
Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer
Vol. 22, No. 1, November 2022, pp. 129∼138
ISSN: 2476-9843, accredited by Kemenristekdikti, Decree No: 200/M/KPT/2020
DOI: 10.30812/matrik.v22i1.2022 r 129

Automated University Lecture Schedule Generator based on
Evolutionary Algorithm

Yusri Ikhwani1, Khairan Marzuki2, As‘ary Ramadhan3

1,3Universitas Islam Kalimantan Muhammad Arsyad Al Banjari, Banjarmasin, Indonesia
2Bumigora University, Indonesia

Article Info

Article history:

Received July 01, 2022
Revised October 10, 2022
Accepted November 25, 2022

Keywords:

Automated
Evolutionary Algorithm
Generator
Hard Constraints
Lecture Schedule

ABSTRACT

Lecture schedule is an important element in the learning activity. Creating a lecture schedules for
university is a complicated work so in the implementation it have violation of the constraints and
it also takes a lot of time since it is created manually. In this paper evolutionary algorithm (EA)
is used to create an effective and feasible schedules based on the real data input that is obtained
from each department. The objective functions in EA contribute in gaining the fitness function to
solve the constraints problem in the schedule by applying weighting for each hard constraints. The
objective function is gained from the total of infringement in each soft constraints addition by score
weighting. The genetic operator used in EA is stochastic variation Operator. As far as the reproduction
operator is concerned, the tournament selection was used with size 3. Crossover operator is conducted
after selection process with crossover probability equal to 0.05 and mutation rate is 0.1. The size of
population was set to 9 and stopping criteria algorithm was left run for fitness value = 1. The simulation
result shows that EA can create lecture schedules efficiently and feasibly. Moreover, it is also faster
with the execution time of the proposed EA is less than 30 and easier than creating manually.

Copyright c©2022 MATRIK: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer.
This is an open access article under the CC BY-SA license.

Corresponding Author:

Yusri Ikhwani, 082157245971,
Faculty of Information Technology, Study program of Information System,
Universitas Islam Kalimatan Muhammad arsyad al banjari, Banjarmasin, Indonesia,
Email: yusri.uniska@gmail.com.

How to Cite: yusri ikhwani, K. Marzuki, and A. Ramadhan, Automated University Lecture Schedule Generator based on Evolutionary
Algorithm, MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 22, no. 1, pp. 127-136, Nov. 2022.
This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Journal homepage: https://journal.universitasbumigora.ac.id/index.php/matrik

accredited by Kemenristekdikti, Decree No: 200/M/KPT/2020
https://creativecommons.org/licenses/by-sa/4.0/
yusri.uniska@gmail.com.
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://journal.universitasbumigora.ac.id/index.php/matrik

130 r ISSN: 2476-9843

1. INTRODUCTION
Lecture schedule is a time allocation process for a certain activity that is already planned in structured and allocating subject

to constraints, towards the resource that is given to object to be placed in space time. Scientifically, in the literature, lecture schedule
is one of non-deterministic polynomial problems, usually abbreviated as NP-hard problem [1]. One of important components in the
learning activity is lecture schedule. The problem of schedule consists of the determination of room and time, teaching learning
activity between lectures and students in a certain time that is scheduled before, and fulfilling the constraints. This constraints are
divided into two categories, they are hard constraints and soft constraints [2]. When a constraints are fulfilled, developing the lecture
schedule can be done easily and feasibly, it means the schedule that is created has been appropriate to be implemented as lecture
schedules.

The method that is used to resolve the lecture schedule like an ant colony [3–5] it is succeed to be implemented as a solution in
lecture schedule problem which is appropriate with the real condition. Lately, there are a lot of computational intelligence algorithms
and techniques including genetic algorithm [6, 7], evolutionary algorithm [8–10], tabu search [11] have been implemented to show
the effectivity and reliability of timetable problem. Genetic and Heuristic [12, 13] is a good strategy to solve the complexity by
maximizing allocation and minimizing the breaking of constrains as much as possible to determine the best solutions in the scheduling
problem.

Current situation in general, lecture schedule consist of entities rooms, courses, lecturers and time periods, that must be
scheduled and also consist of a set of constraints that are expected to be satisfied. The term time periods refers to each hour of lecture
in 5 working days from monday to friday. The main goal of constructing a lecture schedule is to provide faculty members with a
schedule that has good quality. Such an algorithm can construct a quality lecture schedule in only few minutes and in this case the
quality of the lecture schedule is formally defined. This has to be done in a way to satisfy a set of constraints. This constrains is
focused on the problem of hard constraints. A lecture schedule is called feasible, meaning that it can be used by faculty it was made
for, when all hard constraints are satisfied. Hard constraints that must be satisfied in order to keep the lecture schedule feasible are
the following Seating capacity and the number of students must fit, The room can only be used to one lecture in the same time, A
lecture can only give one lecture at a time, No student can be assigned to more than one course at the same time.

This contribution is focused on problem of constructing a feasible and efficient lecture schedule for faculty of Information
technology at universitas islam kalimatan muhammad arsyad al banjari (UNISKA MAB). Constructing lecture schedule for UNISKA
MAB is a complicated work so in the implementation it have violation of the constraints, such as room and time clashes, the lectures
have different courses in a time, the students have more than one course in a time, the number of students exceed the room capacity,
and creating it also consumes a lot of time since it is created manually. If the problem is not solved, it will affect the academic
activities in faculty. To avoid this problematic situation we propose the use evolutionary algorithm (EA) in order to create automated
lecture schedule. So, by using computers and automated lecture schedule constructing algorithm, lecture schedule can quickly and
easily be created. The objective functions in EA contribute in gaining the fitness function to solve the constraints problem in the
lecture schedule by applying weighting for each specific hard constraints that should be satisfied. So, the algorithm can be used each
time in order to result lecture schedule satisfying specific constraints.

This research is presented and arranged into several parts. The second part discusses about the structure and operation of EA.
The third part explains about the result of methodology investigation. The last part is about the conclusion and suggestion of this
reseaech.

2. RESEARCH METHOD
In order to resolve the problem of course schedule in the faculty of Information technology at UNISKA MAB, the construction

of automatic timetable has been implemented. The motivations that make us design and implement EA in this problem are described
following:

1. EA have been already widely used for solving the lecture schedule problem with very satisfactory result [14, 9].
2. Distribution on lecturers, that is how evently each lecturers hours are distributed among the days of proposed lecture schedule.
3. The course hours of each lecturers in a day should be continues-no idle hours are allowed to exist between courses hours.
4. The faculty does not follow any automated approach when construction lecture schedules. Thus, it was a fresh ground to

algorithm.
The data used in this paper are available through https://fti.uniska-bjm.ac.id/jadwal-perkuliahan-semester-ganjil-t-a-2020-

2021. The structure and how EA is operated discuss in the following subsections.

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer,
Vol. 22, No. 1, November 2022: 129 – 138

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer r 131

2.1. Chromosome encoding
The use of chromosome encoding is one of the significant factors to make EA achieve the convergence and reach optimal

solution quickly. The term of encoding is used to explain how to present lecture schedule whether or not it is feasible. The encoding
designed for this algorithm is quite different from others already proposed in the literature [10, 15]. Each chromosome is marked to
all entities needed such as lectures id (NIDN) and semester that can easily fit with different lecture schedule of faculty problem (see
Table 1). A list of all the NIDN is presented in the first column. The first row of the chromosome represents all semester. In Table
2, the intersection of NIDN and semester shows the potential combination where the classes can be assigned. Intersections are filled
with NewClass ID. NewClass ID is the attribute composite that is stated three aspects at once: subject ID, room ID, time period ID
(date, time). As an example, lecture ID 23H2, in the cell intersection between NIDN 1129039102 and semester 1 shows a subject
with ID 2, ID room 3, and ID time periods H2.

Table 1. Representation of Chromosome

NIDN/Semester 1 2 3 4 6 7 8 9
1129039101
1129039102 23H2
1129039103
1129039104
1129039105

2.2. Procedure initalization
Procedure initialization is an important issue in every EA because it must make lots of variety of population possibility ran-

domly. It is worth to do because the individuals that establish early generation spread to all search space. It gives opportunity to
algorithm to perform a search in all space effectively for the possibility solution and to not being trapped in local optima before
the time. Initialization in EA is a part of a process of encoding information input into chromosome representation. Initialization
procedure consists of the following steps:
For each chromosome do

For each lecture do
For semester do
1. Choose lecture ID randomly.
2. If the lecture ID chosen has not been set the semester, so it is set to lectures of the chosen semester. If it is on the
other way around, back to the first step.
end

end
end

2.3. Fitness function
Fitness function is the calculation of each chromosome that is generated to know the chosen chromosome for the next gener-

ation. This function is the specific problem and there is no standard in its calculation. To get feasible solution of lecture schedule
problem. Fitness function is a weighted sum calculated based on the violation of hard constraints. When calculating fitness value,
we give emphasis on weighting to each hard constraints to calculate objective function towards the problem of this paper. To get
objective function, the total of infringement in each hard constraints is adding by weighting value. Table 2 shows the hard constraints
that we really consider and its weighting.

Table 2. Weighting of hard constraints

Hard constraints Wheight
The first, room capacity and the number of students must fit (set as 0) 1
Second, the room can only be used to one lecture in the same time (set as 0) 1
Third, lectures only give same course at different time (set as 0) 1

Automated University Lecture (Yusri Ikhwani)

132 r ISSN: 2476-9843

So, the objective function that can be used is (2) where Wi refers to weighting value the violation hard constraints and Ch
i ard

refers to hard constraints values.

Objective Function = Σtotal class
i=0 Wi + Chard

i (1)

Therefore, fitness function can be used where it refers to a chromosome (solution candidate). Fitness values needs to be added
by 1 to avoid program error that is caused by divided by 0.

Fitness value (C) = 1/(1 + Objective Function) (2)

2.4. Genetic operator
Genetic operator that is used in EA is selection and stochastic variation operator. Stochastic variation operators can be divided

into two classes, they are crossover operator and mutation operator that will be explained on the following subsections.

1. Selection operator
Selection is used to select best chromosome form the population according to their fitness. Some of the individuals in the

current population that have lower fitness are chosen as elite. These elite individuals are passed to the next population. For the
selection process we use tournament selections. It consists of the following steps:
For each elites size do
pop = elite
For pop < population size do

While population size < tournament zise do
Choose two chromosome Schedule from population
Get chromosome Schedules fitness value
Sort two chromosome Schedule fitness value and reverse

end
end

end.

2.5. Crossover operator
Crossover Operator is conducted after selection process. Crossover operator is used to recombine genetic information between

two selected chromosomes and generate new offspring with predefined crossover rate (cr). For the election process of crossover, it
consists of the following steps:
For eliteNumber in classes

If random value [0,1] > cr
Select chromosome Schedule 1 as new offspring, otherwise, select chromosome Schedule 2 as new offspring

end If
end for

Value that is put to cr parameter is 0.5, so from one generation there is 50 percent chromosome that has crossover process.
After process of that, the next step is making offsprings from the chosen chromosomes. The Chromosome with predefined cr less
than and greater than random value will be chosen as new offsprings, so there is 50/50 offsprings in each crossover process. Table 3,
4, 5.

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer,
Vol. 22, No. 1, November 2022: 129 – 138

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer r 133

Table 3. Chromosome schedule 1

NIDN/Semester 1 2 3 . . .
1129039101 401 352 541 . . .
1129039102 . . .
1129039103 501 . . .
1129039104 300 . . .
1129039105 1 2 3 . . .

Table 4. Chromosome schedule 2

NIDN/Semester 1 2 3 . . .
1129039101 401 352 541 . . .
1129039102 . . .
1129039103 501 . . .
1129039104 300 . . .
1129039105 523 402 . . .

Table 5. New Offspring

NIDN/Semester 1 2 3 . . .
1129039101 401 352 541 . . .
1129039102 . . .
1129039103 501 . . .
1129039104 300 . . .
1129039105 523 402 . . .

1. Mutation operator
Our goal in using mutation operator is to add the quality of chromosome. Mutation is close to crossover process if there is no

change in its chromosome. The number of chromosomes having mutation in one population is determined by mutation rate parameter
(mr). Value that is put to mr parameter is 0.1 . Algorithm will generate random number, if the random number is smaller than mr
value so the mutation process is conducted Table 6 and 7:

Table 6. Offspring before mutation

NIDN/Semester 1 2 3 . . .
1129039101 401 352 541 . . .
1129039102 . . .
1129039103 501 . . .
1129039104 300 . . .
1129039105 523 402 . . .

Table 7. Offspring after mutation

NIDN/Semester 1 2 3 . . .
1129039101 501 300 401 . . .
1129039102 . . .
1129039103 325 . . .
1129039104 532 . . .
1129039105 541 402 . . .

Automated University Lecture (Yusri Ikhwani)

134 r ISSN: 2476-9843

The following is the steps that we applied:
For mutation Schedule i = to numb elitism, population size

If mr > random value [0,1]
Select offspringMutation

end If
end for

3. RESULT AND ANALYSIS
In order to demonstrate the efficiency and performance of the proposed algorithm, firstly the algorithm was applied to real-

world input data coming from two study program in faculty of information technology UNISKA MAB, they are Engineering (TI)
and Information System (SI). The data of a typical study program lecture schedule problem is presented in Table 8 and 9. The first
column of Table 8 contains a list of the available lecturers, each having a different identification code (ID). In the given problem,
there exist 28 course subjects. The required teaching hours per week for every lecturer (total hours column) and their breakdown
to the various course subjects (each having a different identification code) is presented in the second set of columns, For example,
S1 that shows the identification code of subject ALGO 1. The Days column presents the weekdays that each lecturer is available at
faculty.

Table 8. The initial data of lecture schedule problem

ID. Lecturers Course subjects identification code (S) Total hours Days
NIDN S1 S2 S3 S4 S5 S6 . . . S28 Mo Tu We Th Fr

L1 1129039102 7.5 . . . 7.5
√ √ √ √ √

L2 1129039103 7.5 . . . 7.5
√ √ √ √ √

L3 1129039104 4.5 . . . 4.5
√ √ √ √ √

L4 1129039105 3 1.5 . . . 4.5
√ √ √ √ √

. .
L74 1129039100 7.5 . . . 7.5

√ √ √ √ √

Table 9 contains the weekly lecture schedule for each course subjects and equivalent view of the lecture schedule for use by
the lecturers The first column of Table 9 refers to course subject indentifcation code. The second and third columns show weekdays
and hours of time periods and classrooms. For example, hours H1 that shows time priod 07.30 09.00. Time periods for typical
faculty of Information technology at UNISKA MAB is shown in Table 10. The detail description of the data can be found in
fti.uniska-bjm.ac.id/jadwal-perkuliahan-semester-ganjil-t-a-2020-2021.

Table 9. Time periods

ID
Days

Lecturer Monday Tuesday . . .
NIDN H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 . . .

1 1129039101 S1 S1 S1 S1 . . .
2 1129039102 S2 S2 S2 S2 S2 S2 . . .
3 1129039103 S3 S3 S3 S3 . . .
4 1129039104 S4 S4 S4 S4 . . .
5 1129039105 S5 S5 . . .
6 1129039106 S6 S6 S6 S5 S5 . . .
7 1129039107 S6 S6 . . .
8 1129039108 . . .
9 1129039009 S8 . . .
10 1129039110 S9 S9 S9 . . .

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer,
Vol. 22, No. 1, November 2022: 129 – 138

fti.uniska-bjm.ac.id/jadwal-perkuliahan-semester-ganjil-t-a-2020-2021.

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer r 135

Table 10. Time periods

ID Monday ID Tuesday ID Wednesday ID Thursday ID Friday
H1 07.30 09.00 H9 07.30 09.00 H17 07.30 09.00 H25 07.30 09.00 H33 08.00 09.30
H2 09.10 10.40 H10 09.10 10.40 H18 09.10 10.40 H26 09.10 10.40 H34 09.45 11.15
H3 10.50 12.20 H11 10.50 12.20 H19 10.50 12.20 H27 10.50 12.20 H35 14.00 15.30
H4 13.00 14.30 H12 13.00 14.30 H20 13.00 14.30 H28 13.00 14.30 H36 15.40 17.10
H5 14.40 16.10 H13 14.40 16.10 H21 14.40 16.10 H29 14.40 16.10 H37 19.15 20.30
H6 16.20 17.50 H14 16.20 17.50 H22 16.20 17.50 H30 16.20 17.50 H38 20.40 -22.05
H7 19.15 20.30 H15 19.15 20.30 H23 19.15 20.30 H31 19.15 20.30
H8 20.40 22.05 H16 20.40 22.05 H24 20.40 22.05 H32 20.40 22.05

The comparison of the lecture schedule constructed by proposed EA and the real lecture schedule used at faculty is based on
the following two criteria:

1. Distribution of lectuers, that is, how evenly each lecturers hours are distributed among the days of the proposed lecture schedule.
For example, if a lecturer giving a lesson 15 hours per week and is available at faculty for five days, the ideal distribution of
lecturers would be (15/5) 3 hours of teaching per days.

2. Distribution of class rooms, It is how equal the distribution of class room during the courses. The ideal distribution of class
rooms is only be used to one lecture in the same time.
Genetic operator parameter used in this experiments is presented in Table 11.

Table 11. Parameter genetic operator

Population Size Numb.Of Elite Tournament selection size (cr) (mr)
9 1 3 0.5 0.1

Comparing lecture schedule constructed by proposed EA with real-world lecture schedule used at faculty is presented in Table
12.

Table 12. Timetable comparison that is generated by EA with the timetable that is used in FTI

Number
of lecturer

Number of available
classroom Teaching hours Lecture schedule used at faculty Lecture schedule created by EA

Distribution of lecturers Classroom used Distribution of lecturers Classroom used
10 11 107 40(19) 5 29(8) 7

Regarding the distribution of teachers, two results (numbers) are presented in the respective column of Table 2. The first
number is the number of teachers whose teaching hours do not have an even distribution among the days of the lecture schedule,
while the second number (between the parentheses) is the number of days that this uneven distribution occurs. For example, from
Table 10 with ID 2, if a lecturer is available at faculty for five days, has 15 teaching hours (H1 +H2 +H13 +H14 +H16 +H18 +
H19 + H20 + H22 + H33 = 15 teaching hours) and their distribution among these five days is the following: 34.5601.5, then the
number of days in which uneven distribution for this lecturer occurs is four (4.5, 6, 0 and 1.5), the ideal distribution of lecturers is (:
33333) for five days or two course subjects teaching per days.

In Table 12 the performance and efficiency of the proposed EA is shown by comaparing the lecture schedule constructed
by it with the real lecture schedule used at the faculty information technology in UNIKA MAB. These data can be found in
https://fti.uniska-bjm.ac.id/jadwal-perkuliahan-semester-ganjil-t-a-2020-2021. We also analyze the convergence evolution of pro-
posed EA. The EA increses sharply when generation number is between zero and a thousand, however after 10000 generations nearly
the same fitness value is observed Figure 1.

Automated University Lecture (Yusri Ikhwani)

https://fti.uniska-bjm.ac.id/jadwal-perkuliahan-semester-ganjil-t-a-2020-2021

136 r ISSN: 2476-9843

Figure 1. Fitness and number generation

4. CONCLUSION

Lecture schedule at University is a hard to solve problem, especially, in large universities. Constructing timetables is an
important task that consumes time and effort of the involved personnel. In this study, we focus on the university lecture schedule
problem whose solution can be obtained with a evolutionary algorithm. The problem is regarded as scheduling a set of courses into a
set of time periods and a set of classrooms without violating hard constraints. It is be done by gaining the fitness function to solve the
constraints problem in the schedule by applying weighting for each hard constraints. The objective function is gained from the total
of infringement in each hard constraints addition by score weighting. Simulation results showed that the algorithm is able to construct
a feasible and very efficient timetable quickly and easily. Both crossover and mutation operators are needed in order to prevent the
search to be trapped in local minima. Higher probability values for these operators increase the efficiency of the algorithm. And also
we realize that increasing the size of the population increases the convergence of the algorithm with respect to the generation number
with the cost of high computation. Determination of the best parameter values, such as the population size, mutation rate, etc. It is
also very hard to theoretically determine how the genetic operations affect the macroscopic behavior of genetic algorithms such as
convergence of solutions. Thus, we try to determine sensitivity of the method to parameters experimentally.

5. ACKNOWLEDGEMENTS

We thank all the authors for their contribution.

6. DECLARATIONS

AUTHOR CONTIBUTION
Fisr Author conceptualized of this study, conducted experiments, wrote the original draft, and revised the manuscript. First Au-
thor wrote the manuscript and performed the experiments. AR made the experimental plan, supervised the work and revised the
manuscript. Third Author performed the data analysis and reevised the manuscript. First Author made the experimental plan and
revised the manuscript. Second Author evaluated the developed technique and revised the manuscript. Third Author designed the
experimental plan, supervised the work andrevised the manuscript. All authors have read and agreed to the published version of the
manuscript

FUNDING STATEMENT
This work was supported LP2M UNISKA MAB (APBU Ta.2021/2022).

COMPETING INTEREST The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest

REFERENCES

[1] A. Rezaeipanah, S. S. Matoori, and G. Ahmadi, “A Hybrid Algorithm for The University Course Timetabling Problem Using
The Improved Parallel Genetic Algorithm and Local Search,” Applied Intelligence, vol. 51, no. 1, pp. 467–492, 2021.

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer,
Vol. 22, No. 1, November 2022: 129 – 138

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer r 137

[2] W. A. Algasm, “Hybrid Algorithm to Solve Timetabling Problem,” IOP Conference Series: Materials Science and Engineering,
vol. 928, no. 3, pp. 1–8, nov 2020. [Online]. Available: https://iopscience.iop.org/article/10.1088/1757-899X/928/3/032053

[3] M. Mazlan, M. Makhtar, A. F. K. Ahmad Khairi, and M. A. Mohamed, “University Course Timetabling Model Using Ant
Colony Optimization Algorithm Approach,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 13,
no. 1, pp. 72–76, 2019.

[4] S. Aslan and C. Aci, “Solving University Course Timetabling Problem Using Ant Colony Optimization : An Example of Mersin
University Engineering Faculty,” in International Conference on Advanced Technologies, Computer Engineering and Science
(ICATCES’18), vol. May, 2018, pp. 154–157.

[5] A. F. Khair, M. Makhtar, M. Mazlan, M. A. Mohamed, and M. N. A. Rahman, “An Ant Colony Algorithm for Universiti
Sultan Zainal Abidin Examination Timetabling Problem,” Indonesian Journal of Electrical Engineering and Computer Science,
vol. 13, no. 1, pp. 191–198, 2019.

[6] Z. Qingfu and C. Fei, “Special Issue on The 17th Annual UK Workshop on Computational Intelligence,” Soft Computing,
vol. 22, no. 21, pp. 6965–6966, 2018.

[7] K. Zhu, L. D. Li, and M. Li, “A Survey of Computational Intelligence in Educational Timetabling,” International Journal of
Machine Learning and Computing, vol. 11, no. 1, pp. 40–47, 2021.

[8] M. H. Tayarani-N, “Novel Operators for Quantum Evolutionary Algorithm in Solving Timetabling Problem,” Evolutionary
Intelligence, vol. 14, no. 4, pp. 1869–1893, 2021.

[9] M. K. Kakkar, J. Singla, N. Garg, G. Gupta, P. Srivastava, and A. Kumar, “Class Schedule Generation Using Evolutionary
Algorithms,” Journal of Physics: Conference Series, vol. 1950, no. 1, 2021.

[10] I. A. Abduljabbar and S. M. Abdullah, “An Evolutionary Algorithm for Solving Academic Courses Timetable Scheduling
Problem,” Baghdad Science Journal, vol. 19, no. 2, pp. 399–408, 2022.

[11] A. O., I. E., and I. Kingsley, “A Tabu Search-Based University Lectures Timetable Scheduling Model,” International Journal
of Computer Applications, vol. 181, no. 9, pp. 16–23, 2018.

[12] M. Elliot, F. S. Gbenga, and M. E. J, “Enhanced Heuristic Teaching Timetabling Algorithm Using Genetic algorithm,” Interna-
tional Journal of Scientific & Technology Research, vol. 9, no. 4, pp. 3804–3814, 2020.

[13] H. Hairani, A. Anggrawan, A. I. Wathan, K. A. Latif, K. Marzuki, and M. Zulfikri, “The Abstract of Thesis Classifier by Using
Naive Bayes Method,” in 2021 International Conference on Software Engineering & Computer Systems and 4th International
Conference on Computational Science and Information Management (ICSECS-ICOCSIM), no. August. IEEE, aug 2021, pp.
312–315. [Online]. Available: https://ieeexplore.ieee.org/document/9537006/

[14] A. Slowik and H. Kwasnicka, “Evolutionary Algorithms and Their Applications to Engineering Problems,” Neural Computing
and Applications, vol. 32, no. 16, pp. 12 363–12 379, 2020.

[15] E. A. Abdelhalim and G. A. El Khayat, “A Utilization-Based Genetic Algorithm for Solving The University Timetabling
Problem (UGA),” Alexandria Engineering Journal, vol. 55, no. 2, pp. 1395–1409, 2016.

Automated University Lecture (Yusri Ikhwani)

https://iopscience.iop.org/article/10.1088/1757-899X/928/3/032053
https://ieeexplore.ieee.org/document/9537006/

138 r ISSN: 2476-9843

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer,
Vol. 22, No. 1, November 2022: 129 – 138

	INTRODUCTION
	RESEARCH METHOD
	Chromosome encoding
	Procedure initalization
	Fitness function
	Genetic operator
	Selection operator

	Crossover operator
	Mutation operator

	RESULT AND ANALYSIS
	CONCLUSION
	ACKNOWLEDGEMENTS
	DECLARATIONS

