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ABSTRACT

The increasing number of cases and the development of new variants of the Covid-19 virus globally
including the territory of Indonesia, especially in the province of South Sulawesi are increasingly wor-
rying and need to be prevented. Therefore, this study aims to develop a SEIR model on the spread of
Covid-19 with vaccination control, optimal control analysis, stability analysis and numerical simulation
of the SEIR model on the spread of Covid-19 in South Sulawesi. This study uses the SEIR epidemic
model to predict the spread of Covid-19 in South Sulawesi Province with parameters such as birth rate,
cure rate, mortality rate, interaction rate and vaccination. The SEIR model was chosen because it is
one of the basic methods in the epidemiological model. The method used to build the model is a time
delay model by considering the vaccination factor as a model parameter, model analysis using the next
generation matrix method to determine the basic reproduction number and stability of the Covid-19
distribution model in South Sulawesi. Numerical model simulation using secondary data on the num-
ber of Covid-19 cases in South Sulawesi starting in 2021 which was obtained from the South Sulawesi
Provincial Health Office. The results obtained are model analysis provides evidence of the existence of
optimal control in the model. Based on the results obtained, it can also be seen that vaccination greatly
influences the spread of Covid-19 in South Sulawesi, so that awareness is needed for the people of
South Sulawesi to follow the government’s recommendation to vaccinate to prevent or reduce the rate
of transmission of Covid-19 in South Sulawesi.
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A. INTRODUCTION
The Covid-19 has occupied the world for almost two years since the World Health Organization (WHO) declared it a global

pandemic in March 2020. This virus is a new and infectious disease caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome
Coronavirus 2) (WHO, 2021). According to the Center for Disease Control and Prevention (CDC), coronavirus spreads through
direct and indirect contact, as well as through droplets, namely coughs and sneezes from nearby patients (Rundle et al., 2020). Acute
respiratory illnesses such as cough, shortness of breath and fever are common symptoms and signs of Covid-19 infection, where
severe symptoms often lead to pneumonia and even death (Kementerian Kesehatan RI, 2018).

The number of infection cases with the corona virus continues to increase in various parts of the world, both in the number of
people infected, deaths, and recoveries. Each country also has its own policies to curb the spread of the virus in its territory. The
following are the latest developments in several countries regarding the new type of coronavirus (Annas et al., 2020). According to
data from Johns Hopkins University, as of March 23, 2020, the total number of Covid-19 cases worldwide reached 331,273, with
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14,450 deaths, and 97,847 patients declared cured. The highest number of cases is recorded in China, namely 81,397, followed by
Italy with 59,138, and the US with 33,073. In terms of death rates, the highest number is in Italy, with 5,476. This number exceeds the
death toll that occurred in China, which was 3,265 while the highest cure rate is in China, with 72,362 patients. Good developments
in the number of infections, deaths and recoveries for certain guidelines continue to be reported from various countries.

The increasing number and the development of new variants of this virus worldwide, including Indonesian territory, have turned
the hospital health service facilities where patients are treated into a high-risk place for the spread of Covid-19, both for health
workers, visitors, and patients. Health workers who are the front-line service provider to these patients are at high risk of contracting
the virus from mild symptoms to death (Wahyuni and Kurniawidjaja, 2022). In an effort to prevent the spread of Covid-19, the
Ministry of Health issued a Circular, Numbered HK.02.01/MENKES/199/2020, which is an appeal that all sectors of society must
heed. In addition to government advisors, it is also necessary to pay attention to factors affecting COVID-19 compliance, including
attitudes, motivation, knowledge, age, education, social environment, and available facility (Tanto and Handayani, 2022).

Mathematical modeling of SIR, SIRS, SEIR, and SEIRS for transmission of diseases such as dengue fever, tuberculosis, diabetes,
and HIV-AIDS was performed by (Rusliza and Budin, 2012), (Annas et al., 2021), (Apenteng and Ismail, 2017), (Diekmann et al.,
2010), (Dontwi et al., 2014), (Egonmwan and Okuonghae, 2019), (Rangkuti et al., 2014), (Side et al., 2017), (Side et al., 2021),
(Spencer et al., 2020), (Waziri et al., 2012), (Demirci et al., 2011), while that of COVID-19 was carried out by (Annas et al., 2020)
(Side, 2015), namely modeling SEIR mathematics for the Indonesian region and SEIRV mathematical modeling in the Wuhan area,
China by considering environmental factors. Furthermore, research on optimal control mathematical modeling has been carried out
by (Syafruddin and Noorani, 2013) using a strategy of vaccinating susceptible and treating infected individuals. These studies have
not included optimal control and time delay in analyzing the mathematical model used. Therefore, in this study, an analysis of the
SEIR model of the spread of Covid-19 was carried out by adding an analysis of optimal control and delay time.

B. RESEARCH METHOD
Optimal Control Analysis SEIR mathematical modeling on the spread of Covid-19 with a time delay is employed in this study.

The method used to build the model is the SEIR (Diekmann et al., 2010) which is carried out through the addition of optimal control
in the analysis section in order to determine the basic reproduction number of the model by using the generation matrix method to
find out the state of transmission of Covid-19 in South Sulawesi (Side et al., 2021). The data used in this study is in the form of data
relating to the spread of Covid-19 in South Sulawesi starting in 2021 which was obtained from the South Sulawesi Provincial Health
Office. Also, numerical simulation model and Maple software is used to predict the number of Covid-19 cases in South Sulawesi as
a step to prevent the increase in the virus growth.

C. RESULTS AND DISCUSSION
1. SEIR Mathematical Model Formulation on the Spread of Covid-19 in South Sulawesi

The SEIR model of the spread of Covid-19 in South Sulawesi is divided into four subpopulations, namely Suspected,
Exposed, Infected, and Recovered, who are susceptible to contracting the virus due to the interactions with previously infected
individuals. Changes that occur in each human subpopulation in Covid-19 transmission cases by using the SEIR model with a
time delay is interpreted as shown in Figure 1 below:

Figure 1. Schematic of the SEIR Model for the spread of Covid-19

The variables and parameters used in the SEIR mathematical model of the spread of Covid-19 with a time delay is seen in
Table 1
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Table 1. The variables and parameters used in the SEIR mathematical model
Parameter Description

N Total population
α The rate of movement from a human population susceptible to Covid-19 to a population that is symptomatic (exposed) but has not

transmitted Covid-19due to interactions with infected populations
β The rate of movement from a human population susceptible to Covid-19 to a population infected with Covid-19
θ The rate of change from the human population infected with Covid-19 to the population recovering from Covid-19
S Susceptible population infected with Covid-19
E Symptomatic (exposed) population but have not transmitted Covid-19
I Population infected with Covid-19
R The population who have recovered from Covid-19
U Control variables regarding the effectiveness of administering the Covid-19 vaccine
µ The natural birth and death rates are assumed to be the same
t Time
τ Time delay

Based on the SEIR epidemic model SCHEME for the spread of Covid-19, the rate of change in the number of individuals
in each subpopulation is interpreted as seen in equation (1) - (4).

dS

dt
= µN − (αI(1− v) + µ)S(t− τ)− vS(t− τ) (1)

dE

dt
= αIS(1− v)− (β + µ)E (2)

dI

dt
= βE − (θ + µ)I (3)

dR

dt
= θI + vS(t− τ)− µR (4)

2. Analysis of the SEIR Mathematical Model for the Spread of Covid-19 in South Sulawesi The SEIR Model Equilib-
rium Point

To determine the disease-free and endemic equilibrium point, each equation in (1) - (4), is equated to zero, namely
dS

dt
= 0,

dE

dt
= 0,

dI

dt
= 0, dan

dR

dt
= 0, hence equations (5) - (8) are established:

0 = µN − (αI(1− v) + µ)S(t− τ)− vS(t− τ) (5)

0 = αIS(1− v)− (β − µ)E (6)

0 = βE − (θ + µ)I (7)

0 = θI + vS(t− τ)− µR (8)

By using a simple substitution method, the values of S, E, I , and R is determined for the disease-free and the SEIR model
endemic equilibrium point.

The disease-free equilibrium point is a condition where there is no spread of Covid-19 hence by performing a little algebraic
manipulation in equations (5) - (8), the following equations (9) - (12) are obtained:

S(t− τ) = µN

αI(1− v) + µ+ v
(9)

E =
αIS(1− v)
β + µ

(10)

I =
βE

θ + µ
(11)

R =
θI + vS

µ
(12)
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By substituting each equation in equation (9) - (12), the first value of I = 0 is determined. Subsequently, the disease-free
equilibrium point of the SEIR model of the spread of Covid-19 in South Sulawesi is established as follows:

(S,E, I,R) =

(
µN

u+ v
, 0, 0,

vµN

µ2 + µv

)
(13)

In the same way, by substituting each equation in (9) - (12), the endemic equilibrium point value of the SEIR model is
obtained as follows:

(S∗, E∗, I∗, R∗) =



(θ + µ)(β + µ)

αβ(1− v)
α(1− v)S∗I∗

β + µ
αβµN(1− v)− (v + µ)(θ + µ)(β + µ)

α(1− v)(θ + µ)(β + µ)
θI∗ + vS∗

µ


(14)

3. Analysis of the SEIR Mathematical Model for the Spread of Covid-19 in South Sulawesi The SEIR Model Equilib-
rium Point
The basic reproduction number is found by using the next generation matrix method, formed by considering the positive and

negative parts of the transmission rate of the infected population, namely the exposed and infected. This formula for determining
the basic reproduction number is seen in equation (15)

K = F ′ · (V ′)−1 (15)

Based on the system of equations (2) and (3), then:

dE

dt
= αIS(1− v)− (β + µ)E

dI

dt
= βE − (θ + µ)I

Therefore, it is obtained as

F =

[
αIS(1− v)

0

]

F ′ =

[
0 αIS(1− v)
0 0

]
(16)

V =

[
(β + µ)E

(θ + µ)I − βE

]

V ′ =

[
β + µ 0

−β θ + µ

]
(17)

Then the inverse of the matrix equation (17) is established as

(V ′)−1 =


1

β + µ
0

β

(β + µ)(θ + µ)

1

θ + µ

 (18)

Afterward, the eigenvalues of the K matrix is determined based on equation (15)
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K =

[
0 αIS(1− v)
0 0

]
1

β + µ
0

β

(β + µ)(θ + µ)

1

θ + µ


K =

 αβS(1− v)
(β + µ)(θ + µ)

αS(1− v)
θ + µ

0 0

 (19)

After obtaining the K matrix in equation (19), the eigenvalues is gotten using the formula det(λI −K) = 0, where I is the
identity matrix. The basic reproduction number is determined based on the largest (λ) eigenvalues.

|λI −K| =

∣∣∣∣∣∣
λ[1 0

0 1

]
−

 αβS(1− v)
(β + µ)(θ + µ)

αS(1− v)
θ + µ

0 0

∣∣∣∣∣∣ = 0 (20)

Therefore the eigenvalues are established from equation (20), as follows

λ1 =
αβS(1− v)

(β + µ)(θ + µ)

λ2 = 0

Also, the largest eigenvalue is obtained as
αβS(1− v)

(β + µ)(θ + µ)
The basic reproduction number is determined after substituting the disease-free equilibrium point value as seen in equation (21)

R0 =
αβµN(1− v)

(β + µ)(θ + µ)(µ+ v)
(21)

4. Equilibrium Point Stability Analysis
Based on equation (1) - (4), the following Jacobian matrix (J) is formed

J =


−(αI(1− v) + µ+ v) 0 −αS(1− v) 0

αI(1− v) −(β + µ) αS(1− v) 0

0 β −(θ + µ) 0

v 0 θ −µ

 (22)

Theorem 1 The disease-free equilibrium point for the mathematical model of the Covid-19 spread is said to be stable if R0 ≤ 1 · 1
and unstable if R0 > 1.

Proof.
By substituting the disease-free equilibrium point into the J matrix of equation (22), a new matrix is acquired as seen in equation
(23)

J =


−(µ+ v) 0 −αS(1− v) 0

0 −(β + µ) αS(1− v) 0

0 β −(θ + µ) 0

v 0 θ −µ

 (23)

Then the eigenvalues is calculated by using equation matrix (23) with the following description:
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|λI − J | = 0

|λI − J | =

∣∣∣∣∣∣∣∣∣

λ

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−

−(µ+ v) 0 −αS(1− v) 0

0 −(β + µ) αS(1− v) 0

0 β −(θ + µ) 0

v 0 θ −µ



∣∣∣∣∣∣∣∣∣ = 0

|λI − J | =

∣∣∣∣∣∣∣∣∣


λ+ (µ+ v) 0 −αS(1− v) 0

0 λ+ (β + µ) αS(1− v) 0

0 β λ+ (θ + µ) 0

v 0 θ λ+ µ


∣∣∣∣∣∣∣∣∣ = 0 (24)

By substituting S in equation (24), the following is obtained

(λ+ µ)(λ+ µ+ u · (t− τ)2)[λ2 + ((β + µ)(θ + µ))λ+ (β + µ)(θ + µ)−R0] = 0 (25)

According to Descartes’ sign rule, equation (24) will have all negative roots if all the signs of each term are positive. Therefore,
it is concluded that the disease-free equilibrium point is said to be stable if R0 ≤ 1 and unstable if R0 > 1. �

Theorem 2 The endemic equilibrium point for the mathematical model of the Covid-19 spread is asymptotically stable.

Proof.
The endemic equilibrium point applies to I 6= 0, and based on the J matrix in equation (22), a new matrix is acquired as seen in
equation (26)

J =


−(αI∗(1− v) + µ+ v) 0 −αS∗(1− v) 0

αI∗(1− v) −(β + µ) αS∗(1− v) 0

0 β −(θ + µ) 0

v 0 θ −µ

 (26)

Afterward, the eigenvalues is acquired with the following description:

|λI − J | = 0

|λI − J | =

∣∣∣∣∣∣∣∣∣

λ

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−

−(αI∗(1− v) + µ+ v) 0 −αS∗(1− v) 0

αI∗(1− v) −(β + µ) αS∗(1− v) 0

0 β −(θ + µ) 0

v 0 θ −µ



∣∣∣∣∣∣∣∣∣ = 0

|λI − J | =

∣∣∣∣∣∣∣∣∣


λ+ (αI∗(1− v) + µ+ v) 0 −αS∗(1− v) 0

αI∗(1− v) λ+ (β + µ) αS∗(1− v) 0

0 β λ+ (θ + µ) 0

v 0 θ λ+ µ


∣∣∣∣∣∣∣∣∣ = 0

Thus, equation (27) is obtained as

0 = (λ+ µ)(λ+ (αI(1− v) + µ+ v))[(λ2 + (β + µ)λ+ (θ + µ) + (β + µ)(θ + µ))− αβS∗(1− v) + α2βSI(1− v)2] (27)

By substituting the endemic value of the equilibrium point, the following is attained:

0 = (λ+ µ)

(
λ+

αβµN

(β + µ)(θ + µ)

)
(1− v) + µ+ v(λ2 + (θ+ µ) + (β + µ)λ) + (αβµN − (µ+ v)(θ+ µ)(β + µ))(1− v) (28)

According to Descartes’ sign rule, if all the roots of the characteristic equation (λ) are positive, it can be concluded that the
equilibrium point is Asymptotically Stable with the condition:

αβµN > µ+ v and
αβµN

µ+ v
> 1
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5. Optimal Control Existence and Characteristics
The optimal control problem in this discussion relates to the steps of Covid-19 spread in South Sulawesi Province with the

aim of reducing the number of individuals infected and increasing the number of individuals who recover. This vaccination is
associated with the control variable u and added to the disease spread model with u(t) ∈ U which is the percentage of individuals
who have been vaccinated per unit time. Afterward, U is defined in terms of admissible control, which is defined as follows:

U = {u(t) : 0 ≤ u(t) ≤ uendmax} (29)

The analysis used to prove the existence and characterization of vaccination control variables in cases of Covid-19 spread
in South Sulawesi Province is the Pontryagin Principle with written evidence from step 1 to 5.

Step 1: Define the Objective Function (J)
Purpose function (J) = Minimize susceptible (S), infected (I) population and maximize cured (R) population

J(u) =

∫ τ

0

S(t) + I(t) +
1

2
Cu2(t) dt (30)

with constraints/states in equation (1) -(4).
C ≥ 0 is the weight coefficient to minimize the number of individuals susceptible and infected with Covid-19. The value of C is
a counterweight to the control carried out, thus u∗(t) is obtained,

J(u∗) = min{J(u);u ∈ U} (31)

with U = {u(t) : 0 ≤ u(t) ≤ 1,∀t ∈ [0, T ]}

Step 2: Forming the Hamiltonian Function
Hamiltonian function expressed in equation (32) is based on the objective function in (30) and constraints on equations (1) - (4).

H = S(t) + I(t) +
1

2
Cu2(t) +

4∑
i=1

λi(t) · gi(x(t), u(t), t)

H = S(t) + I(t) +
1

2
Cu2(t) + λ1(t)(µN(t)− (αI(t)(1− u) + µ)S(t)− µ(t− τ) · S(t− τ))

+ λ2(t)(αI(t)S(t)(1− u)− (β + µ)E(t)) + λ3(t)(βE(t)− (θ + µ)I(t))

+ λ4(t)(θI(t) + µ(t− τ) · S(t− τ)− µR(t))

(32)

Step 3: Finding the State and Coste Equations
According to Pontryagin’s principle, the Hamiltonian function reaches an optimal solution if the state and costate equations as
well as the stationary conditions are fulfilled.

1. State Equation
This is attained by deriving the Hamiltonian function for each of its Lagrange multipliers (λ)

ẋ1 =
∂H

∂λ1
= µN(t)− (αI(t)(1− v) + µ)S(t)− v · S(t− τ) (33)

ẋ2 =
∂H

∂λ2
= αI(t)S(t)(1− v)− (β + µ)E(t) (34)

ẋ3 =
∂H

∂λ3
= βE(t)− (θ + µ)I(t) (35)

ẋ4 =
∂H

∂λ4
= θI(t) + vS(s− τ)− µR(t) (36)

2. Costate Equation
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This is obtained by lowering the Hamiltonian function for each state variable/constraint (SEIR)

ẋ1 = −∂H
∂S

= −1− λ1(t)[−αI(t)(1− u)− µ− v]− λ2αI(t)(1− v)− λ4v (37)

ẋ2 = −∂H
∂E

= λ2(β + µ)− λ3β (38)

ẋ3 = −∂H
∂I

= −1 + λ1(t)α(1− v)S(t)− λ2S(t)(1− v) + λ3(θ + µ) + λ4θ (39)

ẋ4 = −∂H
∂R

= λ4(t)µ (40)

With boundary conditions λ1(t) = λ2(t) = λ3(t) = λ4(t) = 0

Step 4: Determining the stationary conditions to get the optimal control form (u∗)

Stationary conditions are acquired by lowering the Hamiltonian function on the control variable u(t).

∂H

∂u
= 0

Cu(t) + λ1(t)(αI(t)S(t)− S(t− τ)2)− λ2(t)αI(t)S(t) + λ4(t)S(t− τ)2 = 0

~u(t) =
λ1(t)(αI(t)S(t)− S(t− τ)2)− λ2(t)αI(t)S(t) + λ4(t)S(t− τ)2

C

~u(t) =
λ1αIS(t)− λ1S(t− τ)2 − λ2αIS(t) + λ4S(t− τ)2

C
(41)

Because 0 ≤ u(t) ≤ 1 then u∗(t) is attained as

u∗(t) =


0 , ~u ≤ 0

~u , 0 < ~u < 1

1 , ~u ≥ 1

Thus, the existence of optimal control is proven with the form u∗(t) in order to optimize the objective function, as follows:

u∗(t) = min

{
max

{
0,
λ1αIS(t)− λ1S(t− τ)2 − λ2αIS(t) + λ4S(t− τ)2

C

}}
(42)

Step 5: Determining the Optimal State and Coste Equations
The optimal state and costate equations are established by substituting u∗(t) in equation (42) to equation (33) -(40).

1. Optimal State Equation x∗(t)

x∗1(t) =
∂H

∂λ1
∂H

∂λ1
= µN(t)−

(
αI(t)

(
1−min

{
max

{
0,
λ1αIS(t)− λ1S(t− τ)2 − λ2αIS(t) + λ4S(t− τ)2

C

}
, 1

})
+ µ

)
(43)

x∗2(t) =
∂H

∂λ2
∂H

∂λ2
= αI(t)S(t)

(
1−min

{
max

{
0,
λ1αIS(t)− λ1S(t− τ)2 − λ2αIS(t) + λ4S(t− τ)2

C

}
, 1

})
(β + µ)E(t) (44)

x∗3(t) =
∂H

∂λ3
= βE(t)− (θ + µ)I(t) (45)

x∗4(t) =
∂H

∂λ4
∂H

∂λ4
= θI(t) + min

{
max

{
0,
λ1αIS(t)− λ1S(t− τ)2 − λ2αIS(t) + λ4S(t− τ)2

C

}
, 1

}
(t− τ1) · S(t− τ2)− µR(t)

(46)

Vol. 6, No. 1, Oktober 2022, Hal. 11–24
DOI: https://doi.org/10.30812/varian.v6i1.1882

https://doi.org/10.30812/varian.v6i1.1882


19 | SYAFRUDDIN SIDE JURNAL VARIAN | e-ISSN: 2581-2017

2. Costate Equation

λ∗1(t) = −
∂H

∂S

= −1− λ1(t)

−αI(t)
(
1−min

{
max

{
0,
λ1αIS(t)− λ1S(t− τ)2 − λ2αIS(t) + λ4S(t− τ)2

C

}
, 1

})
−µ−min

{
max

{
0,
λ1αIS(t)− λ1S(t− τ)2 − λ2αIS(t) + λ4S(t− τ)2

C

}
, 1

}
(t− τ)2


− λ2αI(t)

(
1−min

{
max

{
0,
λ1αIS(t)− λ1S(t− τ)2 − λ2αIS(t) + λ4S(t− τ)2

C

}
, 1

})
− λ4 min

{
max

{
0,
λ1αIS(t)− λ1S(t− τ)2 − λ2αIS(t) + λ4S(t− τ)2

C

}
, 1

}
(t− τ)2 (47)

λ∗2(t) = −
∂H

∂E
= λ2(β + µ)− λ3β (48)

λ∗3(t) = −
∂H

∂I

= −1 + λ1(t)α

(
1−min

{
max

{
0,
λ1αIS(t)− λ1S(t− τ)2 − λ2αIS(t) + λ4S(t− τ)2

C

}
, 1

})
S(t)

− λ2S(t)
(
1−min

{
max

{
0,
λ1αIS(t)− λ1S(t− τ)2 − λ2αIS(t) + λ4S(t− τ)2

C

}
, 1

})
+ λ3(θ + µ)− λ4θ

(49)

λ∗4(t) = −
∂H

∂R
= λ4(t)µ (50)

With boundary conditions λ1(t) = λ2(t) = λ3(t) = λ4(t) = 0

6. Simulation of the SEIR Mathematical Model for the Spread of Covid-19 in South Sulawesi

The SEIR Mathematical model simulation is carried out by using Maple software. Initial values S(0), E(0), I(0), R(0) and
parameter values of the model used are presented in Table 2 and 3.

Table 2. Initial Value of South Sulawesi Covid-19 SEIR Model
Variable Value Source

S 0.84618 (Ministry of Health Indonesia, 2018)
E 0.12979 (Ministry of Health Indonesia, 2018)
I 0.01214 (Ministry of Health Indonesia, 2018)
R 0.01189 (Ministry of Health Indonesia, 2018)

Table 3. Parameter values of the South Sulawesi Covid-19 SEIR Model
Variable Value Source

µ 0.00625 (Annas et al., 2020)
α 0.17 (Tanto & Handayani, 2022)
β 0.1005 (Annas et al., 2020)
θ 0.00150 (Ministry of Health Indonesia, 2018)
v 0.1; 0.9 (Ministry of Health Indonesia, 2018)

The equilibrium points of the SEIR model is determined by substituting the values of the uncontrolled parameters of Tables
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1 and 2 in Equation (1) - (4) which is equated to zero. Consequently, the following system of equations (51) - (54) is obtained as

dS

dt
= 0.00625− (0.17I + 0.00625)S (51)

dE

dt
= 0.17SI − 0.10675E (52)

dI

dt
= 0.1005E − 0.00775I (53)

dR

dt
= 0.00150I − 0.00625R (54)

Equations (51) - (54) provide the equilibrium points for the SEIR model of the endemic COVID-19 spread, namely:

(S∗, E∗, I∗, R∗) = (0.05380, 0.00499, 0.06479, 0.87640)

Furthermore, a simulation is carried out by adding a delay time to the SEIR mathematical model of the Covid-19 spread in
South Sulawesi.
Simulation 1 (τ = 3)

(a) (b)

(c)
Figure 2. Simulation result graph τ = 3 (a) without vaccine control (b) 10% vaccine (c) 90% vaccine

Based on simulations performed on 3 cases with a time delay of τ = 3, the basic reproduction number value acquired
include R0 = 20.689 for cases without vaccination control, R0 = 1.0953 for cases where vaccination was carried out on 10% of
individuals in the population, and R0 = 0.0142 for cases of vaccination carried out on 90% of the population.
Simulation 2 (τ = 14)
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(a) (b)

(c)
Figure 3. Simulation result graph τ = 14 (a) without vaccine control (b) 10% vaccine (c) 90% vaccine

From the simulation carried out on 3 cases with a time delay of τ = 14, the basic reproduction rate obtained, include
R0 = 20.8322 for cases without vaccination control, R0 = 1.1028 for cases where vaccination is carried out on 10% of
individuals, and R0 = 0.0143 for cases of vaccination carried out on 90% of the population.

In general, the results of the SEIR mathematical model simulation of the Covid-19 spread in the South Sulawesi region is
seen in Table 4.

Table 4. Simulation Results of the SEIR Model for the Spread of Covid-19
Case τ R0

Without Vaccine Control
3 20.6899
14 20.8322

Vaccine 10%
3 1.0953
14 1.1028

Vaccine 90%
3 0.0142
14 0.0143

Figure 2 and 3 showed that the number of transmissions that occur decreases with the increasing number of people who are
vaccinated both for the time delay value of τ = 3 and τ = 14. Therefore, awareness is needed for the people to participate in
the success of the government program, namely vaccination. This is conducted to control the transmission and further reduce the
death rate.
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D. DISCUSSION
The SIR and SEIR in (Annas et al., 2021) (Waziri et al., 2012) (Demirci et al., 2011) are used to build a Tuberculosis (TB)

transmission model, which analyzes and predicts the number of TB cases in South Sulawesi. The dengue transmission model (DHF)
employed in (Rangkuti et al., 2014) was used to analyze and predict dengue cases number, while that of Covid-19 carried out by
(Annas et al., 2020) is the SEIR model in the territory of Indonesia. This SEIR model does not take into account the delay in
analyzing the Covid-19 spread. Therefore, a model is built in this study to consider the delay time and optimal vaccination control
in the population. The results of the simulation are very helpful to increase the strategic capabilities for controlling the number of
Covid-19 cases because it provide information and forecast the number of cases.

E. CONCLUSION AND SUGGESTION
Based on the results, it can be concluded that the SEIR model with a time delay serve as a reference to see the spread of Covid-19

in South Sulawesi because the analysis provides evidence of the existence of optimal control. It is also seen that vaccination greatly
affects the spread of virus, hence the people should be aware and follow the government’s recommendation to get vaccinated in order
to prevent or reduce the transmission rate of Covid-19.
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