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ABSTRACT: There have been some conjugate gradient methods with strong convergence but numerical instability
and conversely. Improving these methods is an interesting idea to produce new methods with both strong convergence
and numerical stability. In this paper, a new hybrid conjugate gradient method is introduced based on the Fletcher

formula (CD) with strong convergence and the Liu and Storey formula (LS) with good numerical results. New
directions satisfy the sufficient descent property, independent of line search. Under some mild assumptions, the global
convergence of new hybrid method is proved. Numerical results on unconstrained CUTESt test problems show that the
new algorithm is very robust and efficient.
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1. Introduction

Consider the unconstrained optimization problem
xertf (%), 1)
where f:R™ = R is a smooth nonlinear function whose gradient at x is available g := g(x) = Vf(x). There are

many iterative methods to solve unconstrained optimization problem including the Newton methods, the quasi-Newton
methods, trust-region methods [21].

1.1 Conjugate gradient method

The conjugate gradient (CG) methods are famous iterative methods for solving large-scale unconstrained
optimization problems whose iterative scheme is
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SOLVING UNCONSTRAINED OPTIMIZATION PROBLEMS

Xpaq = X + agdy, Xy € R™ 2
Here x, € R™ is an initial point, @ > 0 is a step size, which is obtained by an exact or inexact line search methods and
d; is a search direction computed by
__gk' k =:0,
dy = { 3
7 =gk + Brgr-1, k=1, ®)

in which B, is a scalar, called the CG parameter and g, = g(x;). Different choices for CG parameter are
available, some of which are as follows

2
FR = %, Fletcher & Reeves (FR) [8] (4)
k-1
T
HS = %, Hestenes & Stiefel (HS) [15] (5)
k-1Yk-1
2
BEP = ‘% Fletcher (CD) [7] )
T
PRP —lf;yk-“;, Polak & Ribire — Polyak (PRP) [23,24]  (7)
k-1
2
DY % Dai & Yuan (DY) [4] 8)
gry
LS = — ﬁ, Liu & Storey (LS) [20] 9)
k-1%k-1
2\T
HZ <yk_1 - 2d;,_, el ) % Hager & Zhang (HZ) [13] (10)
k-1Yk—1 k-1Yk—1
in which || . || is the Euclidean norm and y;_, = gx — gx—1. These methods require low memory.

In order to guarantee the global convergence of CG methods, the search direction d;, must satisfy the sufficient descent
condition [1]
grd, < —cllgll?>,  forallk =0, (11)

in which c is a positive constant. In CG methods to solve (1), after determining the descent search direction satisfying
grd, <0 for all k >0, the step size a, needs to be found, which can be computed by inexact line search such as
Armijo, Goldstein and Wolfe conditions. For a given constant p € (0,1), the Armijo line search is

f e + ardy) — £ () < paggi di. 12)
The Armijo condition (12) along With
gFide = ogidy, 0<p<o<l, (13)
is called the Wolfe line search [21]. In addition, in a strong Wolfe line search, (13) is changed as
|gk+1di| < —0gidy. (14)

1.2 Applications of CG method

Conjugate gradient methods play an important role in solving large-scale unconstrained optimization problems
which arise in economics, engineering, sciences and so on. Currently, the unconstrained optimization problems in
impulse noise removal and image restoration have been solved by CG methods [2,17].

1.3 Contribution

Although LS has a good performance in practice, it is generally not a strong convergence. On the other hand, in
CD with strong convergence the numerical results are not efficient. The purpose of this paper is to overcome these
drawbacks. We improve and combine LS and CD to obtain a new method with a good performance in practice and
strong convergence properties. The new method always produces a sufficient descent direction which the global
convergence of it is established under some suitable assumptions. Also, we give some preliminary numerical
experiments to illustrate the efficiency of new method.

In Section 2, we describe our proposed method and give its algorithm. The sufficient descent condition of new
direction and the global convergence of the new algorithm are established in Section 3. In Section 4, we report some
numerical results to show the efficiency of new method. Finally, we give our conclusion in Section 5.
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2. Motivation and proposed algorithm

In this section, we describe the new method to solve unconstrained optimization problem (1). The LS proposed
by Liu and Story [20]. The global convergence of LS with Grippo & Lucidi line search is established in [18]. This
method has good numerical results but its global convergence properties are not strong. Many researchers have
proposed several modifications of LS, see [19,26,27]. Fletcher in [7] proposed CD for a general objective function with
strong convergence properties, but in numerical performance is weak. We improve and combine CD and LS to obtain a
new method with both the strong convergence and the good numerical results. Based on LS and CD parameters, we
obtain

Bl = — 9k Vi1 and B2 = — Wl (15)
k gF_1dk—1 k gh_qdk—1
Here, Bi:= LS and in the numerator of BZ term ||y,_,||? has replaced || g,ll? in parameter S<P. Therefore, the new
conjugate gradient parameter is obtained by

Br: = tiBi — B (16)
with
T
=2 I Oie—1 ] 17
L ol drs (17)

The parameters Sz, 7 and t, guarantee the sufficient descent property and the global convergence. Furthermore, these
parameters improve numerical results of new method in compared to CD and LS methods. Now, by substituting (15)
and (17) in (16), we get

new, _ ) ggqu |ka-1||2 g%Yk—l (18)
k - T d T d T d .
Ik-1%k-19k-1%-1  YGk-1%-1

Finally, the new search direction d is computed by

_ _gk! k = O,
e B 19
Algorithm 1 solves the smooth unconstrained optimization problem (1). It takes the initial point x, € R™ as input and
uses the following parameters: € > 0 (minimum threshold for the stopping test), k € (0,1) and 0 < p < o < 1 (Line
search parameters), k,q, (maximum number of iterations), and 0 < ain < Tmax < @ (MiNimum and maximum
values for a;). It returns x* == x;, and f~ := f;, as an optimum and its function value. Note that a,,,;, and a,,,, prevent
the production of too small and large step size, respectively.
Algorithm 1 A new conjugate gradient method
(S0) Compute the initial function value f, == f(x,), the initial gradient vector g, := g(x,) and set d, == —g,.
(SY) If |lgwll < € ork > kypay, StOp.
(S2) Find a; satisfying (12) and (14) and restrict a; = max{amm, min{ak,amax}}. Then, compute x4 = X, +
i, frrr = f(prr) aNd Gy = g (Xpes1)-
(S3) Calculate i, and BZ,, by (15), obtain the parameter ¢, by (17), determine the parameter S7¢% by (16) and
dir1 = —Gr+1 + Pis1 di-
(S4) Replace k by k + 1 and go to (S1).

3. Convergence analysis

In this section, the sufficient descent property and the global convergence of the Algorithm 1 are established. To
do so, we make some assumptions on the objective function.
(H1) The level set L(x,) = {x € R"| f(x) < f(x,)} is bounded, i.e., there exists a constant B > 0 such that
x|l <B, forall x € L(xg). (20)
(H2) In some neighborhood Q € L(x,), the gradient of the objective function f is Lipschitz continuous, i.e., there
exists a constant L > 0 such that

lgG) —gIl < Lllx—yll,  forallx € Q. (21)
From (H1) and (H2), there exists a positive constant y such that
gl <v, (22)

see [21]. We now show that the generated directions by Algorithm 1 satisfy the sufficient descent condition (11) with
c= g independent of line search type.
Lemma 1 Suppose that the direction d,, is generated by Algorithm 1. Then, we have

ghdi < —Zllgll® (23)
Proof By multiplying (19) in gf and using (18), we obtain
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ghdi = =gell* + BE gi di—s

T T 2

Ik Vk-1 JieAk-1 Nyr-1ll
=—llg IIZ+( -2 Giedy—
* g£—1dk—1 9£—1dk—191€—1dk—1 K

_ —Ngil?(gh-1dk-1)* + Gk —1dr-1) (G V-1 (Gh di—1) — 2||Vie-1 1> (gh de—1)?
(Gk-19k-1)? '

Take

5 1
U = 2(gk dg-1)Yr-1 Uk =5 (Gie-1dxk-1) k-
Using vf 9 < 5 (lluell? + [l 5l12), we get

1 1 7
ghdi < o5 (~Nl9el1?03 + 2631y 112 + 5 O3 gil” - 2y 111763 = — 5 gl
1

where
01 = gk-1dk—1 and 0, = g di—1.

Therefore, the search direction d,, always satisfies the sufficient descent condition.
|

Lemma 2 Suppose that (H2) holds and the tuning parameter «,,,,, is given. Then, there exists a constant w, > 0 such

that

lldg—1ll

1l <
Bl < @1 g~ 24)
Proof From Lemma 1, we have
T 7 2
Jk-1d-1 < _§“gk—1” )
so that
1 8
Gy 1] = 7Ngr-all?’ (25)
By the definition of 8}, we obtain
81| = |_ 9iYi-1 | _ | G
« g;—ldk—l gg—ldk—l
Then, from the Cauchy-Schwarz inequality, (H2), (22) and (25), we get
lgicllllye-1ll _ 8yLay_lld—ll lldj—q I
|.811|5 a 1 < 1 21 = o, 12'
|Gpe—1 -1l 7l gl I gse—1l
with @,: = 2=omex,
|

Lemma 3 Suppose that (H2) holds and the tuning parameter a.,,, is given. Then, there exists a constant w, > 0 such
that

2] < Ndg-1l2 2
Bicl < w2 =7 (26)
Proof (H2), (15) and (25) result in
1B2| = ‘_ Y1 lI? _ yie-1lI? 8L2af_ylldi—1|I? —w ld-11I?
O Ghadial gkl T 7lgeall? “lgi-11?
2.2
where w, = 8“‘%
|
Lemma 4 If (H2) holds, then there exists constant w5 > 0 such that
lldg—1ll
<
ltel < w237 =i @7
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Proof The Cauchy-Schwarz inequality, (17), (22) and (25) imply

gldk_l

lgillldi—1ll _ 16yllde—sll —  lldi-ll
T d - S
-1%k-1

= =w )
|gk—1 -1l 711 gx-11I? ° lgr-111?

x| = |2

. . 16
in which w; = —.

Lemma 5 Suppose that (H1) and (H2) hold. If the sequence {d,} be generated by Algorithm 1, then there exists a
constant M > 0 such that

lldell €M,  forallk > 0. (28)
Proof
We use induction to prove this lemma. First (22) implies that

ldoll = llgoll <y
From the assumption of induction ||d,_,|| is bounded. Hence, the exists constant M* > 0 such that
ld-1ll < M". (29)
Now, the definitions of d;, and B7¢”, give
ldell = [|-g, + B dis|| < [|g, ]| + 187 [lldis I

< lg.ll + Clgel + el |gZ)ldics
We get from (22), (29) and Lemmas 2-4 that

lldil L
IIdeISV+(w1—2+w lldi-al

o gl
<y + (S ldeall + =2 Nl ) Nl

Sy+(€—2M +$(M) )M* = M.

|
The following result is a theorem in [29].
Lemma 6 Let d, be a sufficient descent direction and assume the step size a;, satisfies the strong Wolfe line search
(12) and (14). Then, based on (H1) and (H2), we have
o (ghdi)’
Lic=0"jqge” < T (30)
Theorem 1 Let dj, be a sufficient descent direction and {x; } be the generated sequence by Algorithm 1. Also, (H1)
and (H2) hold. Then
lim,,_,o inf ||g«|| = 0. (32)
Proof From Lemma 5, we obtain
1 1
Z;O=0 ”dkllz = Zlcéo=0m = +oo. (32)
We use contradiction to prove this theorem. Hence, there exists a constant € > 0 such that
lgill = €. (33)
Let
T
- ik
B = ———. 34
_ _ T lgrlial (34)
Using Lemma 1, we obtain
T 2
m o= _Ok% 7 _lgel® _ 79kl 35
“K T lgkllllall = 8 lgklllidll 8 lldell’ (35)
so that
=2 < 49 llgkl?
Tk = 64 llal® (36)
From (33), (34) and (36), we can obtain
19 & _a9llgell? _ o _ (k) _ (gFax)’
SEg= < (37)

64 lldil2 = 64 lldill2 = K T llgiliZlldil? = e2lldgll
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SOLVING UNCONSTRAINED OPTIMIZATION PROBLEMS

By taking sums from both sides (37) and using Lemma 6, we have

(o]

[ee) 2

1 Ta
> e ) <
£ Tl Il

k=0
which contradicts with (32). Hence, the proof of the desired result is completed.

4. Numerical experiments

This section gives numerical results of some algorithms on a set of the nonlinear unconstrained optimization test
problems from CUTEst collection [11], given in Table 1. The dimensions of test problems are from 2 to 12005 while
the initial points are standard ones proposed in CUTEst. We apply the following algorithms to solve these test
problems:

e ML1: Conjugate gradient method with d;, := —g, + Bidy_1.

e M2: Conjugate gradient method with d,, := —g,, + BZdj_;.

e Ma3: Conjugate gradient method with d; == —g, + Br" di_1-

e Ma4: Conjugate gradient method with d;, :== —g,, + B *d,_, and

B = max{0, Br'}.

DY: Conjugate gradient method with d, :== —g,, + BPY dy_;.
e HZ: Conjugate gradient method with d;, := —g, + BH*d,_,.

All algorithms are implemented in Matlab 2011 programming environment on a 2.3Hz Intel core i3 processor
laptop and 4GB of RAM with the double precision data type in Linux operations system. All algorithms are terminated
whenever the inequality ||g,|l < 1076 holds or the maximum number of iterations exceeds 10000. The tuning strong
Wolfe line search parameters are taken as p = 0.0001, ¢ = 0.9, a,,,;, = 1078 and a4, = 108.

Here, we use the performance profiles of Dolan & More [5] to compare M1, M2, M3, M4, DY and HZ
algorithms on the test problems. We consider P as designates the percentage of problems which are solved within a
factor T of the best solver. The horizontal axis of the figure gives the percentage of the test problems for which an
algorithm is the fastest (efficiency), while the vertical axis gives the percentage of the test problems that were
successfully solved by each algorithm (robustness).

Figures 1-3 show that M4 is the best in terms of the total number of iterations, the total number of function
evaluations and time in seconds in comparison with others.

Table 1. Test functions taken from CUTEst collection.

No. | Test function | Dim No. | Test function | Dim No. | Test function | Dim
1 3PK 3 49 | DQDRTIC 10000 | 97 | NONDIA 1000
2 AIRCRFTB 8 50 | DQRTIC 5000 98 | NONDQUAR | 3000
3 ALLINIT 4 51 | EDENSCH 100 99 | OSCIPANE 5000
4 ALLINITU 4 52 | EG2 1000 100 | OSCIPATH 2
5 ARGLINA 500 53 | EG3 10000 | 101 | OSLBQP 8
6 ARGLINB 200 54 | EIGENA 2550 102 | PALMERIC | 8
7 ARWHEAD 5000 55 | ENGVAL1 100 103 | PALMERID | 7
8 BARD 3 56 | ENGVAL?2 3 104 | PALMER2C | 8
9 BDQRTIC 100 57 | ERRINROS 50 105 | PALMER3C | 8
10 | BEALE 2 58 | EXPFIT 2 106 | PALMER4C | 8
11 | BIGGS6 6 59 | EXTROSNB | 1000 107 | PALMER5SC | 6
12 | BIGGSB1 100 60 | FLETCBV2 10000 | 108 | PALMERGC | 8
13 | BOX2 3 61 | FLETCHCR | 500 109 | PALMER7C | 8
14 | BOX3 3 62 | FMINSRF2 5625 110 | PALMERBA | 6
15 | BRKMCC 2 63 | FMINSURF | 5625 111 | PALMERSC | 8
16 | BROWNDEN | 4 64 | FREUROTH | 2 112 | PENALTY1 100
17 | BROYDN3D | 5000 65 | GENHUMPS | 500 113 | PENALTY?2 50
18 | BROYDN7D | 500 66 | GENROSE 500 114 | POWELLBC | 1000
19 | BROYDNBD | 5000 67 | GROWTHLS | 3 115 | POWELLSG | 5000
20 | BRYBND 500 68 | GULF 3 116 | QR3DLS 610
21 | CHAINWOO | 1000 69 | HAIRY 2 117 | QUARTC 25
22 | CHNROSNB | 50 70 | HATFLDD 3 118 | ROSENBR 2
23 | CLIFF 2 71 | HATFLDF 3 119 | S308 2
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24 | COSINE 1000 72 | HATFLDFL |3 120 | SCHMVETT | 100
25 | CRAGGLVY | 1000 73 | HEART6LS | 6 121 | SENSORS 2
26 | CUBE 2 74 | HEARTSLS | 8 122 | SINEVAL 2
27 | CUBENE 2 75 | HELIX 3 123 | SINVALNE 2
28 | DALLASM 196 76 | HILBERTA |10 124 | SISSER 2
29 | DALLASS 46 77 | HILBERTB 10 125 | SNAIL 2
30 | DECONVU 63 78 | HHMMELBA | 2 126 | SPARSINE 1000
31 | DENSCHNA |2 79 | HHMMELBC | 2 127 | SPARSQUR | 10000
32 | DENSCHNB | 2 80 | HIMMELBF | 4 128 | SPMSRTLS 4999
33 | DENSCHNC |2 81 | HIMMELBG | 2 129 | SROSENBR | 1000
34 | DENSCHNF |2 82 | HIMMELBH | 2 130 | TAME 2
35 | DIXMAANA | 9000 83 | HUMPS 2 131 | TESTQUAD | 100
36 | DIXMAANB | 3000 84 | JENSMP 2 132 | TOINTGOR | 50
37 | DIXMAANC | 3000 85 | KOWOSB 4 133 | TOINTGSS 10000
38 | DIXMAAND | 3000 86 | LIARWHD 5000 134 | TOINTPSP 50
39 | DIXMAANE | 3000 87 | LOGHAIRY |2 135 | TOINTQOR | 50
40 | DIXMAANF | 3000 88 | MANCINO 100 136 | TQUARTIC 10
41 | DIXMAANG | 3000 89 | MATRIX2 6 137 | TRIDIA 5000
42 | DIXMAANH | 3000 90 | METHANOL | 12005 | 138 | VAREIGVL | 500
43 | DIXMAANI 3000 91 | MODBEALE | 2 139 | VIBRBEAM | 8
44 | DIXMAANJ | 3000 92 | MOREBV 5000 140 | WATSON 12
45 | DIXMAANK | 3000 93 | MSQRTALS | 1024 141 | WEEDS 3
46 | DIXMAANL | 3000 94 | MSQRTBLS | 1024 142 | WOODS 100
47 | DIXON3DQ | 1000 95 | MINESD 10733 | 143 | YFITU 3
48 | DJTL 2 96 | NONCVXU2 | 1000 144 | ZANGWIL2 | 2
T T T T T T T
1 - .
0.9 .
0.8 .
po ==
07F S e :
-J =
0.6 o .
. i
o
F 05 i .
1
04 7, .
&
0.3+ .
w i bbbl I M1 =
02/.:‘__‘}“- o (M2 |
z = o= om[\/]3
0.1+ - M4 |
E DY
of - HZ
! ! ! ! ! ! I
0 1 2 3 4 5 6 7 8

Figure 1. Dolan-More performance profiles for the total number of iterations.
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5. Conclusion

In this paper, we proposed a new conjugate gradient method for solving the unconstrained optimization problems
with improving and combining LS and CD parameters. The new search directions of our algorithm satisfy the
sufficient descent condition. It inherits the strong global convergence properties of CD and the numerical efficiency of
LS. The global convergence under some mild assumptions is stablished. Our numerical experiments show that M4 is
better than other algorithms in terms of the total number of iterations, the number of function evaluations and time in
seconds.
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