers in order to replicate their work.
Fortunately, standardized datasets, such as CodeSearchNet [116] and
CodeXGLUE [173], are beginning to appear. See Chapter 4 for information
about the datasets used in this thesis.

Allamanis [8] conducted a study into code duplication in machine learning on
code applications. They find that commonly used source code datasets con-
tain examples that exist in both the training and test sets, which artificially
inflates the evaluation performance of these models.

2.8.2 Code Embeddings

Embeddings are distributed representations of code that can potentially be
used in downstream tasks performed on source code. These are commonly
used as the input to a machine learning model applied to code. Learning
efficient embeddings is common in natural language processing by using lan-
guage models trained on a large corpus of text and fine-tuned on the desired
downstream task. These embeddings usually provide improved performance
over learning embeddings from scratch.

inst2vec [30] is a method of training embeddings for source code which can
be used for machine learning models. The source code is first processed into
a language independent intermediate representation as well as the contextual
flow graph. They then apply the skip-gram model [182] to learn embeddings
for each instruction in the intermediate representation.

import2vec [259] is a method for learning representations of libraries with
the aim of having semantically similar libraries have similar representations.
Their representations are learned using the word2vec model [182, 183] on
the co-occurrence of import statements within code snippets scraped from
open-source repositories.

IdBench [272] is a benchmark for evaluating learned representations of
source code tokens using a dataset of identifier pairs hand labeled by ex-
pert humans in terms of similarity and relatedness. They find that learned
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code representation techniques accurately represent the relatedness of iden-
tifiers, but perform poorly when measuring similarity. They also show that
learned code representations significantly outperform string distance func-
tions and that an ensemble of learned representations outperform individual
learned representations, implying the techniques compliment each other.

commit2vec [171] learns representations of code changes to be used in
downstream tasks. These representations represent code, before and after
a change, as a bag-of-paths, similar to [19] and feed both pre- and post-
change code into an LSTM to obtain a distributed representation for each.
The difference between these two representations are used as the commit
representation after being fed through a linear layer. They find that repre-
senting code as a bag-of-paths outperforms representing code as a sequence
of tokens. They find that pre-training their representations on a dataset
more relevant to the downstream task provides improved performance than
representations pre-trained on a larger dataset that is significantly different
to the downstream task.

2.8.3 Vocabularies

In machine learning, a vocabulary is a unique mapping between a code token
and an integer. One of the issues with machine learning applied to code is the
large number of unique tokens within a dataset due to method and variable
names usually consisting of a combination of multiple sub-tokens.

Cvitkovic et al. [62] study the vocabulary problem that arises when applying
machine/deep learning to programming languages. As the majority of source
code variables usually only appear very few times within a dataset, they will
be "out-of-vocabulary" and indistinguishable from other out-of-vocabulary
variables. They propose adding a vocabulary cache on to a graph neural
network. The cache performs character level embedding on each variable
name. They find their cache improves performance over baseline models –
even without adjusting any hyperparameters – as well as over graph neural
network models augmented with a pointer network.

Karampatsis and Sutton [132] also tackle the open vocabulary problem by
breaking code tokens into small sub-word units with byte-pair encoding
(BPE). This allows any code token to be represented by sub-words, the
smallest of which are single characters, without ever having to replace it
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with an out-of-vocabulary token. They show that a language model using
their "open" sub-word vocabulary outperforms "closed" vocabulary models,
even when the size of the sub-word vocabulary is relatively small.

2.8.4 Novel Code Representations

When source code is used as input to machine learning models it is tradition-
ally represented as a sequence of tokens, AST or CFG. However, researchers
have also come up with novel representations specifically to be used for ma-
chine learning on code.

Alon et al. [19] introduce a novel method of representing programs – as a
sequence of paths between each leaf node with every other leaf node. This
representation is programming language agnostic, and the authors show it
improves performance over previous models on the tasks of: variable name
prediction, method name prediction and full type prediction. These repre-
sentations allow information from the AST to be used by non-graph neural
networks. They also introduce a tool, Pigeon, which implements their rep-
resentations. A similar method was used in code2vec [20] and code2seq
[18].

PathMiner [139] is a library which implements path-based representations
similar to Pigeon and works for Python, Java, C/C++ and JavaScript.

Yin et al. [296] use a neural network to learn representations of source code
edits. Using a GGNN as an auto-encoder, they learn edit representations
which can be applied to encoded representations of source code and then
decoded to receive the source code with the appropriate edit.

Zhang et al. [300] proposes splitting full ASTs into a sequence of smaller
statement trees. They show that this representation has improved perfor-
mance over models that consider the full AST.

Chen and Monperrus [52] provide a short literature review on distributed
representations (embeddings) of source code.
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2.8.5 Adversarial Attacks

Finally, research on how to train models is followed by research on how to
break those models. Neural networks are susceptible to adversarial attacks
[256, 145] – inputs which are designed to "trick" the neural network into
producing an incorrect output.

DAMP [293] is a method of performing adversarial attacks on machine learn-
ing models designed to predict a method name from a method body. They
show that by either changing a variable name or adding a declaration of an
unused variable, both of which do not change the semantics of the method,
they are able to change the model’s predicted output to an adversarial target
method name 89% of the time and any incorrect method 94% of the time.
They also propose a method of defending against these adversarial attacks
– by inserting a variable outlier detection model which detects adversarially
swapped or inserted variables and replacing them with an out-of-vocabulary
token.

2.9 Conclusion

Table 1 shows an overview of the work covered in this literature review.

Reference Task Model Method
Automata [249, 245] FG MLP SL
Piech et al. [207] FG RNN SL
OverCode [79] FG Clustering UL
DeepCodeReviewer [90] FG LSTM SL
Ahmed et al. [6] FG Transformer UL
Kremenek et al. [141] BL Static Analysis SL
sk_p [212] BC LSTM SL
DeepRepair [283] BC Autoencoder UL
Devlin et al. [67] BC LSTM SL
DeepFix [93] BC LSTM SL
SynFix [32] BC LSTM UL
Santos et al. [234] BC LSTM UL
DeepBugs [210] BL MLP SL
Bhatia et al. [31] BC LSTM SL
Harer et al. [96] BC GAN UL
Ratchet [98] BC LSTM SL
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Reference Task Model Method
Tufano et al. [265] BC LSTM SL
Chen et al. [53] BC LSTM SL
SampleFix [95] BC VAE UL
Tufano et al. [266] BC LSTM SL
Habib and Pradel [94] BC LSTM SL
NeuralBugLocator [91] BL CNN SL
Vasic et al. [268] BC LSTM SL
GREAT [103] BC Transformer UL
Li et al. [154] PV GNN SL
Wang et al. [278] PV DBN SL
Murali et al. [187] PV RNN UL
Koc et al. [138] PV LSTM SL
Russel et al. [230] PV CNN SL
Hindle et al. [108] LM n-gram LM SSL
Allamanis and Sutton [12] LM n-gram LM SSL
Syzygy [201] LM n-gram LM SSL
SLAMC [199] LM n-gram LM SSL
Hsiao et al. [114] LM n-gram LM SSL
Campbell et al. [47] LM n-gram LM SSL
Maddison and Tarlow [175] LM CFG SSL
Tu et al. [262] LM n-gram LM SSL
CACHECA [74] LM n-gram LM SSL
Naturalize [14] LM n-gram LM SSL
Slang [221] LM RNN SSL
Hellendoor et al. [100] LM n-gram LM SSL
Karpathy et al. [133] LM LSTM SSL
White et al. [284] LM RNN SSL
Saraiva et al. [235] LM n-gram LM SSL
Ray et al. [219] LM n-gram LM SSL
Allamanis et al. [13] LM NBoW SSL
PHOG [34] LM CFG SSL
BugGram [279] LM n-gram LM SSL
Hellendoorn et al. [101] LM n-gram LM SSL
Lanchantin and Gao [147] LM LSTM SSL
Craic [167] LM LSTM SSL
Parvez et al. [202] LM LSTM SSL
Alon et al. [21] LM Transformer SSL
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Reference Task Model Method
Rahman et al. [218] LM n-gram LM SSL
Brockschmidt et al. [39] LM GNN SSL
CuBERT [129] LM Transformer SSL
CodeBERT [73] LM Transformer SSL
Bruch et al. [41] AC kNN UL
Bhoopchand et al. [33] AC LSTM SSL
Li et al. [153] AC LSTM SSL
Murali et al. [186] AC GSNN SSL
Pythia [255] AC LSTM SSL
Hussain et al. [117] AC GRU SSL
Rabinovich et al. [213] AC LSTM SSL
Zaremba et al. [297] AC LSTM SSL
CLGen [61] AC LSTM SSL
DeepSmith [59] AC LSTM SSL
Allamanis et al. [16] VP MLP SL
Raychev et al. [220] VP CFG SL
Allamanis et al. [10] VP CNN SL
Allamanis et al. [9] VP GNN SL
Liu et al. [161] VP CNN UL
code2vec [20] VP MLP SL
code2seq [18] VP LSTM SL
MNire [197] VP RNN SL
JSNaughty [269] CDO SMT SL
Context2Name [29] CDO LSTM SL
JSNeat [261] CDO SMT SL
Kushman and Barzilay [146] SSNL CFG SL
Movshovitz and Cohen [185] SSNL n-gram LM SL
Oda et al. [200] SSNL SMT SL
Code-NN [122] SSNL LSTM SL
Ling et al. [160] SSNL LSTM SL
DeepAPI [88] SSNL RNN SL
Tellina [159] SSNL RNN SL
NAM [22] SSNL RNN SL
Jiang et al. [126] SSNL LSTM SL
Yin and Neubig [294] SSNL LSTM SL
Richardson et al. [224] SSNL LSTM SL
NNGen [165] SSNL LSTM SL
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Reference Task Model Method
Wan et al. [273] SSNL LSTM RL
Loyola et al. [170] SSNL LSTM SL
Hashimoto et al. [97] SSNL LSTM SL
Iyer et al. [120] SSNL LSTM SL
CORE [247] SSNL LSTM SL
CoDiSum [288] SSNL GRU SL
Shido et al. [242] SSNL LSTM SL
LeClair et al. [150] SSNL LSTM SL
Sun et al. [251] SSNL CNN SL
TAG [45] SSNL LSTM SL
Nguyen et al. [194] SSC SMT SL
StatMiner [195] SSC SMT SL
mppSMT [193] SSC SMT SL
Karaivanov et al. [131] SSC SMT SL
Aggarwal et al. [5] SSC SMT SL
api2vec [198] SSC MLP SL
DeepAM [89] SSC LSTM SL
SAR [43] SSC GAN UL
TraFix [134] SSC LSTM SL
TransCoder [229] SSC Transformer UL
AthenaTest [267] SSC Transformer SL
Wei et al. [281] SSC LSTM SL
Irish [49] MI HMM UL
Haggis [11] MI CFG SL
Louis et al. [168] MI LSTM SL
Style-Analyzer [178] MI RF SL
RefiNym [64] PT CFG UL
DeepTyper [102] PT LSTM SL
TypeWriter [211] PT LSTM SL
Schrouff et al. [238] PT GNN SL
Typilus [17] PT GNN SL
Peng et al. [204] PC MLP SL
Bui et al. [192] PC CNN SL
TreeCaps [125] PC CN SL
Tan et al. [172] PC GNN SL
Sharma et al. [241] PC RNN SL
DyPro [277] PC LSTM SL
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Reference Task Model Method
CODEnn [87] SCS MLP SL
NCS [232] SCS MLP SL
Cambronero et al. [46] SCS LSTM SL
Kulal et al. [144] SCS LSTM SL
MMAN [274] SCS GNN SL
CoaCor [291] SCS LSTM SL
TranS3 [280] SCS Transformer SL
White et al. [282] CD RNN SL
Oreo [233] CD LSTM SL
Tufano et al. [264] CD LSTM SL

Table 1: A summary of the work covered in the literature review. Tasks: FG
(feedback generation), BL (bug location), BC (bug correction), PV (program
verification), LM (language modeling), AC (autocompletion), VP (variable
prediction), CDO (code de-obfuscation), SSNL (sequence-to-sequence mod-
els between code and natural language), SSC (sequence-to-sequence models
between code), MI (mining idioms), PT (predicting types), PC (program
classification), SCS (semantic code search), CD (clone detection). Models:
MLP (multi-layer perceptron), RNN (recurrent neural network), LSTM (long
short-term memory), GAN (generative adversarial network), VAE (varia-
tional autoencoder), CNN (convolutional neural network), GNN (graph neu-
ral network), DBN (deep belief network), CFG (context free grammar),
NBoW (neural bag-of-words), kNN (k nearest neighbours), GRU (gated re-
current unit), SMT (statistical machine translation), HMM (hidden Markov
model), RF (random forest). Methods: SL (supervised learning), UL (unsu-
pervised learning), SSL (self-supervised learning), RL (reinforcement learn-
ing).

As shown, there is little research on applying machine learning directly to the
application of grading or providing feedback on source code, and the research
that does exist is limited in its use. Automata [249] uses hand-crafted
features and only produces a numerical grade. OverCode [79] also relies on
existing, non-machine learning based static and dynamic code analysis. Work
by Piech et al. [207] uses machine learning without hand-crafted features,
but is limited to a toy language. DeepCodeReviewer [90] also is a pure
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machine learning system, but cannot produce original feedback and simply
returns what it believes are the closest one from a database of feedback.

There are significantly more bug location, correction, and verification tools
that use machine learning, most of which are sequence-to-sequence models
over sequences of tokens or the abstract syntax trees of programs. These
models learn from examples containing bugs which are either taken from
source code changes in open-source repositories or introduced in the code by
some heuristic. These systems show promise, however their performance is
relatively low – usually only able to fix under 50% of examples – and also
produce a fix, but do not provide any feedback to the user.

Applying language models to source code is the most popular application
of machine learning to source code. The majority of work in this space
uses recurrent neural networks – such as an LSTM, although Transformer
models are becoming more popular in language modeling for natural language
processing – to learn from a sequence of source code tokens. Another popular
topic is using recursive neural networks to model the nodes in an abstract
syntax tree, although these are being replaced by graph neural networks,
which are also now being replaced by Transformers. This thesis focuses on
a pedagogical setting where users may want to query a model on code that
is potentially incomplete and thus will not compile and produce an abstract
syntax tree, which limits the relevance of models applied to trees obtained
from code. Most of the work in this area also focuses on language modeling
with very little thought put into the use case of these systems outside a casual
mention of being a glorified code auto-complete tool, and no mention of use
in a pedagogical setting is mentioned.

Due to the prevalence of scaling laws in neural networks (see Chapter 8.3),
the future of language modeling in natural language processing is heading
towards using large pre-trained language models that are only fine-tuned
on a desired task. There is no doubt that this will also apply to language
models for code. One of the major issues with training large language models
is ensuring a high-quality dataset to train on – "garbage in, garbage out" –
this may be something language models for source code can easily avoid
as open-source repositories can have their quality judged by the number of
"stars" or "followers", although scarce research has been done on the quality
of language models with respect to their datasets.
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Language models such as GPT-3 [40] are so prohibitively large that they
cannot even be fine-tuned and are evaluated in a "one-shot" setting where
their inputs are written in such a way that by predicting the next token in
the given sequence will produce a task specific answer, e.g. to predict the
sentiment of the sentence "I didn’t like this movie at all" the example is
rewritten as "I didn’t like this movie at all. I am feeling [BLANK]" and the
predicted sentiment is either "positive" or "negative" depending on which of
those two words the language model believes is more likely to appear in the
blank. There has been no formal research on how to most effectively craft
examples in such a way for optimal one-shot performance, or how this can
be applied to tasks involving source code.

Predicting method and variable names is one of the tasks which could be
most easily applied to a pedagogical setting – its application is relatively
unobtrusive as it makes no functional changes to the users code and pro-
viding sensible variable names is an important task which new programmers
commonly struggle with.

Sequence models for source code, such as models which translate from natu-
ral language to source code or vice versa, have the potential to be significant
educational tools – if a model was trained on a large parallel corpus of code
and hand-written feedback with a sufficient performance it would effectively
replace the majority of work done by human graders. However, no such
datasets exists and the majority of the work in this area is focusing on au-
tomatic documentation generation via learning to generate doc-strings for
functions.

Mining source code has a wide variety of applications, some of which have
potential pedagogical applications, such as: learning to automatically format
code to follow conventions, predicting the correct types for variables, and
classifying code. Again, however, most of the work is focused on a specific
task with no thought to the pedagogical aspects.

Semantic code search, which is one of the most common tasks for machine
learning on code, is another task which has significant research interest and
a large amount of potential to be applied in a pedagogical setting. However,
most applications only pair up methods with doc-strings – as this data is
relatively easy to obtain – with no focus on how these models could be used
to apply feedback.
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As shown, a common theme is the increasing use of machine learning systems
on source code, but most of which provide little to no insight into how these
applied to a pedagogical setting or perform any qualitative analysis in regard
to how these models can be used in an educational setting. This thesis takes
the three most common applications of machine learning on source code –
language modeling, semantic code search, and predicting variable names –
which show the most promise to be adapted for a pedagogical setting, and
focus on how to improve models on these tasks whilst suggesting ways they
can be deployed for providing feedback.
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3 Models

3.1 Introduction

The experiments in this thesis use four main models: neural bag-of-words
(NBoW), a recurrent neural network (RNN), a convolutional neural network
(CNN), and a Transformer model. Each model is a type of neural network5

and were chosen as they have distinct architectures from each other. By
showing how some findings in this thesis hold true across all four architec-
tures, it strengthens the potential of these findings being universal across all
neural network architectures. Conversely, by showing findings which differ
between architectures, it allows for a discussion on why these findings have
different outcomes on the different architectures.

Each of the four architectures can be represented as:

Z = fθm(X)

where X is a length N sequence of tokens. The tokens within this sequence
can be words, characters or code tokens, e.g. X = [print, ", Hello, ", ;].
Before being passed to the model, the sequence is numericalized, converted
from a string to an integer, using a vocabulary, a unique mapping of strings
to integers, e.g. print → 0, " → 1, Hello → 2, ; → 3, and then usually
converted to a one-hot vector, a V -dimensional vector with all elements being
zero except the one at the position indicated by the integer, which is a one.
V is the size of the vocabulary, thus X ∈ RN×V . Z ∈ RN×F is the sequence
of F -dimensional features output by the model, f , which is parameterized by
the model’s parameters (also commonly called the weights), θm. Each of the
N features is a distributed representation of the corresponding input element.
Depending on the architecture, each feature may be calculated independent
of the other elements in the sequence, or calculated using information from
other elements in the sequence.

For each task, the features are passed through a task-specific head :

Ŷ = gθh(Z)

5Specifically, each of the four models are a deep neural network, using the definition
that a deep neural network has more than one hidden layer of neurons.
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g is the task specific head, a neural network parameterized by θh, the ar-
chitecture of which depends on the task at hand. Ŷ is the output of the
neural network, it can either be a sequence of outputs, one corresponding to
each element in the input sequence, RN×C , or a single output RC , depending
on the task. C is the number of classes. The final layer in g is usually the
softmax activation function:

softmax(zi) =
ezi∑C
j=1 e

zj

where z represents the input vector the softmax function. Softmax is applied
across the C-dimension and normalizes the vector Ŷ so that each component
will be between zero and one, and the entire vector will sum to one. This
effectively converts the raw output (commonly called logits) into a probability
distribution.

To update the parameters, θm and θh, a loss function is used to calculate
the loss, a value to be minimized that measures "how close" our model is
to a correct prediction, between the neural network’s predicted output, Ŷ ,
and the desired output of the model, Y . When the final layer of a model
is the softmax activation function the loss function used is almost always
cross-entropy loss, and when the output is a sequence the loss is calculated
across the length dimension and averaged:

L(Ŷ ,Y ) = − 1

N

N∑
i=1

Yi · log(Ŷi)

The backpropagation algorithm is then used to find the gradient of the loss
with respect to each of the parameters, i.e. how much "influence" each pa-
rameter had on the loss value. Hence, the loss function and the entire neural
network must be differentiable. Gradient descent is then used to update the
parameters of the neural network by taking a "step" in the direction of the
negative gradient for each parameter:

θi ← θi − η∇θJ(θi)
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η is known as the learning rate, and controls the size of the step taken.
∇θJ(θi) is the gradient of the parameter θi with respect to the loss.

In practice, to fully utilize the parallelism of graphics processing units (GPUs),
which are used to train modern algorithms, a batch of examples are fed
through the model in parallel and the loss is the averaged across the batch.

3.2 Neural Bag-of-Words

The neural bag-of-words (NBoW) (sometimes called continuous bag-of-words
(CBoW)) model is a relatively simple model that serves as popular baseline
in natural language processing [124].

In the NBoW model, the one-hot encoded input, X ∈ RN×V is used to
obtain an embedding vector for each element in the sequence, E ∈ RN×D,
where E = XW . W ∈ RV×D is known as the embedding matrix, and
D <<< V . As each element of X is a one-hot vector, the operation XW
can be thought of as treatingW as a look-up table and retrieving the i-th row
of W where i is the non-zero element in each one-hot encoded vector. The
embeddings vectors have shown to be able to capture semantic and syntactic
features of natural languages [183, 182, 181].

Traditionally, for classification tasks the embedding vectors are averaged
across the sequence length, multiplied by a weight matrix and then passed
through a softmax layer. As each embedding vector is calculated indepen-
dently, the output of the NBoW model would be identical for every permuta-
tion of the input sequence, i.e. the NBoW model output is calculated without
regard to the order of the items in the input sequence, hence the bag in bag-
of-words. However, the NBoW model implemented for the experiments in
this thesis simply outputs the embeddings vectors, hence:

Z = fθm(X) = XW = E

Hence, the NBoW model can be thought of as a single linear layer, with no
bias term. It is commonly used as the first layer in neural network architec-
tures applied to natural language processing where it is usually known as an
embedding layer, and each element of E, denoted by e ∈ RD, is known as a
word embedding, or simply an embedding.
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3.3 Recurrent Neural Networks

The most common neural network architectures used when the input is a
sequence are recurrent neural networks (RNNs). RNNs have been used for
neural machine translation [26, 55, 252, 285], speech recognition [85], gener-
ating image captions [287], natural language inference [38, 164], named entity
recognition [205, 7], part-of-speech tagging [208, 36], text classification [113,
205], summarization [189, 57] and language modeling [84, 179, 205].

Unlike standard neural networks, RNNs have temporal connections. This
allows them to process sequences one element at a time and propagate infor-
mation through time. The RNN steps along the sequence of inputs, usually
after they have passed through an embedding layer, and at each time-step
the RNN calculates a hidden state, h(t) ∈ RH , recurrently as:

h(t) = σ(e(t)Wh + h(t−1)Uh + bh)

= RNN(e(t),h(t−1))

The hidden state is calculated using the input embedding at the current
time-step, e(t) ∈ RD, an input weight matrix, Wh ∈ RD×H , the hidden
state from the previous time-step, h(t−1) ∈ RH , and recurrent weight matrix,
Uh ∈ RH×H , and a bias term, bh ∈ RH . Notice how the input and recurrent
weight matrices are shared between each time-step. σ is the sigmoid function,
a non-linear activation function given by:

σ(z) =
1

1 + e−z

The sigmoid function has the property of constraining the output to be be-
tween zero and one. The initial hidden state, h(0), is usually initialized to
a zero vector. The hidden states at each time-step t ≥ 1 are concatenated
together to give a sequence of hidden states, H ∈ RN×H .

These hidden states can be used as input to another RNN, creating a multi-
layer RNN, i.e. for RNNs after the first:

h(t,l) = RNN(h(t,l−1),h(t−1,l))
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l denotes the layer index, h(t,l−1) is the input to the RNN from the previous
layer, and h(t−1,l) is the hidden state from the previous time-step. The input
to the first RNN layer is always the embedded input tokens, e(t).

Each hidden state can be thought of as a summary of the sequence up to
time-step t. It is often beneficial for each hidden state to contain information
about time-steps > t. This can be implemented using a second RNN which
steps over the sequence in reverse and the hidden state at each time-step
is now the concatenation, [ · , · ], of the initial forward RNN and additional
backward RNN for the corresponding time-step:

h(t) = [h(t)
→ ;h(t)

← ]

h(t)
→ is the hidden state obtained from the forward RNN after it has seen

inputs < t, whereas h(t)
← is the hidden state obtained from the backward

RNN after has seen the inputs > t. A model containing both a forward and
backward RNN is known as a bi-directional RNN, and each hidden state is
now h(t) ∈ R2H .

The "RNN" term actually covers a family of models. The one detailed above
is the most basic RNN, and is also called an Elman network [70]. However,
Elman networks are not commonly used in practice as they suffer from the
exploding/vanishing gradient problem when handling long sequences. When
performing backpropagation through time, the gradient for early time-steps is
calculated by repeatedly multiplying partial derivatives from all subsequent
time-steps. If these partial derivatives have values greater than one then
the gradient will exponentially increase over time, or explode, causing the
model parameters to increase exponentially and making the output extremely
unstable. Conversely, if the partial derivatives are less than one then the
gradient will exponentially decrease, or vanish, over time, preventing the
parameters from updating and effectively halting the learning process.

Ideally, an RNN should "remember" information from previous time-steps
by being able to multiply the hidden state by an identity mapping, i.e. Uh

should be an identity matrix. The partial derivative of an identity function
is one, hence this would prevent exploding/vanishing gradients. However,
the non-linear sigmoid activation function in the Elman network prevents an
identity mapping being learned. A variant of the RNN, the long-term short-
term memory (LSTM) [111, 77] architecture is designed with the ability to
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remember information across time-steps by explicitly allowing an identity
function to be learned.

The key concepts introduced in the LSTM are the use of gates to control
information flow in and out of the LSTM, and a memory cell, a vector which
stores information over time. The LSTM computes hidden states as:

f (t) = σ(e(t)Wf + h(t−1)Uf + bf )

i(t) = σ(e(t)Wi + h(t−1)Ui + bi)

o(t) = σ(e(t)Wo + h(t−1)Uo + bo)

ĉ(t) = tanh(e(t)Wc + h(t−1)Uc + bc)

c(t) = f (t) � c(t−1) + it � ĉ(t)

h(t) = o(t) � tanh(c(t))

= LSTM(e(t),h(t−1), c(t−1))

The forget gate, f ∈ RH , controls how much information in the cell, c ∈ RH ,
is kept from the previous time-step. If the forget gate is a zero vector, then the
current contents of the cell are erased, and if it’s one vector then the current
contents of the cell are remembered. The input gate, i ∈ RH , controls how
much information from the cell’s input, ĉ ∈ RH , should be written to the
cell. If the input gate is a zero vector then no new information is added
to the cell. The output gate, o, controls how much information should be
output by the LSTM from the cell. W ∈ RD×H and U ∈ RH×H are the
input and recurrent weight matrices, the bias terms are denoted by b ∈ RH ,
� is element-wise multiplication and tanh is the hyperbolic tangent function,
a non-linear activation function which bounds outputs between zero and one.

When the forget gate is a one vector and the input gate is a zero vector,
then the current cell is equal to the previous cell c(t) = c(t−1). Hence, the
partial derivative is one and the gradient can flow freely without exploding
or vanishing.

The LSTM is ubiquitous in natural language processing, so much so that
when researchers and practitioners mention recurrent neural networks, they
are usually referring to LSTMs. In this thesis a multi-layer bi-directional
LSTM is used as the RNN of choice, unless explicitly noted otherwise, hence:
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Z = fθm(X) = H(L)

H(l) = [h(t,l)
→ ;h(t,l)

← ]Nt

h(t,l)
→ = LSTMl

→(z(t,l)
→ ,h(t−1,l)

→ , c(t−1,l)→ )

h(t,l)
← = LSTMl

←(z(t,l)
← ,h(t−1,l)

← , c(t−1,l)← )

E = [e(t)]Nt
E = XW

In other words, the features, Z, are the concatenation of the forward and
backward hidden states from the final layer LSTMs across all time-steps,
H(L). L denotes the number of layers, z(t,l) = e(t) when l = 1, i.e. the first
layer LSTM inputs are the embedding vectors, and z(t,l) = h(t,l−1), when
l > 1, i.e. the subsequent layer LSTM inputs are the hidden states output
by the LSTM from the previous layer.

3.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are extensively used in modern ap-
proaches to computer vision. They have been used in image classification
[143, 244, 99], image segmentation [228] and object detection [78, 222], but
have also been applied to natural language processing in applications such
as text classification [135] and neural machine translation [76].

A CNN consists of multiple convolutional layers. Each convolutional layer
contains J convolutional kernels (also called convolutional filters or receptive
fields) with a defined height, width and depth. However, when applied to
sequences they only have a width and depth, with the depth usually equal
to D, the size of the embedding vectors. This is known as a 1-dimensional
CNN. These kernels "slide" over the embedded input sequence and at each
time-step multiply the kernel weights by the embedding values covered by
the kernel, e.g. a 3 ×D kernel covers three embedding vectors at once and
calculates a hidden state for all kernels, h(t)

3 ∈ RJ as:

h
(t)
3 = e(t−1)W1 + e(t)W2 + e(t+1)W3 + b
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e(t) ∈ RD is the embedding of input element t, Wi ∈ RD×J are the kernel
weights, and b ∈ RJ is the bias term. The values of the kernel are shared
across every time-step, making the convolutional layer translation invariant,
i.e. a sequence of three input elements will give the same h value no matter
where they appear in the input sequence. However, the convolutional layer
does not contain information about where those three input elements appear
within a sequence. Each of the J filters in the example above can be thought
of as learning to extract features from a bag of tri-grams from an embedded
sequence.

More generally, the equation to calculate the hidden state at time-step t using
a convolutional layer with kernel width k is:

h
(t)
k = b +

k∑
i=1

et+(i−k+1)Wi

The hidden states at each time-step can be concatenated together to get a
sequence of hidden states, H ∈ RN×J . To ensure input and output are the
same lengths, each sequence is padded with k − 1 zeros, thus all et for t ≤ 0
and t > N are zero vectors, and only odd kernel widths are used.

For the CNN architecture used in this thesis, K convolutional layers, all with
J kernels but each with different widths, are applied directly to the input
sequence. All CNN layers use a stride of one, and no dilation is used. The
outputs of each of these convolutional layers are concatenated together and
then passed through a rectified linear unit (ReLU), a non-linear activation
function given by:

ReLU(x) =

{
x, if x > 0
0, otherwise

Hence, the CNN architecture calculates features, Z, as:
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Z = fθm(X) = H

H = [ReLU(h(t)))]Nt

h(t) = [h
(t)
k ]Kk

h
(t)
k = b +

k∑
i=1

et+(i−k+1)Wi

E = [e(t)]Nt
E = XW

The features are the sequence of hidden states, H , where each hidden state,
h(t), is the concatenation of K convolutional layers, each with J kernels and
width k, passed through a rectified linear unit. Each convolutional layer is
applied directly to the input embeddings, e(t).

3.5 Transformer

The Transformer is a relatively recent neural network architecture, initially
designed for neural machine translation [270] although Transformer variants
have been used to achieve hold state-of-the-art performance across almost all
natural language processing tasks, such as: summarization [217, 301], ques-
tion answering [66, 217], language modeling [214, 215, 63, 140, 40], named
entity recognition [66, 289], natural language inference [290, 188] and general
language understanding [66, 290, 217].

Transformers do not contain any recurrence or convolution operations, and
can be parallelized at scale, allowing them to be scaled up considerably. This,
along with the growing amount of data and compute, has led to Transformer-
based models frequently being used to achieve state-of-the-art results in many
branches of machine learning research.

The Transformer heavily relies on the use of attention, which was popularized
in neural networks by Bahdanau et al. [26]. Attention is a normalized vector,
obtained by passing an alignment vector through a softmax function. The
attention vector is then applied to other elements to get a weighted sum of
those elements. Bahdanau et al. use attention in neural machine translation,
where they first generate a sequence of hidden states for the input sequence,
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then at each time-step, when generating the translated output sequence one
word at a time, the attention is heavily weighted on the hidden states corre-
sponding to the aligned words within the input sequence. For example, when
translating the phrase "Ich habe Hunde" from German to English, after out-
putting the words "I have", the attention vector should be concentrated on
the hidden state for the word "Hunde" for translating it to the English word
"dog". The key concept is that the alignment vector is learned by the model
itself and is dependent on the current context.

In a Transformer, the embeddings, E ∈ RN×D, are passed through L blocks
(sometimes called layers). Within the first block the embeddings are used as
input to three linear layers, q, k, and v to get Q,K and V , all RN×D, i.e.:

Q = q(E) = EWq + bq

K = k(E) = EWk + bk

V = v(E) = EWv + bv

Wq,Wk and Wv are RD×D and bq, bk and bv are RD. Q,K and V are known
as the query, key and value, respectively.

The alignment vector is then calculated as the scaled dot product between
the query and the key, as:

alignment(Q,K) =
QKT

√
D

This alignment (sometimes called score or energy) is then passed through a
softmax activation function to get the attention:

A = softmax
(
alignment(Q,K)

)
A ∈ RN×N , and each row, i, contains the attention between input element
i and all N other elements. As the input sequence is calculating attention
across itself, this is sometimes known as self-attention. This interconnection
between all items in a sequence, has also led researchers to find parallels
between Transformers and graph neural networks [69, 127].
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The attention is then applied to the value:

C = AV

C ∈ RN×D is known as the context and each element of C is a weighted sum
of V .

The Transformer uses a novel variant of attention called multi-head atten-
tion. Before the alignment vector is calculated, Q,K and V are reshaped
to RN×h×D/h where h is the number of heads and must be a multiple of D.
The context is then calculated across each of the multiple heads individu-
ally, concatenated together and then reshaped to RN×D. This can be seen as
performing h attention calculations in parallel.

The context is then summed with the input embedding to the block via a
residual connection and then passed through a layer normalization layer,
which normalizes the residual sum across the D-dimension by subtracting
the mean and dividing by the variance.

R = LayerNorm(E + C)

R ∈ RN×D is then passed through two linear layers with a non-linear activa-
tion function between them:

S = α(RW1 + b1)W2 + b2

S ∈ RN×D,W1 ∈ RD×S,W2 ∈ RS×D, with S >>> D. α is the non-
linear activation function, which is ReLU in the original Transformer model,
although GELU [104] is now more commonly used. This can be seen as
"expanding" the D-dimensional states into S dimensions before contracting
them again.

The final operation within the block is another residual and layer normaliza-
tion:

H = LayerNorm(R + S)
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H ∈ RN×D is then used as input to the next Transformer block which con-
tains the exact same set of operations, hence:

H(l) = TransformerBlock(H(l−1))

Where H(l) = E when l = 1.

One thing to note is that the Transformer has no method of knowing the
position of each element within a sequence. The solution is to calculate a
position embedding for each position and add them to the word embeddings.

E = XWe + PWp

P ∈ RN×P are the position indices, i.e. the first element of P is a one-hot
vector with the one in the first element. Wp ∈ RP×D is the position weight
matrix, and P is the maximum length sequence the Transformer can handle,
usually 256 or 512.

In the original Transformer implementation [270], the position embeddings
are calculated as different frequency sine and cosine waves. It is now more
common to learn Wp [66] from scratch, however some recent research [119,
236] has shown position embeddings actually decrease the performance of
Transformer models.

Hence, the Transformer calculates features, Z as:

Z = fθm(X) = H(L)

H(l) = TransformerBlock(H(l−1))

E = [e(t)]Nt
E = XW

The features Z are the output of the final block, H(L). The input to a block
is the output of the previous block, H(l−1), and the first block’s input is the
sequence of embedding vectors, H(1) = E. Within each block: the query, key
and value are calculated and then split into h heads; the scaled dot product
is used to obtain the alignment between the query and key; the attention is
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calculated from the alignment and applied to the value to get the context;
the context has a residual connection applied and then passed through a
layer normalization layer; the result of this is then expanded and contracted
through two linear layers with an activation function between them; and
finally, another residual connection and layer normalization is calculated.

3.6 Hyperparameters

Each of the four models are defined by their own set of hyperparameters. A
parameter refers to the weights and biases that are learned via the architec-
ture. A hyperparameter is used to define the specifics of the architecture or
training set-up, e.g. the number of neurons in a hidden layer, the learning
rate, etc. The model hyperparameters are shown in Table 2.

The models are all trained using the Adam optimizer [136] using the default
learning rate of 0.001. Adam adapts the learning rate of each parameter
individually over time, reducing the learning rate for parameters updated
more frequently and increasing it for parameters updated less frequently. It
also applies momentum to the parameter updates, making them a weighted
sum of the current and previous parameter update. Although there is no
single optimization algorithm considered the "best", empirical results [237,
56, 248] have shown Adam to consistently perform well across a range of
tasks.

Training is performed using a batch size of 128. This is chosen as it is the
largest batch size that fits into GPU memory whilst using the largest (in
terms of number of parameters) model, the Transformer. The gradients are
clipped to a value of 1.0 before used for parameter updates. This is used
to prevent exploding gradients in some architectures. Models are trained for
5 epochs and each experiment is run 3 times using different random seeds,
with the results averaged across the 3 runs.

For all models, the embedding vectors are 128-dimensional, and the dropout
rate is set to 0.1. Dropout [250] is a regularization technique used to prevent
over-fitting in neural network models. It works by setting a proportion (de-
fined by the dropout rate) of the neurons to zero during each forward pass
when training. Dropout reduces the ability for neurons to depend on other
neurons from previous layers, making the parameters more robust, and can
also be thought of as training multiple smaller neural networks and ensem-
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Model
Hyperparameter NBoW LSTM CNN Transformer
Embedding Dim. 128 128 128 128
Hidden Dim. - 256 - 256
Layers - 2 - 3
Heads - - - 8
Filters - - 100 -
Filter Sizes - - 3, 5, 7 -
Dropout Rate 0.1 0.1 0.1 0.1
Parameters (M) 6.6 6.8 9 7.1

Table 2: Hyperparameters used for the NBoW, LSTM, CNN and Transformer
models, and the number of parameters in each model.

bling them together when dropout is "turned off" during evaluation.

For the NBoW model, the only parameters are contained within the embed-
ding layer. Dropout is applied to the output of the embedding layer.

The LSTM model used is a two-layer bi-directional LSTM. The hidden states
are 256-dimensional. Dropout is also applied to the output of the embedding
layer and on the hidden states passed the two LSTM layers.

The CNN passes the input through the embedding layer and then applies
100 filters, of widths 3, 5 and 7, and depths equal to the embedding dimen-
sion, over the sequence. The output of each filter is passed through a ReLU
activation function, and then the result of the 300 filters at each time-step is
concatenated together. Dropout is applied to the output of the embedding
layer and to the concatenation of the filters.

In the Transformer, positional embeddings are learned and the GELU acti-
vation function is used over ReLU to calculate S. The hidden dimension,
S is set to 256. The Transformer contains three layers ("blocks") and the
multi-head attention layer uses 8 heads.

Generally, these hyperparameters were chosen using values which are com-
monly used across machine learning research, as well as values which were
suitable for the compute resources used – most experiments were performed
on a single NVIDIA GTX 1080 Ti GPU. Extensive hyperparameter tun-
ing was not performed, due to limitations in time (due to the number of
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experiments performed) and available compute resources. Fine-tuning was
performed using the same hyperparameters used to train the pre-trained
models.

All experiments are implemented in PyTorch [203] and use the PyTorch’s de-
fault weight initialization method, which is usually U(− 1√

fan in
, 1√

fan in
), where

fan in is the number of input features into the layer. The exception to this
is the Transformer model which is initialized from a truncated normal distri-
bution with a standard deviation of 0.02, following BERT [66]. The reason
for the truncated normal distribution with a low standard deviation is that
Transformer models have issues with stability when training [299, 298, 302]
and require initializing values from very small distributions.
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4 Data

4.1 CodeSearchNet

In computer vision and natural language processing, several popular bench-
marks are used to compare performance between models. For example com-
puter vision has MNIST [152], CIFAR10/100 [142], ImageNet [65] for image
classification, and natural language processing has SuperGLUE [275] for nat-
ural language understanding. One issue in machine learning for code is the
lack of standardized benchmark datasets. The majority of papers scrape
their own dataset from open-source repositories, usually using some quality
metric such as number of "stars", and then apply their own methods to this
dataset. LeClair and McMillian [151] argue that this reduces the progress of
research as each researcher must run all compared models on their scraped
dataset. They also briefly discuss how the performance of models across dif-
ferent datasets varies wildly. There also exists an issue with code duplication
in open-source repositories, as Lopes et al. [166] show that 70% of code on
GitHub – the most commonly used website for scraping code for datasets
– is a duplicate of existing code. Allamanis examined the effect of this du-
plication on machine learning for code models [8] and found that removing
duplicates significantly reduces the reported performance of the examined
models.

Due to the above issues, this thesis primarily uses the CodeSearchNet
dataset6 [116] throughout. Using a standardized dataset, instead of scraping
a novel dataset, allows for easier replication of results obtained in this thesis.
This dataset has all duplicates removed using the techniques described by
Allamanis in [8], is available in both raw and pre-tokenized formats, and has
already been split into training, validation and test sets. It is also available
through the HuggingFace Datasets library7, a popular library for accessing
standardized datasets, further increasing standardization. As such, this work
uses CodeSearchNet via the HuggingFace library.

The CodeSearchNet dataset consists of over two million functions across
six programming languages: PHP, Java, Python, Go, JavaScript and Ruby8.

6https://github.com/github/CodeSearchNet
7https://huggingface.co/datasets/code_search_net
8The CodeSearchNet dataset also contains an extra 99 evaluation examples manu-

ally collected by human experts. These are not used for the experiments in this thesis
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Language Functions Average Tokens Total Tokens (M) Unique Tokens (M)
PHP 578,118 127 73.5 2
Java 496,688 112 55.8 1.9
Python 457,461 117 53.7 2.4
Go 346,365 107 37.1 0.9
JavaScript 138,625 170 23.7 0.8
Ruby 53,279 69 3.7 0.2
All 2,070,536 119 247.3 7.7

Table 3: CodeSearchNet dataset statistics using the TreeSitter to-
kenisation method.

Available for each function is: the raw code string, code tokens obtained
with TreeSitter9, the raw documentation (the code comments associated
with the function), and the documentation tokens obtained via a regular
expression10 that splits a string on whitespace and punctuation. The dataset
statistics are shown in Table 3

One issue faced when using the TreeSitter tokens is the large number of
unique tokens within the dataset. Natural language processing models have
a bound vocabulary size, usually within the tens of thousands, and any time
a natural language processing model encounters a token not within its vo-
cabulary that token is replaced by an out-of-vocabulary (OoV) token (also
commonly called an unknown token and denoted by <unk>). In natural lan-
guages, OoV tokens are relatively rare when using a sensible vocabulary size,
however in programming languages the number of unique tokens is consid-
erably higher as function and variable names are usually made of a concate-
nation of several words describing the intended purpose of the function or
variable, e.g. getAspectRatio, getScreenWidth, getScreenHeight.

There have been some approaches to the OoV problem which dynamically
update the vocabulary [62, 101], however the most common approach to re-
ducing the vocabulary size is by splitting tokens into sub-tokens, e.g. splitting
on camel case getAspectRatio becomes the three sub-tokens get, Aspect
and Ratio, and splitting on snake case set_frequency becomes the two
sub-tokens set and frequency. Instead of naively splitting the TreeSit-

9https://github.com/tree-sitter/tree-sitter
10https://github.com/github/CodeSearchNet/blob/master/src/dataextraction/utils.py#L7
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Language Average Tokens Total Tokens (M)
PHP 187 108.3
Java 174 86.5
Python 284 130
Go 159 55.2
JavaScript 274 38
Ruby 134 7.2
All 205 425

Table 4: CodeSearchNet dataset statistics using BPE tokenization
method on the raw code string.

ter tokens further into sub-tokens, the work in this thesis uses byte pair
encoding (BPE) to tokenize the raw code string, ignoring the TreeSit-
ter tokens completely. BPE tokenization involves learning a tokenizer from
data by splitting tokens based on commonly found sub-strings. For example,
getScreenWidth and getScreenHeight would become four unique tokens
under the naive sub-token approach – get, Screen, Height and Width –
but under BPE tokenization would become only three unique sub-tokens –
getScreen, Width and Height. Using BPE has been shown by Karampatsis
and Sutton [132] to significantly improve the performance of neural language
models on programming languages, and is now becoming commonly used on
natural languages [240, 214, 215, 40].

The BPE tokenizer used is from the HuggingFace Transformers library11. It
has been trained on the training data from all six languages in the Code-
SearchNet dataset with a fixed vocabulary size of 52,000 sub-tokens. There
are now no OoV tokens within the data used, as the BPE tokenizer will re-
peatedly split the raw code string until it matches an item in the vocabulary,
with the shortest sub-tokens being individual characters. One disadvantage
of this is the increased length in the number of tokens per function. Table 4
shows the average tokens per function and total tokens per language when
the BPE tokenizer is used. It can be seen that, across all six languages,
the average tokens per function and the total number of tokens increases by
1.7×.

11https://huggingface.co/huggingface/CodeBERTa-small-v1
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To narrow the scope of experiments in this thesis, most of the work is fo-
cused on the Java data within CodeSearchNet. Java was chosen as it has
the second most number of functions within the CodeSearchNet dataset,
and, compared to PHP, it is commonly used in machine learning applied to
programming languages [12, 21, 20, 18, 247, 288, 151] and is one of the most
popular programming languages used by software developers12,13,14. How-
ever, advances in natural language processing on English data also apply to
other natural languages with the same roots, e.g. French and German, so it
is believed that the findings obtained in this thesis are not be unique to Java
and should also be applicable to other imperative programming languages.

4.2 WikiText-103

In some experiments, natural language data is used to provide a compari-
son to the Java code. The natural language data used is the WikiText-
103 dataset [180], a collection of 28,595 articles from English Wikipedia.
WikiText-103 was chosen over other natural language datasets as it com-
monly used for language modeling15 and is comparable in size to the Java
dataset from CodeSearchNet – it is actually 1.7 times larger, in terms of
number of tokens, however other language modeling datasets are consider-
ably smaller (the Penn Treebank dataset [177] is 100 times smaller) or larger
(the Billion Word Benchmark [51] is 100 times larger). BPE tokenization is
also applied to this dataset, using the same BPE tokenizer as the one applied
to the CodeSearchNet data. As this tokenizer is trained on programming
languages, it leads to longer sequences of tokens than if a BPE tokenizer
trained on English language data were used (WikiText-103 is described in
[180] as having a total of 104M tokens, however our BPE tokenization of
WikiText-103 has closer to 149M tokens). However, this was chosen so the
data from all six programming languages and the natural language share a
single vocabulary and tokenization method.

12https://insights.stackoverflow.com/survey/2020/#most-popular-technologies
13https://insights.stackoverflow.com/survey/2019/#most-popular-technologies
14https://insights.stackoverflow.com/survey/2018#most-popular-technologies
15http://nlpprogress.com/english/language_modeling.html#wikitext-103
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5 Language Modeling for Source Code

5.1 Introduction

The most common application of machine learning for source code is language
modeling (see Chapter 2, Section 2.3). A language model is a statistical model
which assigns a probability to a sequence consisting of one or more tokens,
x. The goal of a language model is to estimate the probability of a sequence
of tokens:

P (x1, x2, · · · , xN) =
N∏
n=1

P (xn|x1, · · · , xn−1)

Language models can also be thought of as generative probabilistic models,
as given a sequence of tokens they produce a probability distribution over
the next token in the sequence. Using a well-trained language model, tokens
can be repeatedly sampled to generate likely sequences. For example, given
the sequence of tokens printf, ", Hello, World, !, a well-trained language
model should predict the token " with a high probability.

Traditionally, P was an n-gram language model, in which the probability
of a token given a sequence was the proportion of times that same token
followed that same sequence within some training data. n-gram language
models usually have smoothing applied to ensure all sequences have a non-
zero probability, even if they did not occur with in the training data.

Hindle et al. [109] were among the first to use language models for source
code. In their paper they refer to the language model as measuring natural-
ness of code. They note that although natural language is complex, humans
tend to stick to a set of common utterances and idioms. This repetition
and predictability allows natural language processing techniques to work ef-
fectively across all natural languages on all tasks. Programming languages
are also complex, however programs are written by humans in a way that is
meant to be understood by other humans. Because of this, they mostly use
simple, repetitive, predictable idioms and thus the same techniques applied
to natural languages should also be applicable to programming languages.
For example, the code for(int i=0;i<10 is most likely followed by ;i++){,
and a well-trained language model should be able to predict the sequence of

71



tokens that form ;i++){ with a reasonably high probability.

The performance of a language model is typically measured using cross-
entropy :

H(x1, x2, · · · , xN) = − 1

N

N∑
n=1

logP (xn|x1, · · · , xn−1)

Or, perplexity, PP = eH . In both of which, lower is better.

One problem is that n-gram language models are unable to obtain any con-
text further than the n token window. Increasing n leads to sparsity in the
occurrence counts as longer sequences are less likely to occur in the training
data, causing n-gram language models to generalize poorly across relatively
small domain shifts, i.e. where common sequences in the test data did not
appear in the training data.

This problem with n-gram language models, along with the advances in neu-
ral networks, mean that recurrent neural networks have become the most
common approach to language modeling, i.e. P is now a recurrent neural
network model which takes in a sequence of tokens and outputs a probabil-
ity distribution over the next token in the sequence. In theory, a recurrent
neural network’s hidden state allows it to keep information over arbitrarily
long sequence lengths.

Language modeling is a common task in natural language processing as it has
now become common to take a trained language model and fine-tune it on
the desired downstream task, e.g. text classification, question answering, etc.
This is known as transfer learning [303]. Transfer learning is frequently able
to achieve improved results compared to training a model on the downstream
task from scratch, and usually allows for sufficient performance even with a
low number of training examples.

Due to language models being trained using a form of self-supervised learning
[163] – where the labels come from the data itself – they can leverage large
amounts of unlabeled data. Language models trained on natural language
usually get this data by scraping it from the internet. Language models for
source code are able to leverage websites that host open-source repositories,
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such as GitHub16 or GitLab17. As this large amount of data is available,
language models for source code are able to be trained and then fine-tuned
to improve the performance on any downstream task, making them a com-
mon research topic for machine learning on source code as language model
perplexity correlates with transfer learning performance [190, 3].

A relatively new approach to language modeling is masked language model-
ing [66]. Instead of predicting the next token in a sequence, one (or more)
tokens within the sequence are replaced by a <mask> token and the masked
language model is trained to predict what the original token was. For exam-
ple, given the sequence for(<mask> i=0;i<10;i++){ the masked language
model should predict int with a high probability. The benefits of masked
language modeling is that it allows the prediction to use information from
both sides of the masked token, whereas standard language modeling can
only use information preceding the token to be predicted.

This chapter investigates language modeling applied to the CodeSearch-
Net dataset (detailed in Chapter 4, Section 4.1) using the models discussed
in Chapter 3. Experiments aim to answer three main questions: do masked
language models outperform standard language models? Does the Trans-
former, the state-of-the-art language model for natural languages, also pro-
vide the best performance on programming languages? Can the findings
of Hindle et al. [109], that the perplexity of source code is less than that
of natural language, be independently replicated on this dataset with these
models?

5.2 Methods

In order to prepare the data to be used for language modeling, all functions
are tokenized, using the tokenizer detailed in Chapter 4, Section 4.1, and
then appended together into a single sequence with an end of sequencetoken,
<eos> appended between each individual sequence. The sequence is input
into the models as chunks of N tokens, where N is chosen uniformly between
45 and 55, similar to [179]. For the standard language modeling task, the
target for each element in the sequence is the next token in the sequence,
i.e. the target is the input shifted by one time-step. For the masked lan-

16https://github.com/
17https://gitlab.com/
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guage modeling task, 15% of tokens are replaced by <mask> tokens and the
model has to predict each of the original masked tokens. This is done both
for the Java data in the CodeSearchNet dataset and the entirety of the
WikiText-103 dataset.

As standard language modeling requires architectures that are unable to
"see" the inputs from future time-steps (or else they can simply see the next
token in the sequence and don’t need to learn it) only the NBoW and uni-
directional LSTM models are trained as standard language models. The
NBoW model does not pass information between time-steps, so is predicting
a token based only on the previous token. The uni-directional LSTM model
only passes information forward in time, so can use information from the
"past", but not the "future", to make predictions. The CNN and Transformer
are able to see information from future time-steps, so are not trained as
standard language models.

Masked language models are able to use information from the whole sequence,
so a bi-directional LSTM, CNN and a Transformer are trained as masked
language models. Training an NBoW model as a masked language model
would involve training a model to predict the true token behind a <mask>
with no other information and would involve simply predicting the most
common token in the dataset. Due to this, an NBoW model is not trained
as a masked language model.

The task specific head in each of the language models is a linear layer which
takes in the sequence of features from the model, Z ∈ RN×F , and for each
feature applies a weight and bias followed by the softmax function: ŷ =
softmax(zW +b). With z ∈ RF , W ∈ RF×V , and b ∈ RV . F is the features
output by the model, V is the size of the vocabulary which is defined by the
tokenizer.

The model and training hyperparameters are detailed in Chapter 3, Section
3.6.
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Model Type Language Train Perplexity Validation Perplexity Test Perplexity
NBoW LM Java 69.79 89.10 97.55
NBoW LM WikiText-103 106.70 95.55 100.13
LSTM LM Java 24.24 28.83 30.14
LSTM LM WikiText-103 62.71 46.71 48.57
LSTM MLM Java 15.09 17.56 18.71
LSTM MLM WikiText-103 22.63 16.55 17.96
CNN MLM Java 30.65 36.36 39.56
CNN MLM WikiText-103 35.68 24.55 26.16
Transformer MLM Java 13.77 14.15 14.67
Transformer MLM WikiText-103 34.91 18.88 23.01

Table 5: Results for the language modeling task. Lower perplexity is better.
It can be seen that the Transformer trained as a masked language model
(MLM) outperforms all other models and that the LSTM trained as a masked
language model outperforms the LSTM trained as a standard language model
(LM). Generally, the perplexity across the natural language data is lower than
across programming language data – with the exception of the CNN MLM.
The best result for the natural language data (obtained by the LSTM MLM)
and the Java data (obtained by the Transformer MLM) is shown in bold.

The expected results are, that for both datasets, masked language models
outperform standard language models, and that the masked language model
Transformer outperforms all models. This is a common finding in the natural
language processing literature, but has not been verified on programming
languages. It is also expected that the test perplexity across the Java data
is lower than WikiText-103, as Hindle et al. [109] state that "software is
far more regular than English".

5.3 Results and Discussion

Table 5 shows the results for standard and masked language modeling tasks
in terms of train, validation and test set perplexities. Figure 2 shows the
perplexities obtained on the validation set during training for the standard
language models. Figure 3 shows the perplexities obtained on the validation
set during training for the masked language models.

First, looking at the results across the Java data, it can be seen that the
masked language model Transformer provides the lowest test perplexity.
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Figure 2: Language model results obtained on the validation set for the
LSTM (blue) and NBOW (cyan) architectures on Java (solid lines) and Wiki-
Text103 (dashed lines) data. It can be seen that programming languages
obtain a lower validation perplexity than natural languages.
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Figure 3: Masked language model results obtained on the validation set for
the CNN (green), LSTM (blue), NBOW (cyan) and Transformer (red) archi-
tectures on Java (solid lines) and WikiText103 (dashed lines) data. Unlike
standard language modeling, the perplexity obtained for programming lan-
guages is not always lower than that of natural languages.
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However, it is the LSTM trained as a masked language model which pro-
vides the lowest test perplexity for the WikiText-103 data. It has been
shown that a bi-directional LSTM can outperform a Transformer when both
are only trained with a small amount of data [72, 68]. However, these find-
ings – that LSTMs outperform Transformers on small datasets – are only
on natural language. On the programming language data, which is even
smaller than the natural language data, the Transformer outperforms the
bi-directional LSTM.

One potential explanation for this novel finding – that Transformers outper-
form LSTMs on small, programming language datasets – is that the Trans-
former models are inherently superior for performing language modeling on
source code. Within the Transformer architecture, all tokens are intercon-
nected in the multi-headed attention layer, leading some researchers to find
parallels between Transformers and graph neural networks [69, 127]. Graph
neural networks are commonly applied to programming languages to make
use of the internal representations of source code, e.g. abstract syntax trees,
control-flow graphs, etc. Perhaps this internal graph representation lever-
aged by the Transformer allows it to outperform LSTMs, which view source
code as a sequence of tokens, even with a small amount of data. The Trans-
former is able to do this for programming languages more so than natural
languages, as in programming languages the tree structures are more explicit,
rather than implicit.

Comparing the results of standard language models against masked language
models by looking at the LSTM model specifically, it can be seen that the
masked language model has significantly lower perplexity. This echoes the
findings in the natural language processing literature, where masked lan-
guage modeling is now commonly used over standard language modeling,
and Transformers are used as they are easier to scale up with increased com-
putation compared to LSTMs.

Looking at the test perplexities obtained for each of the language model
trained on Java and WikiText-103 it can be seen that, generally, the lan-
guage models perform equally or better on the programming language than
they do on the natural language, even though there are 1.7 times more tokens
in the natural language dataset than the programming language one. The
NBoW and masked language model LSTM have comparable performance be-
tween Java and WikiText-103, whilst the Transformer and standard lan-
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guage model LSTM give significantly lower test perplexities for Java. The
one exception to this is the CNN masked language model, where the test
perplexity for the Java data is significantly higher than the WikiText-103
data.

CNN language models have had little attention, and the published work
on them notes that they still underperform LSTMs [206]. One reason why
they perform better on natural language than programming languages is due
to their limited filter widths. In the hyperparameters for the experiments
used in this thesis, the largest filter width in the CNN is 7. Hence, each
<mask> prediction can only use information from three tokens either side.
This limited context may be less of an issue on natural language than in
programming languages. Hindle et al. [109] show that the cross entropy
of n-gram language models plateaus at a lower order for natural language
than programming languages, implying that programming languages require
larger contexts but are easier to predict when given a suitably large context.

Shown below is an example output by the best performing model, the Trans-
former trained on Java code. The initial input is the code shown in blue
with a <mask> token appended to the end. The model predicts masked to-
ken, which is then appended to the input and fed back into the Transformer.
This is repeated until the model predicts an end-of-sequence, <eos>, token.
The model predictions are shown in red, and code formatting was added
manually.

public static String reverseString(String str) {
StringBuilder sb = new StringBuilder();
for (int i = str.length() - 1; i >= 0; i--) {
sb.append(str.charAt(i));

}
return sb;

}

The generated code shows the model is able to understand the desired func-
tionality from the method name alone, correctly construct an instance of the
StringBuilder class and loop through the given string in reverse, appending
each character to sb. However, there is a subtle bug in the code as sb should
be converted to a string, using sb.toString(); before being returned and
hence the function returns a StringBuilder object and not a String object,
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as denoted by the method declaration. It also appears the model is not aware
that the StringBuilder class has a built-in .reverse method as the above
code can also be written in a more concise and less error prone way as:

public static String reverseString(String str) {
String reversedStr = new StringBuilder(str).reverse().toString();
return reversedStr;

}

Using another example, where the model must generate code to convert a
given string to uppercase:

public static String upperCaseString(String str) {
return str.toUpperCase();

}

Here, the model is able to output the optimal solution by using the toUpperCase
method from the String class.

The above examples highlight how language models for code are able to
mostly generate correct code, especially when the desired functionality is
relatively simple, but sometimes introduce subtle bugs or miss methods which
would provide a simpler solution.

5.4 Applications

As language models can be used to generate sequences the most obvious
choice of application when applied to source code is code autocompletion
[41, 33, 153, 186, 255, 117]. With a masked language model, the input is the
original sequence with a <mask> token appended to the end. Most language
models are relatively large in terms of memory and computational require-
ments, hence take a non-negligible time to make a next token prediction
[254].

One method of applying language models in order to assist in providing
feedback is by feeding an input sequence to a language model, having it
predict each token in the sequence, and measure the average loss across the
whole sequence. The hypothesis is that a well-trained language model is
able to predict the tokens within correct code more accurately than in code
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containing bugs, thus the correct code has a lower loss value. This has been
shown to be true for n-gram language models [219, 279].

To test this hypothesis on the language models trained for this thesis, the
best performing language model, the masked language model Transformer,
is used to measure the average loss across two statements, one containing
a bug and one that does not. The "accuracy" is the number of times the
statement containing the bug received the higher loss. The dataset used
for this experiment is the test set from Hata et al. [98]18, which contains
568 pairs of buggy and corrected Java statements from actual open-source
repositories. Note that the weights of the language model are not updated
at all, this can be thought of as a zero-shot classification problem. Zero-shot
implies that a model is performing a task which it has not been explicitly
trained to do.

Figure 4 shows a histogram of the average per token losses obtained for the
correct and buggy statements. It can be seen that there is significant over-
lap between the two and this is reflected in the classification accuracy, a
mere 57%. However, by looking at the data, it is not surprising to see why.
An example buggy and correct pair is expect(arg).andReturn(arg); and
expect(arg).andReturn(arg).atLeastOnce(arg);. Without any wider
context, it is difficult to tell that it is because of the lack of .atLeastOnce(arg)
that the first statement is not correct.

To test if this approach is a viable proof-of-concept at all, the experiment is
repeated by taking the correct code and synthetically adding bugs by ran-
domly changing one of the tokens to another within the vocabulary19. Figure
5 shows the histogram for this experiment. In this scenario, the accuracy
jumps to 93%, implying that the task might now be too easy, however it
does show the ability for language models to detect "unnatural" code.

18Available at https://github.com/hideakihata/NMTbasedCorrectivePatchGenerationDataset
19This does not take the "type" of the token into account, i.e. it may switch a variable

with a semicolon causing the example to have a syntax error, reducing the difficulty of
the task by making the error significantly easier to locate as all the examples should be
syntactically correct.
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Figure 4: Histogram of average per token losses for the masked language
model Transformer across correct (orange) and statements containing actual
bugs (blue).

Figure 5: Histogram of average per token losses for the masked language
model Transformer across correct (orange) and statements containing syn-
thetic bugs (blue).
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A hypothetical use-case for a model that can detect how idiomatic a function
is would be to prioritize provision of feedback to students that produce the
least idiomatic code. This code would be least "natural" and would usually
imply that it is written in a non-idiomatic style that the student should aim
to correct in the future.

5.5 Conclusion

This section has detailed how language models, both standard auto-regressive
language models and the recently discovered masked language models, can
be applied to code. It has shown how masked language models outperform
standard language models for both natural and programming languages, and
that Transformers outperform NBoW, CNN and LSTM architectures when
used as language models on source code, which contradicts some research
stating that Transformers perform poorly on small datasets. It has also
shown the results of Hindle et al. [109], that programming languages are
more predictable than natural languages, to hold true. Though, the gap
between the two is smaller than it was for the n-gram language models used
by Hindle et al., and the lesser studied CNN language model actually finds
natural languages easier to predict.

Whilst discussing how these language models can be used to provide feed-
back, it has been shown that they are not effective in detecting subtle bugs
within single statements, however are able to easily detect synthetic bugs
which make statements very "unnatural". A hypothetical use-case has been
suggested, where student submissions containing the most unnatural code
should be prioritized, as these are more likely to be written in a non-idiomatic
style.
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6 Semantic Code Search

6.1 Introduction

One method that can be used to boost the productivity of software developers
is the use of semantic code search, also known as semantic code retrieval or
neural code search when using neural networks (see Chapter 2, Section 2.7).
Instead of a developer writing methods from scratch, they should be able to
search for existing methods which provide the same functionality. This is
most commonly seen when developers search a natural language query, such
as "how to reverse a string in Java", using a search engine and receiving
search results which contain code snippets on how to perform the desired
task – usually from the popular question-and-answer site, StackOverflow20.

The key challenge is understanding the semantics of both the source code
and the natural language query. To perform semantic code search effectively,
the methods must be able to understand that "reverse" in natural language
is related to the .reverse() method in Java. Simple queries like this are
aided by the fact that, as Hindle et al. [109] pointed out, programs and
programming languages are designed to be written and read by other humans,
so in theory the method to reverse a string could be called anything. However,
more complex semantic understanding of code is often required for some
simple natural language queries. For example, determining if a number is
odd or even requires performing modulo two and then checking if the result
is equal to zero.

Fortunately, advances in machine learning, specifically using deep neural net-
works, have led to progress in natural language understanding [260] through
the task of natural language inference [38] – determining if two natural lan-
guage sentences have the same semantic meaning. A deep neural network is
used to build a representation of each sentence, and then a similarity metric
is used to measure how "similar" the sentences are. As this has been shown to
successfully measure the similarity between natural language sentences where
the two sentences are in different languages [58], e.g. English and French, it
has also been applied between natural languages and programming languages
[46, 274, 116, 291, 280] in the context of semantic code search.

20For example: https://stackoverflow.com/questions/7569335/reverse-a-string-in-java
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The most common method of applying natural language inference to se-
mantic code search is to train two neural networks. The first encodes the
natural language sequence, typically called a query, into a single query em-
bedding tensor. The second encodes the programming language snippet into
a single code embedding tensor. A similarity metric is then used to measure
the similarity between the two embeddings, where relevant query and code
embeddings should have a high similarity and unmatched query and code
embeddings should have a low similarity. In other words, the code and query
encoders should map the two matching sequences nearby in high-dimensional
space.

Zc = CodeEncoder(Xc)

Zq = QueryEncoder(Xq)

s = Similarity(Zc,Zq)

Zc ∈ RN×F is the code embedding obtained from the code tokens Xc, Zq ∈
RM×F is the query embedding obtained from the Xq query tokens, and s ∈ R
is the similarity.

One of the main issues with machine learning models is that they require large
datasets in order to successfully train them. For natural language inference
tasks on natural languages this data has to be collected manually, limiting
the size of the datasets used. However, collecting natural language query
and programming language snippet pairs can be done automatically, such
as mining questions and answers from StackOverflow [292, 295]. The most
common method of automatically mining natural language and code pairs is
by leveraging the vast amount of code available from open-source reposito-
ries, which have their methods and corresponding doc-strings – the natural
language comments written within the method, usually used by automatic
documentation tools – scraped to be used for constructing large datasets.

Transfer learning has become incredibly popular in natural language pro-
cessing using deep neural networks. A model is first trained on a task, TA,
and then the weights of this model are fine-tuned on the desired downstream
task, TB. Compared to using randomly initialized weights for TB, fine-tuning
the weights from TA often leads to faster convergence and improved perfor-
mance. In natural language processing the most common pre-training task,
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TA, is language modeling due to its ability to learn from unlabeled data.

Transfer learning for machine learning on source code has received little at-
tention, which is ironic as the large amount of code available in open-source
repositories makes gathering data for language modeling relatively easy com-
pared to gathering data for natural language. To test the effectiveness of
transfer learning on source code, several experiments are performed by fine-
tuning a pre-trained language model. Each of the four models are trained
on semantic code search, in Java, using: randomly initialized weights, trans-
fer learning from a language model trained on Java, transfer learning from a
language model trained on six different programming languages, and transfer
learning from a language model trained on natural language data.

Another technique for natural language processing that has yet to receive
attention in machine learning for source code is data augmentation [223].
Data augmentation artificially increases the size of the dataset used to train
a model. It is commonly used in computer vision, where images are flipped,
cropped, skewed and color shifted. In natural language processing, words are
swapped for a synonym or their position is swapped around in a sentence.

For machine learning on source code, either swapping a single variable with
another variable or randomly swapping two tokens around will more than
likely cause the code to become incorrect, by either causing it to be uncompi-
lable or evaluate to a different result. However, how much does "correctness"
matter for the semantic code retrieval task?

Consider the query "how to reverse a string" and the relevant snippet reversedString
= myString.reverse(). What if all "punctuation", tokens not containing
alphabetic characters, were removed? The code would then be reversedString
myString reverse. Obviously this code would no longer compile, however it
would still contain all the relevant tokens to be able to correctly "pair" it with
the natural language query. What if instead of removing the punctuation,
the tokens were randomly shuffled? An example result of the shuffling would
be = reversedString () reverse . myString . Again, this would not
compile, but all the information is still within the code snippet – just not in
the right order. In this thesis, semantic code search is also performed using
these two augmentations, dubbed strip punctuation and shuffle tokens. The
performance of the models using these augmentations indicate how much in-
formation the models are using about the punctuation or the order of the
code tokens.
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The experiments carried out in this chapter explore semantic code search, us-
ing the CodeSearchNet dataset and the four models discussed in Chapter
3. The experiments aim to answer four research questions: which model
performs the best on semantic code search? Does transfer learning provide a
noticeable performance improvement? How should the models be pre-trained
to for optimal transfer learning performance? What effect do the proposed
data augmentation techniques, strip punctuation and shuffle tokens, have on
the performance of the models?

6.2 Methods

The experiments focus on the Java data within the CodeSearchNet dataset.
Each Java method has a corresponding doc-string. The doc-strings are used
as the query, and the method is used as the code. Both the code and query
are tokenized with the same tokenizer, detailed in Chapter 4, Section 4.1.
Each of the four models are used as both the code and query encoder, i.e.
performance reported for the Transformer model is where a Transformer is
used as both the code and query encoder. The two encoders have their
own distinct set of parameters, but share the same model architecture and
hyperparameters.

The code and query embeddings are obtained directly from the output of
each model, i.e. Zc ∈ RN×F and Zq ∈ RM×F are the sequence of features
and no task-specific head is used. Similarity is measured by averaging the
features across the sequence length for both the code and query embeddings,
and then calculating the inner product between the two averaged feature
vectors.

cc =
1

N

N∑
i=1

z(i)
c

cq =
1

M

M∑
i=1

z(i)
q

s = ccc
T
q

z ∈ RF is the embeddings of each individual token, c ∈ RF is the averaged
embeddings across the sequence length, and s ∈ R is the similarity.
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When training the models, a batch of code and query pairs are input into the
model at the same time. The loss used to update the model parameters is
calculated by maximizing the similarity of the actual code-query pairs whilst
minimizing the similarity between code i and query j, where i 6= j.

Li(s) = − log softmax(si)

s ∈ RB is the similarity between an embedded code and all embedded queries
within a batch of size B, and Li is the loss for element i in the batch,
calculated using the negative log-likelihood of the similarity between code i
and query i. The loss is averaged across all elements in the batch.

Performance on semantic code search is measured using mean reciprocal rank
(MRR). First, si is calculated between a code and all queries within the
batch. Then the similarity values are then sorted in descending order, and
the position of the actual matching query is calculated. This position is
called the rank and is used to calculate the reciprocal rank, 1

rank . The average
reciprocal rank across the entire batch is the mean reciprocal rank:

MRR =
1

B

B∑
b=1

1

rankb

MRR takes a value between 1 and 0, where higher values are better. A MRR
value of 1.0 implies the correct query had the highest similarity value for
each code example within the batch. A MRR value of 0.5 implies that, on
average, the correct query had the second-highest similarity value for each
code example within the batch.

To perform experiments with transfer learning, the code and query encoder
are both initialized with the parameters obtained via the language mod-
eling task detailed in Chapter 5. Each model is trained with four dif-
ferent initialization settings: the parameters initialized randomly, the pa-
rameters initialized using a language model trained only on the Java data
from the CodeSearchNet dataset, the parameters initialized using a lan-
guage model trained on the WikiText-103 dataset, and a language model
trained on all six languages in the CodeSearchNet dataset. For the LSTM
model, only the masked language model is fine-tuned, not the standard lan-
guage model. This is because semantic code search can take advantage of
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the bi-directionality of the LSTM (the standard language model was uni-
directional), and – as seen in Chapter 5, Section 5.3 – that the masked
language model outperformed the standard language model (research has
shown that lower language modeling perplexity positively correlated with
downstream task performance [190, 3]).

It is slightly unconventional to fine-tune a language model on the exact same
data as the downstream task, as done when fine-tuning the language model
trained only on the CodeSearchNet dataset. However, the belief is that
this experiment shows less about transferring generalized knowledge between
two distinct datasets, but instead how to obtain a good initial set of param-
eters for a downstream task.

Researchers have had success in transferring knowledge between distinct nat-
ural languages [304, 157] but transferring between natural languages and
programming languages is a novel concept. It should be possible to suc-
cessfully transfer knowledge between a natural language and a programming
language as code is written and designed to be read by humans, and thus
function and variable names should be self-descriptive, e.g. a method called
reverseString (which will be tokenized to reverse and string) will most
probably reverse a string. If the query also contains the tokens reverse
and string then it is expected that this query will have a high similarity
to the reverseString method code. Thus, performance on semantic code
search depends on the similarity of the features extracted between the code
and queries, and well-performing features can also be learned from natural
language data where the tokens carry the same semantic meaning as the
programming language data. This is not always the case, for example the
word "string" in natural language usually has a different meaning to that in
a programming language.

The ability to transfer knowledge from non-Java programming languages to
Java shows how general programming languages are when analyzed with ma-
chine learning. Consider two functionally identical methods in two different
programming languages, both with identical or similar method and variable
names. A query that has a high similarity to one of the methods should
also have a high similarity to the other method. Thus, learning similarity
between methods in one programming language should assist in determining
the similarity between methods in another programming language.
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Language Average Tokens Reduction
PHP 74 2.5
Java 85 2.0
Python 144 1.9
Go 74 2.1
JavaScript 120 2.3
Ruby 62 2.2
All 95 2.2

Table 6: CodeSearchNet dataset statistics with BPE tokenization on the
raw code string after applying the strip punctuation data augmentation, as
well as the reduction in the number of average tokens compared to non-
augmented methods. It can be seen that stripping punctuation approxi-
mately reduces the number of tokens by half.

If the above claim holds true, that it is only the existence of method and
variable names which provide information for semantic code search, then
the strip punctuation data augmentation should have negligible impact on
the performance of models. Stripping punctuation is performed by first per-
forming tokenization and then removing all tokens which do not contain any
alphabetic characters, e.g. semicolons, parentheses and braces. This is simi-
lar to removing stop words – the most common words which usually contain
low semantic information – in natural languages, used to reduce sequence
lengths and thus speed up computation. Removing stop words is less com-
mon in modern machine learning NLP pipelines as the models themselves are
capable of learning which tokens can be ignored and when, instead of these
tokens being explicitly removed. This data augmentation technique reduces
the average number of tokens from 174 to 84 for the Java data. Table 6
shows the reduction in tokens for all six languages, and it can be seen that
this augmentation cuts the amount of code tokens per example in half. The
strip punctuation augmentation is applied to the code tokens for the training,
validation and test data, and never to the query tokens.

If only the methods and variables provide information for semantic code
search, then does the order in which they appear matter? This is examined
using the shuffle tokens augmentation by randomly shuffling the code tokens
whilst training. This causes our models to treat the code tokens as a bag-
of-words, i.e. order is irrelevant, which should cause a negligible impact on
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the performance of models if they are simply looking for matching tokens
appearing in the code and query, but a larger decrease in performance if the
models are learning semantic representations by taking the order of tokens
into account. Data augmentation that involves shuffling rarely appears in
natural language processing – outside of learning to summarize via training
a model to output a correctly ordered sentence after receiving a shuffled
sentence [162, 217]. Shuffling tokens is only applied to the code tokens only,
not the query tokens, and the validation and test data are not shuffled.

The expected results are that when the models are randomly initialized the
LSTM model should outperform the Transformer model as it is usually the
case that Transformers require larger datasets or need to be initialized from
pre-trained models; performing transfer learning should improve the over-
all performance of every model, just as it does on natural languages, even
when transferring from natural language to programming language data, and
that a fine-tuned Transformer should outperform a fine-tuned LSTM; pre-
training on just Java should outperform pre-training on WikiText-103 due
to the domain-shift required when transferring from a natural language to
a programming language; pre-training on all six languages in the Code-
SearchNet dataset should provide a larger performance improvement than
just pre-training on the Java data as the domain-shift from one programming
language to another is smaller than natural language to a programming lan-
guage, and this domain-shift is offset by the 4 times increase in the number of
examples; the strip punctuation data augmentation technique should provide
a small decrease in performance as the punctuation tokens contain little infor-
mation; and the shuffle tokens data augmentation technique should provide a
larger decrease in performance as treating the code tokens as a bag-of-words
is detrimental to learning good semantic representations.

6.3 Results and Discussion

Table 7 shows the results obtained on the semantic code search experiments.
Figure 6 shows the MRR values obtained on the validation set during training
when using different initialization techniques, i.e. transfer learning. Figures
7, 8, 9 and 10 compare the results of the data augmentation techniques when
using different initialization methods.
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Model Initialization MRR ∆SP ∆ST
NBoW Random 0.2179 0.0217 0.0852
NBoW Java 0.2808 0.0615 0.0626
NBoW Wiki 0.3423 -0.0311 -0.0032
NBoW All 0.3093 -0.0059 0.0519
LSTM Random 0.5754 -0.0224 -0.0709
LSTM Java 0.6057 -0.0068 -0.0862
LSTM Wiki 0.6010 -0.0242 -0.1044
LSTM All 0.6396 -0.0045 -0.0905
CNN Random 0.4433 -0.0291 -0.0551
CNN Java 0.4514 -0.0231 -0.0830
CNN Wiki 0.4705 -0.0445 -0.0833
CNN All 0.4528 -0.0878 -0.0658
Transformer Random 0.5327 0.0089 -0.1990
Transformer Java 0.6505 -0.0143 -0.0961
Transformer Wiki 0.5869 -0.0010 -0.0764
Transformer All 0.6875 -0.0047 -0.0739

Table 7: MRR values obtained on the test set for semantic code search using
different initialization techniques and the increase (green) or decrease (red)
in the obtained MRR when using strip punctuation (∆SP) or shuffle tokens
(∆ST) data augmentation techniques. Random implies the weights are ran-
domly initialized, Java initialization uses a language model pre-trained on
Java code, Wiki initializes the weights from a language model pre-trained
on the WikiText-103 dataset, and All uses a language model pre-trained
on all six languages in the CodeSearchNet dataset. It can be seen that
the All initialization generally performs best, the strip punctuation data
augmentation reduces performance by a negligible amount, and the shuffle
tokens data augmentation reduces performance more than the strip punctu-
ation data augmentation. The best result for each initialization technique is
shown in bold.
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Figure 6: MRR values obtained on the validation set for semantic code search
across all four models – CNN (green), LSTM (blue), NBoW (cyan), and
Transformer (red) – when initialized from: random weights (solid line), a
language model pre-trained on Java (dashed line), a language model pre-
trained on all six languages in the CodeSearchNet dataset (dotted line),
and a language model pre-trained on WikiText-103 (dot dashed line).
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Figure 7: MRR values obtained on the validation set for semantic code search
across all four models – CNN (green), LSTM (blue), NBoW (cyan), and
Transformer (red) – initialized from random weights when using no aug-
mentation (straight line), the strip punctuation (circle markers) and shuffle
tokens (square markers) data augmentation.
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Figure 8: MRR values obtained on the validation set for semantic code search
across all four models – CNN (green), LSTM (blue), NBoW (cyan), and
Transformer (red) – initialized from a language model pre-trained on Java
when using no augmentation (straight line), the strip punctuation (circle
markers) and shuffle tokens data augmentation (square markers).
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Figure 9: MRR values obtained on the validation set for semantic code
search across all four models – CNN (green), LSTM (blue), NBoW (cyan),
and Transformer (red) – initialized from a language model pre-trained on
WikiText-103 when using no augmentation (straight line), the strip punc-
tuation (circle markers) and shuffle tokens (square markers) data augmenta-
tion.
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Figure 10: MRR values obtained on the validation set for semantic code
search across all four models – CNN (green), LSTM (blue), NBoW (cyan),
and Transformer (red) – initialized from a language model pre-trained on all
six languages in the CodeSearchNet dataset when using no augmenta-
tion (straight line), the strip punctuation (circle markers) and shuffle tokens
(square markers) data augmentation.
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From Table 7 and Figure 6 it can be seen that when no transfer learning
is performed – the models are randomly initialized – then the LSTM model
outperforms the Transformer model. This echoes the findings of Ezen-Can
[71], where LSTMs outperform Transformers when trained from scratch on
relatively small datasets. As with the language modeling task, both the
LSTM and Transformer outperform the CNN model, which outperforms the
NBoW model.

Table 7 and Figure 6 also show that all forms of transfer learning used in
these experiments, even transferring from a natural language to a program-
ming language, showed performance improvements. The Transformer model
received the largest performance improvements when transfer learning was
used, whereas the CNN model improved the least. This reflects the empirical
research results, that pre-trained Transformers such as BERT [66] are able
to achieve state-of-the-art results in many natural language processing tasks
when fine-tuned. Transfer learning for CNNs applied to natural languages
is not a commonly researched area, though Semwal et al. [239] have shown
that it requires techniques such as carefully tuning the dropout ratio and
only transferring parts of the weights – which is not done in these experi-
ments. The results also show that when performing transfer learning, the
Transformer outperforms the LSTM – except when initialized with weights
learned from the WikiText-103 dataset.

Comparing the performance improvement gained from pre-training on WikiText-
103 to pre-training on the Java data in the CodeSearchNet dataset it can
be seen that for the NBoW and CNN models, pre-training on WikiText-
103 offers greater performance, significantly so for the NBoW model; for the
LSTM model, both the WikiText-103 and the CodeSearchNet Java
data provide similar performance; and for the Transformer the Java data
offers significantly greater performance. In fact, for the NBoW and CNN
models, transferring from WikiText-103 provides the best overall perfor-
mance. The explanation that transferring from Java is superior to natural
language due to the latter requiring a larger domain-shift holds for the LSTM
and Transformer models, but not for the NBoW and CNN models. One po-
tential reason for this is that the NBoW and CNN models are unable to
capture the domain-specific knowledge required for programming languages
and instead benefit from the larger WikiText-103 dataset. However, even
the best performing NBoW and CNN models underperform the randomly
initialized LSTM and Transformer models.

98



Comparing the performance improvement gained from pre-training on the
Java data in CodeSearchNet compared to the data from all six program-
ming languages in CodeSearchNet it can be seen that transferring from
a language model trained on all six languages always offers superior per-
formance. This shows that there are features which can be learned from
a programming language that generalize across different programming lan-
guages. Hence, researchers should be training large language models across
a variety of programming languages to be used for transfer learning, and not
restricting these language models to being trained on a single programming
language.

If it is possible to generalize across programming languages, then why not
use the non-Java data for fine-tuning the models instead of only using it to
pre-train a language model? Taking that idea one step further, do our models
need to be trained on any Java data at all to achieve acceptable performance?
Table 8 shows results of models fine-tuned on either all six languages in the
CodeSearchNet, or all five languages that are not Java. The MRR shown
is across the Java test set. Experiments are run both when training from
scratch – random initialization – or when using transfer learning, where the
pre-training dataset is the same as the fine-tuning dataset. Hence, the results
with a Dataset of "No Java" have not been trained on a single example in
Java and are similar to a zero-shot learning set-up [286].

For the NBoW and CNN models, fine-tuning a language model trained on all
six languages on a dataset also consisting of all six languages provides better
performance than simply fine-tuning the model on the Java data. For the
LSTM and Transformer models, these results are comparable to fine-tuning
on just the Java data. However, as these models are trained on significantly
more data, they take considerably longer to train. Hence, the multi-task
learning set-up should not be used for this task. As expected, when no
Java data is used, the performance decreases. However, when the NBoW
and Transformer models are pre-trained and fine-tuned on the No Java data,
they outperform training those models from scratch on just the Java data.

Generally, the strip punctuation data augmentation reduces the performance
of a model by a negligible amount, and in some cases the performance slightly
increases. The average performance change is a decrease of only 0.013 MRR,
despite the fact that, on average, half of the tokens are removed from the code.
This has two potential explanations: the code tokens which only contain
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Model Initialization Dataset MRR
NBoW Random All 0.2788
NBoW All All 0.3854
NBoW Random No Java 0.1876
NBoW No Java No Java 0.2391
LSTM Random All 0.5853
LSTM All All 0.6384
LSTM Random No Java 0.2393
LSTM No Java No Java 0.4153
CNN Random All 0.5082
CNN All All 0.5119
CNN Random No Java 0.3176
CNN No Java No Java 0.3439
Transformer Random All 0.5745
Transformer All All 0.6612
Transformer Random No Java 0.4442
Transformer No Java No Java 0.5504

Table 8: MRR values obtained on the test set for semantic code search using
different initialization techniques and different datasets for fine-tuning. The
test MRR shown is across the Java data only. Random initialization implies
the weights are initialized randomly, All initialization uses a language model
pre-trained on data from all six languages in the CodeSearchNet dataset,
No Java initialization uses a language model pre-trained on the five languages
in the CodeSearchNet dataset that are not Java. A Dataset of All refers
to training on all six languages in the CodeSearchNet dataset, and No
Java refers to using the five languages in the CodeSearchNet dataset that
are not Java. The best result for each initialization-dataset combination is
shown in bold.
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"punctuation" carry very little information for performing semantic code
search, and/or the models examined in this thesis have no mechanisms to
take advantage of the existence of "punctuation" tokens. When viewing
code as an abstract syntax tree the punctuation tokens are removed as they
are implicit within the structure of the tree, hence it is the relationship
between the named variables (represented as edges within the tree) that is
used to build features. However, models that view code as a sequence of
tokens are unable to implicitly learn the tree structure and simply ignore
punctuation tokens within the code. This is also a potential reason why the
Transformer model performs best on this task, as research has shown [69,
127] that Transformers are implicitly building graphs between tokens within
their internal representations.

The shuffle tokens data augmentation also reduces the model’s performance
when applied. The average performance change is a decrease in 0.056 MRR,
a 4.3 times larger decrease than the strip punctuation data augmentation.
This means that the order of the code tokens within the dataset matters more
than the presence of "punctuation" tokens. Thus, the models are not treating
the code tokens as a bag-of-words, but are building features dependent on
the semantic meaning of the code tokens captured using information on the
order of which the tokens appear.

One way the model can be tricked is by using deceptive variable names.
Calculating the similarity between the doc-string (shown in green below) and
the two functions (shown in red and blue), the model (the best performing
Transformer model from Table 7) provides a higher similarity to the code
shown in red – which converts a string to uppercase but uses method and
variable names incorrectly implying it has something to do with reversing a
string – than to the code shown in blue – which reverses a string but uses
method and variable names incorrectly implying it has something to do with
reversing an array.
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Reverse a string

public static String reverseString(String str) {
String reversedString = str.toUpperCase();
return reversedString

}

public static String reverseArray(String array) {
String reversedArray = new StringBuilder(array).reverse().toString();
return reversedArray;

}

However, when passed an example which does correctly reverse the string
use appropriate variable names, such as:

public static String reverseString(String str) {
String reversedStr = new StringBuilder(str).reverse().toString();
return reversedStr;

}

The model then does allocate it a higher similarity than to the incorrect
example which uses relevant variable names. This highlights how the model
depends on appropriate variable names being used to match the given query.

6.4 Applications

Consider a well-trained semantic code search model that can: accurately
provide a relevant method given a natural language snippet, and also provide
a relevant natural language snippet when given a method. How can this be
used to provide feedback for students in an educational setting?

One use-case is propagating feedback at scale. Consider a scenario where
the number of students, and thus the number of student submissions to a
programming assignment, is significantly higher than the number of graders.
By using a semantic code search model, the average of the token features, cc,
can be used to map each student submission into F -dimensional space where
similar submissions are close together in this space. A clustering algorithm,
such as k-means clustering can then be used to automatically locate k clusters
of student submissions. The graders then only have to provide feedback to

102



k submissions, one from each cluster, and this feedback is propagated to all
submissions within that cluster. To increase the granularity of feedback, i.e.
to make it more specific instead of general, k can be increased. Thus, there
is a trade-off between the granularity of feedback and the amount of grading
to be done.

Another approach would be to show a student similar (close together in the
F -dimensional space) submissions to their own. This would allow a student to
see submissions that have received the same feedback and would either show
an alternative approach to solve the same problem, or examples written by
other students which contains the same mistakes they themselves made. By
showing an alternative approach, or another example of their own mistakes,
it is likely that the student can learn something from seeing these other
submissions.

Finally, two submissions from different clusters and one piece of written feed-
back belonging to one of the clusters could be display to the student. They
would then have to correctly determine which of the submissions the feed-
back belongs to. Alternatively, two pieces of feedback and one submission
could be shown. This allows students to learn for themselves what "good"
and "bad" code look like, so they can potentially avoid mistakes and patterns
commonly seen in "bad" code.

The above approaches however would require training a semantic code search
model on a dataset of code-feedback pairs. A dataset of this kind does not
currently exist, however all advances made in the task of semantic code search
would also apply to a dataset of code-feedback pairs. Thus, advances such
as improved performance (obtained by using state-of-the-art models, such
as Transformers) and increased sample efficiency (obtained by advances in
transfer learning, pre-training, fine-tuning, etc.), like the ones detailed in this
thesis, would also improve performance on semantic code search on a dataset
of code-feedback pairs.

6.5 Conclusion

This section has detailed experiments on semantic code search. It has shown
how, when randomly initialized – i.e. no transfer learning is performed, an
LSTM model outperforms the Transformer, CNN and NBoW models. How-
ever, when transfer learning is used, the Transformer model outperforms the
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LSTM, CNN and NBoW models. It has been shown that to achieve per-
formance improvements when using transfer learning, the pre-trained model
can be trained on either the same data used for the downstream task, data
that is in a different domain (a natural language instead of a programming
language), or a combination of multiple different languages within the same
domain (i.e. a mixture of different programming languages). However, the
best results are achieved using the mixture of different programming lan-
guages, which implies that there are features that the models can learn which
generalize across programming languages. Experiments also show that mod-
els pre-trained and fine-tuned on no Java data at all manage to outperform
models randomly initialized and trained directly on Java.

It has also been shown that removing all "punctuation" tokens (tokens which
do not contain alphabetic characters) – corresponding to removing over half
of the code tokens – has a negligible impact on performance. Finally, per-
forming data augmentation where the code tokens are randomly shuffled has
a detrimental impact on performance, implying that although the "punctu-
ation" tokens do not provide much semantic information, the order in which
the named tokens appear does provide useful and significant semantic infor-
mation for the models used in these experiments.

It has also been discussed how semantic code search models can be applied
to provide feedback – by propagating feedback to clustered similar student
submissions – and also be applied in a pedagogical setting – by allowing
the student to view similar submissions and having the students learn to
construct the correct code-feedback pairs themselves.

104



7 Predicting Method and Variable Names

7.1 Introduction

Semantically meaningful method and variable names assist programmers in
comprehending the behavior and intent of a given piece of code [35, 257, 155,
23, 48, 149, 148] (see Chapter 2, Section 2.4). In fact, poorly named methods
and variables make code harder to understand and maintain [112, 24, 25],
and lead to an increased likelihood in the number of bugs [1, 2, 44]. One
method of reducing the burden of programmers to repeatedly come up with
suitable names is to have a tool which will automatically generate method
and variable names based on the surrounding context, i.e. code tokens and
any natural language comments.

As with semantic code search (detailed in Chapter 6) the key challenge is
understanding the semantics of the context. For example, given a method
which contains the code snippet which accepts a string argument called
myString, contains the line myString = myString.reverse() and then re-
turns myString, what should the method be called? Ideally, something simi-
lar to reverseString. This requires understanding the relationship between
the variable names and the methods called on them, i.e. a variable called
myString is most probably a string, and it has the reverse method called
on it. Consider a method which takes in an integer, i, and contains the line
return i % 2 == 0, i.e. the method returns true if i is even, and false if i
is odd, so an appropriate name is isEven. However, being able to correctly
predict the method name isEven requires understanding the interaction be-
tween the modulo 2 operation and the comparison to 0.

In the literature it is common to predict method names only, and not the
names of the variables [16, 20, 18, 10]. Allamanis et al. [10] refer to this
as extreme summarization, as a method name can be thought of as a sum-
marization of the method body. This has led to the use of summarization
techniques used in natural languages to be applied to method name predic-
tion in programming languages. There are two types of text summarization
techniques: extractive summarization and abstractive summarization. Ex-
tractive summarization can only copy tokens directly from the input, it can-
not create original tokens. Abstractive summarization produces the summary
using tokens from a defined vocabulary. Among those, when used for pre-
dicting method names, abstractive summarization is used, as method names
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frequently use tokens which do not exist inside the method body. However, it
is common to use a mechanism, such as a pointer network [271] which allows
for copying tokens directly from the method body if required.

Abstractive summarization in natural language processing is commonly per-
formed with an encoder-decoder architecture [252, 55], which consists of an
encoder – which creates a sequence of features from the input sequence (the
method body) – and a decoder, which takes the encoded sequence and then
produces an output sequence (the method name), one token at a time.

Z = Encoder(X)

Ŷ = Decoder(Z)

X ∈ RN is the code tokens, Z ∈ RN×F is the sequence out features output
by the encoder, and Ŷ ∈ RM×V is the sequence of predictions for the M
method name tokens as a probability distribution over the vocabulary, V .
This probability distribution can be sampled to obtain actual method tokens
from the vocabulary.

The decoder can either output the entire method name in a single prediction,
e.g. the model outputs Y = reverseString, or it can output the method
name by outputting a sequence of tokens that can be combined to obtained
the predicted method name, e.g. the model outputs the sequence Y =
[reverse, String]. Research has shown that predicting the method as a
sequence of tokens outperforms predicting the entire method name in a single
prediction [18]. As the decoder’s output is constrained by a fixed vocabulary
size, V , a model that can only predicting entire method names in a single
prediction can only predict those within its vocabulary, whereas a model
predicting individual tokens can predict any method name that consists of
tokens within the decoder vocabulary.

The encoder-decoder architecture can be applied to any problem where the
input and output are both sequences, such as translation from one language
to another. Hence, this can be applied to variable names as well as method
names. This work focuses on predicting variable names over method names.
Allamnanis et al. refer predicting variable names as the VarNaming task [9].
The only condition is that the variable name that the model is attempting
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to predict has to be replaced by a <mask> token, so the model knows the
location of the variable name it is attempting to predict, but not what the
actual variable is named.

As with all modern machine learning tasks, abstractive summarization re-
quires large datasets. Unlike natural language summarization where the
summary has to be hand-written, method and variable names can be auto-
matically mined from open-source repositories. Every single named method
and variable can be used as an example when performing summarization to
programming languages. Hence, the task is more similar to the masked lan-
guage modeling task, but with the <mask> tokens only replacing method and
variable names and potentially being used to mask out several tokens if the
tokenized method or variable consists of multiple tokens.

Transfer learning has also been successfully used in natural language sum-
marization [301], but has received little attention when applied to machine
learning for method and variable name prediction. This is despite the fact
that obtaining a large amount of code from open-source repositories is sig-
nificantly easier than obtaining a large amount of natural language text, and
thus making it easier to train language models for programming languages.
Masked language modeling would seem like an appropriate pre-training task,
as predicting the single token replaced by a <mask> token is similar to pre-
dicting multiple tokens which were replaced by <mask> token.

As with semantic code search, effectiveness of transfer learning is tested for
each model by performing variable name prediction using: randomly ini-
tialized weights, transfer learning from a language model trained on Java,
transfer learning from a language model trained on six different program-
ming languages, and transfer learning from a language model trained on
natural language data.

Finally, the two data augmentation techniques, strip punctuation and shuffle
tokens, explored in the experiments on semantic code search, are also applied
to variable name prediction. This is done to see how much information
contained in the punctuation or the order of the code tokens is used by the
models for variable name prediction.

The experiments carried out in this chapter explore variable name predic-
tion, using the four models discussed in Chapter 3 on the CodeSearchNet
dataset. The experiments aim to answer the following questions: which
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model performs the best on variable name prediction? Does transfer learn-
ing provide a noticeable performance improvement? Does transfer learning
provide more or less performance improvement than semantic code search?
How should models be pre-trained to use for optimal transfer learning perfor-
mance? What effect do the proposed data augmentation techniques have on
the performance of the models? How do these data augmentation techniques
effect the performance compared to semantic code search?

7.2 Methods

The experiments focus on the Java data within the CodeSearchNet dataset.
Each Java method – including the method name, types, arguments and entire
body – is used as an example. During each iteration the method is tokenized
and the list of all named variables and the method name are obtained. These
variables may consist of multiple tokens produced by the tokenizer – hence
the task is more similar to span prediction [290, 217, 258] rather than masked
language modeling [66]. A random named variable is then chosen to be pre-
dicted. All occurrences of this variable within the method are then replaced
by a <mask> token. The masked variable is chosen at random for that ex-
ample at every epoch. If the variable consists of multiple sub-tokens, as
tokenized by the BPE tokenizer, then all all sub-tokens are replaced by a
single <mask> token.

Using the encoder-decoder architecture, each of the four models are used
as the encoder. They accept the masked code tokens as input and produce
a sequence of features, Z ∈ RN×F . The decoder used by all four of the
models is a gated recurrent unit (GRU) [55], as used by Allamanis et al.
[10] (who use a single CNN-based encoder for predicting method names only,
use a different dataset to this work, and do not experiment with pre-training,
multi-task learning or data augmentation), and produces the target sequence,
the variable tokens, one token per time-step.

GRUs are variants of recurrent neural networks, similar to LSTMs. They
have fewer parameters than LSTMs as they only have two gates – an update
and a reset gate – instead of three, and do not have a recurrent cell state.

108



u(t) = σ(e(t)Wu + h(t−1)Uu + bu)

r(t) = σ(e(t)Wr + h(t−1)Ur + br)

ĥ(t) = tanh(e(t)Wh + (r(t) � h(t−1))Uh + bh)

h(t) = (1− u(t))� h(t−1) + u(t) � ĥ(t)

= GRU(e(t),h(t−1))

The update gate, u ∈ RH , controls how much information from the previous
hidden state, h(t−1) ∈ RH , will be used in the new hidden state. If the update
gate is a zero vector, then all information from the previous hidden state is
retained. The reset gate, r ∈ RH , controls how much information from the
previous hidden state is discarded. If the reset gate is zero, then all informa-
tion from the previous hidden state is discarded. e ∈ RD are the embedded
tokens. W ∈ RD×H and U ∈ RH×H are the input and recurrent weight
matrices, the bias terms are denoted by b ∈ RH , � is element-wise multi-
plication, σ is the sigmoid activation function, and tanh is the hyperbolic
tangent function.

The initial hidden state of the decoder is usually referred to as the context
vector that is assumed to contain the information within the input sequence,
obtained from the encoder. When the encoder takes the order of the input
sequence into account, the context vector is usually the final encoder hidden
state, else the context vector is the mean of the hidden states returned by the
encoder. To make a fair comparison between the models used in this thesis,
the experiments used here all provide a context vector, which is the average
of all the hidden states.

An issue faced by traditional encoder-decoder models is their attempt to
compress all the information contained in the input within a single context
vector, which usually leads to a loss in information. This issue is amplified
with longer input sequences [54, 209].

The most common solution to the information compression problem intro-
duced by the context vector is the use of attention [26]. When using atten-
tion, the decoder is able to access the entire input sequence (via the sequence
of hidden states produced by the encoder) during each decoding time-step.
This reduces the amount of information that needs to be compressed into
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the context vector and improves performance of encoder-decoder models on
longer sequences [26].

Attention mechanisms consist of calculating an alignment between the cur-
rent decoder hidden state and each encoder hidden state [174]. The alignment
is a normalized vector (values between zero and one and sums to one) which
is calculated via the softmax function over a sequence of scores. A score
is calculated as the similarity between each encoder hidden state and each
decoder hidden state.

a(t) = align(h
(t−1)
d ,He)

= softmax(score(h(t−1)
d ,He))

a ∈ RN can be thought of as the attention weights over the input sequence,
i.e. how much the model should focus on each of the individual input tokens.
The score function can be calculated in multiple ways, the simplest method
being a dot product between the individual hidden states. The experiments
in this thesis use the concat method introduced by Bahdanau et al. [26]:

scorei = v tanh(Wa[h
(t−1)
d ;h(i)

e ])

Each of the i scores is calculated as the concatenation [ · ; · ] between the
current decoder hidden state, h

(t)
d ∈ RH , and each encoder hidden state,

h
(i)
e ∈ RH , multiplied by a weight matrix, Wa ∈ RH×2H , passed through the

tanh activation function and finally multiplied by a learned weight vector,
v ∈ RH .

Once the attention vector, a, is obtained it can then be used to calculate a
weighted context of the input sequence by multiplying it with the encoder’s
hidden states.

c(t) = a(t)He

The weighted context, c ∈ RH , is a hidden state constructed via a weighted
sum of encoder hidden states, where the weights are learned, and are context
dependent.
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The hidden state obtained from the GRU at each time-step during decoding
is given by passing the concatenation of the decoder’s current input token,
e(t), with the weighted context, c(t), along with the hidden state output from
the GRU from the previous time-step:

h(t) = GRU([e(t); c(t)],h(t−1))

The initial input token to the decoder is always a start-of-sequence token,
<sos>. Each prediction, ŷ, is made by concatenating the decoder input
token embedding, the weighted context and the current hidden state, through
a linear layer and a softmax activation function:

ŷ(t) = softmax(Wp[e
(t); c(t);h(t)] + bp)

Wp ∈ RV×D+2H and bp ∈ RV , where V is the size of the vocabulary, D is
the size of the embedding dimension and H is the hidden state size. The
final target token is always an end-of-sequence token, <eos>, and the loss is
calculated using the cross-entropy loss between the predicted sequence, Ŷ ,
and the actual target sequence, Y . When calculating the loss during valida-
tion and testing, the decoder input token embedding is calculated from the
predicted token from the previous time-step, but during training the actual
ground-truth token from the previous time-step is used with a probability
of 0.1. Using the ground-truth token is known as teacher forcing, and us-
ing a constant teacher forcing ratio of 1.0 during training can lead to poor
inference results [83].

The metric used to calculate the performance of the variable prediction mod-
els is the F1 score. The F1 score is calculated using the harmonic mean of the
precision and recall of the predicted sequence and the actual sequence. The
precision and recall are calculated using the true positive (TP), false positive
(FP) and false negative (FN) rates of the prediction. The true positives rate
is the number of sub-tokens predicted that are actually in the ground-truth
sequence. The false positive rate is the number of tokens predicted that are
not in the ground-truth sequence. The number of tokens which are in the
ground-truth sequence but are not in the predicted sequence is the false neg-
ative rate. The <sos> and <eos> tokens are not counted towards the true
positive, false positive and false negative rates.
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F1 score = 2 · precision · recall
precision + recall

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 score is commonly used for predicting variable names via predicting their
individual tokens [10, 20, 18]. One of the disadvantages of the F1 score is
that it does not take the order of the sequence into account, e.g. if the
target sequence is reverse, String then a predicted sequence of String,
reverse achieves a perfect F1 score, so it should be thought of as the number
of relevant tokens retrieved rather than the position aware accuracy of the
prediction.

Transfer learning is performed similarly to semantic code search (Chapter 6).
Only the encoders use pre-trained models when performing transfer learning,
and the decoder is trained from scratch in every experiment. The hypothesis
is that the encoder hidden states from models which use transfer learning
provide representations which are better for determining the missing variable
names. As the masked variable is replaced by the same <mask> token as in
the pre-training task – masked language modeling – the representation of
the masked token should be a good representation for the first token of the
variable name to be predicted. However, the masked language modeling
task only predicts a single masked token, whereas variable name prediction
involves predicting multiple tokens that have been obfuscated by the masked
token. Hence, there is a degree of domain mismatch between the masked
language modeling and the variable prediction task, as the model cannot
rely on surrounding tokens which may be part of the variable name. This
may cause the representations for the masked token to be less than optimal
for variable name prediction. Even so, performance should be higher than
models initialized from scratch.

Again, the data augmentation is performed similar to semantic code search.
Both augmentations, strip punctuation and shuffle tokens, are applied after
the named variable has been selected and masked. The hypothesis is that
both of these data augmentation techniques reduce performance more than
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in semantic code search. For predicting the name of a masked variable the
assumption is that the position of the <mask> token with respect to other
tokens, both punctuation and other non-punctuation tokens, is more impor-
tant, and thus carries more information, than in semantic code search.

The expected results are that: when the models are randomly initialized
then, the LSTM model outperforms the Transformer model, as seen in se-
mantic code search and previous research which shows the Transformers re-
quire larger datasets; models which use transfer learning will outperform ran-
domly initialized models, no matter the pre-training language; pre-training
on Java will outperform pre-training on WikiText-103 as the information
obtained from training on tokenized code will be more useful than natu-
ral languages; pre-training on all six languages in the CodeSearchNet
dataset will outperform pre-training on just the Java data as the representa-
tions learned from variables within the six languages will generalize to Java,
and the domain-shift will be offset by the larger number of examples in the
pre-training dataset; both data augmentation techniques will reduce perfor-
mance more than in semantic code search due to variable name prediction
requiring more context in which the <mask> tokens appear; the shuffle tokens
data augmentation technique will provide a larger decrease in performance
compared to the strip punctuation data augmentation as more contextual
information is lost when using this data augmentation technique.

7.3 Results and Discussion

Table 9 shows the results for the variable prediction task. Figure 11 shows the
F1 score obtained on the validation set during training when using different
initialization techniques. Figures 12, 13, 14 and 15 compare the results of the
data augmentation techniques when using different initialization methods.

From Table 9 and Figure 11 it can be seen that when no transfer learning
is performed, the LSTM model is the best performing model. Interestingly,
the Transformer model is unable to learn anything useful for the variable
prediction task and even performs worse than the CNN and NBoW models.

Table 9 and Figure 11 also show that all forms of transfer learning used
in these experiments provide performance improvements over randomly ini-
tialized models. The Transformer’s performance increases the most, out of
the four models experimented on, however even a pre-trained Transformer is
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Model Initialization F1 Score ∆SP ∆ST
NBoW Random 0.0858 -0.0180 -0.0043
NBoW Java 0.1018 -0.0123 0.0016
NBoW Wiki 0.1006 -0.0011 0.0056
NBoW All 0.1047 -0.0089 0.0053
LSTM Random 0.2159 -0.0683 -0.2030
LSTM Java 0.2857 -0.0598 -0.1563
LSTM Wiki 0.2682 -0.0585 -0.1601
LSTM All 0.2896 -0.0576 -0.1609
CNN Random 0.1879 -0.0160 -0.0994
CNN Java 0.2003 -0.0121 -0.0854
CNN Wiki 0.2007 -0.0331 -0.1080
CNN All 0.2093 -0.0255 -0.0974
Transformer Random 0.0152 0.0009 0.0067
Transformer Java 0.1622 -0.0515 -0.0787
Transformer Wiki 0.1603 -0.0916 -0.0838
Transformer All 0.2069 -0.0360 -0.1191

Table 9: F1 scores obtained on the test set for variable prediction using dif-
ferent initialization techniques and the increase (green) or decrease (red) in
the obtained F1 score when using strip punctuation (∆SP) or shuffle tokens
(∆ST) data augmentation. Random implies the weights are randomly initial-
ized, Java initialization uses a language model pre-trained on Java code, Wiki
initializes the weights from a language model pre-trained on the WikiText-
103 dataset, and All uses a language model pre-trained on all six languages
in the CodeSearchNet dataset. It can be seen that the All initialization
generally performs best, the strip punctuation data augmentation reduces
performance, and the shuffle tokens data augmentation reduces performance
more than the strip punctuation data augmentation. These performance de-
creases are larger than in semantic code search (see Chapter 6, Section 6.3,
Table 7. The best result for each initialization technique is shown in bold.
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Figure 11: F1 score obtained on the validation set for variable prediction
across all four models – CNN (green), LSTM (blue), NBoW (cyan), and
Transformer (red) – when initialized from: random weights (solid line), a
language model pre-trained on Java (dashed line), a language model pre-
trained on all six languages in the CodeSearchNet dataset (dotted line),
and a language model pre-trained on WikiText-103 (dot dashed line).
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Figure 12: F1 score obtained on the validation set for variable predic-
tion across all four models – CNN (green), LSTM (blue), NBoW (cyan),
and Transformer (red) – initialized from a language model pre-trained on
WikiText-103 when using no data augmentation (straight line), the strip
punctuation (circle markers) and shuffle tokens (square markers) data aug-
mentation.
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Figure 13: F1 score obtained on the validation set for variable predic-
tion across all four models – CNN (green), LSTM (blue), NBoW (cyan),
and Transformer (red) – initialized from a language model pre-trained on
WikiText-103 when using no data augmentation (straight line), the strip
punctuation (circle markers) and shuffle tokens (square markers) data aug-
mentation.
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Figure 14: F1 score obtained on the validation set for variable predic-
tion across all four models – CNN (green), LSTM (blue), NBoW (cyan),
and Transformer (red) – initialized from a language model pre-trained on
WikiText-103 when using no data augmentation (straight line), the strip
punctuation (circle markers) and shuffle tokens (square markers) data aug-
mentation.
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Figure 15: F1 score obtained on the validation set for variable predic-
tion across all four models – CNN (green), LSTM (blue), NBoW (cyan),
and Transformer (red) – initialized from a language model pre-trained on
WikiText-103 when using no data augmentation (straight line), the strip
punctuation (circle markers) and shuffle tokens (square markers) data aug-
mentation.
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unable to outperform the LSTM, or even the CNN model, and only outper-
forms the NBoW model. The results show that a pre-trained LSTM encoder
performs the best on the variable prediction task, followed by the pre-trained
CNN, pre-trained Transformer, and finally, the pre-trained NBoW model.

Why does the Transformer, even when pre-trained, perform so poorly at
the variable prediction task? One potential reason is that Transformer only
performs well in a sequence-to-sequence task when both the encoder and
decoder are Transformer models, and not when the decoder is a different
architecture, such as the GRU used here. Wang et al. [276] have successfully
used a Transformer encoder and GRU encoder for neural machine translation
and shown that it outperforms their RNN-based encoder-decoder architec-
ture, but only by a small amount. However, their encoder is a single-layer
unidirectional GRU model, whereas the encoder used here is a multi-layer
bi-directional LSTM. It is possible that by upgrading their RNN-based en-
coder to have multiple layers and be bi-directional their RNN-based model
would outperform the Transformer-RNN model.

Why does the Transformer fail to learn anything when initialized randomly?
The original Transformer implementation [270] and popular Transformer
variants – such as BERT [66], RoBERTa [188], T5 [217], GPT-2 [216] and
GPT-3 [40] – require Transformer specific initialization strategies, such as
layer-wise initialization or warm-up stages, where the initial learning rate
is gradually increased from zero during the early stages of training. To
avoid using architecture specific initialization strategies, a default initial-
ization scheme and an optimizer with a fixed learning rate (see Chapter 3,
Section 3.6 for more details) is used for all four models in these experiments.
These have the potential to lead to unstable training in Transformer models
[299, 298, 302], which may explain why the Transformer used here is un-
able to learn to perform the variable naming task unless initialized from a
pre-trained language model.

Comparing the performance between models pre-trained on WikiText-103
and the Java data from CodeSearchNet it can be seen that: comparable
performance is achieved for the NBoW and CNN models; the Transformer
performs slightly better when transferring from the Java data; and that the
LSTM pre-trained on the Java data significantly outperforms an LSTM pre-
trained on the WikiText-103 data. The reason for the comparable per-
formance in the NBoW and CNN models may be due to these models not
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having enough capacity to capture the domain-specific knowledge required
for predicting variable names and instead benefiting from the larger dataset
provided by WikiText-103. However, all models benefit from any form of
pre-training from either a natural language or a programming language, and
the use of transfer learning helps the Transformer now outperform the NBoW
model by overcoming the instability that arises when randomly initializing a
Transformer.

Comparing performance between models pre-trained on only the Java data in
CodeSearchNet and those pre-trained on the data from all six languages
in CodeSearchNet, it can be seen that using all six languages for pre-
training gives the best performance for all models. As with semantic code
search, this shows that for variable name prediction, there are features which
generalize across different programming languages that are useful for variable
name prediction in Java. When initialized from a model pre-trained on all
six languages in the CodeSearchNet dataset, the Transformer is now able
to perform on par with the CNN model. This now reveals that even with
a good initialization, the Transformer still underperforms the LSTM model,
implying that the poor performance of the Transformer in this task is most
likely due to the interaction between the Transformer encoder and GRU
decoder.

As with semantic code search, experiments are performed by training models
in the multi-task learning scenario – where models are trained on variable
name prediction using all six languages from the CodeSearchNet dataset,
or the five languages that are not Java, and then evaluated only on the Java
data, i.e. zero-shot learning [286] on Java code.

Table 10 shows the results for the multi-task learning experimental set-up.
It can be seen that all models achieve their best performance when per-
forming multi-task learning on all six languages after being pre-trained on
all six languages. As expected, models which are not been trained on any
Java data perform poorly, with the NBoW model failing to generalize at all.
Both Transformer models that use randomly initialized weights also perform
poorly, again highlighting the need for Transformers to be pre-trained on
the variable prediction task as the Transformer pre-trained and fine-tuned
on a dataset with no Java examples at all outperforms a Transformer ini-
tialized randomly and trained only on Java. Unlike semantic code search,
performance for the LSTM and Transformer models trained and fine-tuned

121



Model Initialization Dataset F1 score
NBoW Random All 0.1078
NBoW All All 0.1106
NBoW Random No Java 0.0139
NBoW No Java No Java 0.0130
LSTM Random All 0.2782
LSTM All All 0.3150
LSTM Random No Java 0.1244
LSTM No Java No Java 0.1261
CNN Random All 0.2003
CNN All All 0.2117
CNN Random No Java 0.0922
CNN No Java No Java 0.0939
Transformer Random All 0.0391
Transformer All All 0.2689
Transformer Random No Java 0.0189
Transformer No Java No Java 0.1148

Table 10: F1 scores obtained on the test set for the variable name prediction
using different initialization techniques and different datasets for fine-tuning.
The test F1 score shown is across the Java data only. Random initialization
implies the weights are initialized randomly, All initialization uses a language
model pre-trained on data from all six languages in the CodeSearchNet
dataset, No Java initialization uses a language model pre-trained on the five
languages in the CodeSearchNet dataset that are not Java. ADataset of
All refers to training on all six languages in the CodeSearchNet dataset,
and No Java refers to using the five languages in the CodeSearchNet
dataset that are not Java. The best result for each initialization-dataset
combination is shown in bold.
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on all six languages is significantly higher than training on all six languages
and only fine-tuning on Java, hence multi-task learning should be used for
variable name prediction where available.

When applying the strip punctuation data augmentation, the F1 score de-
creases by 0.0343. This is 3 times more than the decrease of the MRR on
semantic code search. It can be seen that the best performing model, the
LSTM, suffers the worst performance degradation when applying the strip
punctuation data augmentation – however it still manages to outperform all
the other models. This would imply that the LSTM model requires informa-
tion from these punctuation tokens in order to obtain its performance, more
than the other models experimented on, and thus the punctuation tokens
carry significantly more information for variable name prediction than they
do in semantic code search. The NBoW and CNN models have the least per-
formance decrease, implying that they use the least amount of information
contained in the punctuation tokens.

When performing the shuffle tokens data augmentation, F1 score decreases by
0.0835. This is over 2 times more degradation than the strip punctuation data
augmentation and 1.5 times more than the shuffle tokens data augmentation
when applied to semantic code search. Again, the best performing model, the
LSTM, suffers the worst performance decrease, implying that it uses the most
information contained in the order of the tokens. As the NBoW model does
not use any information from the order of tokens the performance remains
the same, but the other three models – which do take the order of tokens
into account – decrease in performance, implying that the order of tokens
does matter in variable name prediction, and more information is contained
in the order of tokens than in semantic code search.
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Shown below is an example input given to the best performing model (the
LSTM which achieves the highest F1 score in Table 10):

public static String reverseString(String str) {
String <mask> = new StringBuilder(str).reverse().toString();
return <mask>;

}

The top predicted variable names are:

1. result
2. str
3. reverse
4. reversed
5. s

Any variable name could be used to produce syntactically correct code, how-
ever the model does predict variable names that fit the appropriate context.
To see how much information contained in the method name is used to pre-
dict the variable names, the below example is passed to the model:

public static String x(String str) {
String <mask> = new StringBuilder(str).reverse().toString();
return <mask>;

}

Now, the top predicted variable names are:

1. x
2. str
3. s
4. result
5. string

Notice how none of the predicted variables mention reverse, or reversing,
implying that the model makes significant use of the method name when
predicting the variable names.
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If, instead, the method name is replaced by a masked token, such as:

public static String <mask>(String str) {
String reversedString = new StringBuilder(str).reverse().toString();
return reversedString;

}

Then the top predicted method names are:

1. reverse
2. reversed
3. convert
4. Reverse
5. string

The first two predictions are appropriate, however convert is a sub-optimal
method name as nothing in the code is converted, Reverse does not follow
Java’s camel case naming conventions, and string is a vague name which
does not describe what the method.

Repeating the above example, but with less appropriate variable names:

public static String <mask>(String str) {
String x = new StringBuilder(str).reverse().toString();
return x;

}

Now, the top predicted method names are:

1. reverse
2. reversed
3. str
4. string
5. parse

As before, the top two predictions are appropriate, but str and string
are vague, and parse would not be an accurate description of the method’s
functionality. However, as the examples show, the model is usually able to
output an appropriate variable or method name within the top predictions.
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7.4 Applications

How can a well-trained variable name prediction model – one that can accu-
rately predict a suitable variable name for a given method – be used in an
educational setting? The two main use-cases are covered by the VarNaming
and VarMisuse task of Allamanis et al. [9].

The VarNaming task is to predict the name of a variable given the sur-
rounding context, i.e. how the variable is used within code. Consider a
novice programmer who has difficulty deciding what to name their variables.
By leveraging a variable name prediction model, a suitable variable name can
be suggested to the programmer, which can then be accepted and automat-
ically applied. This reduces the burden on the programmer to continuously
come up with informative variable names, allowing them to focus on other
aspects of their code. As there is usually more than one valid name for a
variable, the model can suggest multiple variable names and the program-
mer can select which they believe is the most appropriate. This model will
suggest names that follow coding conventions for the programming language
used, educating the programmer on the general naming conventions used in
that language.

The VarMisuse task is to predict whether the correct variable has been
used in a position, for example if performing a for loop that increments the
value of variable i on each iteration then an array inside that loop should
most probably be indexed with i and not another variable that does not
increment. How can the models tell when an incorrect variable has been
used at a position? By iterating over all variables in scope and measuring
the loss obtained by the model for each variable. If the variable that appears
in the position has the lowest loss, then it can be assumed it is the correct
variable. If not, then the incorrect variable might have been used. Whenever
the model believes an incorrect variable has been used, this can be indicated
to the user. This, in theory, allows for real-time bug checking of code, and
is able to provide both the location of errors and how they should be fixed
(which variable they should be replaced by).

126



7.5 Conclusion

This section has detailed experiments on variable name prediction. It has
shown that when randomly initialized, an LSTM model outperforms the
Transformer, CNN and NBoWmodels. In fact, when randomly initialized the
instability in the Transformer models causes them to fail to learn to perform
this task at all, causing them to perform worse than even the NBoW model.
When performing transfer learning, the LSTM model still outperforms the
other three models, and then models can be pre-trained on either natural lan-
guage data, programming language data where the languages match that of
the downstream task, and a combination of different programming languages.
Using a combination of multiple, different programming languages achieves
the best performance, implying that models are able to learn features that
generalize across different programming languages. When performing trans-
fer learning, the Transformer is able to learn to perform this task, however
still underperforms the LSTM and CNN models, implying that the inter-
action between a Transformer encoder and a GRU decoder is sub-optimal
for this task. By performing multi-task learning, both pre-training and fine-
tuning on all six languages achieves the best overall performance across the
Java data. It has been shown that a Transformer pre-trained and fine-tuned
on no Java data at all outperforms a randomly initialized Transformer that
has been fine-tuned on the Java data only, highlighting the instability in the
Transformers when initialized randomly. It has also been shown that remov-
ing punctuation tokens decreases performance, more so than semantic code
search, showing that variable name prediction requires information contained
in the punctuation tokens. Finally, by showing how randomly shuffling the
code tokens significantly decreases the performance on this task, it has been
shown that the order of the code tokens contains more information for this
task than semantic code search.

It has also been described how variable name prediction models can be used
to provide feedback using the VarNaming and VarMisuse tasks. The
VarNaming task can be used to suggest appropriate variable names to a
student, allowing them to focus on other parts of their code. The VarMis-
use task can be used to highlight potential errors in code, showing where a
variable name prediction model disagrees with the choice of variable used by
the programmer and the expected variable name can be suggested.
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8 Conclusion

8.1 Synopsis

Machine learning, especially deep learning, when applied to programming
languages is still a relatively novel area of research. In this thesis it has
been shown how deep learning can be applied to three of the most common
tasks in this field: language modeling, semantic code search, and variable
name prediction. The experiments have been performed with four distinct
machine learning models: NBoW, CNN, LSTM and the Transformer. It has
been shown that the use of transfer learning from a pre-trained language
model is beneficial to machine learning on programming languages – much
like it is with natural languages – and how pre-training effects the outcome
of different training, fine-tuning and multi-task learning regimes. It has also
been shown how data augmentation techniques, strip punctuation and shuffle
tokens, effect the performance on semantic code search and variable name
prediction. These data augmentation techniques show how much information
is contained within the punctuation tokens and in the order of the tokens.

8.2 Summary of Findings

Chapter 1 introduces the motivations, aims and objects, and contributions
of this thesis. Chapter 2 provides a literature review of machine learning on
source code. Chapter 3 describes the models and hyperparameters used in
this work, and Chapter 4 describes the datasets used for the experiments.

Chapter 5 describes how language modeling is applied to source code. It
shows a novel result, that masked language modeling outperforms standard
language modeling, in terms of achieving a lower perplexity metric. Ex-
periments confirm the findings of Hindle et al. [109], that programming
languages are more predictable than natural languages by showing how the
perplexity obtained on programming language data is lower than natural
language data, even with a smaller programming language dataset. A novel
contribution is showing that the findings of Hindle et al. hold across a variety
of models, and on the CodeSearchNet dataset. As expected, a masked
language model Transformer outperforms an LSTM on the programming lan-
guage data. However, the LSTM outperforms the Transformer when applied
to natural language data. This novel comparison of LSTM and Transformer
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models across natural and programming language datasets potentially high-
lights some inherent ability contained within the Transformer architecture
which makes it more suited for performing masked language modeling on
programming languages. Finally, the chapter shows how masked language
models can be used to detect potential errors in code by detecting areas of
high perplexity in statements with synthetic errors added.

Chapter 6 experiments show how machine learning can be applied to seman-
tic code search. When randomly initialized, an LSTM model outperforms all
other models experimented on. However, as expected, a pre-trained Trans-
former model outperforms a pre-trained LSTM. A novel finding discovered is
that when performing transfer learning from a pre-trained language model,
performance improvements can be obtained by pre-training on either nat-
ural language data, programming language data from the same language
as the downstream task, or on a dataset consisting of multiple, different
programming languages. Experiments show that pre-training on a combina-
tion of multiple languages provides the optimal performance, a novel finding
highlighting the ability for these models to generalize across programming
languages, which indicates that researchers should pre-train their language
models on a large dataset consisting of multiple programming languages,
instead of one only containing examples in the downstream language. Ex-
periments performed in the multi-task learning scenario show a novel result,
that even models pre-trained and fine-tuned on no Java language data out-
perform randomly initialized models fine-tuned on Java examples only. This
implies that using a dataset consisting of multiple programming languages
can also be used for low-resource, uncommon programming languages with
only a small amount of data available. Finally, by examining two different
data augmentation techniques – which have not been applied to source code
previously – it has been shown that removing punctuation tokens slightly de-
creases performance – despite more than halving the number of code tokens
– and that shuffling the code tokens also decreases performance, but more
so than removing the punctuation tokens. This novel finding shows that
more information is contained within the order of the tokens than within the
punctuation tokens for this task. The chapter also describes how a semantic
code search model can be applied to provide feedback: by propagating in-
structor feedback between similar submissions, and automatically generating
examples in which students must match relevant code-feedback pairs.
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In Chapter 7 the experiments show how to apply machine learning mod-
els to predict variable names. When randomly initialized, as with seman-
tic code search, the LSTM model outperforms the Transformer, CNN and
NBoW models. The experiments shown how the Transformer fails to learn
to effectively perform this task when randomly initialized, highlighting the
instability that arises when randomly initializing a Transformer model. The
LSTM model also outperforms the other three models when fine-tuned from
a pre-trained model, and the Transformer manages to effectively learn when
fine-tuned, however still underperforms the LSTM and CNN models. The
chapter also shows a novel result in that, as with semantic code search, all
forms of pre-training performed in the experiments – from natural language,
the same programming language as the downstream task and a mixture of
six different programming languages – improve the performance across all
four models. Again, a novel finding shows that fine-tuning from the mixture
of programming languages provides the best performance, indicating that
models trained for semantic code search are also able to generalize across
programming languages. The performance of the models in a multi-task
learning scenario is also measured. Unlike semantic code search, the best
performance is achieved when performing both pre-training and fine-tuning
on a mixture of distinct programming languages. This novel finding indicates
that researchers should not only pre-train, but also fine-tune their models
on datasets consisting of multiple programming languages, and not just a
dataset containing examples in the downstream task language. Finally, the
data augmentation performed by stripping punctuation and shuffling tokens
is shown to significantly reduce performance in this task compared to seman-
tic code search. This novel result highlights the importance of the punctu-
ation tokens and the order of the code tokens for variable name prediction,
and show that they contain more information for effectively performing this
task than they do in semantic code search. The chapter also describes how
to apply variable name prediction models for feedback, using the VarNam-
ing and VarMisuse tasks, by either automatically naming variables for the
programmer, or by highlighting where the model disagrees with the variable
used by the programmer and providing suggestions on what it should be
replaced with.
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8.3 Limitations

One potential limitation on the work presented in this thesis is the models
selected. The models were selected to represent a broad spectrum of general
architectures, and none are designed specifically for source code. A model
designed specifically for source code will no doubt have improved performance
over a model without the same built in biases, if the number of parameters
in the two models are similar. However, in The Bitter Lesson [253], Sutton
argues "general methods that leverage computation are ultimately the most
effective, and by a large margin". Hence, any performance gained by using a
source code specific model will eventually be overcome by models without the
source code specific biases within them simply by using more computation.

The two main methods to allow a neural network model to use more com-
putation are by increasing the number of parameters within the model, or
the amount of data used to train the model. Research on increased compu-
tation is known as scaling [107, 130, 105, 106, 118, 27], and most research
into scaling for deep learning focus on finding a scaling law : the relationship
between compute, dataset size, number of model parameters, and the model
performance.

The other limitations of the work in this thesis are: the relatively small size
of the models and dataset used. The model sizes were chosen to be able
to train on a single GPU. This in contrast to modern deep learning models
which now have billions [40, 243], or even trillions [191] of parameters. The
arguments for using the CodeSearchNet dataset are detailed in Section
4.1, and the main focus is on the Java dataset, which consists of just under
half a million examples. This is a relatively small number of examples for
modern machine learning applications as most work in this domain uses tens
of millions of examples, e.g. the dataset used by code2vec [20] uses 14
million Java methods. However, the research on scaling has shown that as
long as the ratio between the model and dataset size is kept consistent, both
can be scaled up with increased compute. Thus, the findings in this thesis
should also hold for larger models and datasets.

Finally, the model hyperparameters are chosen using values commonly used
across machine learning research, and that are suitable for the compute re-
sources used. This potentially means suboptimal hyperparameters were used
for some models and tasks, and that the performance of certain models could
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be improved by selecting more optimized hyperparameters. Ideally, extensive
hyperparameter tuning would be performed in order to obtain the best set
of hyperparameters for each model on each task. However, by keeping the
hyperparameters constant, it is shown how well the models can generalize
across tasks, datasets and training regimes.

8.4 Future Directions

The results contained in this thesis show the importance of fine-tuning pre-
trained language models when performing machine learning on programming
languages. This has received relatively little attention compared to transfer
learning in natural language processing tasks, despite the fact that a vast
amount of programming language data is readily available from open-source
code repositories. Future work would more thoroughly investigate novel
methods of pre-training in order to determine if masked language model-
ing is the optimal method of pre-training these models, or if there exists a
novel pre-training method which outperforms masked language modeling.

It has also been shown that the optimal method of pre-training is by using
a model trained on a mixture of different programming languages. This was
done by simply using all languages contained within the CodeSearchNet
dataset. Future work would examine if this effect is universal – all program-
ming languages benefit a downstream task in any language – or that some
downstream tasks would benefit from a specific mixture of programming
languages within the pre-training dataset. Perhaps performing downstream
tasks on a functional programming language requires more functional pro-
gramming languages to be within the pre-training dataset, or that if the
pre-training dataset is large enough then only data in the downstream task
language is required.

The experiments have also focused on a single dataset and most results are
focused on the downstream performance in Java. Future work would inves-
tigate if these results hold true for each language in the CodeSearchNet
dataset.

The two data augmentation techniques used, strip punctuation and shuffle
tokens, have been shown to reduce performance on both the semantic code
search and variable name prediction. Although this has shown the impor-
tance of the punctuation tokens and the order of code tokens within the
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examples, ideally future work would be to determine if there exists a data
augmentation technique that actually improves performance for these tasks
much like data augmentation improves performance for computer vision and
natural language processing.

Finally, future work could also focus on applying the assessment techniques
discussed, and measuring how effective each one is. The rise in the popularity
of remote learning means that online classes are no longer restricted in size.
However, the growing size of these classes places the burden of applying
detailed feedback to each individual learner on the instructors. Automated
assessment, using methods such as the ones detailed in this thesis, can be used
to alleviate some of the effort required by instructors to provide feedback,
and in some cases can be used to offer novel methods of providing feedback.
The hope is that future, automated assessment approaches can, potentially,
go beyond giving a simple pass/fail or numerical grade.
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