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Chapter 1

Introduction

Applications in various domains often lead to high-dimensional data, which

put up the challenge of interpreting a huge mass of data, which often consists

of millions of measurements. A first step towards addressing this challenge

is the use of data reduction techniques, which is essential in the data mining

process to reveal natural structures and to identify interesting patterns in

the analyzed data.

There are two different approaches to synthesize the two modes (rows and

columns) of a high-dimensional data matrix:

1) Asymmetric treatment of the two modes of the data matrix. Here, the

two modes assume a different role. The first mode represents objects and is

summarized by clustering methods; while the other mode refers to variables

and is reduced according to factorial techniques.

2) Symmetric treatment of the two modes of the data matrix. In this

case, the two modes have equal role and both are synthesized by clustering

techniques. However, we will continue to call these modes as units and

variables, even though they will be treated in the same way.

Both approaches can be viewed under a probabilistic or a non probabilistic
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context.

As far as the asymmetric treatment is concerned, the main task is to

partition a given data set into groups on the basis of specified features (vari-

ables) so that objects (units, observations) within a group are homogeneous,

while objects in separate groups are heterogeneous (Gordon, 1999). However,

the researcher could choose to apply factorial reductions of features for two

reasons:

1) the number of variables is too large and some of these do not contribute

much to identify the clustering structure in the data set;

2) in clustering based on mixture models, if the number of variables is

large relative to sample size, it may not be possible to estimate model parame-

ters. In this context, the objects to be clustered are independent realizations

on n J-dimensional random vectors (where J is the number of variables).

However, some constraints must be imposed on these quantities, since if

n < J singular estimates of the component-specific covariance matrices may

be obtained.

A frequently used asymmetric approach performs a factorial reduction be-

fore using a clustering algorithm. This sequential procedure is often named

tandem analysis (see for example Chang, 1983). However, the factorial reduc-

tion step could remove some information which is relevant for the clustering

structure of the data. To overcome this problem, some authors have proposed

methods for simultaneous clustering and factorial reduction of the analyzed

data (see for example De Soete and Carroll, 1994; Ghahramani and Hinton,

1996; Tipping and Bishop, 1997; Vichi and Kiers, 2001; Rocci and Vichi,

2002).

In the symmetric treatment the task is to capture blocks formed by a

subset of units across a subset of variables. In some real fields, such as the

2



text/web mining, microarray data analysis, marketing and preference data

analyses, it could be meaningful and informative to cluster both units and

variables.

A first approach has been to apply the standard clustering methods to

both units and variables successively and independently (see e.g. Tryon,

1939). In this sequential approach, two loss functions are considered, and

the final result depends on whether units or variables are classified first.

A more rational procedure is to partition units and variables simultane-

ously rather than successively (Fisher, 1969). In this case, we have only one

loss function to be optimized for both modes of the data matrix.

In the following, the latter approach will be referred to as double cluster-

ing. The basic idea is to identify blocks, i.e., sub-matrices of the observed

data matrix, where units and variables (together) specify a unit cluster and

a variable cluster.

Although the double clustering techniques are useful in many application

areas, we will focus on a specialized application area which is microarray

expression level modeling. The past decade has witnessed an explosion of ge-

netic sequence data, culminating with the publication of the draft sequence

of the human genome (International human genome sequencing consortium,

2001; Venter et al., 2001). Ten thousands of coding regions of the genetic

sequence commonly known as genes have been identified. The gene set of

yeast and other simple organisms have been completely characterized, while

almost two-thirds of human genes have been identified (International human

genome sequencing consortium, 2001). However, sequencing the genome and

identifying coding sequences is only a first step in understanding the control

and function of an organism at the cellular level. The major challenge is

to understand the gene activity, and how different genes do interact. The

3



explosion of data provided by gene microarray technologies has led to an

urgent need for novel statistical and computational methods. The process of

transforming microarray data into meaningful biological insights is limited by

the complexity of corresponding data. One of the most commonly used ap-

proaches to analyze microarray data is to apply standard clustering methods.

Unfortunately, these are based on assumptions that do not accommodate all

the features of gene expression data. Such limitations have motivated the

development of several new methods for clustering microarray data.

One of the characteristics of gene expression data is that it is meaningful

to cluster both genes and tissue samples (in general conditions). On one

hand, co-expressed genes can be grouped in clusters based on their expression

patterns by treating, into a clustering context, genes as units and tissue

samples as variables (see, e.g., Eisen et al., 1998; Alon et al., 1999). On the

other hand, the tissue samples can be partitioned into homogeneous groups,

where each group may correspond to some particular macroscopic phenotype,

such as cancer types. In this case, tissue samples represents observational

units, while genes are variables (see, e.g., Golub et al., 1999; Li et al., 2001).

When clustering genes the problem is that usually co-expressed genes are

to be detected only in subsets of samples. In other words, different subsets

of variables (samples) are responsible for different co-expressions of genes.

Moreover, when clustering samples this situation is even worse. As various

phenotypes, e.g. hair color, gender, cancer, etc., are hidden in varying subsets

of genes, samples could usually be clustered according to these phenotypes,

i.e. in varying subspaces. This belief calls for the simultaneous clustering

of genes and tissue samples to capture blocks formed by a subset of genes

over a subset of tissue samples (see, e.g., Getz and Domany, 2000; Cheng

and Church, 2000 and Madeira and Oliveira, 2004 for a structured overview

4



of simultaneous clustering in microarray data analysis).

The dissertation consists of two parts. In the first part, we briefly re-

mind the K-means method and introduce in details the finite mixture model.

Then, we compare two approaches for simultaneous factorial reduction and

clustering in a finite mixture context. Moreover, wide space is devoted to

some proposals of model-based double clustering methodologies. In the sec-

ond part, the proposed methods are fitted on simulated and real data to

highlight corresponding performance and features.

Methods Chapter 2 introduces two known clustering methodologies: the

K-means and the finite mixture model that represent our starting point.

The advantages of the finite mixture models in a context of clustering is

highlighted; in particular, its power to solve important practical ques-

tions in conventional clustering methods (such as how many clusters

are there and which similarity measure should be used). Unfortunately,

the clustering of high-dimensional data with finite mixture model has

some limitations. When the aim is to cluster units on a large num-

ber of variables, we face problems in parameter estimation. Chapter 3

describes an attempt to overcome these problems through a factorial

reduction step embedded within a standard finite mixture model. Two

models are discussed and compared; namely the model proposed by

Rocci and Vichi (2002) and the one proposed by Ghahramani and Hin-

ton (1996), successively extended by McLachlan et al. (2000b). The

aim is to stress the advantages of using one instead of the other.

In some contexts, factorial reduction methods can have some draw-

backs. First, the obtained latent variables often have no intuitive mean-

ing and thus the resulting clusters are hard to interpret. Secondly, if

factorial reduction techniques are used, data are clustered only in a

5



particular subspace. In these cases, a potential alternative is to use

double clustering methods; that is, methods where the common issue

is to identify sub-matrices (blocks) of the observed data matrix, which

satisfy specific characteristics of homogeneity. Chapter 4 provides key

principles underlying double clustering techniques using both tradi-

tional and bioinformatic perspectives. Chapter 5 introduces two new

proposals for model-based double clustering: the first is an extension

of the double K-means introduced by Vichi (2000) in a probabilistic

framework with the aim of defining less arbitrary criterion to select the

number of clusters.

The second proposal is a hierarchical extension of standard mixture

model; it combines the advantages of allowing for both dependence

within clusters and simultaneous clustering of units and variables. The

proposed approach is obtained by extending the multilevel latent class

model proposed by Vermunt (2003) and Li (2005) to two-way contin-

uous data. Thanks to the hierarchical structure, we may distinguish

clusters (2nd level) from components (1st level) giving flexibility to

represent extra Gaussian departures. In order to cluster variables, we

introduce a binary row stochastic matrix representing variable mem-

bership (as in double K-means, Vichi, 2000) through a specific repa-

rameterization of component-specific mean following a path similar to

Rocci and Vichi (2002).

Applications The second Part entails applications on both simulated and

real data sets. After showing in Chapter 1 the results for both proposed

methodologies on simulated data; we describe in details the gene mi-

croarray technologies (see Section 7.1). In Section 7.2, the first data set

of Bittner et al. (2000) will be described (cDNA microarray). Here, the

6



aim is to define blocks formed by clusters of genes and clusters of tissue

samples of cutaneous melanomas. In Sections 7.3, the performance of

these methods are illustrated and evaluated.

In Section 7.4, the data set analyzed in Golub et al. (1999) is described.

It represents a study on gene expression in two types of acute leukemias:

acute lymphoblastic leukemia (ALL) (in turn subdivided into B-cell

and T-cell leukemia) and acute myeloid leukemia (AML). In this case,

the gene expression levels are measured using Affymetrix high-density

oligonucleotide arrays (HU6800chip) to identify genes that distinguish

between three known different classes of tissue samples. In Section 7.5,

the performance of these methods is illustrated and evaluated. For both

methodologies and data sets, the results are encouraging and represent

an improvement with respect to known results on the same benchmark

data sets. Some conclusions and future research agenda are discussed

in the last Chapter.
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Part I

METHODS
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Chapter 2

Clustering Methods

Clustering methods have been studied for many decades and in many dis-

ciplines. They generally aim at identifying subsets (called clusters, groups

or classes) of the whole data by measuring proximity or similarity between

single units. In this Chapter, we will use clusters and classes to refer to

conceptually meaningful sets of observations that share common features.

Intuitively, units within a group have to be similar (or related) to one

another and different from (or unrelated to) the units in other groups. The

greater the similarity (or homogeneity) within a group and the greater the

difference between groups, the better the clustering. The notion of similarity

can be expressed in very different ways, according to the purpose of the study,

to domain-specific assumptions and to prior knowledge of the problem.

Frequently, the data structure detected by clustering methods can give

first insights into the data generating process. Clustering can, therefore, be

seen as a useful technique for data mining and knowledge discovery.

The variety of techniques for representing data, the difficulty in establish-

ing similarity between data units, differences in assumptions and contexts in

different communities has produced a wide and often confusing range of clus-

9



tering methods.

First of all, it is important to state the differences between clustering (i.e.

unsupervised classification) and discriminant analysis (i.e. supervised classi-

fication). Clustering is usually performed when no information is available

about the membership of units to some predefined classes. Thus, clustering is

distinguished from pattern recognition or from the areas of statistics known

as discriminant analysis and decision analysis, which seek to find rules for

classifying units starting from perfect knowledge of pre-classified units.

Within the unsupervised classification framework we can observe two

main statistical categories that we will termed as standard and model-based

clustering.

The standard clustering approach is based on intuitively reasonable proce-

dures. One common class of these methods involve agglomerative hierarchical

clustering (Johnson, 1967), in which two groups are merged iteratively to op-

timize some criteria. In contrast, the divisive hierarchical clustering starts

with all units in one cluster and subdivide them into smaller groups. Divisive

methods have rarely been applied.

Another widely used class of standard methods is based on iterative re-

location (partitioning), where data points are moved from one group to an-

other until there is no further improvement in some criterion function (loss

function). Iterative relocation with a LS criterion is often called K-means

clustering (McQueen, 1967). This algorithm belongs to the class of exclusive

clustering algorithms, where data are grouped in an exclusive way, so that if

a unit belongs to a certain cluster then it could not be included in another

cluster.

Although there have been considerable improvements in these standard

approaches, this class of methods does not solve basic practical questions

10



arising in cluster analysis, such as how many clusters there are and which

clustering method should be used.

In contrast, cluster analysis can also be based on probability models

(see Bock, 1996 and 1998; for survey). So called Model-based clustering ap-

proaches describe data as being generated by some probabilistic process, and

the goal of clustering is to recover the parameters of that process. The clus-

tering algorithm fits a probabilistic model to the data (usually by maximum

likelihood, with an overfitting penalty), and the quality of the fitted model

can be evaluated by measuring the likelihood corresponding to a separate

test data set.

These approaches have provided further insight into those clustering meth-

ods which can be expected to work well (i.e., the data conform to the model),

and have led to the development of new clustering methods. It has also been

shown that some of the most popular standard clustering methods can be

viewed as estimation methods for certain known probability models. For ex-

ample, K-means clustering algorithm has been shown to be closely related to

model-based clustering using the equal volume spherical model, as computed

by the EM algorithm (Celeux and Govaert, 1992). In other words, K-means

is an approximate estimation method for a parsimonious model based on

simple independent Gaussians.

Model-based clustering techniques provide a statistical approach to solv-

ing important practical questions that arise in applying clustering methods.

An advantage of using a statistical model is that choosing both the cluster

criterion and the number of clusters is less arbitrary since the approach in-

cludes rigorous formal criteria based on the log-likelihood function penalized

with model parameters. In fact, the basic idea of model-based clustering is

to approximate the data density by a mixture model, typically a mixture

11



of Gaussians. The number of distinct groups in the data is then taken to

be the number of mixture components, and the observations are partitioned

into clusters using Bayes’ rule. A drawback of this approach is that if the

groups in the data are well separated and look Gaussian, then model-based

clustering will produce clusters that indeed tend to be ”distinct” in the most

common sense of the word (contiguous, densely populated areas of feature

space, separated by contiguous, relatively empty regions). If the groups are

not Gaussian or if the covariance structure of the mixture model is incorrect,

this correspondence may break down; an isolated group with a non-elliptical

distribution, for example, may be modeled by several mixture components,

and the corresponding clusters will no longer be well separated.

Another advantage of the model-based approach is that no scaling of the

observed variables is needed. For instance, when working with Gaussian dis-

tributions with unknown variances, the results will be the same irrespective

of whether the variables are normalized or not. This is not so for standard

cluster methods like K-means, where scaling is always an issue. Other advan-

tages are that it is relatively easy to deal with variables of mixed measurement

levels (different scale types). Such a use of model-based clustering techniques

has been referred to as the mixture likelihood approach, latent class analysis,

mixture model clustering, Bayesian Classification and unsupervised learning.

In the marketing research field, model-based clustering is sometimes referred

to as latent discriminant analysis (Dillon and Mulani, 1989) because of the

similarity to the statistical methods used in discriminant analysis as well as

in logistic regression. However, an important difference is that in discrim-

inant (and logistic regression) group membership is assumed to be known

while in model-based clustering it is latent and, therefore, unobservable.

In this Chapter, a review of two methods, namely the K-means and mix-

12



ture model 1 clustering, belonging to standard and model-based approaches

respectively, will be given. These methods represents probably the standard

benchmarks in both fields, and have been longely debated and widely ex-

tended to deal with a variety of empirical applications. In particular, Section

2.1 describes the standard K-means clustering while Section 2.2 describes

the finite mixture model proposed by Wolfe (1963) and further extended by

many other authors (see McLachlan and Basford, 1988; Banfield and Raftery,

1993; McLachlan et al., 1999). We are mainly concerned with the case where

each mixture component density is a multivariate Gaussian, a model that has

gained considerable success in a number of applications (see e.g. Murtagh

and Raftery, 1984; Celeux and Govaert, 1995; Dasgupta and Raftery, 1998).

In Section 2.3 we show that some standard clustering methods can be ana-

lyzed under a probabilistic framework.

The last three Sections deal with some topics in the context of model-

based approach. In particular, Section 2.4 introduces the specific problem of

choosing initial values for the EM algorithm while in Section 2.5 some useful

extensions are showed. The last Section examines different approaches to

model selection.

2.1 The K-means algorithm

The K-means method (McQueen, 1967) is one of the most simple unsuper-

vised learning algorithms that discovers groups in the data. The procedure,

which is shown in Table 2.1, follows an easy iterative way to classify a given

data set in a certain number, say K, of clusters. The main idea is to define K

1It has to be noted that the advantages in using the model-based approach is not just

to cluster analysis, but also to some other basic problems of discriminant analysis and

multivariate density estimation (see McLachlan and Peel, 2000a).
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centroids, one for each cluster. It has to be noted that the choice of different

locations for centroids causes different results. So, the better choice is to

place them as much as possible far away from each other. The second step

is to take each point belonging to the data set and allocate it to the nearest

centroid. When no points are pending, the second step is completed and

an early grouping is done. At this point K new centroids are calculated as

barycenters of the groups resulting from the previous step (see Figure 2.1).

There, a new binding has to be done between the same data set points and

the nearest new centroid. A loop has been generated. As a result of this

loop we may notice that the K centroids change their location step by step

until no more changes are necessary. In other words, centroids do not move

any more. In order to reduce the computational complexity, the previous

stopping rule can be replaced by a less restrictive rule such as the one that

stops the procedure if:

• the distance between each centroid in the current iteration and the

corresponding centroid in the previous iteration is not higher than a

fixed threshold;

• the maximum number of iterations is achieved.

The metric used to calculate these distances is usually the Euclidean one,

since it guarantees the convergence of the iterative procedure (Anderberg,

1973). Thus, at the t-th iteration the distance between the i-th unit and the

k-th centroid (i = 1, ..., n; k = 1, ..., K) is given by:

d(yi, ȳ
(t)
k ) =

√√√√ J∑
j=1

(yij − ȳkj)2 (2.1)

where yij is the value of the j-th variable on the i-th unit, ȳkj represents

the value of the j-th variable on the k-th centroid.
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Figure 2.1: K-means: new nearest cluster centroids

It is clear from (2.1) that he K-means algorithm aims at minimizing a

squared loss function, W , which is given by:

W =
K∑

k=1

Wk =
K∑

k=1

[

nk∑
i=1

J∑
j=1

(yij − ȳkj)
2], (2.2)

where the quantity [
∑J

j=1

∑nk

i=1(yij − ȳkj)
2] indicates the deviance within

the k-th group (of size nk).

Although it can be proved that the procedure will always converge, the K-

means algorithm does not necessarily find the global minimum function of

the loss. The algorithm is also significantly sensitive to the initial choice of

cluster centers. Thus, the K-means algorithm has to be run several times to

reduce this effect.

There are additional steps that can be found in variations of the stan-

dard K-means algorithm described above. Quackenbush (2001) discusses a

few optional steps and variants of this algorithm. Despite K-means algo-
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Table 2.1: K-means algorithm

1- Place K points into the space represented by the objects that are being

clustered. These points represent initial group centroids.

2- Assign each object to the group corresponding to the closest centroid.

3- When all objects have been assigned, recalculate the positions of the K

centroids.

4- Repeat Steps 2 and 3 until the centroids no longer move. This produces

a separation of the objects into groups; the loss function to be minimized

can be calculated.

rithm is very easy to implement, it provides no direct heuristic measure to

guide the analyst as to the number of clusters within the data. Tamayo et

al. (1999) explain that “K-means clustering is a completely unstructured

approach, which proceeds in a entirely local fashion and produces an unor-

ganized collection of clusters that is not conductive to interpretation”.

It can be stressed that K-means method can be viewed as a particular

case of mixture models (Section 2.3).
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2.2 Finite mixture models

Let Yi be a J-dimensional random vector and yi its generic realization (i =

1, ..., n). Let Y = (Y1, ...,Yn)′ be the data matrix, where the generic element

yij represents the value of the j-th variable on the i-th unit (i = 1, ..., n;

j = 1, ..., J). A mixture model assumes that each observation yi (i = 1, ..., n)

is drawn from a mixture of K groups (corresponding to mixture component

densities) in some unknown mixing proportions π1, ..., πK . In other words,

yi has density function defined by:

f(yi; φ) =
K∑

k=1

πkfk(yi; θk) (2.3)

where fk(yi; θk) denotes the k-th component density with parameter vec-

tor θk, the πk’s represent mixing weights with πk ≥ 0,
∑K

k=1 πk = 1, while

φ = (π1, ..., πK−1, θ1, ...,θK) denote the complete parameter vector.

If observations within the k-th component follow a J-variate Gaussian

density function with mean vector µk and covariance matrix Σk, we have:

f(yi; φ) =
K∑

k=1

πkϕ(yi; µk,Σk) =

=
K∑

k=1

πk

[
1√

(2π)J
|Σk|−

1
2 exp

{
−1

2
(yi − µk)

′Σ−1
k (yi − µk)

}]
. (2.4)

Thus, the clusters associated to the mixture components are ellipsoidal, cen-

tered at µk; the covariance matrices Σk determine the geometric features of

these ellipses.

In order to characterize the mixture model, i.e. to estimate its parameters,

several approaches may be considered. As exposed by McLachlan and Peel

(2000a), such approaches include graphical methods, methods of moments,
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minimum-distance methods, maximum likelihood and Bayesian methods.

However, the maximum likelihood (ML) framework is the most commonly

used approach to fitting mixture models. The optimization of the likelihood

function of φ given the data y = (y1, ...,yn) is analytically intractable, and

we must resort to more elaborate techniques. The Expectation-Maximization

(EM) algorithm (Dempster et al., 1977) is one such technique. It is a fixed-

point iterative method that locally maximizes the likelihood function in an

efficient way. In particular, the EM algorithm considerably simplifies the

ML approach to parameter estimation by assuming the existence of missing

data and posing the mixture model into an incomplete-data problem. Let us

define zi = (zi1, ..., ziK) with zik = 1 or 0 according to whether yi is drawn

from k-th mixture component or not.

This algorithm assumes that the observations y = (y1, ...,yn) are incom-

plete since we have no available information on indicator vectors or labels

z = (z1, ...zn).

It is worth noting that if the sample z is known we are in a discriminant

analysis context where the problem is essentially to predict an indicator vec-

tor zn+1 from a new observed data vector yn+1. On the other hand, if the

sample z is unknown we are in a density estimation or cluster analysis con-

text. Here, we consider only the latter case; we assume the vectors (z1, ..., zn)

are drawn from a Multinomial distribution with prior probabilities πk. The

log-likelihood function for the complete-data (y, z) is defined as

log Lc(φ) =
n∑

i=1

K∑
k=1

zik log
[
πkf(yi; θk)

]
=

n∑
i=1

K∑
k=1

zik

{
log(πk)+log

[
f(yi; θk)

]}
.

(2.5)

The Expectation Maximization algorithm is made up by two steps: in the

(h + 1)-th iteration of the E-step, we compute the expected value of the
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complete log-likelihood function, conditional on the observed data and the

current parameter estimate φ(h), say Q(φ, φ(h)). Since the expected value

is linear in the missing variables, the E-step reduces to the computation of

terms.

w
(h)
ik =

π̂
(h)
k ϕ(yi; µ̂

(h)
k , Σ̂

(h)

k )∑K
k=1 π̂

(h)
k ϕ(yi; µ̂

(h)
k , Σ̂

(h)

k )
= Pr(zik = 1|y; φ(h)). (2.6)

The (h + 1)-th iteration of the M-step, instead, updates parameter es-

timates by maximizing the expected value of the complete log-likelihood

function given the weights w
(h)
ik . The estimates, when Gaussian component-

specific densities are used, have a simple closed form involving the data and

the wik calculated in the E step,

π̂
(h+1)
k =

∑n
i=1 w

(h)
ik

n
(2.7)

µ̂
(h+1)
k =

∑n
i=1 yiw

(h)
ik∑n

i=1 w
(h)
ik

. (2.8)

Computation of the covariance matrices estimates depends on the adopted

reparameterization. For Gaussian models Banfield and Raftery (1993) and

Celeux and Govaert (1995) considered a reparameterization of the component-

specific covariance matrix, Σk, in terms of its eigenvalue decomposition:

Σk = λkDkAkD
′
k, (2.9)

where λk = |Σk|1/J , Dk is the orthogonal matrix of eigenvectors of Σk and Ak

is a diagonal matrix, with |Ak| = 1, where diagonal entries correspond to the

normalized eigenvalues of Σk in decreasing order. The matrix Dk determines

the orientation of the mixture component, Ak determines the shape of the

mixture component, and λk determines its volume.

Allowing some but not all of the parameters in equation (2.9) to vary

results in a set of 14 specific models. Here, the 14 models will be classified
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into three main families: general, diagonal and spherical. In detail, the

general family allows volumes, shapes and orientations of clusters to vary or

to be equal between clusters. Variations on the parameters λk, Dk, and Ak

(k = 1, ..., K) lead to 8 general models. The diagonal family assumes that

the covariance matrix, Σk, is diagonal. This means that the matrices Dk

are permutation matrices. By writing Σk = λkBk, where Bk is a diagonal

matrix with |Bk| = 1, we have 4 additional models. The last family of models

assumes spherical shapes constraining Ak to be equal to a identity matrix I.

In such a case, 2 models are possible. Table 2.2 summarizes some features of

the 14 models. The first column specifies the model; the second column gives

the number of parameters to be estimated and the third column indicates

if the M step can be achieved with closed form formulas (CF) or if we have

to use an iterative procedure (IP). Last column shows the kind of function

to be minimized when the M step has a closed form. As it can be seen, the

most general form of the covariance matrix estimate is:

Σ̂
(h+1)

k =

∑n
i=1(yi − µ̂

(h+1)
k )(yi − µ̂

(h+1)
k )′w

(h)
ik∑n

i=1 w
(h)
ik

. (2.10)

As a by product, the EM algorithm provides a (fuzzy) posterior matrix of

component membership. Therefore, we can cluster objects i = 1, ..., n accord-

ing to posterior probabilities of component membership, using a Maximum

a Posteriori (MaP) approach, that is:

ẑik =

1 if k = argmaxk=1,...,Kwik

0 otherwise

. (2.11)

Many authors (for example Wu, 1983; Boyles, 1983) have shown that under

general regularity conditions, the solution will converge to a local maximum

of the likelihood function. Moreover, the EM algorithm typically gives good
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results if data conform reasonably well to the model and the iterations are

started at reasonable values. However, the EM algorithm for multivariate

Gaussian mixtures breaks down when the covariance associated with one or

more components is singular or nearly singular. It may either fail or give in-

accurate results if one or more clusters contain only few observations (which

can happen if there are too many components in mixture), or if the obser-

vations they contain are concentrated close to a linear subspace of reduced

dimension.
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Table 2.2: Some characteristics of the 14 models
model number of parameters M step criteria

λDAD′ α + β CF |V|

λkDAD′ α + β + K − 1 IP -

λDAkD
′ α + β + (K − 1)(J − 1) IP -

λkDAkD
′ α + β + (K − 1)J IP -

λDkAD′
k α + Kβ − (K − 1)J CF |ΣkΩk|

λkDkAD′
k α + Kβ − (K − 1)(J − 1) IP -

λDkAkD
′
k α + Kβ − (K − 1) CF Σk|Vk|1/J

λkDkAkD
′
k α + K CF Σknk ln( |Vk|

nk
)

λB α + J CF diag|(V)|

λkB α + J + K − 1 IP -

λBk α + JK −K + 1 CF Σk|diag(Vk)|1/J

λkB α + KJ CF Σknk ln(diag( |Vk|
nk

))

λI α + 1 CF tr(V)

λkIk α + J CF Σknk ln(tr(Vk

nk
))

We have α = KJ+K−1 in the case of free weights and α = KJ in the case of equal

weights, and β = J(J+1)
2 . Further, we have Vk =

∑n
i=1 wik(yi − µk)(yi − µk)′;

V =
∑K

k=1

∑n
i=1 wik(yi − µk)(yi − µk)′ and Ωk is the diagonal matrix with the

eigenvalues of Vk in decreasing order
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2.3 Standard clustering methods and proba-

bilistic framework

In a mixture model context, the log-likelihood function to be maximized

could be written as follows:

C(P, φ) =
K∑

k=1

∑
yi∈Pk

log
[
πkf(yi; θk)

]
,

where P = (P1, ..., PK) is a partition of the sample y1, ...,yn associated to the

indicator vectors z1, ..., zn, yi a J-dimensional vector and φ = {π1, ...., πk; θ1, ...,θK}

the set of parameters to be estimated (i = 1, ..., n; k = 1, ..., K).

Moreover, let us remind that the most popular clustering criterion, the

so-called variance criterion, is defined by

W (P ) =
K∑

k=1

W (Pk) =
K∑

k=1

∑
yi∈Pk

‖ yi − ȳk ‖2

where ȳk is the center of the cluster Pk (k = 1, ..., K).

The following proposition highlights the link between C(P, φ) and W (P )

criteria.

Proposition. Celeux and Govaert (1992) show that maximizing the C

criterion for a Gaussian mixture with equal weights and a common covariance

matrix of the form σ2I (σ2 unknown) is equivalent to minimize the variance

criterion W .

Proof. In the Gaussian case, we have θk = (µk, σ
2) and πk = 1/K

(k = 1, ..., K). For a fixed partition P = (P1, ..., PK), it can be easily proved

that the maximum likelihood estimate of µk is the center of cluster Pk. In

these conditions, C can be written as
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C(P, φ) = − 1

σ2
W (P )− nJ log(σ2) + A

where A denotes a constant. It is clear to see that the estimate of σ2

optimizing C is W (P )/nJ .

From this proposition, it is straightforward to see that the EM method

is a natural extension of K-means method. Whereas a hard membership is

adopted in the K-means algorithm (i.e. a data pattern is assigned to one

cluster only), a soft membership is allowed in the EM algorithm (i.e. the

membership of each data pattern can be distributed over multiple clusters).

The key difference of K-means and EM algorithm lies in the fact that the

latter was originally proposed for finding maximum likelihood estimates of

parameters in probabilistic models, where the model depends on unobserved

latent variables. In particular, it is frequently used as a parametric method

of clustering by assuming a mixture model for the data with different distri-

butions for the clusters and unknown mixing proportions. Here the missing

data are the true cluster memberships of the observations and the number

of clusters, K, can be estimated using some model selection criteria.

On other hand, the K-means algorithm is a nonparametric method for

clustering as it does not assume any probability model for the data. Given

a fixed number of clusters, it determines an assignment of the data vectors

(observations) to the clusters so as to minimize the total of the squared

distances between the observations assigned to the same cluster and summed

over all clusters.

This difference is highlighted by the fact that the loss function W (P )

monotonously decreases with the increase of K, while C(P, φ) may not in-

crease with the increase of K.
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2.4 Choice of the initial values for the EM

algorithm

The first step of the EM algorithm requires the calculation of the expected

value of the log-likelihood function of the complete data, conditional on the

observed data, y, and the initial vector of parameter estimates φ̂0. The

choice of this vector meaningfully influences the algorithm’s speed and its

convergence. In fact, a slow convergence of the EM algorithm could due to

a “bad” choice of the vector φ̂0. If the likelihood function is not limited at

the bounds of the parameter space, the sequence of estimates {φ̂h} given by

the algorithm could diverge if φ̂0 is chosen too near to the bounds.

Another problem connected to mixture models regards the case when the

likelihood equation has multiple roots that correspond to local maxima; in

this case, the EM algorithm could be applied choosing among a vast set of

initial values. Without other information, an appropriate choice among the

roots of the likelihood equation is the greatest local maximum, although this

choice does not guarantee a valid and asymptotically efficient sequence of

roots (Lehmann, 1980).

In the context of mixture models with independent data, the E-step is

reduced to update the posterior probability of an unit to belong to a mixture

component. Therefore, an alternative approach can be to specify a value w
(0)
i

to wi for i = 1, ..., n, where

wi = (wi1, ..., wiK)′

is the vector for the i-th unit containing the K posterior probabilities

to belong to a mixture component. An usual choice is w
(0)
i = z

(0)
i , for i =

1, ..., n, where z(0) = (z
(0)
1 , ..., z

(0)
n )′ defines a initial partition of data in K

25



groups. For example, an ad-hoc way to provide an initial partition in the case

of a two Gaussian component mixture model with same covariance matrix,

could be to plot data in order to select two of the J variables, taking out a

straight line dividing bivariate data into two groups with a Gaussian form.

For high-dimensionality data, an initial value z(0) for z can be obtained using

as starting points the solution of some clustering algorithms, such as the K-

means or, if sample size is not too large, some hierarchical procedures.

Another way to specify an initial partition z(0) of the data is to randomly

divide data in K initial values of the components. In other words, for each

observation yi, we generate an integer included in [1, ..., K]. If the random

integer is equal to t, we put z
(0)
it = 1, t = 1, ..., K.

An alternative method to choose an initial value, in the case of J-variate

Gaussian models with mean vector µk and covariance matrix Σk, is to ran-

domly generate µ0
k as:

µ0
1, ...,µ

0
K ∼ N(y,V)

where y and V correspond to the sample mean and the sample covariance

matrix respectively. However, using this method, we have more variability

in the initial values µ0
k than using a random partitioning of the data into K

groups. We can specify the covariance matrices and the mixing proportions

respectively as:

Σ0
k = V

and

π0
k = 1/K

for k = 1, ..., K.

As shown in McLachlan and Basford (1988), a key problem in mixture

models is how to obtain a good estimate of the mixing weights. For univariate
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mixtures, Fowlkes (1979) suggests to determine the flex point in the quantile-

quantile plots to estimate the mixing weights in the sub-populations. The

remaining parameters can then be estimated through the sample once it is

partitioned according to these estimates. Ichihashai, Honda e Tani (2000)

show that the EM algorithm for Gaussian mixture models can be produced

by a modified version of the K-means fuzzy method, in which the Kullback-

Leibler information is introduced as term of “regularization” instead of the

entropy, that is, the loss function is written as:

Jλτ =
K∑

k=1

n∑
i=1

(uik)d
2
ik+λ

K∑
k=1

n∑
i=1

uik log(
uik

πk

)−
n∑

i=1

ηi(
K∑

k=1

uik−1)−τ(
K∑

k=1

πk−1)

(2.12)

where the membership function, uik, is equal to the posterior probability

that yi belongs to k-th component wik, dik is the distance between yi and the

k-th prototype cluster, λ is a positive parameter, πk is the prior probability

that the unit belongs to the k-th mixture component, ηi and τ are penal-

ization terms. The second term of (2.12) represents the Kullback-Leibler

distance, which obtains its minimum if uik = πk, ∀ k. The greater is λ, the

more uik tend to πk, i = 1, ..., n; k = 1, ..., K.

2.5 Variants of the EM algorithm

As it has been shown, the EM algorithm is an iterative algorithm; each

iteration is based upon two steps, the Expectation Step (E-step) and the

Maximization Step (M-step). A brief history of the EM algorithm can be

found in McLachlan and Krishnan (1997). The name EM algorithm was

coined by Dempster et al. (1977), who synthesized earlier formulations of

this algorithm which was already used in many particular cases; they pre-
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sented a general formulation of the method for finding MLE in a variety

of problems and provided a series of problems where this method could be

profitably applied. Since then, the EM algorithm has been applied in a large

variety of statistical problems such as resolution of mixtures, multi-way con-

tingency tables, variance component estimation, factor analysis, as well as in

specialized applications in genetics, medical imaging, and neural networks.

The EM has gained popularity since it is numerically stable in each iter-

ation under fairly general conditions, and has good properties with respect

to global convergence. Moreover, it is easily implemented, analytically and

computationally. By looking at the monotone increase in likelihood function

over iterations, it is easy to monitor convergence and programming errors

(McLachlan and Krishnan, 1997). The cost per iteration is generally low,

which can offset the larger number of iterations needed for the EM algorithm

compared to other competing procedures.

However, the EM algorithm is sometimes very slow to converge and in

some problems the E or M steps may be analytically intractable. The next

sections review some modifications and extensions of the EM algorithm. In

particular, in Section 2.5.1, we focus on the GEM and its subclasses (ECM,

ECME, an extension of ECM, AECM and MCEM). In Section 2.5.2 and

2.5.3, we describe in details two further algorithms, the so-called CEM and

SEM (stochastic version of CEM) algorithms.

2.5.1 GEM-type algorithms

In the generalized EM algorithm (GEM), defined by Dempster et al. (1977),

the expectation of log-likelihood function is is increased (instead of maxi-

mized) at each M-step. The M-step requires φh+1 to increase the expected

value of the complete log-likelihood function rather than to maximize it over
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all φ ∈ Ω. Problems arise since in general GEM does not appropriately

converge without further specifications of the process of increasing the ex-

pectation of log-likelihood function.

Meng and Rubin (1993) proposed generalized EM algorithm which they

call the ECM (Expectation, Conditional Maximization) algorithm. The ECM

typically converges more slowly than the EM algorithm in terms of the num-

ber of iterations, but can be faster with respect to CPU time. Moreover, it

preserves the appealing convergence properties of the EM algorithm, such

as its monotone convergence. Briefly, the ECM algorithm modifies the EM

algorithm by replacing its M-step, which maximizes the current expected

complete log-likelihood function over the entire parameter space Φ, by a se-

quence of conditional maximization steps (indexed by s = 1, ..., S), each of

which maximizes the expected complete log-likelihood function over a func-

tion of φ, say φs, conditional on φs, being fixed at previously estimated

values. If (φ1,...,φS) span the parameter space of φ, the ECM algorithm

will converge in the same way as the EM does to the ML estimate. Certain

restrictions are needed to ensure that the resulting maximum is an uncon-

strained maximum of the observed likelihood. A necessary condition is that

the set of constraint functions is space filling (see Wu, 1983).

In many situations, the computation of the E-step may be cheaper than

the computation of the CM-steps. Thus, we can think to perform an E-step

before each CM-step or before a few selected CM-steps. Here, we consider

the case where we perform an E-step before each CM-steps: a cycle is defined

to be one E-step followed by one CM-step. Meng and Rubin (1993) called

the corresponding algorithm a multicycle ECM; the likelihood function is

monotonically increased after each cycle, and hence, after each iteration. A

disadvantage of using a multicycle ECM algorithm is that the extra compu-
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tations at each iteration lead to slow convergence, slower than the ECM.

In the factor analysis context, Liu and Rubin (1994) proposed the ECME

(Expectation, Conditional Maximization either) algorithm, which is an ex-

tension of the ECM, but with a rate of convergence which is substantially

faster than either EM or ECM, while retaining the stable monotone con-

vergence to an ML estimate of the EM algorithm. This increased rate of

monotone convergence makes it easier to judge convergence, and total com-

putation time can be lower than with EM.

ECME (Expectation, Conditional Maximization Either) replaces each or

more of CM steps with a step that conditionally maximizes the actual likeli-

hood function over φs rather than the expected complete data log-likelihood

as with ECM. Typically, the conditional maximization of the actual likeli-

hood over φs is more difficult than the conditional maximization of the ex-

pected complete-data log-likelihood over φs. Thus, ECME is typically more

tedious to implement than ECM, and some of the steps are computationally

more expensive. Its features are, however, an increased rate of convergence,

and an increased ability to assess convergence and decreased total computer

time, both obtained without loosing the monotone increase in likelihood and

simple implementation.

Meng and Van Dyk (1997) proposed an extension of ECM algorithm

called the AECM (Alternating ECM) algorithm, where the specification of

the complete-data is allowed to be different on each CM-step. In other

words, the complete-data need not be the same at each CM-step. Thus, the

ECME can be considered as a special case of the AECM algorithm, where

the complete-data can be specified as the observed data on a CM-step. On

the other side, the AECM algorithm can be viewed as a combination of the

ECME algorithm and the Space-Alternating Generalized EM (SAGE) algo-
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rithm proposed by Fessler and Hero (1994). The Space-Alternating Gen-

eralized EM (SAGE) algorithm has been developed without knowledge of

ECM and ECME algorithms and performs only one EM iteration on a given

CM-step.

ECME itself can be embedded in a more general AECM algorithm, which

is closely related to multicycle ECM. Another advantage of using these EM-

type algorithms is that large sample standard errors (see warnings in Rubin

and Thayer, 1983, concerning their inferential use) can be obtained numer-

ically using only the code for EM (Meng and Rubin, 1991) or ECM (Van

Dyk, Meng and Rubin, 1995).

In Section 2.5.3, we show a modified version of the EM algorithm in the

context of computing the MLE for the finite mixture models; it is called

the Stochastic EM algorithm, and has been proposed by Celeux and Diebolt

(1985) before the appearance of the MCEM (Monte Carlo EM) algorithm

proposed by Wei and Tanner (1990); it is the same as the MCEM algorithm

when M=1.

2.5.2 The CEM algorithm

A variant of the EM is the CEM algorithm (Celeux and Govaert, 1992). This

algorithm incorporates a classification step between the E and the M step of

an EM algorithm. Starting from an initial parameter vector φ0, an iteration

of the CEM consists of three steps.

• E-step: The conditional probabilities wik, i = 1, ..., n and k = 1, ..., K,

are calculated as in the standard E-step.

• C-step: A partition P = (P1, ..., PK) of (y1,...,yn) is designed by assign-

ing each unit to the component maximizing the conditional probability
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wik, (k = 1, ..., K), i.e. adopting a MAP approach.

• M-step: The ML estimate of φ is updated using the cluster Pk as sub-

sample (k = 1, ..., K) of the k-th mixture component.

CEM maximizes the complete data log-likelihood where the missing compo-

nent indicator vector of each sample point is included in the data set. As a

consequence, CEM is not expected to converge to the ML estimate of φ and

may yield inconsistent estimates of the parameters especially when the mix-

ture components are overlapping or are in disparate proportions (McLachlan

and Peel, 2000a).

From a practical point of view, the solution provided by the CEM algo-

rithm does depend upon its initial value, especially in the case in which the

clusters are not well separated. Usually, to overcome this problem, the algo-

rithm is repeated several times from different initial values and the clustering

which provides the greatest value of the complete log-likelihood function is

selected. Obviously, if most of the CEM runs lead to the same clustering,

we can be confident that the global optimum has been achieved. In the next

Section, we present a stochastic version of the CEM algorithm which has

been designed to give an answer to its dependence on initial values.

2.5.3 The SEM algorithm

The SEM algorithm has been proposed by Celeux and Diebolt (1985) to

identify the parameters of a mixture model as an alternative to the EM

algorithm. It gives an answer to the well known limitations of the EM (strong

dependence on initial values, slow convergence, etc) which can occur when

the mixture components are not well separated. The SEM algorithm is a

stochastic version of the EM incorporating a restoration of the unknown
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component labels zi, i = 1, ..., n between the E and M steps, by drawing from

their current conditional distribution. Starting from an initial parameter φ0,

an iteration of the SEM algorithm consists of the three following steps.

• E-step: The conditional probabilities wik, i = 1, ..., n and k = 1, ..., K,

are calculated as in the standard E-step.

• S-step: A partition P = (P1, ..., PK) of (y1,...,yn) is designed by draw-

ing the component indicator zi from a Multinomial distribution with

probabilities wik, (k = 1, ..., K).

• M-step: The ML estimate of φ is updated using the cluster Pk as sub-

sample (k = 1, ..., K) of the k-th mixture component.

It is clear that the SEM algorithm can be thought of as a stochastic

version of the CEM as well as of the EM; in fact, it appears to be a natural

stochastic version of both algorithms though they are designed to optimize

different criteria: the log-likelihood function for the EM algorithm and the

classification log-likelihood function for CEM. Moreover, the two algorithms

lead to different partitions. The convex hulls of the clusters generated by the

CEM are disjoint whereas the clusters generated by the SEM are generally

overlapping. From this point of view, it turns out that the sequence of the

mixture estimates obtained via the SEM is closer to the EM estimates than

to the CEM estimates.

The SEM algorithm does not converge pointwise: the process generated

by the SEM is a Markov chain whose stationary distribution is concentrated

around the ML parameter estimator. A natural estimate φh from a SEM

sequence, h = 1, ...., is the mean of the iterates values where the first burn-

in iterates have been discarded. An alternative estimate is to consider the

parameter value leading to the highest likelihood in a SEM sequence.
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The theoretical convergence properties of SEM algorithms are difficult to

assess since it involves the study of the ergodicity of the Markov chain and

the existence of the corresponding stationary distribution. Under regularity

conditions, Diebolt and Celeux (1993) proved weak convergence to a local

maximum. However, computational studies showed that the SEM algorithm

is even better than EM algorithm for several cases, for example censored data

(Chauveau, 1995), mixture models (Celeux, Chauveau and Diebolt, 1996).

A drawback of this procedure is that it requires thousands of simulations and

the computational cost could be, again, very high.

2.6 The choice of K

When discussing the process of parameters estimation, we assumed that the

number K of mixture components is fixed; in practice, however, it is unknown

and, thus, must be estimated through observed data. In this Section, we

discuss methods for estimating K in a mixture model.

One of the big advantages of model-based clustering is that it provides

a theoretical basis for estimating the number of clusters. This represents

a great advantage with respect to the standard algorithms for clustering,

where methods to determinate the number of clusters or the best clustering

are questionable. Here, the problem is to perform a comparison among the

members of a set of possible models.

It should be however noted that the choice of the number of components

may not be a fundamental issue when mixture models are used to provide

a semi-parametric estimate of an unknown distribution function: in this

case over-estimation of the number of components is not a serious problem.

When mixtures are used for distributional approximation purposes, Leroux
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(1992) showed that, under very mild conditions, Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC) along with other penalized

likelihood criterion do not asymptotically underestimate the “true” number

of components. Technically speaking, they are incorrectly applied because in

this context the regularity conditions for the simple penalty functions based

on the number of parameters do not hold.

Our goal is to use the mixture model to provide model-based clustering

and in this perspective the choice of the number of components must be

carefully and critically addressed. The problem of over-fitting arises from

the nesting of the mixture models, so that a distribution which can be well

approximated by a mixture of K component densities can also be well ap-

proximated by a number K0 ≥ K of component densities, in the sense that

the two mixture distributions can be empirically indistinguishable. Thus, we

can only get a lower bound for the number of components; in this respect

the right question to ask is not “how many components are there in the

mixture model?” but “what is the smallest number of the components in

the mixture needed to make the model compatible with the observed data?”.

Especially, for model-based clustering, the answer to the latter would guar-

antee a reasonable explanation of the data generating process without being

wasteful.

In the next Sections we will discuss different approaches to estimate the

number of components in a mixture model. Obviously we will not try to

be exhaustive, but give space to the more interesting approaches, while the

interested reader can refer to the specific references.
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2.6.1 Exploring the number of Modes

Estimating the number of components in a mixture distribution by analyzing

the number of modes is one of the oldest methods, mainly based on intuition.

Titterington et al. (1985) described some inferential procedures for assess-

ing the number of modes. However, the obvious drawback of this method

is that if the component densities are not sufficiently far apart the mixture

distribution would still be unimodal and estimating the number of compo-

nents by the number of modes would fail. Note however, that the practical

interest could lie in finding components that correspond to separate modes,

so that true separation occurs. Then the problem is: “do the components

model departure from the parametric kernel density represent well distinct

groups?”

Figure 2.2: Mixture of Gaussians (a) means 4 s.d. apart, (b) means 2 s.d. apart

We illustrate the distinction between modes and components through a

simple example considering a mixture of two univariate Gaussian densities.

Figure 2.2(a) is the mixture of two Gaussians with equal weights, with means

being 4 standard deviation apart while Figure 2.2(b) shows the same mixture

with means 2 standard deviations apart. In both figures dotted lines repre-

sent the component densities and the solid line is the the mixture density.

Though Figure 2.2(a) produces a bimodal distribution, Figure 2.2(b) is still
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unimodal.

The example illustrates that we cannot always infer about the number

of components using the number of modes. However number of modes ≤

K in univariate contexts; visually inspecting the modes of a multivariate

distribution is moreover more difficult.

A method for assessing the separation between mixture components is

based on the rootgrams of the posterior probabilities for the components

of the mixture model. A rootogram is the variant of a histogram where

the heights of the bars encode the square roots of the bin counts, instead

of the bin counts themselves. This makes low counts more visible. If the

rootogram for a certain k-th component has a large peak at P (Z = k|Y )=1

and is essentially zero elsewhere, this indicates clear separation of the k-

th component from all the other components. On the other side, if the

rootogram for the k-th component has no peak at P (Z = k|Y )=1 this is due

to the fact that the k-th component is overlapped with other components.

Furthermore, if there is significant mass away from P (Z = k|Y )=1 in the

rootograms for several components, these components are not well separated.

2.6.2 Likelihood-based approaches

Likelihood based approaches are probably the most extensively used methods

for testing statistical hypotheses. As noted before, model selection can be

framed within a hypothesis testing problem. An obvious way of approaching

the problem of testing the smallest value of the number of components in a

mixture model is to use the LRT. We consider testing the null hypothesis H0:

K = K0 versus H1: K = K1 for some K1 > K0, for example K1 = K0 + 1.

Let φ̂Ki
be the MLE of φ under Hi (i = 0, 1), and let λ =

L(
ˆφK0

)

L(
ˆφK1

)
be the

corresponding likelihood ratio. In the context of mixture models, it is well-
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known, that regularity conditions (Θ0∩Θ1 = Ø and Θ = Θ0∪Θ1) fail to hold

for the likelihood ratio test statistic (LRT) −2 log λ to have its asymptotic

chi-squared null distribution with degrees of freedom equal to the difference

between the number of parameters under the null and alternative hypotheses

(Feng and McCulloch, 1996). In fact, in this context, the null hypothesis H0

can be achieved from the alternative hypothesis H1 or more formally the null

hypothesis lie on the boundary of the alternative one. To explain this, let us

consider the null hypothesis of one Gaussian component:

H0 : f(y) = ϕ(y; µ, σ2)

versus the alternative hypothesis of two Gaussian components:

H1 : f(y) = πϕ(y; µ1, σ1
2) + (1− π)ϕ(y; µ2, σ2

2).

The model under H0 can be obtained in two ways: with π = 0 or, respec-

tively π = 1, µ1 = µ2 or with σ1 = σ2 and any π. Thus, the null hypothesis

is nested within the alternative, i.e. Θ0 ∩ Θ1 6= Ø. In other words, Θ0 is on

the boundary of Θ1.

McLachlan (1987) proposed a bootstrap approach, where the null distri-

bution of −2 log λ is estimated by fitting the mixture model to B samples

drawn under the null hypothesis of K0 components. That is, the bootstrap

samples are generated from a mixture model with the vector φ of unknown

parameters replaced by its maximum likelihood estimate (MLE) under H0,

φ̂K0
. The value of −2 log λ is computed for each bootstrap sample after

fitting mixture models for K = K0 and K1 in turn to it. The process is

repeated independently a number of times B, and the replicated values of

−2 log λ from bootstrap samples provide an assessment of the bootstrap null

distribution of the test statistic. This approach can be used to compare the
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LRT value on the original sample with a specific quantile of the bootstrap

distribution, corresponding to a given level α. The value of the i-th order

statistic of the B bootstrap replications can be used to estimate the quantile

of order i/(B+1), and the P-value can be evaluated referring to the distri-

bution of the test statistic. McLachlan (1987) observed that the number of

the bootstrap samples, B, must be very large if an accurate estimate of the

P-value is pursued.

In details, if the decision to be taken concerns only the rejection of the

null hypothesis at a significance level α, Aitkin, Anderson e Hinde (1981)

underline that the bootstrap replications can be used to assess a test of

approximate dimension α, likewise to the Monte Carlo procedure of Hope

(1968). The test that rejects H0 if the observed value of the statistic −2 log λ

is greater than the i-th ordered value in the B bootstrap replications has

approximately dimension equal to:

α = 1− i/(B + 1).

The results in McLachlan (1987) and in McLachlan and Peel (1997) show

the performance of the bootstrap method in the case of limited dimension

(few data and two or three clusters). The simulation studies of McLachlan

and Peel (1997) illustrate that there is a tendency of the bootstrap approach

to underestimate the upper percentiles of the null distribution of −2 log λ,

and hence a tendency towards the null hypothesis of K0 components (con-

servative test).

2.6.3 Bayesian and penalized likelihood approaches

A further approach to estimate the number of components is to use formal

Bayesian and penalized likelihood methods (as the AIC and the BIC crite-
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ria). These methods are simple to be implemented since they are based on

a penalization of the log-likelihood function through a simple additive fac-

tor. However, there are some theoretic limitations to apply those standard

methods in the case of mixture models (Titterington et al., 1985).

The purely Bayesian approach considers the number of components K as

a random variable with a known parametric distribution to obtain a posterior

distribution for K conditional on the observed data. Often, this posterior

distribution can not be calculated in closed form and must be approximated

e.g. through MCMC techniques (Lavine and West, 1992; Diebolt and Robert,

1994). However, the two approaches which will be described in this Section

can be viewed in a unique perspective since each penalized likelihood method

can derive from a different approximation of the Bayesian solution (Chicker-

ing and Heckeman, 1997).

We consider the approach based on the Bayes factors and the posterior

probabilities (Kass and Raftery, 1995). The idea of this approach is to con-

sider K different models, M1,..., MK , with prior probabilities p(Mk). By the

Bayes theorem, the posterior probability of model Mk conditional on the ob-

served data D is proportional to the product between the probability of the

data conditional on the model Mk and the prior probability of the model:

p(Mk|D) ∝ p(D|Mk)p(Mk).

When parameters are unknown, from the total probability principle, p(D|Mk)

is obtained integrating over the parameters, for example

p(D|Mk) =

∫
p(D|θk, Mk)p(θk|Mk)dθk,

where p(θk|Mk) is the prior distribution of θk, the parameter corresponding

to model Mk. The quantity p(D|Mk) is the so-called integrated likelihood of

model Mk.
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Obviously, a natural Bayesian approach to select a model is to choose the

model with the largest posterior probability, and if the prior probabilities

of the model are the same, choosing the model with the largest integrated

likelihood. To compare two models, M1 and M2, the Bayes factor is defined

as the ratio of the corresponding integrated likelihoods:

B1,2 =
p(D|M1)

p(D|M2)
.

In others words, the Bayes factor represents the posterior odds that the

data are distributed according to model M1 rather than according to model

M2 when both models have the same prior probabilities. If B1,2 > 1, model

M1 is to be preferred to model M2. Conventionally, for values of B1,2 greater

than 100 the choice is strongly motivated; obviously, the method can be

generalized to more elements.

The main difficulty in using the Bayes factor is the calculation of the

integrated likelihood. In 1973, Akaike proposed an approximation of the

integrated likelihood, which is often referred to the Akaike Information Cri-

terion (AIC). Bozdogan and Sclove (1984) and Sclove (1987) developed AIC

in the context of selection of the number of components of a mixture models

as follows:

−2 log p(D|θ̂k; Mk) + 2νk = AICk

where νk is number of the parameters in model Mk and θ̂k is the ML estimate

of θk. However, Soromenho (1993) and Celeux and Soromenho (1996) proved

that AIC tends to overestimate the correct number of components.

Schwarz (1978) proposed a different approximation of the integrated like-

lihood, called the Bayesian Information Criterion (BIC), which is given by:
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−2 log p(D|θ̂k; Mk) + νk log(n) = BICk.

The first term of such equation, which represents the maximized likeli-

hood of the mixture, is penalized to restrain the tendency towards unnec-

essary parameters proliferation. A minimum value of BIC shows a strong

evidence for the corresponding model; finally, BIC can be used to compare

models with different parameterizations of the covariance matrices and dif-

ferent number of clusters. Usually, differences of BIC greater than 10 are

considered as strong evidence to support a specific model (Kass and Raftery,

1995).

Another criterion is the so-called AWE, approximate weight of evidence

(Banfield and Raftery, 1993). It has been derived by an approximation of

the integrated likelihood based on the classification likelihood. However,

empirical results seem to encourage the use of BIC (Fraley and Raftery,

1998).

2.6.4 The use of information criteria

The problem of model selection can be approached using some information

criteria. In fact, both AIC and BIC have some links with the Kullback-

Leibler divergence (1951) of a unknown density function f(y) from its esti-

mate f(y; φ̂) given by:

I[(f(y); f(y; φ̂)] =

∫
f(y) log f(y)dy −

∫
f(y) log f(y; φ̂)dy (2.13)

and with the bias-corrected log-likelihood:

log L(φ̂)− b(F ) (2.14)

42



where b(F ) is the bias of the estimator of the second term in the right hand

side of (2.13), the only important term since the first one does not depend on

the model. The purpose is to select the model (i.e., the number of components

in this context) which maximizes expression (2.14) and, therefore, minimizes

the divergence (2.13). In literature, information criteria are expressed in the

following form:

− log L(φ̂) + 2C (2.15)

where the first term measures lack of fit while the second represents a penalty

term which measures model complexity. Therefore, the aim is to choose the

model which minimizes the criterion (2.15).

An alternative method based on information criteria which has a similar

computational complexity to the bootstrap method of McLachlan (1987) is

the cross-validation method which has been shown by Smyth (2000) to work

well in practical examples.

To explain, let y be a random vector with density function f(y) and let

Dtrain = {y1, ...,yn} be a random sample from the analyzed sample. A set

of finite mixture models with k = 1, ..., K density components are fitted to

Dtrain = {y1, ...,yn}. Thus, we have an indexed set of estimated models,

f(y; φ̂
(k)

), 1 ≤ k ≤ K, where each f(y; φ̂
(k)

) is estimated on the same data

set Dtrain. Let

ltrain
k = l(φ̂

(k)
|Dtrain)

be the log-likelihood function of the model with k = 1, ..., K components,

where φ̂
(k)

are the ML estimates obtained from the data Dtrain. ltrain
k is a

non decreasing function of k since model flexibility increases with increasing

number of density components, i.e. with better fit to the data. Therefore

ltrain
k can not directly provide any indication for the number of components
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in the mixture model.

Let us imagine that one has a large data set Dtest which was not used in

fitting any of the adopted models; in general, Dtest ∪Dtrai = D where D is

the observed sample.

Let

ltestk = l(φ̂
(k)
|Dtest)

be the log-likelihood function evaluated on data Dtest using the parameter

set estimates obtained from Dtrain. We can interpret this test log-likelihood

function as a function of k, keeping all other parameters as well as Dtrain

fixed. Intuitively, this test likelihood ltestk should be a useful test statistic for

comparing mixture models with different numbers of components. This test

log-likelihood is also known as the log predictive score, Good (1952).

For convenience of notation, let fk(y) denote the k-components model

with parameter estimates φ̂
(k)

, and let

ik = − ltestk

ntest

= − 1

ntest

l(φ̂
(k)
|Dtest)

be the negative test log-likelihood per unit sample. The expected value of ik

is equal to

E(ik) = − 1

ntest

E[l(φ̂
(k)
|Dtest)] = − 1

ntest

ntest∑
i=1

E[log fk(yi)]

−E[log fk(yi)] =

∫
f(y) log

1

fk(y)
dy =

∫
f(y) log

f(y)

fk(y)
dy+

∫
f(y) log

1

f(y)
dy

(2.16)

where ntest is the dimension of Dtest. This expected value is the sum

of the Kullback-Leibler divergence between f(y) and fk(y) (the first term

on the right) and a constant which is independent of k and represents the
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entropy of the true density function f(y) (the second term on the right

above). Therefore, the test log-likelihood function ltestk , when appropriately

scaled, is an unbiased estimator (unless a constant) of the Kullback-Leibler

divergence (KL). The KL divergence in turn defines how far the model fk(y)

is from the true f and is strictly positive unless f(y) = fk(y). Thus, the test

log-likelihood function is au unbiased estimator of the KL divergence between

the true density and the model under consideration, and this motivates its use

as a model selection criterion. Often, we have not a large independent test

data to be used as Dtest; thus, a practical alternative is to use cross-validation

to select the model. The data are repeatedly partitioned into two sets, one

is used to estimate model parameters and the other is used to evaluate the

statistic of interest. Let M be the number of partitions. For the i-th partition

let Si be the data subset used for evaluation of the log-likelihood function and

D§i be the data used for building the model. Therefore, the cross-validated

estimate of the test log-likelihood function for k-th model is defined as:

lCV
k =

1

M

M∑
i=1

l(φ̂
(k)

(D§i)|Si) (2.17)

where φ̂
(k)

(D§i) denotes the parameters for the k-th model estimated from

the i-th training subset, and the term within the sum of the equation (2.17) is

the log-likelihood function evaluated on the data in Si using the parameters

estimated from the data D/Si.

In general, consider the case when the model family under consideration

includes the true data generating distribution f(y); let this particular model

have ktrue density components. Both the Bayesian and cross-validation meth-

ods will tend to converge to ktrue as the sample size increases. For cases where

truth is not within the model family, it is clear from the KL equations above

that the cross-validation methodology will directly seek that particular model

45



within the chosen model family which is closest to truth.

There are different techniques of cross-validation that differ in how the

partition are chosen. For example, v-fold cross-validation uses v disjoint test

partitions {S1, ..., Sv} each of size n/v. Well known examples are: v = n

(leave-one-out) and v = 10 (ten-fold CV, Breiman et al., 1984).
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Chapter 3

Simultaneous clustering and

factorial reduction

This Chapter deals with approaches to simultaneous clustering and facto-

rial reduction. It represents an attempt to solve the task of clustering few

units on a very large number of the variables; this is a non standard prob-

lem in statistic analyses, which is, however, usual in some fields of research,

where high-dimensional data are considered (for example, marketing, cus-

tomer satisfaction, psychology, document classification and gene expression

data analyses). In particular, if a mixture model is adopted to cluster few

units on a large number of variables, conceptual and computational limita-

tions make the use of standard algorithms for maximum likelihood estimation

rather cumbersome. In standard contexts, observations are usually consid-

ered as n independent realizations of a J-dimensional random variable; here,

the sample size is assumed to be greater than the number of variables in

order to avoid near-singular estimates of the (component-specific) covariance

matrices. Therefore, if the aim is to cluster few observations characterized

by a very large number of variables, we may face some problems with pa-
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rameter estimation; this leads to the need of some factorial reduction prior

to a clustering algorithm.

Principal Component Analysis (PCA) has often been applied to reduce

the number of analyzed variables, to apply a clustering algorithm for grouping

units into homogeneous groups on the basis of principal components. The

hope for using PCA prior to cluster analysis is that PCs may “extract” the

essential information about the cluster structure in the analyzed data set.

Since PCs are uncorrelated and ordered, the first few PCs, which contain

most data variability (information), are usually used in cluster analysis (see

e.g. Jolliffe et al., 1980). However, De Sarbo et al. (1990) and De Soete and

Carroll (1994) among others warn against this procedure, which is referred

to as “tandem analysis” (Arabie and Hubert, 1994); it provides PCs and

an optimal classification, minimizing two target functions that may work

in opposite direction. That is because PCA may identify PCs that do not

contribute much to perceive the clustering structure in the analyzed data

but, on the contrary, may obscure or mask it.

To overcome this problem, several authors have proposed techniques for

simultaneous clustering and factorial reduction of the analyzed data (see e.g.

De Soete and Carroll, 1994; Tipping and Bishop, 1997; Vichi and Kiers,

2001).

In the next Sections, we examine and compare the models proposed by

Ghahramani and Hinton (1996) (successively extended by McLachlan et al.,

2000b) and Rocci and Vichi (2002) for the purposes of analyzing high dimen-

sional data in a lower dimensional space to explore group structures. The

comparison is discussed with respect to the adopted reparameterization of

the factorial representation. A comparison on gene expression data can be

found in Martella (2006).
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3.1 Ghahramani and Hinton (1996)

Ghahramani and Hinton (1996) propose a model that simultaneously per-

forms clustering and local dimensional reduction within each cluster. Using

a factorial approach, the J-dimensional data vector yi is modeled as

yi = µ + Bui + ei, (3.1)

where µ is a (overall) mean vector, B is a J×Q matrix of factor loadings,

ui is a Q-dimensional (Q<J) vector of latent variables (known as factors),

which are assumed to be i.i.d. draws from a N(0, IQ), where IQ denotes

the Q×Q identity matrix. Furthermore, ei are i.i.d. random variable with

Gaussian distribution N(0,D), where D = diag(σ2
1, ..., σ

2
J), that are assumed

to be independent of ui.

According to this model, conditional on ui, the distribution of yi is N(µ+

Bui,D), while unconditionally, the distribution of yi is given by

yi ∼ N(µ,BB′ + D). (3.2)

If Q is chosen sufficiently smaller than J , the representation Σ = BB′+D

imposes some constraints on the covariance matrix and thus reduces the num-

ber of free parameters to be estimated. However, in the case of Q > 1, B

is not identifiable univocally, since Σ = BB′ + D is still satisfied if B is

replaced by BC, where C is any orthogonal matrix of order Q. One (arbi-

trary) way of uniquely specifying B is to choose the orthogonal matrix C so

that B′D−1B is diagonal (with its diagonal elements arranged in decreasing

order). Assuming that the eigenvalues of BB′ are positive and distinct, the

condition that B′D−1B is diagonal imposes Q(Q− 1)/2 constraints. Hence,

the number of free parameters is JQ + J −Q(Q− 1)/2.

The goal of factor analysis is to find those B and D that best fit the covari-

ance structure of yi. Ghahramani and Hinton (1996) considered a mixture of
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K factor models (3.1), called mixture of factor analyzers (k = 1, ..., K); each

factor analyzer depends on a set of Q latent factors through a component-

specific factor loading matrix Bk and show different mean vectors µk. Thus,

each yi is a mixture of K Gaussian densities in proportions π1, ..., πK ; that

is

f(yi; φ) =
K∑

k=1

πkϕ(yi; µk,Σk) (3.3)

where Σk = BkB
′
k + Dk, (k = 1, ..., K).

Thus, the set of model parameters in given by

φ = {(µk,Bk)k=1,...,K , π1, ...,πK−1,Dk}.

This model has been further developed by McLachlan et al. (2000b).

They fitted the mixture of factor analyzers model by using the AECM al-

gorithm (see Section 2.5.1). To apply the AECM algorithm to the mixture

of factor analyzers, McLachlan et al. (2000b) partition the vector of un-

known parameters φ as (φ1; φ2), where φ1 contains the mixing proportions

πk (k = 1, ..., K) and the elements of the component means µk (k = 1, ..., K).

The subvector φ2 contains the elements of Bk (k = 1, ..., K) and Dk. One

iteration of the AECM algorithm consists of two cycles: one E-step (in the

same form of the standard one for Gaussian mixture models) and one CM-

step for each cycle. The two CM-steps correspond to the partition of φ into

the two sub-vectors φ1 and φ2. In the first cycle, the CM-step leads to πk

and µk being updated as in (2.7) and (2.8). In the second cycle, the CM-step

leads to updated estimates of Bk (k = 1, ..., K) as

Bk = Akγk(γ
′
kAkγk + ωk)

−1,

where
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Ak =

∑K
k=1 wik(yi − µk)(yi − µk)

′∑K
k=1 wik

,

γk = (BkB
′
k + Dk)

−1B′
k

and

ωk = IQ − γ′
kBk

k = 1, ..., K. The updated estimates Dk are given by:

Dk = diag{Ak −AkγkB
′
k}.

It can be proved that some of the estimates of Dk will be close to zero if

effectively not more than Q observations are assigned to the k-th component

of the mixture (in terms of the fitted posterior probabilities of component

membership). This will lead to spikes or near singularities in the likelihood

function. One way to overcome this problem is to impose the condition of a

common value D for the Dk,

Dk = D (k = 1, ...K).

It is worth noticing that the mixture of factor analyzers is, essentially, a

mixture of reduced Gaussian distributions, where a component specific factor

model fits a Gaussian distribution to a portion of data, weighted by posterior

probabilities, wik (k = 1, ..., K, i = 1, ..., n). Since the covariance matrix for

each component is specified through the lower dimensional factor loading

matrices, the model has [JQ− (Q2 −Q)/2]K + J rather than KJ(J + 1)/2

parameters.
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If Q is sufficiently smaller than J , Σk = BkB
′
k + D with Ck, a orthog-

onal matrix of order Q, such that B′
kD

−1Bk is diagonal imposes stronger

restrictions on covariance matrices reducing the number of parameters to be

estimated.

McLachlan et al. (2006) suggest the use of K factor models with mixtures

of t distributions in attempt to make the model less sensitive to outliers.

3.2 Rocci and Vichi (2002)

Rocci and Vichi (2002) proposed a clustering model which has insightful links

with the mixture of factor analyzers proposed by Ghahramani and Hinton

(1996). More precisely, they propose a two-way model for simultaneous fac-

torial reduction and clustering assuming that the observed data come from a

finite mixture of multivariate Gaussian distributions. Constraining the mean

vectors of each component density to lie onto a subspace, model parameters

are estimated through maximum likelihood using an Expectation Conditional

Maximization (ECM) algorithm.

They consider the mixture model (2.3) and represent the mean vector

µk=[µk1, ..., µkJ ] of each component density, as a function of Q < J latent

variables according to the following bilinear model:

µk = Buk, (3.4)

where B is a factor-loading matrix [J×Q], while uk = [uk1, ..., ukQ] represents

component-specific factor scores.

Let y1, ...,yn be n i.i.d. observations, the maximized log-likelihood of the
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mixture model (2.3) can be written as (Hathaway, 1986):

l(φ̂) =
n∑

i=1

log[
K∑

k=1

π̂kf(yi; θ̂k)] =

=
∑

ik
wik log[π̂kf(yi; θ̂k)]−

∑
ik

wik log(wik),

(3.5)

where φ̂ = (π̂k, θ̂k) denotes the maximum likelihood estimate of the pa-

rameter vector, while wik represents the posterior probability that the i-th

unit belongs to the k-th component of the mixture subject to the constraint∑K
k=1 wik = 1 (i = 1, ..., n). Rocci and Vichi (2002) propose to estimate the

parameters model by using a ECM type algorithm (see Section 2.5.1). The

algorithm can be formulated by maximizing the log-likelihood function with

respect to only a subset of model parameters conditionally upon the others.

In this algorithm the estimates of wik, πk and Σk have the same form of

a standard mixture model; the estimates of B and uk are respectively given

by:

vec(B) = {
∑

k

nπk[(uku
′
k)⊗Σ−1

k ]}−1vec(
∑
ik

wikΣ
−1
k yiu

′
k).

and

uk = (B′
kΣ

−1
k Bk)

−1B′
kΣ

−1
k

∑
i wikyi

nπk

.

It is worth noticing that the proposed model can be considered a fuzzy

version of the model suggested by De Soete and Carroll (1994), where each

cluster has (in addition) a specific Mahalanobis metric.

3.3 Conclusions

We have examined two models allowing for simultaneous clustering and fac-

torial reduction of the analyzed data proposed by Ghahramani and Hinton

(1996) and Rocci and Vichi (2002), respectively.
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The main difference is that the latter assumes that the mean vectors lie in

a common reduced subspace in order to identify those latent factors that best

explain the between groups variability (i.e. the variables with the greatest

discriminant power). The model proposed by Rocci and Vichi (2002) can

be used when the number of units is lower than the number of variables

(i.e. n ≤ J) only imposing some restriction on the covariance matrices.

On the other hand, the former approach assumes unconstrained component-

specific mean vector and controls the number of parameters by modelling

the component-specific covariance matrices, Σk = BkB
′
k + D (k = 1, ..., K),

explaining the correlations between variables through the latent factors, u.

This provides an intermediate model between the independence model and

the unrestricted model which is able to capture some interesting structures

in the data, without fitting a full covariance matrix.

It is worth noticing that the number of parameters to be estimated in the

model of Ghahramani and Hinton (1996) is

[JQ− (Q2 −Q)/2]K + J + JK + K − 1

while those to be estimated in Rocci and Vichi (2002) model are

JQ + KQ−Q2 + K − 1 + [KJ(J + 1)/2].

If we assume a common and spherical covariance matrix Σ in the model of

Rocci and Vichi (2002) and a covariance matrix Σ = BB′ + D in the model

of Ghahramani and Hinton (1996), the number of parameters of Rocci and

Vichi (2002) (JQ + KQ − Q2 + K − 1 + 1) is considerably lower than the

number of parameters of Ghahramani and Hinton (1996) (JQ−(Q2−Q)/2+

J + JK + K − 1). In other words, if it is possible to assume a common and

spherical covariance matrix for the density function of the analyzed data,

the model of Rocci and Vichi (2002) has a lower computational complexity.
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The interested readers are refereed to Martella (2006) for the analysis of a

benchmark data set on gene expression data.
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Chapter 4

Double clustering

We will discuss different approaches to double clustering, that is, methods

that provide a simultaneous clustering of the rows and of the columns of a

data matrix.

In general, double clustering methods can be useful in a broad range of ap-

plications where the aim is to identify blocks (or biclusters), i.e., sub-matrices

of the observed data matrix, which satisfy some specific characteristics of

homogeneity. The characteristics of homogeneity characterizing each block

may vary in different approaches. Moreover, units and variables forming each

block specify an unit cluster and a variable cluster.

Such methodologies are known under a broad range of names, includ-

ing direct clustering, biclustering, block clustering, bidimensional clustering,

subspace clustering co-clustering, simultaneous clustering and blockmodeling.

However, it has to be noticed that these terms highlight different features of

the clustering approaches. For example, if there are relationships between

units and variables clusters, and clustering of one dimension is dependent

on the clustering of the other, this form of clustering is often referred to

as two-way clustering (see for example Getz et al., 2000; Tang et al., 2001;
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Pollard and van der Laan, 2002 and Getz et al., 2003). The concept of

co-clustering (or simultaneous clustering), instead, has been introduced by

Dhillon (2001) in the context of document-keyword analysis and indicates a

form of two-way clustering in which both dimensions are clustered simultane-

ously; Kluger et al. (2003) proposed a similar method for co-clustering gene

expression data. Although they refer to their method as spectral biclustering,

it could be differentiated from biclustering, as the clusters are dependent on

the full expression profile of genes or samples, and the clustering leads to

exhaustive, non-overlapping clusters. Finally, the term biclustering is often

used (see Cheng and Church, 2000; Segal et al. 2001; MacKay and Miskin,

2001; Tanay et al., 2002; Lazzeroni and Owen, 2002; Ben-Dor et al., 2002;

Segal, 2003; Ambler, 2003) to identify possibly overlapping sub-matrices of

the data that exhibit interesting homogeneous blocks, leaving the remain-

ing data unclustered. Thus biclustering may be viewed as an extension of

context-specific one-way clustering. It combines the features of iterative two-

way clustering and co-clustering, in that local dependencies can be discov-

ered, but the analysis is based on the full expression matrix and units and

variables are clustered simultaneously.

Throughout this dissertation, we use the term double clustering in order

to refer to the methods in aimed at finding a set of homogeneous blocks in a

matrix.

Double clustering approaches are often needed since methods based on

simultaneous clustering and factorial reduction of a data matrix may fail

in detecting relevant information in the data. In particular, in microarray

analysis, a major problem consists in clustering patients or tissues (in gen-

eral, experimental conditions) with similar behaviour with respect to genes

expressions. However, applying clustering and factorial reduction techniques
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to experimental conditions leads to significant difficulties. In fact, many

activation patterns are common to groups of genes only under specific exper-

imental conditions. Therefore, double clustering of rows and columns allows

to achieve the further goal of detecting groups of genes with similar functions

characterizing a specific subset of experimental conditions.

Alternative solution could be to apply the Variable Selection for Clus-

tering methods, which allow to specify clusters based on a subset of the

variables (see e.g. Devaney and Ram, 1997; McCallum, Nigam, and Ungar,

2000; Brusco and Cradit; 2001). Friedman and Meulman (2004) use this

type of approach in the context of clustering tissue samples, allowing for the

situation where only a small proportion of the genes are useful in distinguish-

ing a particular cluster. Their procedure, Clustering Objects on Subsets of

Attributes (COSA) computes distances between tissue samples, giving the

expression levels gene- and sample-specific weights. These distances are then

passed to a distance-based clustering algorithm, such as hierarchical cluster-

ing, to cluster the tissue samples. This will identify clusters characterized by

a common profile. The structure of the clustering will depend on the method

used. Thus the form and structure of the clusters is conventional, but the

importance of each gene in the discovery of a sample cluster can be quantified

and relevant genes can be isolated. Since the variables are weighted, rather

than selected or removed, there is no actual dimension reduction although

it does allow emphasis on different variables for different clusters. A simi-

lar idea in terms of weighting variables but with a different function to be

optimized is suggested by DeSarbo, Carroll, Clarck and Green (1984).
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4.1 Background

Statistical literature provides many clustering techniques for the identifica-

tion of “homogeneous” groups of units which are perceived as “similar” to

one another within each group (see e.g. Gordon, 1999). They can be ap-

plied to obtain a clustering of variables as well. If the interest is to cluster

both units and variables these methods can be applied both to units and to

variables successively and independently (see Tryon, 1939). However, results

depend on whether units or variables are classified first.

To overcome this problem, Fisher (1969) proposed to partition units and

variables simultaneously rather than successively. The most important ad-

vantage of a double (rather than a sequential) clustering is that the former

allows to highlight the eventual interaction or dependence between units and

variables helping in their characterization by using an “overall” objective

function that cannot be reduced to a simple combination of row and column

objective functions. When applying double clustering, variables should be

expressed in the same scale of measurement, so that entries are compara-

ble among both rows and columns; if this is not the case, data need to be

adequately rescaled.

Starting with the pioneering work of Hartigan (1972) and with some

decision-theoretic work by Bock (1974), during the past three decades this

class of methods has been widely developed by various authors in different

fields such as marketing, customer satisfaction, social network, psychology,

text mining, election and nutritional analyses. Recently, double clustering

techniques underwent increasing interest due to the challenge of finding suit-

able methods of analysis for microarray gene expression data in the bioinfor-

matics context.

Double clustering methods are very heterogeneous both in terms of math-
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ematical structures and underlying models, and in terms of principles and

tools used in the data analysis step. As a consequence, it is clear that the

corresponding domain has never been easily accessible.

In the last ten years, two structured taxonomies of double clustering

methods have been proposed by Van Mechelen, Bock and De Boeck (2004)

and by Madeira and Oliveira (2004). Van Mechelen, Bock and De Boeck

(2004) built their overview starting from a traditional statistical/data ana-

lytic perspective while Madeira and Oliveira (2004) discuss this topic on the

bioinformatics side.

We will not attempt to give an exhaustive overview of double clustering

methods; the interested reader can refer to detailed reviews in Van Mechelen,

Bock and De Boeck (2004) and Madeira and Oliveira (2004). We rather prefer

giving a schematic explanation of key principles underlying these taxonomies.

4.2 Van Mechelen, Bock and De Boeck (2004)

taxonomy

Van Mechelen, Bock and De Boeck (2004) identify three cluster types: row,

column and data clusters (so-called blocks) (see Figure 4.1). Each of these

clusters may have different nature and be obtained through distinct ap-

proaches. Thus, their overview is based on two structuring principles:

• set-theoretical nature of row, column and data clusters;

• type of model structure or associated loss function.

As for the set-theoretical nature of row, column and data clusters, they

distinguished among partitions, nested clusters and overlapping clusters (see
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Figure 4.2). A partition consists of a certain number of non-empty, non-

overlapping clusters that span the full observed set. Nested clusters include

intersecting clusters (an important special case being hierarchical clustering).

Finally, overlapping clusterings include intersecting, non-nested clusters. Ob-

viously, the nature of row, column, and data clusters can be different (some

examples as showed in the Figure 4.3).

As far as the level of modeling and optimization is concerned, they dis-

cerned three main levels:

1. Procedural level : clustering algorithms that are neither based on loss

functions to be optimized or on mathematical model structures;

2. Deterministic level : clustering algorithms based on a deterministic

model to be fitted to data in order to optimize some overall loss func-

tion;

3. Stochastic level : clustering algorithms based on a stochastic model

(that is, implying distributional assumptions) to be fitted to data in

order to optimize some global criterion.

Figure 4.1: Example of row clusters, column clusters, data clusters
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Figure 4.2: Hypothetical set-theoretical nature of clusters

All methods that imply row/column partitions aim at approximating the

(n× J) data matrix X by some (n× J) matrix X̂. The generic element x̂ij

of X̂ is assumed to be constant within each data block. Thus, the values of

the approximating matrix X̂ can be summarized by (K × Q) matrix X̄ of

block constants, with

X̂ = UX̄V′, (4.1)

where U and V are membership matrices for row and column partitions.

Notice that all methods based on procedural perspectives do not involve a

global loss or objective function, but only permutations of rows and columns

in order to find an optimal permutation (Arabie et al., 1988 propose e.g.

the bond energy algorithm). Deterministic methods, instead, are based on a

specific loss function and on different specifications of X̄; for example Gov-

aert (1980) specified a binary matrix while Vichi (2001) specifies an arbitrary,

real-valued matrix X̄. Finally, stochastic methods assume a parametric spec-

ification for both dimensions; for example Govaert and Nadif (2003) propose

a stochastic extension of model (4.1) with arbitrary matrix X̄, latent (inde-

pendent) partitions U and V where observations are drawn from i.i.d. blocks
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Figure 4.3: Schematic representation of hypothetical examples of clustering that

imply different row, column, data clusters

with known parametric distribution P (θkq).

Methods that imply nested row/column clusterings can be distinguished

into three subgroups in terms of the “shapes” of data clusters. In the first

subgroup, data clusters take the form of partitions while in the second and

third subgroups, they take the form of nested clusters. The difference be-

tween the second and the third subgroup pertains to additional restrictions

with regards to nesting structure.

In particular, Hartigan (1975) specified two methods that do not involve

an approximating matrix X̂ for the data matrix X, but rather look for data
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clusters such that, for each data cluster, the column-variance (and optionally

also the row-one) is not greater than a user-prespecified threshold. More

specifically, the first method (one-way clustering) only aims at finding low

within-column variances, while the second method (two-way joining) looks

for both low column and row variances.

Finally, all methods that imply a restricted nested data clustering are

based on a hierarchical structure made up of the disjoint union of row and

column dimensions.

Methods implying overlapping row/column and data clusters are clas-

sified as procedural and deterministic methods. The main category is the

deterministic one where a matrix X̂ is used to approximate the data matrix

X as well as possible (using a L1 or L2 norm). The entries in X̂ are defined

as cluster specific constants which can be derived either in a simple additive

or a boolean way.

In particular DeSarbo (1982) introduced GENNCLUS (GENeral Nonhier-

archical CLUStering); having the following additive form:

X = UX̄V′ + C, (4.2)

where U and V denote overlapping row and column clusters, C is a

constant value matrix and X̄ is constrained to be square and symmetric.

Finally, the Boolean approaches can be described as:

X̄ = U⊗V′, (4.3)

where ⊗ indicates a Boolean matrix product. Mickey et al. (1983) devel-

oped an iterative algorithm to fit (4.3) to a given binary matrix using a least

squares loss function.
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A schematic overview of this taxonomy is given in Figure 4.4, where the

first column indicates one example from the set of suggested approaches.

65



A
u
th

o
rs

S
e
t-

th
e
o
re

ti
ca

l
n
a
tu

re
ro

w
-c

o
lu

m
n

cl
u
st

e
ri

n
g

S
e
t-

th
e
o
re

ti
ca

l
n
a
tu

re
d
a
ta

cl
u
st

e
ri

n
g

L
e
v
e
l
o
f
m

o
d
e
li
n
g

a
n
d

o
p
ti
m

iz
a
ti
o
n

A
ra

bi
e

et
al

.
(1

98
8)

p
ar

ti
ti

on
p
ar

ti
ti

on
p
ro

ce
d
u
ra

l

V
ic

hi
(2

00
1)

p
ar

ti
ti

on
p
ar

ti
ti

on
d
et

er
m

in
is

ti
c

G
ov

ae
rt

an
d

N
ad

if
(2

00
3)

p
ar

ti
ti

on
p
ar

ti
ti

on
st

o
ch

as
ti

c

H
ar

ti
ga

n
(1

9
75

)
on

e-
w
ay

sp
it
ti
n
g

n
es

te
d

cl
u
st

er
in

g
p
ar

ti
ti

on
p
ro

ce
d
u
ra

l

H
ar

ti
ga

n
(1

97
2)

n
es

te
d

cl
u
st

er
in

g
p
ar

ti
ti

on
d
et

er
m

in
is

ti
c

H
ar

ti
ga

n
(1

97
5)

tw
o-

w
ay

sp
li
tt
in

g
n
es

te
d

cl
u
st

er
in

g
n
es

te
d

cl
u
st

er
in

g
(u

n
re

st
ri

ct
ed

)
p
ro

ce
d
u
ra

l

M
ir

ki
n

et
al

.
(1

99
5)

n
es

te
d

cl
u
st

er
in

g
n
es

te
d

cl
u
st

er
in

g
(r

es
tr

ic
te

d
)

p
ro

ce
d
u
ra

l

D
e

S
oe

te
an

d
C

ar
ro

ll
(1

99
6)

n
es

te
d

cl
u
st

er
in

g
n
es

te
d

cl
u
st

er
in

g
(r

es
tr

ic
te

d
)

d
et

er
m

in
is

ti
c

E
ck

es
a
n
d

O
rl
ik

(1
99

3)
ov

er
la

p
p
in

g
cl

u
st

er
in

g
ov

er
la

p
p
in

g
cl

u
st

er
in

g
p
ro

ce
d
u
ra

l

D
eS

ar
bo

(1
98

2)
ov

er
la

p
p
in

g
cl

u
st

er
in

g
ov

er
la

p
p
in

g
cl

u
st

er
in

g
d
et

er
m

in
is

ti
c

(s
im

p
le

ad
d
it

iv
e)

M
ic

ke
y

et
al

.
(1

98
3)

ov
er

la
p
p
in

g
cl

u
st

er
in

g
ov

er
la

p
p
in

g
cl

u
st

er
in

g
d
et

er
m

in
is

ti
c

(b
o
ol

ea
n
)

Figure 4.4: Schematic overview of Van Mechelen, Bock and De Boeck (2004)
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4.3 Madeira and Oliveira (2004) taxonomy

The second review classifies double clustering algorithms according to four

principles:

• the type of blocks they can find. The authors identify four major classes

(Figure 4.5):

1. blocks with constant values ;

2. blocks with constant rows or columns values;

3. blocks with coherent values ;

4. blocks with coherent evolutions.

Figure 4.5: Examples of different types of blocks: a) constant block; b) constant

rows; c) constant columns; d) coherent values (additive model); e) coherent values

(multiplicative model); f) overall coherent evolution; g) coherent evolution on the

rows; h) coherent evolution on the columns; i) coherent evolution on the columns;

j) coherent sign changes on rows and columns

67



• The way multiple blocks are treated and the associated block structure.

Some algorithms find only one cluster, while other assume the existence

of several blocks. In the second case, we can obtain the following blocks

structures (Figure 4.6):

1. exclusive row and column blocks (rectangular diagonal blocks after

row and column reorder);

2. non-overlapping blocks with checkerboard structure;

3. exclusive-rows blocks;

4. exclusive-columns blocks;

5. non-overlapping blocks with tree structure;

6. non-overlapping non-exclusive blocks;

7. overlapping blocks with hierarchical structure;

8. arbitrarily positioned overlapping blocks.

• The specific algorithm used to identify each block. They divided the

algorithms into five sets:

1. iterative row and column clustering combination;

2. divide and conquer;

3. greedy iterative search;

4. exhaustive block enumeration;

5. distribution parameter identification.

The conceptually simpler way to perform double clustering using ex-

isting techniques is to apply standard clustering methods on rows and

columns separately, successively combining the results using some kind
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Figure 4.6: Examples of different block structures: a) single block; b) exclusive

row and column blocks; c) checkerboard structure; d) exclusive-rows blocks; e)

exclusive-columns blocks; f) non-overlapping blocks with tree structure; g) non-

overlapping non-exclusive blocks; h) overlapping blocks with hierarchical structure;

i) arbitrarily positioned overlapping blocks

of iterative procedure to obtain blocks. These approaches do not evalu-

ate the quality of the resulting double clustering directly, but separately

on each dimension (Getz et al., 2000; Tang et al., 2001; Busygin et al.,

2002).

Divide-and-conquer algorithms break the problem onto several sub-

problems that are similar to the original problem and are characterized

by a smaller size; they solve the sub-problems recursively and then

combine the sub-solutions to create an overall solution to the origi-

nal problem. An historical example is given by Hartigan (1972). He
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proposed a partition based on direct clustering algorithm splitting the

original data matrix into a set of blocks, where each block has con-

stant values. The loss function used to evaluate constant blocks is the

within-blocks variance.

Greedy iterative search methods are based on the idea of creating blocks

by adding or removing rows/columns from them, maximizing a local

choice hoping that this choice will lead to a globally optimal solution

(Cheng and Church, 2000; Califano et al., 2000; Yang et al., 2002;

Ben-Dor et al., 2002; Yang et al., 2003; Klugar et al., 2003; Murali and

Kasif, 2003; Cho et al., 2004).

Exhaustive block enumeration methods are based on the idea that the

best blocks can only be identified using an exhaustive enumeration of

all possible blocks in the data matrix (Wang et al., 2002; Tanay et al.,

2002; Liu and Wang, 2003).

Most of this approaches evaluate the quality of the solution by analyz-

ing the values of the loss function (Hartigan, 1972; Cheng and Church,

2000; Lazzeroni and Owen, 2002; Wang et al., 2002; Yang et al., 2002;

Yang et al., 2003; Cho et al., 2004); when an explicit statistical model

underlies the loss function a formal approach can be used (Segal et al.,

2001; Segal et al., 2003; Sheng et al., 2003; Murali and Kasif, 2003),

by applying standard hypotheses testing (Califano et al., 2000; Tanay

et al., 2002; Ben-Dor et al., 2002; Klugar et al., 2003).

• the domain of application of each algorithm (biological, information

retrieval and text mining, market research, etc).

Figure 4.7 presents a summary of the different algorithms according to the

different dimensions (of analysis) considered by Madeira and Oliveira (2004).
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Figure 4.7: Schematic overview of Madeira and Oliveira (2004)
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4.4 Conclusions

Besides the methods discussed in this Chapter, other approaches to double

clustering have been introduced. We have tried to provide a framework for a

better understanding of common as well as of distinctive features of double

clustering methods. Also, the reviews may provide a bridge to transfer ideas

and tools developed for one area of study to other areas.

In recent conferences (IFCS-2006 and COMPSTAT-2006), Van Mechelen

(2006) and Van Mechelen and Schepers (2006) have proposed to extend the

reviews on double clustering methods by focusing on:

• set-theoretical nature of clusters (partition, nested and/or overlapping

clustering);

• internal structure of data clusters: homogeneity, rows effects, columns

effects, rows and columns effects (additive structure), perfect correla-

tion between rows or between columns, perfect rank correlation between

rows or between columns (single monotonicity);

• mathematical operators used to define overlapping clustering (sum, av-

erage, minimum, maximum, product, etc);

Van Mechelen (2006) stressed the idea that double clustering models are

particular case of the following models:

xij =
∑
k,q

uikx̄kqvjq + eij

or

xij = max
k,q

(uikx̄kqvjq) + eij
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or in general,

X = f(U, X̄,V) + E (4.4)

where xij is the generic entry of data matrix X to be clustered (i = 1, ..., n;

j = 1, ..., J), uik is the generic entry of a rows membership matrix U (i =

1, ..., n; k = 1, ..., K), vjq is the generic entry of a columns membership matrix

V (j = 1, ..., J ; q = 1, ..., Q). Finally, eij represents the generic entry of a

residual matrix E.

Different specifications of the set-theoretical nature of U and V (con-

strained, unconstrained, constant, stochastic, etc) identify different approaches

to the double clustering task.

However, this general model does not include those computational proce-

dures which are not based on an explicit optimization of an overall objective

function and procedures that optimize a criterion other than the optimal

“reconstruction” of the data matrix (such as finding a single best block, or

finding that double clustering optimally preserving the dependence or inter-

action in the data). An extension of this general model can be made by

including heterogeneity sources in the data blocks, models for multiway data

and models that include a categorical reduction, a dimensional reduction,

and possibly no reduction at all.
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Chapter 5

New approaches to double

clustering

In this Chapter, we will discuss the extension of two well-known standard

clustering methodologies, namely the K-means and the finite mixture model,

to simultaneous cluster units and variables. Model-based methods that will

be discussed are quite general and can be applied to a large number of high-

dimensional data clustering problems.

We will first describe the double K-means model introduced by Vichi

(2000), where model parameters are estimated by using a least-squares ap-

proach. Here, we propose to estimate model parameters through a maximum

likelihood approach and define three coordinate ascent algorithms to give an

efficient solution to fitting model. It can be noticed that double K-means is a

particular case of the general model (4.4) proposed by Van Mechelen (2006)

and Van Mechelen and Schepers (2006), where U and V are binary and row

stochastic membership matrices.

After, we propose a simple factorial representation of component-specific

means in finite mixture models extending the work of Rocci and Vichi (2002)
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to cluster variables as well. Since component specific densities may be far

from Gaussianity, we introduce a hierarchical extension of finite mixture

models following the proposals of Vermunt (2003) and Li (2005). In this

way, we achieve the further aim to define specific clusters of variables within

each cluster of units. Both models are evaluated through simulation studies

and will be discussed in Part II using benchmark gene expression data.

5.1 Double K-means

In this Section a clustering technique that allows to simultaneously clus-

ter units and variables is presented. It is referred to the double K-means

and represents an extension of standard K-means (McQueen, 1967; see Sec-

tion 2.1) to simultaneously cluster objects and features Vichi (2000). He

proposed to estimate model parameters using a lest-squares approach, opti-

mizing a quadratic objective function subject to a set of constraints due to

the required clustering structure (e.g. partitions, coverings or packing) and

clustering type (hard or fuzzy). In this dissertation, we will focus on hard

partitions; in particular, we propose to estimate the model parameters using

a maximum likelihood approach (as in Martella and Vichi, 2006) and discuss

the advantages of using this approach.

Before discussing the method we introduce some notation and terminol-

ogy which will be used throughout the rest of this section.

Notational Preliminaries

n, J , K, Q number of: units, variables, clusters of units, clusters of variables;

X (n×J) observed matrix of J quantitative variables n units (objects, indi-
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viduals);

X̄ (K×Q) unknown matrix of block units-variables centroids where the

generic element x̄kq is the expected profile of the k-th unit cluster and q-

th variable cluster (k = 1, ..., K and q = 1, ..., Q);

U(n×K) binary and row stochastic matrix of unit cluster membership, where

uik = 1 if the i-th unit belongs to cluster k, 0 otherwise;

V(J×Q) binary and row stochastic matrix of variable cluster membership,

where vjq = 1 if the j-th variable belongs to cluster q, 0 otherwise;

E (n×J) residual component matrix.

Using the above notation, the double K-means model can be written as:

X = UX̄V′ + E, (5.1)

where U and V are binary and row stochastic matrices identifying units

and variables clusters, respectively. It can be noticed that when V = IJ or

U = In the double K-means collapses to the ordinary K-means on units or

on variables respectively.

In particular, it can be expressed in row form as

xi = VX̄′ui + ei i = 1, ..., n, (5.2)

where xi is a (J×1) vector representing the i-th row of X and ui is the i-th

unit membership vector. Vector ei represents the i-th row of E.

In the same way, model (5.1) can be expressed in column form as

xj = UX̄vj + ej j = 1, ..., J, (5.3)
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where xj is a (n×1) vector representing the j-th column of X and vj is the

j-th variable membership vector. Vector ej represents the j-th column of E.

In the next Section, we will discuss the least-squares approach to parame-

ter estimation (Section 5.1.1), while in Section 5.1.2 we will show how model

parameters can be estimated through a maximum likelihood approach.

5.1.1 Least-squares approach

The problem of determining a block partition of a data matrix X can be

formalized by considering the loss function

minU,X̄,V ‖ X−UX̄V′ ‖2, (5.4)

subject to constraints:

uik ∈ {0, 1}, i = 1, ..., n; k = 1, ..., K;∑K
k=1 uik = 1, i = 1, ..., n;

vjq ∈ {0, 1}, j = 1, ..., J ; q = 1, ..., Q,∑Q
q=1 vjq = 1, j = 1, ..., J .

In other words, we require that each block consists of entries that are as

much similar as possible in a least-squares sense. Let us suppose Û and V̂

are the corresponding estimates; in this case, problem (5.4) can be reduced to

determinate the LS solution of a generalized multivariate regression problem

minX̄ ‖ X− ÛX̄V̂′ ‖2, (5.5)

which leads to the solution

ˆ̄X = (Û′Û)−1Û′XV̂(V̂′V̂)−1. (5.6)
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However, since U and V are unknown, Vichi (2000) proposed an Alternat-

ing Least-Squares (ALS) algorithm for parameter estimation. It sequentially

and recursively solves assignment problems, as shown in Table 5.1. The ALS

algorithm, at each step, monotonically decreases the loss function converging

to a stationary point (local or global minimum). Initial values for U and V

can be randomly chosen; obviously, using different random starting points

for U and V, we can increase the chance of finding a global minimum.

Initialization. Choose initial values for U and V. Such values can be chosen

randomly or in a rationale way.

Step 1: Update X̄. Given the current estimates of U and V, update X̄ using (5.6).

Step 2: Update U. Minimize (5.4) over U, given the current estimate of V and X̄.

Step 3: Update V. Minimize (5.4) over V, given the current estimate of U and X̄.

Stopping rule. Function (5.4) is computed for the current values of U,

V and X̄. If the function is considerably lower than in the

previous iteration, U, V and X̄ are updated once more according

to step 1, 2 and 3. Otherwise, the process has converged.

Table 5.1: Alternating least-squares algorithm for double K-means
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5.1.2 Maximum likelihood approach

Let us consider the double K-means model written in row form (5.2) and

assume that the mean vector and the covariance matrix of the random vector

xi can be written as:

• E(xi) = VX̄′ui, for i = 1, ..., n;

• Var(xi) = Σ, for i = 1, ..., n.

We further assume that

xi ∼ MVN(VX̄′ui,Σ)

that is

f(xi, φ) =
1√

(2π)J
|Σ|−

1
2 exp

{
−1

2
(xi −VX̄′ui)

′Σ−1(xi −VX̄′ui)

}
,

where φ = {X̄,Σ,U,V} is the parameter set.

Let (x1,x2, ...,xn) be a sample of i.i.d. elements drawn from the density

f(xi, φ); the corresponding likelihood function is:

L(U,V, X̄,Σ) =
1√

(2π)Jn
|Σ|−

n
2 exp

{
−1

2

n∑
i=1

(xi −VX̄′ui)
′Σ−1(xi −VX̄′ui)

}
=

=
1√

(2π)Jn
|Σ−1|

n
2 exp

{
−1

2
tr

[
Σ−1(X−UX̄V′)′(X−UX̄V′)

]}
,

and the log-likelihood is

l = ln L(U,V, X̄,Σ) = −nJ ln
√

2π+
n

2
ln |Σ−1|−1

2
tr

[
Σ−1(X−UX̄V′)′(X−UX̄V′)

]
.

ML estimation of model parameters is obtained by maximizing the log-

likelihood function, l, with respect to U, V, X̄ and Σ subject to binary and

row stochastic constraints on U and V.
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Fixed U and V, the optimal X̄ and Σ are the maximum likelihood solu-

tions of the (generalized) multivariate regression problem X = UX̄V′ + E,

where E is a residual term.

However, since U and V are unknown, the MLEs of the double K-means

model can be obtained by algorithms that alternatively maximize the log-

likelihood function.

The fundamental steps of these algorithms can be described as follows.

• Updating X̄:

When U and V are fixed, the ML estimate of X̄ is given by solving the

corresponding likelihood equations; thus, we have

∂l

∂X̄
∝ ∂

∂X̄

{
−1

2
tr

[
Σ−1(X−UX̄V′)′(X−UX̄V′)

]}
=

=
∂

∂X̄

{
−1

2
tr

[
Σ−1(X′ −VX̄′U′)(X−UX̄V′)

]}
=

=
∂

∂X̄

{
−1

2
tr

[
Σ−1(X′X− 2VX̄′U′X + VX̄′U′UX̄V′)

]}
=

=
∂

∂X̄

{
−1

2

[
tr

[
Σ−1(X′X−2VX̄′U′X)

]
+tr

[
Σ−1(VX̄′U′UX̄V′)

]]}
= 0.

Let us suppose

A = −1

2
tr

[
Σ−1(X′X− 2VX̄′U′X)

]
and

B = −1

2
tr

[
Σ−1(VX̄′U′UX̄V′)

]
.

We consider ∂A
∂X̄

:

80



∂A

∂X̄
=

∂

∂X̄

{
−1

2
tr

[
Σ−1(X′X− 2VX̄′U′X)

]}
=

=
∂

∂X̄

{
−1

2
tr(Σ−1X′X) +

1

2
tr(2Σ−1VX̄′U′X)

}
=

=
∂

∂X̄

{
−1

2
tr(Σ−1X′X)

}
+

∂

∂X̄

{
1

2
tr(2Σ−1VX̄′U′X)

}
=

=
∂

∂X̄

{
1

2
tr(2Σ−1VX̄′U′X)

}
=

∂

∂X̄

{
tr(Σ−1VX̄′U′X)

}
=

=
∂

∂X̄

{
tr(U′XΣ−1VX̄′)

}
= U′XΣ−1V,

and ∂B
∂X̄

:

∂B

∂X̄
=

∂

∂X̄

{
−1

2
tr

[
Σ−1(VX̄′U′UX̄V′)

]}
=

=
∂

∂X̄

{
−1

2
tr

[
U′UX̄V′Σ−1VX̄′

]}
=

= −1

2

[
(U′U)′X̄(V′Σ−1V)′ + U′UX̄V′Σ−1V

]
=

= −1

2

[
2U′UX̄V′Σ−1V

]
= −U′UX̄V′Σ−1V.

Thus,

∂l

∂X̄
∝ ∂A

∂X̄
+

∂B

∂X̄
= U′XΣ−1V −U′UX̄V′Σ−1V = 0

that is

X̄V′Σ−1V = (U′U)−1U′XΣ−1V.
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Therefore, the ML estimator of X̄ is given by

ˆ̄X = (U′U)−1U′XΣ−1V(V′Σ−1V)−1 (5.7)

• Updating Σ:

When U and V are fixed, the ML estimate of Σ is given by solving the

corresponding likelihood equations; thus, we have

∂l

∂Σ−1 ∝
∂

∂Σ−1

{
n

2
ln |Σ−1| − 1

2
tr

[
Σ−1(X−UX̄V′)′(X−UX̄V′)

]}
=

=
∂

∂Σ−1

{
n

2
ln |Σ−1|

}
− ∂

∂Σ−1

{
1

2
tr

[
Σ−1(X−UX̄V′)′(X−UX̄V′)

]}
=

=
n

2
Σ− 1

2
(X−UX̄V′)′(X−UX̄V′) = 0.

The ML estimator of Σ is given by

Σ̂ =
1

n
(X−UX̄V′)′(X−UX̄V′). (5.8)

As far as the updating of U and V is concerned, the estimation is

achieved row by row; that is, by putting the value 1 in the column

position where the complete log-likelihood is maximized. In formulas:

• Updating U:

When V, X̄ and Σ are fixed, for each i = 1, ..., n let

uik =

 1 if l(·, uik = 1) = maxh l(·, uih = 1) h = 1, ..., K; h 6= k

0 otherwise

(5.9)

• Updating V:

When U, X̄ and Σ are fixed, for each j = 1, ..., J let

vjq =

 1 if l(·, vjq = 1) = maxz l(·, vjz = 1) z = 1, ..., Q; z 6= q

0 otherwise

(5.10)
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5.1.3 Coordinate ascent algorithms

In this Section we will propose three algorithms for parameter estimations in

double K-means model under a maximum likelihood approach. In particular,

those algorithms do coordinate ascent on the log-likelihood function. In fact,

they pick a block of parameters and optimize the log-likelihood function over

this block, considering all other parameters as fixed.

Algorithm 1

Initialization. Some initial values are chosen for U and V. Such values

can be chosen randomly or in a rationale way (e.g., using an alternat-

ing least-squares algorithm for double K-means, Vichi, 2000).

Step 1: Update U, X̄ and Σ. Maximization of l(·) with V fixed, by up-

dating X̄ as in (5.7), Σ as in (5.8) and U as in (5.9).

Step 2: Update V, X̄ and Σ. Maximization of l(·) with U fixed, by up-

dating X̄ as in (5.7), Σ as in (5.8) and V as in (5.10).

Stopping rule. The function value l(·) is computed for the current values

of U, V, X̄ and Σ. If the likelihood difference is above a specific

threshold, then U, V, X̄ and Σ are updated once more according to

Steps 1 and 2. Otherwise, the process has converged.

Algorithm 2

Initialization. Initial values are chosen for U and V. Previously described

approaches can be used.
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Step 1: Update X̄ and Σ. Given the current values for U, V, update X̄

using (5.7) and Σ using (5.8).

Step 2: Update U using (5.9), given the current estimate for V, X̄, Σ.

Step 3: Update V using (5.10), given the current estimate for U, X̄, Σ.

Stopping rule. The function value l(·) is computed for the current values

of U, V, X̄ and Σ. If the likelihood difference is increased above a

specific threshold, U, V, X̄ and Σ are updated once more according

to Steps 1, 2 and 3. Otherwise, the process has converged.

At each step of the algorithms (1 or 2), the log-likelihood function is

monotonically increased and, since l(·) is bounded from above, it will con-

verge to a stationary point which usually turns out to be at least a local

maximum. To increase the chance of finding the global maximum, standard

practice suggests to run the algorithm several times starting from different

initial values for U and V, retaining the best solution in terms of maximized

log-likelihood or penalized criteria values.

It must be noticed that the first algorithm updates X̄ and Σ during the

updating of U and V in order to improve these estimates; this implies an

increase in computational complexity. In order to test if the performances of

the first algorithm justify its computational complexity with respect to the

second algorithm, a simulation study has been carried out. As it is showed in
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Table (5.2), no considerable improvement can be registered for algorithm 1

VS algorithm 2; however, a meaningful decrease in computational complexity

(e.g. CPU time) has been registered for the second algorithm.

Algorithm 2rid

Since in most practical cases the number of units is very large, we can think

to speed up the algorithm by reducing the dimensionality of the units space,

working on sub-matrices having K rows instead of n, K < n (see Rocci and

Vichi, 2004).

In fact, we rewrite the membership matrix U as Ũ=UL−1
u , where Lu =

(U′U)1/2, i.e. a diagonal matrix having on the main diagonal the square

roots of cluster cardinalities; it results that Ũ′Ũ = n. Therefore, during the

updating of V in Step 3 of algorithm 2 the function to be maximized can be

decomposed as follows:

l(·) ∝‖ Σ−1/2(X− ŨLuX̄V′)′ ‖2=‖ Σ−1/2X′ −Σ−1/2VX̄′LuŨ
′ ‖2=

=‖ Σ−1/2X′ ‖2 + ‖ Σ−1/2VX̄′LuŨ
′ ‖2 −2tr(Σ−1/2X′ŨLuX̄V′Σ−1/2) =

=‖ Σ−1/2X′ ‖2 + ‖ Ũ′XΣ−1/2 ‖2 − ‖ Ũ′XΣ−1/2 ‖2 +

+ ‖ Σ−1/2VX̄′LuŨ
′ ‖2 −2tr(Ũ′XΣ−1/2Σ−1/2VX̄′Lu) =

=‖ Σ−1/2X′ ‖2 − ‖ Ũ′XΣ−1/2 ‖2 + ‖ Σ−1/2(Ũ′X− LuX̄V′)′ ‖2 .

(5.11)

Thus, we can proceed by maximizing only the third term. As shown in Table

5.2, we obtain the same solution obtained using algorithm 2, but with a

substantial decrease in computational complexity.
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Type Average Average % of unit % of variable Average CPU

Algorithm Mrand for Mrand for partitions= partitions= number time

units variables to the true to the true of

partition partition partitions partitions iterations

1 0.87206 1 76 100 2.44 18416.4

2 0.94159 1 72 100 2.16 6512.33

2rid 0.94159 1 72 100 2.16 4529.34

Table 5.2: Performance results: K=3, Q=2

5.1.4 Conclusions

The double K-means model introduced by Vichi (2000) has been applied

to simultaneous clustering of units and variables. Vichi (2000) proposed to

estimate model parameters by using a LS approach while we have proposed

to use a ML approach; we have also developed three coordinate ascent al-

gorithms and tested their performance in a simulation study (see Part II of

the dissertation). It can be observed that LS and ML approaches provide

different optimal solutions. The substantial difference between LS and ML

solutions lies behind the different allocations of units and variables to clus-

ters. In fact, the LS method is based on the Euclidean distance while the ML

method uses the Mahalanobis distance; the latter is a weighted Euclidean dis-

tance where weighting is expressed by the covariance matrix, which accounts

for correlations in the analyzed data.

In others words, in the LS approach the covariance matrix is represented

by the identity matrix Σ = IJ , i.e. the clusters are constrained to have a

spherical orthogonal shape. In the ML approach, instead, clusters may have

general shapes, e.g. elliptical. Moreover, model-based double K-means leads
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to define a set of criteria to choose the number of clusters which are based on

a penalization of the log-likelihood function (e.g. BIC, AIC, etc). However, a

limitation of this methodology is that variables clusters are fixed for all units

clusters and the allocations of units and variables are made in an exclusive

way.

5.2 Double Gaussian mixture model

The double K-means model with the following assumption

xi ∼ MVN(VX̄′ui,Σ), i = 1, ..., n

can be seen as a particular case of the Gaussian mixture model with component-

specific mean vectors described by in Rocci and Vichi (2002). The proposed

model, termed double Gaussian mixture model, is defined as follows:

f(yi; φ) =
K∑

k=1

πkϕ(yi;Vũk,Σk),

where V (J×Q) is not a binary and row stochastic matrix of variable clus-

ter membership, where vjq = 1 if j-th variable belongs to cluster q, 0 oth-

erwise (for q = 1, ..., Q and j = 1, ..., J); ũk represents the deviation of

the component-specific mean vector projected onto a Q-dimensional space

(Q < J and k = 1, ..., K) from the overall mean. The analogy between dou-

ble K-means and double Gaussian mixture models is demonstrated by the

following relationship:

X̄′ui = ũk,

by considering exclusive allocations for units and constant component-specific

covariance matrices (Σk = Σ, k = 1, ..., K) in the double Gaussian mixture

model.
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Thus, through this simple reparameterization of the component-specific

mean vector, we are able to cluster both units and variables. In fact, the i-th

unit is allocated to cluster k corresponding to the largest posterior probabil-

ity, wik (k = 1, ..., K); while the j-th variable is allocated to the q-th cluster

through the matrix membership V (q = 1, ..., Q).

However, the double Gaussian mixture model, as well as the double K-

means model, specifies for each unit cluster the same variables partition and

for each variable cluster the same units partition and, as well as the standard

Gaussian mixture model, relies on the hypothesis that each group is drawn

from a Gaussian density. This last assumption could be violated; in fact,

an isolated group with a non-Gaussian distribution might be modelled by

several mixture components, and the resulting components would no longer

represent a cluster.

In the next Section, we introduce a hierarchical extension of the double

Gaussian mixture model that combines the advantages of dealing with non-

Gaussianity of component-specific densities and to define clusters of variables,

where conditionally a different partition of the variables is allowed within

each units cluster.

5.3 The hierarchical mixture model

In this Section, we introduce a clustering approach based on a hierarchical

structure, allowing for both dependence within clusters and simultaneous

clustering of units and variables (as described in Alfó, Martella and Vichi,

2006). The proposed approach extends the multilevel latent class model

proposed by Vermunt (2003) and Li (2005) to two-way continuous data.

Thanks to the hierarchical structure we distinguish clusters (2nd level) from
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components (1st level) allowing for greater flexibility in the shape of cluster

specific densities represented as a finite mixture of Gaussian distributions.

In order to cluster variables, we introduce a binary row stochastic matrix

representing variables membership (as in double K-means, Vichi, 2000), by

using a reparameterization of the component-specific mean vectors proposed

by Rocci and Vichi (2002).

Notational Preliminaries

To discuss the hierarchical extension of the mixture model, we need to extend

the adopted notation considering an (unobserved) extra-level.

n, J : number of units and variables;

K: number of 2nd level component densities (clusters);

Tk: number of 1st level component densities (components) within the k-th

2nd level cluster;

nk: number of units within the k-th cluster (k = 1, ..., K);

ntk: number of units within the t-th component in the k-th cluster (k =

1, ..., K; t = 1, ..., TK);

Qk: number of variable clusters within the k-th cluster (k = 1, ..., K).

Let yi be a J-dimensional observation (i = 1, ..., n). We assume yi is drawn

from one of K 2nd level components, called clusters; each of these clusters is

composed by Tk components. In details, the marginal density can be written

as:
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f(yi|φ) =
K∑

k=1

πkf(yi|θk) (5.12)

where φ = (π1, ...πK−1, θ1, ...θK), θk is the k-th cluster specific parameter

vector and πk,
∑K

k=1 πk = 1, is the prior probability that the observation yi

belongs to the k-th cluster (k = 1, ..., K). The 2nd level describes units, yi’s,

belonging to the same k-th cluster ignoring the Tk components; the 1st level

describes units within each component, t, in the k-th cluster. The component

specific density in the k-th cluster is assumed to be equal to:

f(yi|θk) =

Tk∑
t=1

πt|kf(yi|θt|k), (5.13)

where πt|k = Pr(i ∈ t|i ∈ k),
∑Tk

t=1 πt|k = 1, is the conditional probability

that the i-th observation yi belongs to the t-th component within the k-th

cluster (k = 1, ..., K; t = 1, ..., Tk). It is worth noticing that if πk = 0 then

πt|k = 0 for each t = 1, ..., Tk (k = 1, ..., K). In the following, we will assume

J-variate Gaussian component specific densities f(yi|θt|k) with component-

specific mean vectors and covariance matrices µt|k and Σt|k, i.e.

f(yi|θt|k) =
1√

(2π)J
|Σt|k|−

1
2 exp

{
−1

2
(yi − µt|k)

′Σ−1
t|k (yi − µt|k)

}
. (5.14)

5.3.1 Maximum likelihood estimation

To extend the standard EM algorithm to the proposed hierarchical structure,

we have to introduce the following component labels:

zik =

1 if yi belongs to the k-th (2nd level) cluster

0 otherwise

(5.15)
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and

zit|k =


1 if yi belongs to the t-th (1st level) component

within the k-th (2nd level) cluster

0 otherwise

(5.16)

The zi = (zi1, ..., ziK)′, for i = 1, ..., n, as well as the zi|k = (zi1|k, ..., ziTk|k)
′

are assumed to come from Multinomial distributions with parameters πk

and, respectively, πt|k. By treating these component labels as missing data,

ML parameter estimation can be achieved by means of the EM algorithm.

However, due to the high dimensionality of the estimation problem, we can

not rely on a standard EM algorithm; rather we may turn to the upward-

downward algorithm (Pearl, 1988).

Following expressions (5.12) to (5.14), the complete data log-likelihood

function has the following form:

log LC(φ) = log

{
n∏

i=1

[
K∏

k=1

πk

[ Tk∏
t=1

πt|kf(yi|θt|k)
]zit|k

]zik
}

that is,

log LC(φ) =
n∑

i=1

K∑
k=1

zik log(πk) +
n∑

i=1

K∑
k=1

Tk∑
t=1

zikzit|k log(πt|k)+

+
n∑

i=1

K∑
k=1

Tk∑
t=1

zikzit|k log
[
f(yi|θt|k)

] (5.17)

where φ represents the unknown parameter vector. Let us start the EM

algorithm as before; in the (h + 1)-th iteration of the E-step we compute the

expected value of the complete data log-likelihood function. As usual, the

log LC(φ) is linear in the component labels and taking the expectation implies

that the component labels zik and zit|k are replaced by their expected values
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w
(h)
ik = Pr(zik = 1|y; φ(h)) and w

(h)
it|k = Pr(zit|k = 1|zik = 1,y; φ(h)): these are

the estimated posterior probabilities that the i-th observation belongs to the

k-th (2nd level) cluster and, respectively, to the t-th (1st level) component

within the k-th cluster, conditional on the observed data and the current

parameter estimates. Therefore, we could write

Q(φ, φ(h)) = E
[
log LC(φ)

]
=

n∑
i=1

K∑
k=1

w
(h)
ik log(πk) +

n∑
i=1

K∑
k=1

Tk∑
t=1

w
(h)
ik w

(h)
it|k log(πt|k)+

+
n∑

i=1

K∑
k=1

Tk∑
t=1

w
(h)
ik w

(h)
it|k log

[
f(yi|θt|k)

]
,

(5.18)

where w
(h)
ik w

(h)
it|k = Pr(zik = 1, zit|k = 1|y; φ(h)) is the expected value of the

product zikzit|k in (5.17).

Since the expected value is linear in the missing component indicators,

the E-step reduces to the computation of w
(h)
ik and w

(h)
it|k which are given by

w
(h)
ik =

π̂
(h)
k

∑Tk

t=1 π̂
(h)
t|k f(yi|θ̂

(h)

t|k )∑K
k=1 π̂

(h)
k

∑Tk

t=1 π̂
(h)
t|k f(yi|θ̂

(h)

t|k )
(5.19)

and

w
(h)
it|k =

π̂
(h)
t|k f(yi|θ̂

(h)

t|k )∑Tk

t=1 π̂
(h)
t|k f(yi|θ̂

(h)

t|k )
(5.20)

respectively. As it can be seen, for each unit i = 1, ..., n, we first compute

π̂
(h)
t|k f(yi|θ̂

(h)

t|k ) for the (t, k) combination and then collapse these over t to

obtain
∑Tk

t=1 π̂
(h)
t|k f(yi|θ̂

(h)

t|k ), which amounts to marginalizing over the (1st

level) component. Collapsing the
∑Tk

t=1 π̂
(h)
t|k f(yi|θ̂

(h)

t|k ) over k we obtain the

posterior probabilities for (2nd level) clusters.

Vermunt (2003) refers to these steps as the upward steps exploiting the

analogy with the forward-backward algorithm in the context of ML estimation

in hidden Markov models. In fact, information from the 1st level of the
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hierarchical structure is passed to the 2nd level one. The downward step,

instead, involves the computation of the joint posteriors of zik and zit|k, that

is

w
(h)
ik w

(h)
it|k = Pr(zik = 1, zit|k = 1|y; φ(h))

(t = 1, ..., Tk; k = 1, ..., K) which enter as weights in the expected log Lc(·).

In the (h + 1)-th iteration of M-step, model parameters are estimated

by maximizing the expected complete data log-likelihood. To maximize this

expression, we can maximize the term containing πk, the term containing πt|k

and the term containing θt|k independently since the likelihood can be easily

factorized.

To find the estimate for πk, we introduce the Lagrange function with

constraint
∑K

k=1 πk = 1, and solve the following equation:

∂Q

∂πk

=
∂

∂πk

{
n∑

i=1

K∑
k=1

wik log(πk) + λ
( K∑

k=1

πk − 1
)}

= 0

that is
n∑

i=1

1

πk

wik + λ = 0.

Summing over k, we get that λ = −n resulting in the (h + 1)-th iteration

estimate:

π
(h+1)
k =

∑n
i=1 w

(h)
ik

n
. (5.21)

The same procedure is employed for πt|k. We introduce the Lagrange

function with constraint
∑Tk

t=1 πt|k = 1, and solve the following equation:

∂Q

∂πt|k
=

∂

∂πt|k

{
n∑

i=1

K∑
k=1

Tk∑
t=1

wikwit|k log(πt|k) + λ
( Tk∑

t=1

πt|k − 1
)}

= 0
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or
n∑

i=1

K∑
k=1

1

πt|k
wikwit|k + λ =

n∑
i=1

1

πt|k
wikwit|k +

λ

K
= 0

Summing over t, we get again λ = −K
∑n

i=1 wik resulting in the (h+1)-th

iteration estimate:

π
(h+1)
t|k =

∑n
i=1 w

(h)
it|kw

(h)
ik∑n

i=1 w
(h)
ik

=

∑n
i=1 w

(h)
it|kw

(h)
ik

nπ
(h+1)
k

. (5.22)

For given parametric specifications of f(·), it is possible to get closed

expressions for θt|k as functions of other parameters. For example, in the

Gaussian case we can obtain a closed form estimate θ
(h+1)
t|k = (µ

(h+1)
t|k ,Σ

(h+1)
t|k ).

Taking the log of Equation (5.14), ignoring constant terms, and substi-

tuting into (5.18), we get:

n∑
i=1

K∑
k=1

Tk∑
t=1

wikwit|k log
(
f(yi|µt|k,Σt|k)

)
=

=
n∑

i=1

K∑
k=1

Tk∑
t=1

wikwit|k

[
− 1

2
log(|Σt|k|)−

1

2
(yi − µt|k)

′Σ−1
t|k (yi − µt|k)

]
(5.23)

Taking the derivative with respect to µt|k and solving the likelihood equa-

tion, we get:
n∑

i=1

K∑
k=1

wikwit|kΣ
−1
t|k (yi − µt|k) = 0.

Solving for µt|k we obtain the (h + 1)-th iteration estimate:

µ
(h+1)
t|k =

∑n
i=1 w

(h)
it|kw

(h)
ik yi∑n

i=1 w
(h)
it|kw

(h)
ik

. (5.24)

To find Σt|k let us rewrite Equation (5.23) as
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K∑
k=1

Tk∑
t=1

[
1

2
log(|Σ−1

t|k |)
n∑

i=1

wikwit|k−
1

2

n∑
i=1

wikwit|ktr
(
Σ−1

t|k (yi−µt|k)(yi−µt|k)
′
)]

.

Taking the derivative with respect to Σ−1
t|k , we get:

1

2

n∑
i=1

wikwit|k

(
2Σt|k − diag(Σt|k)

)
−

−1

2

n∑
i=1

wikwit|k

[
2(yi − µt|k)(yi − µt|k)

′ − diag
(
(yi − µt|k)(yi − µt|k)

′
)]

=

=
1

2

n∑
i=1

wikwit|k

[
2
(
Σt|k−(yi−µt|k)(yi−µt|k)

′
)
−diag

(
(Σt|k−(yi−µt|k)(yi−µt|k)

′
)]

(5.25)

Solving the corresponding likelihood equation we get

n∑
i=1

wikwit|k

(
Σt|k − (yi − µt|k)(yi − µt|k)

′
)
= 0

obtaining the (h + 1)-th iteration estimate:

Σ
(h+1)
t|k =

∑n
i=1 w

(h)
it|kw

(h)
ik (yi − µ

(h+1)
t|k )(yi − µ

(h+1)
t|k )′∑n

i=1 w
(h)
it|kw

(h)
ik

. (5.26)

As a by product, the upward-downward algorithm provides a (fuzzy) joint

posterior matrix given by the product of 1st and 2nd level posterior prob-

abilities of component and cluster membership. Therefore, we can cluster

objects i = 1, ..., n according to joint posteriors of component and cluster

membership, using a Maximum a Posteriori (MAP) approach, that is:

zikzit|k =

1 if k = argmaxk=1,...,Kwik and if t = argmaxt=1,...,Tk
wit|k

0 otherwise

.
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5.3.2 The double Gaussian hierarchical mixture model

In this Section, we discuss a particular specification of the hierarchical model.

We assume that (1st level) component-specific mean vectors can be written

as follows:

µt|k = µk + Vkut|k (5.27)

where µk represents a J-dimensional (2nd level) cluster-specific mean vector,

and Vk is a (J × Qk) binary and row stochastic matrix of variable cluster

membership (k = 1, ..., K). Here vjqk
= 1, if the j-th variable belongs to the

qk-th cluster, 0 otherwise; unknown latent factors ut|k project the (1st level)

component specific mean deviations (µt|k−µk) onto a low dimensional space

(Qk < J), k = 1, ..., K and t = 1, ..., Tk.

For a given unit i belonging to the t-th (1st level) component within the k-th

(2nd level) cluster, we can rewrite the data vector as:

yit|k = µk + Vkut|k + eit|k (5.28)

where eit|k represents an additive and residual term, k = 1, ..., K, t = 1, ..., Tk,

i = 1, ..., n. As usual in linear modelling, we assume eit|k are (Gaussian)

random variates with zero mean and covariance matrix Σt|k, k = 1, ..., K, t =

1, ..., Tk, i = 1, ..., n; further, we assume that eit|k and ut|k are independent.

In other words, we assume that

E(eit|k) = 0,

E(eit|k e′it|k) = Σt|k

and

E(eit|k u′
t|k) = 0

In this context, we can distinguish between two classes of model according

to whether we consider the vector ut|k to be random or not.
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In both cases, we shall remind that ut|k are hardly identifiable but this

fact is not of central interest since we are mainly interested in estimating Vk.

The use of a nonrandom vector ut|k poses problems of inference because the

likelihood function may not have a maximum, and then the MLE may not

exist (Anderson and Rubin, 1956). For this reason, we shall proceed to the

estimation of ut|k, k = 1, ..., K and t = 1, ..., Tk, assuming that the structural

parameters Vk, Σt|k and µk are known.

5.3.3 Nonrandom ut|k

Let us assume ut|k, k = 1, ..., K t = 1, ..., Tk, be nonrandom vectors. In this

case, y?
i = (yit|k − µk) is drawn from a distribution with mean Vkut|k:

E(y?
i ) = E(Vkut|k + eit|k) = Vkut|k + E(eit|k) = Vkut|k

and covariance matrix:

E
[(

y?
i − E(y?

i )
)(

y?
i − E(y?

i )
)′]

= E
[(

y?
i −Vkut|k

)(
y?

i −Vkut|k
)′]

= Σt|k

If we assume eit|k are J-variate Gaussian random variables, we have:

y?
i ∼ MVN(Vkut|k,Σt|k). (5.29)

We can obtain maximum likelihood estimates of ut|k (k = 1, ..., K t =

1, ..., Tk) as follows. The expected value of the complete data log-likelihood

function is given by

Q(φ, ·) = E
[
log Lc(φ)

]
=

n∑
i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

Tk∑
t=1

wikwit|k log(πt|k)+

+
n∑

i=1

K∑
k=1

Tk∑
t=1

wikwit|k

[
−1

2
log |Σ−1

t|k | −
1

2
(y?

i −Vkut|k)
′Σ−1

t|k (y?
i −Vkut|k)

]
(5.30)
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Differentiating Q(φ, ·) with respect to ut|k and equating the derivates to

zero, we obtain

∂

∂ut|k

[
n∑

i=1

K∑
k=1

Tk∑
t=1

wikwit|k(y
?
i −Vkut|k)

′Σ−1
t|k (y?

i −Vkut|k)

]
= 0

and thus

ût|k = (V′
kΣ

−1
t|kVk)

−1V′
kΣ

−1
t|k (

n∑
i=1

wikwit|ky
?
i )(

n∑
i=1

wikwit|k)
−1 (5.31)

k = 1, ..., K and t = 1, ..., Tk.

It is worth noticing that the reparameterization of the mean vectors given

in (5.27) has some links with Factor Analysis model, where Vk represents the

factor loading matrix and ut|k represent the factor scores. In this perspec-

tive, the proposed estimator ût|k detailed in (5.31), k = 1, ..., K t = 1, ..., Tk,

closely resembles the Bartlett estimator of factor scores based on the GLS

approach (Bartlett, 1937; 1938).

5.3.4 Random ut|k

If we assume ut|k, k = 1, ..., K t = 1, ..., Tk, are J-variate Gaussian random

variables with mean vector 0 and covariance matrix IQk
(i.e., the ut|k are

independent and homoscedastic, k = 1, ..., K t = 1, ..., Tk), the joint Gaussian

distribution of (yit|k , ut|k) can be written as

yit|k

ut|k

 ∼ MV N

µk

0

 ,

VkV
′
k + Σt|k Vk

V′
k IQk

 . (5.32)

To find a feasible estimator for ut|k, we use the posterior mean of ut|k

given yit|k , (k = 1, ..., K t = 1, ..., Tk i = 1, ..., n) which is equal to
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ût|k = E(ut|k|yit|k) = V′
k(VkV

′
k + Σt|k)

−1(yit|k − µk). (5.33)

It can be noticed that this estimator closely resembles the Thomson estimator

(1951) of factor scores.

Whether ut|k is random or nonrandom, differentiating Q(φ, ·) with respect

to µk and equating the derivates to zero, we obtain the following updated

estimate for µk:

∂

∂µk

[
n∑

i=1

K∑
k=1

Tk∑
t=1

wikwit|k(yi − µk −Vkut|k)
′Σ−1

t|k (yi − µk −Vkut|k)

]
= 0,

µ̂k =

∑n
i=1 wikwit|k(yi −Vkut|k)∑n

i=1 wikwit|k
. (5.34)

The double Gaussian hierarchical mixture model can be estimated through

the upward-downward algorithm as follows:

• STEP E:

Upward

Updating of Wk = {wit|k} and W = {wik} (t = 1, ..., Tk, k =

1, ..., K);

Downward

Computation of wikwit|k = Pr(zik = 1, zit|k = 1|y; φ).

• STEP M:

Updating of π = {πk}, πk = {πt|k}, Σk = {Σt|k}, Vk = {vjh}, Uk =

{ut|k}, µk and µt|k (t = 1, ..., Tk, k = 1, ..., K).

As in a standard EM algorithm, an iteration increases the observed data

likelihood function and the sequence converges to a local optimum. There
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are a variety of heuristic approaches for escaping a local maximum such as

using several different random initial estimates.

Thus, through the reparameterization of the 1st component-specific mean

vector (5.27), we are able to cluster both units and variables, where condi-

tionally to each unit cluster a different partition of the variables is allowed. In

fact, the i-th unit is allocated to cluster k corresponding the largest posterior

joint probability, wikwit|k (t = 1, ..., Tk, k = 1, ..., K); while j-th variable is

allocated to the cluster qk through the matrix membership Vk (qk = 1, ..., Qk,

k = 1, ..., K).

5.3.5 Hierarchical VS standard mixture model

A drawback of this approach is that identifiability problems may arise. Willse

and Boik (1999) discuss this issue underlining that, under the imposition of

appropriate constraints, the two-level mixture model is identifiable. Hastie

and Tibshirani (1996) use a two-level mixture model for discriminant anal-

ysis. However, their approach has not any identifiability problem because

membership function is known. An important application field where con-

straints may be imposed, making the two-level mixture models identifiable,

is illustrated by Di Zio et al. (2005).

In this Section, we will show that without additional constraints the hier-

archical mixture model reduces to a standard mixture model (with a number

of components equal to
∑K

k=1 Tk = T ).

If we define πtk = πt|kπk, we have

f(yi|φ) =
T∑

tk=1

πtkf(yi|θtk). (5.35)

Hoveover, although the πtk’s are sufficient to specify the mixture density

f(yi|φ) according to (5.35), the individual component densities f(yi|θtk)
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cannot be determined without information about the (2nd level) cluster a

(1st level) component belongs to.

To partially solve the ambiguity in assigning (1st level) components to

(2nd level) clusters, we could choose the combination maximizing the log-

likelihood function.

We briefly show an example of this concept, reminding that identifiability

is clearly not attainable without further information. If we have some prior

information on the number of (2nd level) clusters, we could pose constraints

on cluster-specific means and this would greatly help model identifiability.

Let us fit a standard 4 component mixture model to the simulated data

set displayed in Figure 5.1. It can be easily observed that the four clusters

Figure 5.1: Simulated data set

can be grouped in two macro clusters; each couple shows very similar features

and its elements are very close to each other, while the two couples are quite

far away. The estimated centroids of the 4 component solution are indicated

in Figure 5.2 by a “+” sign. Then, we fit the hierarchical mixture model to

the same data set and obtain the best clustering results (according to the

101



Figure 5.2: The centroids of four estimated clusters

BIC criterion) choosing two 2nd level clusters and two (1st level) components

within each (2nd level) cluster. The first estimated (2nd level) cluster is

exactly given by the first and second cluster of the standard solution while

the other (2nd level) cluster is defined by grouping the third and fourth

cluster. To get further insight, we considered all the alternatives obtained

by joining the first and the second cluster (the third and the fourth), the

first and the third (the second and the fourth) and finally, the first and

the fourth (the second and the third). For each of these combinations, we

fitted a standard mixture model with 2 components choosing the combination

with the largest log-likelihood function value. The values of log-likelihood

functions are -69.527, -73.763 and -149.330 respectively; therefore the best

solution is given by the first combination with a log-likelihood value equal to

-69.527. As outlined before, we obtained the same results fitting a standard

mixture model with 4 components, by summing (1st level) components of

the hierarchical mixture model.
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5.3.6 Identifiability of Vk

As mentioned before, the reparameterization of the mean vectors displayed

in (5.27) is a particular case of the one proposed by Rocci and Vichi (2002).

The main difference between the two reparameterizations is that Rocci and

Vichi (2002) assume the matrix Vk is a factor loading matrix, and therefore

the resulting model is not strictly identifiable since Vk can be rotated without

affecting the results, provided that the latent vectors ut|k are counter-rotated.

On the other hand, we assume that the matrix Vk is binary and row stochas-

tic and this help making the model identifiable. In fact, whether the vector

ut|k is a random vector or a vector of fixed effects, the membership matrix

Vk is strictly identified. Let Vk be a (J ×Qk) binary matrix such as

vjqk
=

1 if the j-th variable belongs to the qk-th cluster

0 otherwise

(5.36)

with
∑Qk

qk=1 vjqk
= 1 (k = 1, ..., K). Let P = {pqkqk

} be a (Qk × Qk)

orthogonal matrix (i.e., P′ = P−1) and V∗
k = VkP a (J × Qk) matrix such

that

v∗jqk
=

pqkqk
if vjqk

= 1

0 if vjqk
= 0

with
∑Qk

qk=1 v∗jqk
= pqkqk

(k = 1, ..., K).

In order for V∗
k to represent a membership matrix (k = 1, ..., K), we must

have

Qk∑
qk=1

v∗jqk
=

∑
qk∈{qk:vjqk

=0}

0 +
∑

qk∈{qk:vjqk
=1}

pqkqk
=

∑
qk∈{qk:vjqk

=1}

pqkqk
= 1
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for j = 1, ..., J and k = 1, ..., K. Then, the orthogonal matrix P such

that the binary matrix V∗
k can be written as V∗

k = VkP with the constraint∑Qk

qk=1 v∗jqk
= 1 is the identity matrix IQk

. In other words, V∗
k = Vk, i.e. Vk

is unique.

5.3.7 Conclusions

We have proposed an approach obtained by adapting the multilevel latent

class model proposed by Vermunt (2003) to two-way continuous data; obser-

vations are clustered into a particular (1st level) latent component within a

certain (2nd level) cluster. In order to cluster variables we have introduced a

binary and row stochastic matrix of variable cluster membership (as in Vichi,

2000). We have discussed a potential reparameterization of (1st level) mean

vectors of component-specific densities according to the work of Rocci and

Vichi (2002). We have tested the proposed model using a simulation study

and obtained encouraging results (see Part II of dissertation).

It can be observed that, thanks to the hierarchical structure, we learn the

ground-truth data clusters by distinguishing the number of components (1st

level components) by the number of clusters (2nd level components) which

is a standard problem in Gaussian mixture model (see Shental, Bar-Hillel,

Hertz and Weinshall, 2003; Zhao and Miller, 2005).

In fact, observations are assumed to be independent given (1st level) com-

ponent membership: the hierarchical structure accounts for some dependence

between units showing similar behaviour, i.e. belonging to the same cluster.

Within each cluster, we model departures from standard Gaussian assump-

tions using a number of components representing heterogeneity with respect

to the Gaussian case. Thus, heterogeneity may affect (2nd level) cluster-

specific distributions in a number of ways according to the shape of the real

104



distribution and the number of (1st level) components which is needed to

recover it.

Moreover, thanks to the particular specification of the hierarchical model

displayed in (5.27), we can cluster both units and variables identifying blocks,

i.e., sub-matrices of the observed data matrix, where units and variables

specify a 2nd level cluster and a variable cluster (specific for each 2nd level

cluster).

As we have noticed in Section 5.3.5, the hierarchical mixture model is

not globally identifiable unless, for example, we are able to fix the number

of (2nd level) clusters, K; in this case, we use the remaining degrees of

freedom to identify (1st level) components within each (2nd level) cluster.

This discussion shows that identifiability is not more problematic for the

hierarchical mixture model than for the standard mixture model.

Finally, the model suggests the use of BIC or AIC as penalizing function

for choosing the number of 1st as well as 2nd level components and of variable

clusters.
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Part II

APPLICATIONS
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Chapter 6

Simulation Studies

To test the performance of the double clustering based on the proposals

described in the previous Chapter, experiments have been carried out with

both simulated and real data sets. In this Chapter, we will deal with the

simulation studies, where the performance of model-based double K-means

and hierarchical mixture model have been evaluated in terms of recovery of

true partitions. In the next Sections, we see the results in greater detail.

6.1 Performance in simulation study of dou-

ble K-means by using a ML approach

The performance of the (model-based) double K-means has been tested in

a simulation study by employing b = 1, ..., B = 100 runs. Model parameters

have been estimated by using the algorithm2rid, described in Section 5.1.3,

characterized by a CPU time which is substantially lower than the other

proposed algorithms. In particular, the performance of the algorithm has

been evaluated by using the following measures:
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1. Mrand(U, Ub). Modified Rand Index (Hubert and Arabie, 1985) be-

tween the true matrix U and the estimated matrix Ub, for each run

b = 1, ..., B = 100;

2. Mrand(V, Vb). Modified Rand Index between the true matrix V and

the estimated matrix Vb, for each run b = 1, ..., B = 100;

3. number of times the fitted partition of units is equal to the true parti-

tion, i.e., Mrand(U, Ub)=1, for each run b = 1, ..., B = 100;

4. number of times the fitted partition of variables is equal to the true

partition, i.e., Mrand(V, Vb)=1, for each run b = 1, ..., B = 100.

As observed in Section 5.1.3, the algorithm begins with random starting

values U and V; in the current context, we have observed that few random

starts are generally enough to find an optimal solution. However, to be sure

that the optimal solution is detected, the number of random starts has been

fixed equal to ten.

In each experiment, B data sets have been generated according to model

(5.1) in a J = 80 dimensional space with a number of units equal to n = 2000;

each row, xi, is supposed to be drawn from a J-variate Gaussian distribu-

tion with mean vector VX̄′ui and covariance matrix Σ. Then, blocks are

randomly placed within the data matrix.

Three error levels (Low, Medium, High) have been considered in order

to have different levels of homogeneity within blocks. The error levels have

been used to multiply the covariance matrix, Σ), by 5,10, 50 respectively. In

Figures 6.1 and 6.2 (a, b, c), we show the data set types with Low, Medium

and High; if error level is low, the structure of blocks is well visible. On

the contrary, if the error level is high the structure of blocks is lost. Then,

rows and columns have been randomly permuted and the designed algorithm
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Number of generated data sets B=100

Number of units n=2000

Number of variables J=80

Number of units of clusters K=3, 6

Number of variables of clusters Q=2, 4

Number of random starts 10

Error level (trace(Σ = σ2Ω)) Low σ2 = 5, Medium σ2 = 10, High σ2 = 50

Table 6.1: Simulation setting

has been applied to recover blocks and specifically partitions of units and

variables generating the data (Figure 6.1 and 6.2; a2, b2, c2).

We have considered two different situations:

1. the data matrix is formed by 6 blocks defining a partition of units with

K=3 clusters and a partition of variables with Q=2 clusters;

2. the data matrix is formed by 24 blocks defining a partition of units

with K=6 clusters and a partition of variables with Q=4 clusters.

The design of the simulation experiments is shown in Table 6.1, while Table

6.2 and Table 6.3 display the simulation results with K=3, Q=2 and K=6,

Q=4 respectively. It can be observed that the algorithm performs well in

recovering the true partitions of units and variables under all levels of error.

In general, the algorithm performs better in recovering the partition of

variables rather than that of units (see columns 2-5, Tables 6.2-6.3); by in-

creasing the error level, the average Mrand index for both units and variables

partitions slowly decreases.

Finally, as far as the CPU time in both experiments is concerned, we can

observe that the algorithm converges quite fastly (2 or 3 iterations) even if it
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Error Average Average % of unit % of variable Average

Level Mrand for Mrand for partitions= partitions= number

units variables to the true to the true of

partitions partitions partitions partitions iterations

Low 1 1 1 99 2.09

Medium 0.98 0.99 92 100 2.25

High 0.95 0.98 71 100 3.56

Table 6.2: Simulation results: K=3, Q=2

begins with random starting values for U and V. In order to further speed up

its convergence, those values could be chosen in a rationale way (e.g., using

some clustering method).
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Figure 6.1: (2000 × 80) data matrices subdivided into K = 3 unit clusters and

Q = 2. Three levels of error a), b) c) are considered. The algorithm2rid has been

applied by permuting of rows and columns of the data matrices
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Figure 6.2: (2000 × 80) data matrices subdivided into K = 6 unit clusters and

Q = 4. Three levels of error a), b) c) are considered. The algorithm2rid has been

applied by permuting of rows and columns of the data matrices
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Error Average Average % of unit % of variable Average

Level Mrand for Mrand for partitions= partitions= number

units variables to the true to the true of

partitions partitions partitions partitions iterations

Low 1 0.98 84 96 2.19

Medium 0.96 0.99 76 97 2.18

High 0.93 0.97 20 70 3.27

Table 6.3: Simulation results: K=6, Q=4

6.2 Performance in simulation study of the

hierarchical mixture model

The performance of the hierarchical mixture (H-M) model has been tested

using two simulation studies. The first experiment was conducted to evalu-

ate the performance of the hierarchical mixture model shown in Equations

(5.12) to (5.14) in terms of recovery of the true row partition. The second

experiment was carried out to evaluate the performance of the hierarchical

model with the reparameterization of mean vectors given in (5.27) in terms of

recovering both row and column partitions. In particular, for the first experi-

ment we have evaluated the performance of the upward-downward algorithm

through the following measures:

1. Mrand(Z, W∗). Modified Rand Index between Z = {zik}, the true

matrix of (2nd level) cluster membership and the estimated matrix
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W∗ = {w∗
ik}, where each element w∗

ik is defined as:

w∗
ik =

1 if k = argmaxk=1,...,Kwik,

0 otherwise

; (6.1)

2. Mrand(Zk, W∗
k). Modified Rand Index between Zk = {zit|k}, the true

matrix of (1st level) component membership and the estimated matrix

W∗
k = {w∗

it|k} (k = 1, ..., K), where each element w∗
it|k is defined as:

w∗
it|k =

1 if t = argmaxt=1,...,Tk
wit|k,

0 otherwise

. (6.2)

For the second experiment, we use as additional measure of goodness of

fit the value of Mrand(V∗
k, Vk), the Modified Rand Index between the true

matrix Vk and the estimated matrix V∗
k (k = 1, ..., K).

In the first simulation setting, the algorithm starts with random matrices

Z and Zk (k = 1, ..., K); random starts in the second scenario include also the

random matrix Vk. For both experiments, the number of random starts is

fixed equal to ten, because we have observed that a higher number of random

starts does not increase the chance to find the optimal solution.

The first experiment design is summarized in Table 6.4: 100 data sets

have been generated according to Equations (5.12) to (5.14) in a J=30 di-

mensional space with a number of units equal to n=2000, K = 2 (2nd level)

clusters and T1 = T2=2 (1st level) component for each (2nd level) cluster.

Table 6.5 displays the design of the second experiment, where 100 data sets

have been generated according to Equations (5.12) to (5.14) with the mean

reparameterization given in (5.27) and J=30, n = 2000, K = 2, T1=2, T2=2

and Q1 = Q2=2.
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For each experiment and each data set, partitions (respectively blocks,

i.e. sub-matrices of the observed data matrix) have been randomly placed by

permuting rows and columns (an example is given in Figures 6.3 and 6.4).

Three error levels (Low, Medium and High) have been considered in order

to work with varying levels of homogeneity within partitions (blocks). Those

error levels have been fixed multiplying the covariance matrix by 5, 10, 50

respectively. As can be easily observed in Figures 6.3 and 6.4 a), if error level

is low partitions (blocks) are well distinguished; on the other hand, in Figures

6.3 and 6.4 c) error levels are high and partitions (blocks) can be hardly

recognized. In Figure 6.3 and Figure 6.4 a2), b2), c2) rows and columns

have been randomly permuted to mask the clustering structure. Then, the

proposed model has been estimated to recover the original partitions (blocks)

and specifically the ”true” partition of units and/or variables. Tables 6.6 and

6.7 display the simulation results.

As can be observed from both studies, the proposed model performs well

in recovering the true partition of units and/or variables under all error

levels. In general, when the error level increases, the average Mrand for

objects and/or variables partitions slowly decrease (see columns 2-3 in Table

6.6 and columns 2 to 5 in Table 6.7).

For both experiments, the algorithm begins by using as starting points the

solution of the algorithm2rid for double K-means. This procedure improves

the performance of the upward-downward algorithm considerably requiring

a small number of iterations for both the 1st and the 2nd level as shown in

Table 6.6 and 6.7.
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Figure 6.3: (2000 × 30) data matrices with K=2, T1 = 2, T2 = 2. Three error

levels a), b) and c) are considered. Entries are randomly permutated
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Figure 6.4: (2000×30) data matrices with K=2, T1 = 2, T2 = 2 and Q1 = Q2 = 2.

Three error levels a), b) and c) are considered. Entries are randomly permutated
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Number of generated data sets B =100

Number of units n=2000

Number of variables J=30

Number of 2nd level clusters K=2

Number of 1st level sub-clusters T1 = 2, T2 = 2

Number of random starts 10

Error level (trace(Σ = σ2Ω)) Low σ2 = 5, Medium σ2 = 10, High σ2 = 50

Table 6.4: Simulation design for the first experiment

Number of generated data sets B =100

Number of units n=2000

Number of variables J=30

Number of 2nd level clusters K=2

Number of 1st level sub-clusters T1 = 2, T2 = 2

Number of variables clusters Q1 = Q2 = 2

Number of random starts 10

Error level (trace(Σ = σ2Ω)) Low σ2 = 5, Medium σ2 = 10, High σ2 = 50

Table 6.5: Simulation design for the second experiment
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Error Average Average Average Average

level Mrand for Mrand for number number

2nd level units 1st level units of of

partitions partitions iterations iterations

for 2nd level for 1st level

T1 T2

Low 1.00 1.00 1.00 2.00 20.65

Medium 1.00 0.98 1.00 2.19 22.10

High 1.00 0.99 0.80 2.95 27.00

Table 6.6: Simulation results for the first experiment

Error Average Average Average Average Average

level Mrand for Mrand for Mrand for number number

2nd level units 1st level units variables of of

partitions partitions partitions iterations iterations

for 2nd level for 1st level

T1 T2 T1 T2

Low 1.00 1.00 1.00 1.00 1.00 2.10 22.30

Medium 1.00 1.00 0.87 0.99 0.98 2.50 28.50

High 0.99 0.89 0.80 0.88 0.74 3.05 30.95

Table 6.7: Simulation results for the second experiment
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Chapter 7

Microarray case studies

As far as real data sets are concerned, we have focused on one of the most

novel fields in the bioinformatic area, namely gene expression data. De-

spite information obtained from ongoing research on sequencing the human

genome (structural genomics), we still lack full understanding of how our

genes are turned on or off to maintain a healthy body (functional genomics).

Many diseases, including cancer genetic diseases and other infectious diseases,

are direct consequences of mis-expression of the genes. To examine how regu-

latory proteins assemble a gene and regulate its expression, we need to know

the expression levels of thousands of genes in the same conditions. These

data are available through microarray experiments that are performed over

a set of conditions. The dimension and complexity of raw gene expression

data obtained by oligonucleotide or spotted microarrays, create challenging

data analysis and management problems ranging from the analysis of images

produced by microarray experiments to biological interpretation of results.

Therefore, statistical and computational approaches are beginning to assume

a substantial position within the molecular biology area.

The use of clustering techniques is essential in the data mining process
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to reveal natural structures and identify interesting patterns in the gene

expression data.

In this empirical context, the aim could be the clustering of both genes

and tissue samples; clustering based on either genes or tissue samples may in

fact be unable to give insightful results. The need to find a subset of genes

and tissue samples defining a homogeneous block had led to the application

of double clustering techniques on gene expression data (see Chapter 4).

The standard methods of double clustering do not utilize the inherent sta-

tistical structure of data; these methods are often pulled within the category

of heuristic methods. We have proposed a method for double clustering using

a model-based approach, taking advantages of the probabilistic framework

previously discussed.

In the following Section, a description of the microarray technology is

introduced. A short description of analyzed data sets will be provided in

Section 7.2 and 7.4. The results obtained from analyzing the gene expression

data sets by using the double K-means and the double hierarchical mixture

model are included in Sections 7.3.1 and 7.3.2 for Bittner et al. (2000) data

and, respectively, 7.5.1 and 7.5.2 for Golub et al. (1999) data.

7.1 The microarray technology

7.1.1 Genetic Overview

The cell is the structural and functional unit of a living organism. The DNA

(Deoxyribonucleic acid), usually in the form of a double helix, is the most

important of all cell molecules since it contains genetic instructions (genome)

monitoring the biological development of cellular forms of life, as well as

of many viruses. The genome represents the whole hereditary information
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of an organism and includes both the genes and the non-coding sequences.

The term was coined in 1920 by Hans Winkler, Professor of Botany at the

University of Hamburg, Germany, as a portmanteau of the words gene and

chromosome. More precisely, the genome of an organism is a complete DNA

sequence of one set of chromosomes with specific number and form for each

specie. The individual genome is constituted by 46 chromosomes: 22 pairs

of autosomes and two sex chromosomes. Each chromosome contains some

genes, which identify functional regions of DNA; their function is to encode

the necessary instructions in order to produce the proteins. About 98.5% of

the human genome has been designated as junk DNA which is the portion

of the DNA sequence for which no function has yet been identified. Human

DNA contains more than 30.000 different genes. DNA consists of two strands,

being complementary to each other. The strands are made up of four basic

nucleotides (or bases): adenine (A); thymidine (T); cytosine (C) and guanine

(G). The A (T) base of DNA strand only bonds with the T (A) base from the

complementary strand (cDNA), likewise for C and G. The complementary

principle forms the foundation of DNA microarrays.

To build proteins, the genetic information in DNA is transcribed to an

intermediate product in the nucleus of cells, the mRNA (messenger RNA).

Genetic instructions are then carried by mRNA for translation into proteins.

Gene expression is measured as the amount of mRNA for a particular gene

in the analyzed cell. In fact, genes are expressed in different ways in different

body. To give an example, let us consider genes expressed in pancreas. Some

genes are expressed in the pancreas and in many or all other tissues in the

body (these are called housekeeping genes). Many genes are not expressed in

the pancreas, but are expressed in other tissues. A few genes are expressed in

the pancreas but not in other tissues, and in this case mRNA (and protein)
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encoded by these genes will only be present in the pancreas cells (that is, over

expressed) but not in other tissues (that is, under expressed). In the case of

pancreas cancer, most of the genes that are present in healthy pancreas will

also be expressed in the cells of pancreas cancer. However, certain genes will

be over-expressed or under-expressed in the cancer cells compared to normal

pancreas cells. This modified gene expression contributes to uncontrolled

growth and spread of the tumor.

7.1.2 Types of microarrays

A microarray (also known as gene chip, DNA chip, or biochip) is typically

a glass slide, where DNA molecules are attached at fixed locations (spots or

features) forming an array for monitoring expression levels corresponding to

thousands of genes simultaneously. Tens of thousands spots may be present

over an array, each containing a huge number of identical DNA molecules

(or fragments of identical molecules), of length from twenty to hundreds

nucleotides. The spots on a microarray are either printed by a robot, or

synthesized by photo-lithography (similar to computer chip productions) or

by ink-jet printing. Microarrays containing the about 6000 genes of the

yeast genome have been available since 1997 (Science, 1997). Latest gener-

ation of commercial microarrays represent the entire human genome, more

than 30.000 genes, on two microarrays. Microarrays can be fabricated us-

ing a variety of technologies, including printing with fine-pointed pins onto

glass slides, photolithography using pre-made masks, photolithography using

dynamic micromirror devices, ink-jet printing, or electrochemistry on micro-

electrode arrays. In the following Sections, we will briefly describe the most

usual microarray types.
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Spotted microarrays

In spotted microarrays (also known as two-channel microarrays), the probes

are oligonucleotides, cDNA or small fragments of PCR (Polymerase Chain

Reaction) products corresponding to mRNAs. This type of array is typically

hybridized with cDNA from two samples that have to be compared (e.g.

patient and control) and are labeled with two different fluorofores (Figure

7.1). The samples can be mixed and hybridized to one single microarray to

be scanned, allowing the visualization of up-regulated and down-regulated

genes in one go. The drawback of this approach is that the absolute levels

of gene expression cannot be observed; however the cost for the experiment

is reduced by half.

Figure 7.1: a) two-channel microarray, b) microarray image

Oligonucleotide microarrays

In oligonucleotide microarrays (or single-channel microarrays), the probes

are designed to match parts of the sequence of known or predicted mRNAs.

There are commercially available designs that cover complete genomes from

companies such as GE Healthcare, Affymetrix (Figure 7.2), or Agilent. These
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microarrays give a measure of the (absolute value) gene expression and there-

fore the comparison of two conditions requires the use of two separate slides.

Oligonucleotide Arrays can be either produced by piezoelectric deposition

Figure 7.2: a) Affymetrix microarray, b) microarray image

with full length oligonucleotides or by in-situ synthesis.

Long Oligonucleotide Arrays are composed of 60-mers, and are produced

by ink-jet printing on a silica substrate. Short Oligonucleotide Arrays are

composed of 25-mer or 30-mer and are produced by photolithographic synthe-

sis (Affymetrix) on a silica substrate or piezoelectric deposition (GE Health-

care) on an acrylamide matrix. More recently, Maskless Array Synthesis from

NimbleGen Systems has combined flexibility with large numbers of probes.

Arrays can contain up to 390000 spots, from a custom array design. New ar-

ray formats are being developed to study specific pathways or disease states

for a systems biology approach.

Genotyping microarrays

SNP microarrays are a particular type of DNA microarrays that are used

to identify genetic modification in individuals and across populations. Short

oligonucleotide arrays can be used to identify the single nucleotide polymor-
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phisms (SNPs) that are thought to be responsible for genetic modification

and to be the source of genetically caused diseases. Generally termed geno-

typing applications, DNA microarrays may be used in this fashion for foren-

sic applications, rapidly discovering or measuring genetic predisposition to a

given disease, or identifying DNA-based drug candidates.

These SNP microarrays are also being used to profile somatic mutations in

cancer. Amplifications and deletions can also be detected using comparative

genomic hybridization in conjunction with microarrays.

Resequencing arrays have also been developed to sequence portions of in-

dividual genome. These arrays may be used to evaluate germ-line mutations

in individuals, or somatic mutations in cancer.

Genome tiling arrays include overlapping oligonucleotides designed to

blanket an entire genomic region of interest. Many companies have suc-

cessfully designed tiling arrays that cover whole human chromosomes.

In the next Section, we will describe how cDNA microarrays are made.

7.1.3 Description of the cDNA microarray experiment

In a generic cDNA microarray experiment, the basic idea is the comparison

of gene expression levels between pairs of samples, such as a ill and a healthy

tissue. This comparison is made through the following steps:

1. Extraction of mRNAs from test (e.g. tumor) and reference (e.g. healthy)

samples;

2. Retro-transcription to cDNA (to improve the measurement of mRNA);

3. The two samples are labelled with two different fluorescent dyes of

cDNA (e.g. red and green);
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4. Mixing and hybridization of labelled cDNA molecules on a microar-

ray. In such a hybridization, labelled cDNA molecules bind to their

complementary sequences on the microarray;

5. After hybridization, the microarray slide is scanned and the resulting

image is stored as a 16-bit TIFF image.

6. Location of the cDNAs on a microarray, or spots, are identified using

a software for image analysis.

Such steps are shown in Figure 7.3.

Figure 7.3: A comparison of gene expression levels between test and reference

sample

The final result of the experiment is shown in Figure 7.4. The red spot

indicates an up-regulated gene, while a green spot indicates a down-regulated

gene. Genes showing some equal expressions in test and reference samples

are illustrated using yellow color.
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Figure 7.4: Microarray image

7.1.4 Converting the scanned image to the spotted im-

age

The final step is converting the scanned image in a numeric table (Figure

7.5). The task of quantifying a scanned image is defined as follows.

Figure 7.5: Conversion of a microarray image in numeric form

Each spot is segmented, which means that a border between actual signal

and background noise is determined. For each segmented spot, the average

test intensities is computed and divided by the average reference intensities.

The median of test and reference intensities is also used instead of the mean.
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The ratios, indicate relative expressions of genes in the two samples. The

outcome of a microarray experiment is typically a table of ratios measuring

the relative expression levels of each gene on a microarray.

7.1.5 Preprocessing Microarray Data

Even if a microarray experiment is carefully designed, error sources causing

variation in the analyzed levels are frequently observed. In order to reduce

the effects of these error sources, microarray data analysis requires some pre-

processing steps. Methods used in preprocessing may differ between cDNA

microarray data and oligonucleotide microarray data. Some of the most com-

mon error-sources preventing the direct application of statistical techniques

are:

• Variation of the amount of DNA in the microarray spots;

• Systematic variation in printing pin groups (print-tip bias);

• Different physical characteristics between the dyes used for labelling

(dye bias);

• Unequal amount of mRNA in test and reference samples;

• Unequal background intensity of scanned microarrays;

• Impurities such as dust particles on microarrays;

• Variation between microarray slides;

• Variation in experimental conditions.

Preprocessing consists of three phases: quality control, within-slide nor-

malization, and multiple-slide normalization. Quality control is usually done
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by excluding spots which are considered unreliable, as a result of low signal-

to-noise ratio or small spot area. Within-slide normalization methods aim

at balancing the test and reference intensities, while the main purpose of

multiple-slide normalization is to ensure that data from different slides are

comparable.

For a complete review of microarray technology and statistical issues,

refer to Amaratunga and Cabrera (2004). Many microarray databases can

be accessed via internet; for example, http://genome-www5.stanford.edu/ or

http://proteogenomics.musc.edu/.

7.2 Description of the Bittner et al. data set

(2000)

In this Section a short description of the analyzed benchmark data set on

cutaneous melanoma will be provided. For more details please see Bittner et

al. (2000). The data are available from the web site:

http://www.nhgri.nih.gov/DIR/Microarray/Melanoma Supplement/index.html.

The original aim of this study was to determine whether or not molecular

profiles generated by cDNA microarrays could be used to identify distinct

subtypes of cutaneous melanoma, a malignant neoplasm of the skin. The

data consists of 38 samples from tissue biopsies and tumor cell lines, with 31

cutaneous melanomas and 7 controls; samples come from male and female

patients aged 29 to 75, with 3 patients of unknown age. The mRNA was

extracted and Cy5-labelled cDNA was created for the 31 cutaneous melanoma

and the 7 control samples; a single reference probe, labelled Cy3, was used

for all the 38 samples. The Cy5 and Cy3-labelled cDNAs are mixed for each

sample and hybridized to a separate melanoma microarray. The hybridized
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array was scanned using both red and green lasers, and the resulting image

was analyzed. 3613 over 8150 cDNAs were identified as adequately measured,

and gene expression ratios of Cy5/Cy3 were calculated. Ratios greater than

50 and lower than 0.02 were truncated to 50 and 0.02, respectively; often

that ratios were transformed to a logarithm scale (base 2); and normalized by

subtracting the median log-ratio for that experiment, so that the median log-

ratio within an experiment was zero. No normalization was performed across

experiments, since a single reference probe was used for all of them. Bittner

et al. (2000) discuss the analysis of 31 samples, excluding the 7 control

samples. Average linkage hierarchical clustering was carried out on these

31 samples by using one minus the Pearson correlation coefficient between

log-ratios as a dissimilarity measure between two experiments. In this way,

they obtained two clusters of 12 and 19 samples, which have been validated

by multidimensional scaling (MDS) and through CAST, a non-hierarchical

clustering algorithm (Ben-Dor, Shamir and Yakhini, 1999). Both MDS and

CAST identified the same major cluster of 19 samples found by the average

linkage hierarchical clustering.

7.3 Results

Here, we focus on double clustering of genes and tissue samples, by using the

models described in Sections 5.1 and 5.3.

We denote the observed gene expression levels by y1,y2, ...,yn, where yi

is a 31-dimensional vector representing the expression level of the i-th gene

on 31 cutaneous melanoma samples. Thus, we have J = 31 and n = 3613.

After centering and rescaling columns to unit variance to be coherent with
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the analysis of Bittner et al. (2000) 1, we applied both proposed models with

the aim of defining significant blocks formed by gene clusters characterizing

subtypes of cutaneous melanomas.

7.3.1 Double K-means

We have fitted the double K-means using the ML approach described in

Section 5.1 for different values of number of clusters for genes and tissues.

For each pair, we run the algorithm2rid several times to avoid local minima,

choosing the best solution through BIC and AIC criteria; in particular, the

combination providing the lowest values for those criteria. Table 7.1 sum-

marizes the most significant results. As it can be noticed, the best solution

corresponds to 8 blocks in data matrix, e.g. 4 genes clusters (with cardinality

83-707-1612-1211) and 2 tissue samples clusters (21-10) (see line 3 in Table

7.1); these are displayed in Figure 7.6. However, only 2 blocks (as showed in

Figure 7.7) seem to be biologically meaningful; the others have block mean

close to zero and this suggests that the gene expression levels in these tissue

samples are equal to the gene expression levels in the reference. In particular,

the 2 meaningful blocks showing block means equal to -2.54 and -1.84, are

formed by 83 down-regulated genes classified in two clusters of 21 and 10

tissue samples, respectively. However, double K-means is not of any help to

understand which of the gene clusters discriminate the obtained partition of

21-10 tissue samples. In fact, although the two blocks formed by 707 up-

regulated genes and partitioned into two clusters of 21 and 10 tissue samples

are not biologically significant, they have not very close mean values. This

consideration entitles us to believe that some of the 707 up-regulated genes

1In this way, the distance between two tissues is proportional to one minus the Pearson

correlation coefficient between those tissues.
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K Q BIC AIC

2 2 375090 307532

3 2 373331 296104

4 2 372023 294985

4 4 374015 297061

Table 7.1: Double K-means results for Bittner et al. (2000) data

could be significant in explaining the tissue partition.

Figure 7.6: Best double K-means solution: K=4, Q=2
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Figure 7.7: The significant blocks of best double K-means solution: K=4, Q=2

7.3.2 Double hierarchical mixture model

Also in this case, we estimated model parameters corresponding to different

numbers of clusters for individuals and variables. For each combination, we

run the upward-downward algorithm several times to avoid local minima,

and recorded the solution giving the lowest value for BIC and AIC criteria.

The results are summarized in Table 7.2.

The best solution is based on two 2nd level clusters, with two sub-clusters

K Tk Qk BIC AIC

2 T1 = 3 T2 = 3 Q1 = 2 Q2 = 1 269780 264397

2 T1 = 2 T2 = 2 Q1 = 2 Q2 = 2 262260 249154

2 T1 = 2 T2 = 2 Q1 = 2 Q2 = 1 261720 248660

2 T1 = 2 T2 = 2 - 261810 248730

Table 7.2: Double H-M model results for Bittner et al. (2000) data
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Figure 7.8: Best double H-M model solution: K = 2, T1 = T2 = 2, Q1 = 2,

Q2 = 1

each. The column (tissue sample) cluster is based on a partition into two

clusters for the former 2nd level cluster and on any partition for the latter

2nd level cluster (see line 3 in Table 7.1). In other words, the best solution

corresponds to 6 different blocks, which are displayed in Figure 7.8. In

particular, only 3 among those blocks have significant features (see Figure

7.9). In fact, the corresponding block means are far from zero. We obtained

96 up-regulated genes which contribute to determine a partition of tissue

samples into 2 clusters of 12 and 19 samples each and 40 down-regulated

genes with constant value over the analyzed tissue samples. We can claim

that the 96 up-regulated genes are able to discriminate between the 19-12

tissue samples since the remaining 2075 genes, in the same 2nd level cluster,

have very close mean values.

For each partition of tissue samples, we have a hierarchical partition

of genes that could help highlight possible links between clusters of genes.
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Figure 7.9: The significant blocks of best double H-M model solution: K = 2,

T1 = T2 = 2, Q1 = 2, Q2 = 1

Thanks to the insertion of an extra-level, we could single out those genes clus-

ters showing different functions or involved in different cellular processes.

Figures 7.10 displays the partition of tissue samples by using only the

96 up-regulated genes while Figure 7.11 displays the tissue samples block

obtained by using only the 40 down-regulated genes. As it can be seen, any

partition of tissue samples can be detected considering the down-regulated

genes only, while a clear and distinct partition is obtained if we consider only

the 96 up-regulated genes.
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Figure 7.10: Partition of 12 and 19 tissue samples by using the 96 up-regulated

genes (sample×average expression level)

Figure 7.11: Block of tissue samples by using the 40 down-regulated genes

(sample×average expression level)

7.3.3 Conclusions

We have tested the performance of proposed double clustering models on a

benchmark data set from the study on cutaneous melanomas described in
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Bittner et al. (2000). We applied the same pre-processing steps to allow

for direct comparability with previously published analyses. Goldestein et

al. (2002) applied several hierarchical clustering methods; Rocci and Vichi

(2004) estimated the double K-means parameters using a least-squares ap-

proach. Both obtained a partition of tissue samples formed by 21 and 10

samples which agrees with that obtained by estimating the double K-means

parameters through the maximum likelihood approach detailed in Section

5. Moreover, as far as gene clusters are concerned, Rocci and Vichi (2004)

obtained 4 gene clusters with only one containing differentially expressed

genes. Bittner et al. (2000), instead, obtained the same partition of 12-19

tissues samples we have obtained through the double H-M model, confirming

that the two tissue sample clusters present different metastatic properties.

By using the double H-M model we do not only obtain a partition of tissue

samples in 2 groups with different metastatic properties, but also obtain a

cluster composed by the up-regulated genes which seem highly significant in

explaining the tissue partition.

7.4 Description of the Golub et al. data set

(1999)

The data set described in Golub et al. (1999) comes from a study of gene

expression in two types of acute leukemias: acute lymphoblastic leukemia

(ALL) and acute myeloid leukemia (AML). Gene expression levels were mea-

sured using Affymetrix high-density oligonucleotide arrays (HU6800chip). In-

tensity values have been re-scaled such that the overall intensities for each ar-

ray are equivalent (see http://www.broad.mit.edu/mpr/ publications/projects/

Leukemia/protocol.html).
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The data set contains 7129 human genes from 72 tissue samples: 47 sam-

ples of acute lymphoblastic leukemia, ALL (38 hit in intermediate precursors

of “lymphocytes” B, “B-cell”, and 9 hit in intermediate precursors of “lym-

phocytes” T , “T-cell”) and 25 samples of acute myeloid leukemia, AML. The

72 tissue samples have been divided in two sets: a training set containing 38

tissue samples, 27 ALL (8 T-cell and 19 B-cell) and 11 AML; a test set of 34

tissue samples, 20 ALL (1 T-cell and 19 B-cell) and 14 AML. In the training

set only bone marrow samples are present, while the test set contains also

peripheral blood samples.

Each sample has an associated gene expression level value and a corre-

sponding “absolute call” (Present [P], Absent [A], Marginal [M]). The abso-

lute calls are generated by the scanning software and give a categorical mea-

sure of the quality of expression values. In other words, the retro-transcribed

gene can be actually Present/ Absent/ Marginal. However, it has been noted

that Affymetrix software may not be sensitive to low gene expression values,

and it may assess an ”Absent call” even if the gene transcription has correctly

occurred. In analyses of this data set, Golub et al. (1999) and McLachlan

et al. (2002) ignored the absolute call information, and based their analy-

sis only on gene expression levels. Aris and Recce (2002) have focused on

genes that are selectively expressed rather than on differentially expressed

genes. As a preprocessing step, it is necessary to adopt some transformation

in order to reduce chip effects, background intensity, variations from RNA

extraction, labelling, dye efficiency and other variability sources related to

experiment. Several normalization methods have been proposed (see e.g. Al-

izadeh et al., 2000; Dopazo et al., 2001; Yeung et al., 2001a; Yeung et al.,

2001b; Bolstard et al., 2003), but no “standard” method exists. We have

applied the pre-processing scheme followed by McLachlan et al. (2002), Du-
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doit et al. (2002) and recommended by Pablo Tamayo, one of the authors of

Golub et al. (1999). We used this scheme to allow for direct comparability

with previous analyses on the same data set. The steps were:

1. Restrict gene expression values to the range (100, 16000). That is, gene

expression levels above 16000 will be cut to 16000, since fluorescence

saturation is present and corresponding values above this level cannot

be reliably measured. Furthermore, gene expression levels below 100

will be set to 100.

2. Exclusion of genes with (max/min) ≤ 5 or (max−min) ≤ 500, where

max and min refer to the maximum and minimum intensity for a par-

ticular gene across mRNA samples, respectively; this exclusion much

of genes with reduced variability across samples.

3. Use base 10 logarithmic transformation.

4. Standardization of each column to have zero mean and unit variance

followed by standardization of each row to have zero mean and unit

variance. This was done to remove systematic sources of variation, as

discussed in Dudoit and Fridlyand (2003).

7.5 Results

In the analysis of the Golub et al. (1999) data set, we do not consider the

information provided by the absolute call and only analyzed the training set

formed by 38 tissue samples and 3051 genes which have been selected after

the pre-processing step previously described. We denote the gene expression

levels by y1,y2, ...,yn, where yi is a 38-dimensional vector representing the
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expression level of the i-th gene on the 38 samples. Thus, we have J = 38

and n = 3051.

The goal associated is to classify malignancies into known classes (dis-

criminant analysis) identifying homogeneously (over samples) expressed gene

clusters.

7.5.1 Double K-means

We have fitted the double K-means model for different combinations number

of clusters number for units (genes) and variables (tissue samples). For each

combination, we run the algorithm2rid several times and choose the best

solution by using the BIC and AIC criteria. Table 7.3 shows the obtained

results. As it can be noticed, the best solution corresponds to 6 blocks

defined by 3 genes clusters (with cardinality 946-1265-1254) and 2 tissue

samples clusters (with cardinality 28-10) (see Table 7.3). The blocks are

displayed in Figure 7.12. The block means close to zero could still have a

significant biological meaning since the gene expression levels are absolute

and not relative to some reference slide. As it can be seen from Figure

7.12, gene clusters are more clearly than those obtained in the previous data

set; this can be probably due to the different technique adopted in the data

acquisition process, where error sources causing extra design variation are

well accounted for. As underlined before we are not able to establish which

of the gene clusters is more informative with respect to tissue partition;

however, the gene cluster formed by the 496 up-regulated genes seems to be

the best candidate for 2 reasons:

1) usually the number of differentially expressed genes is small;

2) the corresponding block means formed are quite far away.

The partition of 28-10 tissue samples corresponds to the known classifi-
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K Q BIC AIC

2 2 270184 256978

3 2 268538 232104

4 2 269153 240587

2 3 290432 260391

Table 7.3: Double K-means results for Golub et al. (1999) data

cation in 2 group of ALL and AML tissue samples with a misclassification:

AML sample n.66. However, this AML sample has been incorrectly classified

also into other analyses (see e.g. Golub et al., 1999; Dudoit et al., 2002;

Martella, 2006), so we can conclude that it is an outlying sample.

Figure 7.12: Best double K-means solution: K=3, Q=2
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7.5.2 Double hierarchical mixture model

We have fitted the double H-M model for different combinations number

of clusters for genes and tissues. We followed the same procedure detailed

before using BIC retained the best solution (see Table 7.4) and obtained that

displayed in Figure 7.13. Two 2nd level clusters with two subclusters each.

The columns (tissue samples) are not partitioned in the former 2nd level

cluster while a partition in three clusters for the latter 2nd level cluster is

determined.

K Tk Qk BIC AIC

2 T1 = 2 T2 = 2 Q1 = 2 Q2 = 1 199820 180538

2 T1 = 2 T2 = 2 Q1 = 3 Q2 = 1 199812 180529

2 T1 = 3 T2 = 3 Q1 = 2 Q2 = 1 221634 201432

Table 7.4: Double H-M model results for Golub et al. (1999) data

Through this model, we obtain a partition in 11-17-10 tissue samples cor-

responding to the right one. In particular, thanks to the hierarchical struc-

ture, we are also able to discriminate between B-cell and T-cell tissue samples

(11-17), a hard task to deal with in one level double clustering models.

Figure 7.14 displays the obtained gene clusters. A related biological ques-

tion would be to assess which of the 2nd level genes determine the partition:

probably the 1103 genes corresponding to the 2nd level cluster are not all

differentially expressed over tissue samples.
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Figure 7.13: Best double H-M model solution: K = 2, T1 = T2 = 2, Q1 = 3,

Q2 = 1

Figure 7.14: The significant blocks of best double H-M model solution: K = 2,

T1 = T2 = 2, Q1 = 3, Q2 = 1
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7.5.3 Conclusions

We discussed proposed methods in a context of “semi”-discriminant analysis;

in fact, we have information about the tissue sample memberships and no in-

formation about gene clusters. We showed that our proposals have improved

the standard results in term of classification of the 38 tissue samples (see i.e.

Golub et al. 1999; Dudoit et al., 2002; McLachlan et al. 2002). In fact, we

do not only obtain a partition of tissue samples in 2 known groups (ALL

and AML) but, also by using the double H-M model, we recover the further

partition of ALL tissue samples into T-cell and B-cell. However, which of

the genes, among the 1103 selected by the latter model, contribute to tissue

partition is still under study.
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Chapter 8

Discussion and future work

The great amount of data, nowadays available, produces very often relevant

problems for their analysis and interpretation. The traditional clustering

techniques (non-supervised classification), that are often relevant in the data

mining process, are not frequently suitable to the new application contexts,

as for instance, text web mining, microarray and/or customer satisfaction.

The dissertation focuses on the methodological development of data analy-

sis techniques coming from these new application contexts, that are denoted

as “high-multidimensional data”. Two main approaches to synthesize high-

dimensional data have been discussed. Asymmetric (factorial reduction and

clustering) and Symmetric (simultaneous clustering) approaches. Their use

depends on the nature of analyzed data and the researcher’s task. Both ap-

proaches can be viewed under a not probabilistic or probabilistic framework.

The latter has been developed to try solving important practical questions

that arise in conventional clustering methods, such as the choice of the num-

ber of clusters or inference model parameters.

A critical review of standard K-means and model-based clustering tech-

niques is provided. Then, we have discussed and compared models allowing
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for factorial reduction within a standard finite mixture model (see Ghahra-

mani and Hinton, 1996; Rocci and Vichi, 2002).

Wide space has been devoted to describe double clustering methods; that

is, approaches to clustering both units and variables. Many real fields could

be mentioned where double clustering is meaningful and informative. For

example, text/web mining, microarray data analysis, marketing and prefer-

ence data analyses. We have focused on microarray analysis, where a major

problem consists in clustering patients and tissues (in general, experimental

conditions) which show similar behaviour with respect to genes expressions.

In fact, many activation patterns are common to groups of genes only under

specific experimental conditions. Therefore, the double clustering of rows

and columns allows to achieve the further goal of detecting groups of genes

with equivalent functions characterizing a specific subset of experimental

conditions.

A schematic explanation of key principles underlying double clustering

methods previously introduced in the literature has been given.

The rest of the dissertation deals with our proposal of model-based dou-

ble clustering methods, whose effectiveness is highlighted by experimental

comparisons on both simulated and gene expression data sets (discussed in

Part II).

We extended the double K-means, introduced by Vichi (2000), to the

probabilistic framework to reach less arbitrary criterion for selecting the

number of clusters. An related issue is to extend this model to allow for

different variables partitions in each unit cluster. Rocci and Vichi (2004)

have generalized the double K-means to this purpose using a least squares

approach.

Moreover, we proposed to adapt the multilevel latent class model of Ver-
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munt (2003) to two-way continuous data. Observations are clustered into a

particular (1st level) latent component within a certain (2nd level) cluster. In

order to cluster variables we introduce a binary and row stochastic matrix of

variable cluster membership (as in double K-means; Vichi, 2000). We have

discussed a potential reparameterization of the (1st level) component-specific

mean vector extending the work of Rocci and Vichi (2002). Thanks to the

hierarchical structure, we learn the ground-truth data clusters by distinguish-

ing the number of components (1st level components) from the number of

clusters (2nd level components), which is often a problem in model-based

clustering. We have discussed the identifiability for this model under specific

constraints; the presented approach could be extended to more levels.

An interesting future research is in extending the work of Ghahramani

and Hinton (1996) to allow for simultaneous clustering of units and variables;

this can be done by using K factor models with mixtures of t distributions

trying to make the model less sensitive to outliers (McLachlan et al., 2006).

Another encouraging research direction is on investigating how both mod-

els could be extended to categorical data and to define specific criteria to eval-

uate the discriminant power of unit clusters with respect to variable clusters.
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Un grazie di cuore è per Marco Alfò per avermi trasmesso la passione

per la ricerca, per i suoi utili suggerimenti, per essere stato un riferimento

fondamentale nel corso di questi anni e aver contribuito significativamente

alla rivisitazione di questo lavoro, ma soprattutto per aver mostrato fiducia

in me spronandomi sempre ad andare avanti.

Ringrazio Luciano Nieddu e Donatella Vicari per la loro disponibilità, per

i frequenti confronti e per i numerosi suggerimenti.

Desidero inoltre ringraziare il Prof. R. Coppi per l’ottima attività di co-

ordinamento del ciclo di dottorato ed, in generale, tutte le persone all’interno
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del Dipartimento con cui ho avuto il piacere di interagire in questi anni.

Ringrazio tutti i colleghi di dottorato e gli amici di sempre...evito di fare

una lista per paura di dimenticarne qualcuno...grazie per essermi stati vicini

in questo cammino curando le ferite e brindando ai festeggiamenti!

Con un pò di malinconia mista a timore e profonda curiosità verso il

domani...concludo questo lavoro con la frase che segue...

“Ogni processo di conoscenza è come un mosaico e ciascun gradino

successivo lascia sempre dietro di sè qualcosa di irrisolto. Cos̀ı è anche la

vita. È infantile pretendere di attraversarla protetti in ogni momento da

certezze immutabili.”
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