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Abstract 

In phase I clinical trials, the standard ‘3+3’ design has passed the test of time and survived 

various sample size adjustments, or other dose-escalation dynamics. The objective of this study 

is to provide a probabilistic support for analyzing the heuristic performance of the ‘3+3’ design. 

Our likelihood method is based on the evidential paradigm that uses the likelihood ratio to 

measure the strength of statistical evidence for one simple hypothesis over the other. We 

compute the operating characteristics and compare the behavior of the standard algorithm under 

different hypotheses, levels of evidence, and true (or best guessed) toxicity rates. Given observed 

toxicities per dose level, the likelihood-ratio is evaluated according to a certain k threshold (level 

of evidence). Under an assumed true toxicity scenario the following statistical characteristics are 

computed and compared: i) probability of weak evidence, ii) probability of favoring 1H  under 

1H (analogous to 1-α), iii) probability of favoring 2H  under 2H  (analogous to 1-β). This 

likelihood method allows consistent inferences to be made and evidence to be quantified 

regardless of cohort size. Moreover, this approach can be extended and used in phase I designs 

for identifying the highest acceptably safe dose and is akin to the sequential probability ratio test. 

 

Keywords: phase I clinical trials, standard algorithm, likelihood method, evidential paradigm. 

 

 

 

 

 

 



1. Introduction 

Phase I trials in which new drugs or drug combinations are administered to human patients for 

the first time are conducted to select a dose to be used in subsequent trials.  In oncology and 

other life threatening diseases, dose-finding studies most often aim to identify the maximum 

tolerated dose (MTD) defined as a dose whose probability of toxicity is closest to some 

acceptable, prespecified target, also known as the dose limiting toxicity (DLT) rate. The primary 

outcome for these trials is usually a binary indicator of the presence or absence of a DLT, with 

the underlying assumption that the probability of toxicity is a non-decreasing function of dose. 

Despite considerable efforts since 1990 to encourage the use of model-based dose-finding 

designs, such as the Continual Reassessment Method (CRM) and its variants (see, e.g., 

O’Quigley, Pepe, and Fisher, 1990; Piantadosi, Fisher, and Grossman, 1998; Goodman, Zahurak, 

and Piantadosi, 1995; Yuan, Chappell, and Bailey, 2007; Cheung and Chappell, 2000; Moller, 

1995), and Escalation with Overdose Control (EWOC) (Babb, Rogatko, and Zacks, 1998; 

Tighiouart, Rogatko, and Babb, 2005), the most common approach for dose-finding remains an 

‘Up-and-Down’ algorithm. These methods assign patients sequentially based on prespecified 

decision rules. They are easy to implement, requiring no cumbersome calculations (before or 

during the trial) and no pre-specification of the underlying dose-toxicity model. Currently, there 

are a multitude of ad-hoc ‘Up-and-Down’ methods with the majority falling within the range of 

‘A+B’ designs (Ivanova, 2006; Lin and Shih, 2001). 

The most common ‘A+B’ design is the ‘3+3’ algorithm, planned to sample around the 

33rd percentile (Storer, 1989). The popularity of the design is due mainly to its practical 

simplicity. For a limited number of dose levels ( 5≤ ), the ‘3+3’ showed comparable properties to 

the CRM in terms of number of patients treated to reach the MTD (Iasonos et al., 2008). A more 



recent study argued the utility of the ‘3+3’ in practice by demonstrating (via simulations) that the 

standard algorithm was a better method when none of the investigational dose levels was close to 

the true MTD (Ji and Wang, 2013). An important limitation is its short memory (i.e., the decision 

rules are based on the outcomes from the most recent cohort of patients). Another drawback 

consists of a slow dose escalation, leading to treatment of an excessive number of patients at 

dose levels less likely to be efficacious (O’Quigley et al., 1990; Goodman et al., 1995; Storer, 

1989). After evaluating the ‘3+3’ operating characteristics, Lin and Shih (2001) concluded that 

the design does not have a fixed DLT at the MTD, such as 33%, and that it targets doses with a 

DLT rate between 16%-27% (Ivanova, 2006). Reiner, Paoletti, and O’Quigley (1999) concluded 

that this design has high error rates and frequently leads to incorrect decisions, e.g. the 

probability of recommending the correct MTD at the end of the trial never exceeds 44% and is 

actually closer to 30%.  Also, estimators of the MTD are based on information collected from 

only six patients, and these tend to be biased or inconsistent (Storer, 1989; Brownlee, Hodges, 

and Rosenblatt, 1953; O’Quigley, 2006). Due to the empirical nature, the ‘3+3’ has limited 

capabilities of describing and accounting for uncertainties in the observed data. However, despite 

the limited power of generality and the rigid design, 98% of the dose-finding cancer trials 

conducted between 1991 and 2006 implemented variations of the standard ‘Up-and-Down’ 

method (Rogatko et al., 2007).  

Given the intuitive and transparent implementation, the ‘3+3’ design continues to be 

clinicians’ most popular choice for phase I trials. The objective of this study is not to argue the 

use of the standard ‘3+3’ design, but to provide a method for describing the statistical properties 

of its heuristic performance. Our likelihood-based method can be used to compute the operating 

characteristics and compare the behavior of the standard design under different hypotheses, 



levels of evidence, and true (or best guessed) toxicity rates. The method is based on the 

evidential paradigm that uses observed data to compute the likelihood ratio (LR), and then 

classify the level of evidence as: 1) weak evidence or 2) strong evidence in favor of one of the 

proposed hypotheses (denoted here as 1H and 2H ). This approach uses only the observed data as 

evidence for one hypothesis versus the other and provides an objective measure of the strength of 

this evidence. First, we present the evidential paradigm. Next, we apply our evidential approach 

to the ‘3+3’ design and compute the operating characteristics under a wide range of true 

toxicities, four sets of simple hypotheses, and three levels of evidence providing guidance for the 

performance of the ‘3+3’ based on acceptable and unacceptable DLT rates. Last, we present 

results from a   simulation study, draw conclusions, and give some suggestions for extending the 

method.  

 
2. The evidential paradigm 

Forster (2006) stated in one of his articles that “contemporary statistics is divided into three 

camps: classical Neyman-Pearson statistics, Bayesianism, and third, but not last, Likelihoodism.” 

All three approaches are structured upon the likelihood ratio (LR) and the specification of a set 

of hypotheses, where usually the alternative represents the minimum clinically important 

difference. Likelihoodism is another school of thought of evidential statistics that uses data-

based evidence to quantify the relative support for one model versus the other. The concept was 

first introduced by Hacking (1965) by stating the formal expression of the Law of Likelihood 

and using the likelihood ratio (LR) for comparing two simple hypotheses, such as 1 1:H θ θ=  and 

2 2:H θ θ=  for a parameterθ , under the assumption that a background model is true. The 

evidential paradigm provides the LR of the two hypotheses, );(/);( 12 xLxLLR θθ=  as an 



objective measure of the strength of evidence. Strong evidence supporting 2θ over 1θ exists if for 

a large k, kLR ≥ . Similarly, strong evidence supporting 1θ over 2θ  exists if kLR /1≤ . Weak 

evidence occurs when kLRk <</1 , with no strong support for either one of the hypotheses. 

Royall (1997) and Blume (2002) established a correspondence between the values of k and type I 

and II errors.  They proposed benchmarks of 8 and 32, representing “weak” (1 8LR< < ), “fairly 

strong” (8 32LR< < ), and “strong” ( 32LR > ) levels of evidence. Initially, these benchmarks 

were derived to provide levels of evidence similar to error thresholds of 0.05α = and 0.20β = , 

in the context of a phase III trial. In phase I trials, controlling these error rates is not as stringent. 

However, one should be concerned with the small number of subjects enrolled (usually 25< ). 

The limited amount of accumulated information (evidence) seldom generates likelihood ratios 

less than 8. Therefore, a value of 8k = may be considered an unrealistic threshold for 

quantifying evidence in phase I studies. 

  
Error probabilities in the evidential paradigm 

A key aspect of evaluating study designs is computing the operating characteristics, such as the 

frequency with which the study will produce misleading or weak evidence. Ideally, the 

probabilities measuring how often evidence of a particular type will be observed should not 

affect the strength of statistical evidence quantified by the likelihood-ratio. For example, in the 

evidential paradigm, the probability of observing misleading evidence is a function of the fixed k 

(strength of evidence) and sample size n . On the contrary, the analogous type I error from 

hypothesis testing is fixed at α and the strength of evidence at which the test rejects, ,α nk , 

depends on α  and n . In this situation, it is often possible that two tests that reject at the same α  

level could have different strengths of evidence.  



The evidential paradigm defines misleading evidence as strong evidence in favor of the 

incorrect hypothesis, calculated under a true hypothesis. Given two simple hypotheses 1 1:H θ θ=  

and 2 2:H θ θ= , for 1 2( , ,..., )= nx x xx  i.i.d. observations, the probabilities of observing 

misleading evidence can be calculated as follows: 
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Following the definition above, ( , )M n k1 represents the evidential analog to a type I error. It has 

been shown that for any fixed sample size n and any pair of probability distributions, the 

probability of misleading evidence under the true hypothesis satisfies the universal bound 

(Royall, 1997; Royall, 2000). That is, the probability that accumulated observations will 

represent strong evidence supporting the false hypothesis over the true hypothesis cannot exceed 

1/ k (with a similar bound under 2H ): 
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This feature is extremely useful in sequential trials, where multiple looks at the data produce an 

inflation of the type I error. In the evidential approach, the probability of observing misleading 

evidence increases with each look, but it still remains bounded (Robbins, 1970). 

The second error probability - probability of observing weak evidence - is defined as the 

probability that an experiment will not produce strong evidence for either hypothesis relative to 

the other, calculated under each true hypothesis: 
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Similarly, ( , )W n k2 represents the evidential analog to the type II error.  In his tutorial, Blume 

(2002) emphasizes the difference in definition and behavior between the probabilities of 

misleading and weak evidence and the classical type I and type II errors. Furthermore, in the 

context of experimental design, he shows that both probabilities of misleading and weak 

evidence converge to zero as the sample size increases. 

 
3. Methods 

Consider the general setting of the ‘3+3’ design that uses cohorts of 3 patients with the ultimate 

goal of finding the MTD. The algorithm begins with 3 patients treated at the first (lowest) dose 

level. If 0 out of 3 patients experiences a DLT, the dose will be escalated. If 2 out of 3 patients 

have a DLT, the dose will be de-escalated. If 1 out of 3 patients has a DLT, 3 more patients will 

be enrolled at the same dose level, and if no additional patients experience a DLT, then the dose 

will be escalated. Otherwise (i.e., 2 or more DLTs at a dose level) de-escalation will occur. The 

algorithm continues until at least two patients among a cohort of 3 to 6 patients experience a 

DLT or the maximum dose level specified in the trial is reached. The MTD is defined as the dose 

level just below the toxic dose level which will have either 0 or 1 DLTs among 3 or 6 patients.  

With a maximum of 6 patients per dose, the precision with which the true DLT rate can 

be estimated at each dose is very poor. With such a high level of uncertainty in the true DLT rate 

at the defined MTD, the safety profile cannot sufficiently be established. In order to improve the 

MTD estimation, the Accelerated Titration design fits a logistic model to all data after the trial 



completion and generates a point estimate (with confidence interval) for the MTD (Simon et al., 

1997). Even though the median MTD is similar to that derived from traditional phase I studies, 

the precision of the MTD estimate is still limited because of the small sample size. 

For those who choose to use the ‘3+3’ design, we offer statistically derived properties for 

describing its behavior under different scenarios and for quantifying the levels of evidence. Our 

likelihood method can be used either in the preparatory phase of the trial for determining 

whether or not the ‘3+3’ can provide a dose with an acceptable DLT rate, or after completion, for 

evaluating the operating characteristics at each dose level. As discussed later, it can also provide 

guiding principles for ascertaining toxicity of a dose when the cohort size is beyond the standard 

number of 3 or 6 patients used by the ‘3+3’ algorithm.  

In our proposed method, all the statistical properties are calculated per each dose level, 

based on observed toxicities. Let ,  1, 2,..., ,jd j K=  be the set of ordered dose levels, and jy be 

the corresponding number of observed toxicities at the jth dose. Let jn  be the number of patients 

per dose with a maximum of 6. For each dose, let ( | )j jP DLT dose d p= = , the true probability 

of observing a DLT at the jth dose. Consider the following where 1( | )jP DLT dose d p= = and 

2( | )jP DLT dose d p= = are the two hypothesized DLT rates at dose jd : 
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For a choice of 1p and 2p established a priori, we calculate the likelihood-ratio (LR) for each 

dose: 
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Using the estimated likelihood-ratio and a certain benchmark k, we interpret the strength of 

evidence as follows: 

i. Weak evidence (supporting neither hypothesis), if 
1

jLR k
k
< <  

ii. Evidence in favor of 2H , if kLR j ≥  

iii. Evidence in favor of 1H , if 
k

LR j
1

≤  

As mentioned previously, benchmark values of 8k =  and 32 have been proposed to distinguish 

between weak, moderate, and strong evidence (Royall, 1997; Blume, 2002). In the case of ‘3+3’, 

we know that a maximum sample size of 6 patients can produce only relatively modest 

likelihood ratios (except when there is a very large difference between 1p  and 2p , such 

as 1 0.60p = , 2 0.10p = ). Thus, selecting a k greater than 8 is not feasible for such small cohort 

sizes. After toxicity responses at a certain dose level have been observed, the strength of 

evidence for one hypothesis over the other is quantified and a decision is made of “too toxic”, 

“safe” or “weak evidence”.  The last category can be subject to interpretability. We regard the 

weak evidence as not having enough information to conclude toxicity, and choose to combine it 

with the evidence of concluding that the dose is safe.  In other words, a dose is considered safe 

until there is sufficient evidence to conclude that it is too toxic.  

In order to assess the ‘3+3’ behavior in the context of likelihood inference, we also 

calculate the probabilities of escalation (dose is safe) and non-escalation (dose is unsafe) based 

on the algorithmic rules. For any dose jd , let 1
jy  be the count of DLTs in the first cohort of 3 

patients, and let 2
jy  be the count of DLTs in the second cohort of 3 patients. Then, 1

jy and 2
jy  are 



two independent binomial random variables, with 3jn =  and ( | )= =j jP DLT dose d p for 

 1,2,...,=j K .  Thus, for any given jp , the following probabilities hold true: 

( )1 1 2( | ) ( 0) ( 1, 0)j j j
jP escalation d P y y y= = ∪ = =  

                                                                   1 1 2( 0) ( 1) ( 0)j j jP y P y P y= = + = ⋅ =  

                                                                   3 5(1 ) 3 (1 )j j jp p p= − + −  

                             ( | ) 1 ( | )j jP non escalation d P escalation d− = −  

 
Simulation set-up 

We calculated the operating characteristics of the ‘3+3’design using the likelihood method. For 

each dose, 1 1( )H p is defined as the unsafe DLT rate, and 2 2( )H p is considered an acceptable 

DLT rate. Data were simulated under a wide range of true toxicity rates (from 0.05 to 0.70). The 

following performance characteristics were considered: 

• Probability of weak evidence 

• Probability of favoring 1H under 1H , 1 1(  | )P favors H H , analogous to 1 α−  

• Probability of favoring 2H under 2H , 2 2(  | )P favors H H , analogous to 1 β−  

The statistical properties were further compared using several cutoffs for the likelihood-ratio. We 

highlight the results by presenting the benchmarks with the most distinctive behavior as far as 

classifying the levels of evidence, i.e., 8 and ,2 ,1=k . All simulation scenarios were conducted 

with 10,000 trials each using the statistical software R (2009).  

Numerous hypotheses 1 2( , )p p  were tested and compared in terms of operating 

characteristics. In this paper, we discuss four of the most interesting and relevant sets of 

hypotheses. The values for the first two scenarios: (A) 1 2( 0.40, 0.15)p p= = and 



(B) 1 2( 0.50, 0.10)p p= =  were selected to be consistent with what is assumed regarding the 

‘3+3’ design: it targets a DLT rate around 20-30%. These cases characterize situations when the 

absolute difference between the hypotheses is greater than or equal to 30% with a midpoint close 

to 30%. The other two scenarios: (C) 1 2( 0.15, 0.05)p p= =  and (D) 1 2( 0.50, 0.30)p p= =  were 

selected to demonstrate the poor behavior of the ‘3+3’ design in selecting the MTD when both 

hypotheses are either below or above a DLT rate of 0.20. These scenarios can be very well 

encountered in practice. For agents where lethal or life threatening toxicities are expected (e.g., 

cytotoxic agents), investigators might be only willing to accept relatively low DLT rates. 

Contrarily, the target DLT probability can be set high when toxicities are transient and nonfatal. 

This may be the case for biologic agents used in immunotherapy, such as vaccines or adoptive 

cell therapy, where a higher DLT rate (greater than 25-30%) might be considered tolerable. 

 
4. Results 

Levels of evidence 

Tables 1 and 2 show the estimated likelihood ratios (LR) and the decisions regarding dose safety. 

For each dose one of the following decisions can be made: “acceptable dose”, “toxic dose” or 

“weak evidence”, i.e., not having enough evidence to conclude neither. Several benchmark 

values of k were considered. However, we present the results for k = 1, 2, and 8 that mark a 

significant change in the level of evidence. The scale of statistical evidence is not discrete, i.e., 

evidence does not suddenly move from one category to another. For example, for scenario (A) 

benchmarks of 3, 4, and 5 generate the same conclusions as k = 2 regarding the strength of 

evidence. The same stands for values of 7 and 8.  



Table 1 illustrates scenarios (A) 1 2( 0.40, 0.15)p p= = and (B) 1 2( 0.50, 0.10)p p= = .  

For 1k = , the likelihood approach generates the same inferences as the ‘3+3” algorithm, by 

favoring one of the two hypotheses (Table 1). For a threshold of 1, the weak evidence category is 

eliminated. For 2k = , the only weak evidence category is 2 DLTs out of 6 for scenario 

(A) 1 2( 0.40, 0.15)p p= = . Weak levels of evidence are common under 8k =  (Table 1). A cutoff 

of 8 denotes fairly strong evidence and with cohorts of only 3 or 6 patients at a dose level we 

expect weak evidence, especially when the difference between the hypotheses values is not very 

large.  

Table 2 displays scenarios (C) 1 2( 0.15, 0.05)p p= = and (D) 1 2( 0.50, 0.30)= =p p . For 

scenario (C), the likelihood method disagrees with the ‘3+3’ algorithm only for 1 out of 6 DLTs 

and k = 1. For k = 2 and k = 8, 1 out of 6 and 0 out of 3 DLTs are classified as weak evidence. In 

the high toxicity scenario (D), 2 out of 6 DLTs are considered acceptable (k = 1). For k = 2, only 

3 out of 6 DLTs are regarded as weak evidence, the rest being in good agreement with the ‘3+3’ 

rules. For k = 8 all categories are classified as weak evidence.  

 
Operating characteristics 

The operating characteristics of the likelihood method were further evaluated by computing the 

following probabilities over a range of true DLT rates: P(weak evidence supporting neither 

hypothesis), 1 1(  | )P favors H H , 2 2(  | )P favors H H , and comparing them to the operating 

characteristics of the ‘3+3’ design. In figures 1 – 5, the solid lines mark the probabilities of 

favoring 2H  - dose is acceptable (black) and favoring 1H  - dose is unsafe (gray) generated by the 

likelihood method. Using the same coloristic, the dashed lines represent the analogous 

probabilities derived from the standard ‘3+3’ algorithm: probability of escalation - dose is 



acceptable (black) and probability of non-escalation – dose is unsafe (gray). The gray dotted line 

marks the level of weak evidence. 

With a zero probability of weak evidence for k = 1, scenarios 

(A) 1 2( 0.40, 0.15)p p= = and (B) 1 2( 0.50, 0.10)p p= = are in perfect agreement with the ‘3+3’ 

design (Figure 1A and 1B). For true DLT rates of 0.15 and 0.10, the probability of correctly 

declaring the dose acceptable is of 81% and 88%, respectively, as shown by the height of the 

black solid and dashed lines where they intersect the vertical line 2H  at 0.15 and 0.10 (Figure 1A 

and 1B). When the true DLT rates are 0.40 and 0.50, the chances of correctly declaring the dose 

unsafe are 69% and 82%, respectively, as shown by the height of the gray solid and dashed lines 

where they intersect the vertical line 1H  at 0.40 and 0.50 (Figure 1A and 1B). 

For scenario (C) 1 2( 0.15, 0.05)= =p p  and k = 1, the algorithm has a higher probability of 

correctly favoring 2H (dose is acceptable) than the likelihood method (97% vs. 86%) at a true 

DLT of 0.05, but a lower probability of correctly favoring 1H  (dose is unsafe) (19% vs. 40% at 

true DLT of 0.15) (Figure 1C). For the high toxicity scenario (D) 1 2( 0.50, 0.30)p p= = , the 

likelihood method performs better in declaring a dose acceptable (69% vs. 49% at true DLT of 

0.30), but has almost 15% lower chances in identifying true toxicity when the DLT rate is 0.50 

compared to the ‘3+3’ model (Figure 1D). 

For k = 2, the probability of weak evidence steps away from zero for all scenarios but 

(B) 1 2( 0.50, 0.10)p p= = , which displays the same behavior as for k = 1 (Figure 2B). For 

scenario (A) 1 2( 0.40, 0.15)p p= = , the probability of weak evidence peaks at 19% between the 

two hypotheses, represented in the figure by a dotted dark gray line. In this case, the likelihood 

method and the ‘3+3’ algorithm match in correctly favoring 2H (dose is acceptable) (Figure 2A). 



Hypotheses (C) 1 2( 0.15, 0.05)p p= =  produce the highest probabilities of weak evidence for k = 

2, i.e., 98% for a true DLT of 0.05 and 80% for a true DLT of 0.15 (Figure 2C). Surprisingly, 

this probability is almost the same as the probability of escalation from the ‘3+3’ design. The 

likelihood method and the algorithm correctly declare a dose unsafe with very similar 

frequencies. For scenario (D) 1 2( 0.50, 0.30)p p= = , the most notable difference in statistical 

properties regards the probability of correctly favoring 1H . Hence, the likelihood method has 

only an 18% chance of declaring the dose unsafe for a true DLT of 0.50, compared to 83% from 

the ‘3+3’ algorithm (Figure 2D). 

For k = 8, the probability of weak evidence is above 90% for both 1H  and 2H  in 

scenarios (A) 1 2( 0.40, 0.15)p p= = and (D) 1 2( 0.50, 0.30)p p= =  (Figure 3A and 3D). The 

likelihood method never favors 2H  (dose is acceptable) for all four sets of hypotheses and it has 

a zero probability of declaring a dose unsafe for 1 2( 0.50, 0.30)p p= =  (Figure 3D). This 

dramatic behavior of either always declaring a dose safe or unsafe when it is not the case can 

have serious implications in a dose-finding trial. We caution against using a k threshold of 8, and 

underline the small level of evidence that can be reached with only 6 patients per dose. 

Since the category of weak evidence does not offer any clear guidance in making a 

decision, it can easily be subject to interpretability. One option is to consider it as not having 

enough information to conclude toxicity and to combine it with the evidence of favoring 2H  

(safe dose). This is akin to “innocent until proven guilty”:  we assume a dose is acceptably safe 

until there is sufficient evidence to declare it unsafe.  These results are displayed for all four sets 

of hypotheses, k = 2 (Figure 4) and k = 8 (Figure 5). With this action, for k = 2, the likelihood 

method and algorithm reach agreement for scenario (C) 1 2( 0.15, 0.05)p p= = , but the probability 



of identifying an unsafe dose remains low at 18% (Figure 4C). Moreover, for the high toxicity 

hypotheses (D) 1 2( 0.50, 0.30)p p= = , the combined probabilities of weak and correctly declaring 

a dose safe increase to 92% for 0.15 true null DLT rate compared to 81% for k = 1 (Figure 4A). 

For scenario (D), the probability of declaring a dose safe reaches almost 96% for the likelihood 

method, but the performance of identifying toxicity is still poor (Figure 4D). 

 
5. Discussion 

In this paper we have explored the operating characteristics of the standard ‘3+3’ design in a 

likelihood framework based on the evidential paradigm. We offer a probabilistic support for 

analyzing its behavior for different sets of hypotheses, levels of evidence, and true (acceptable 

and unacceptable) toxicity rates. Our likelihood approach has been developed to accommodate 

any combination of those three, with R functions available upon request. This way, any 

investigator (statistician or non-statistician) that intends to implement the standard algorithm has 

the opportunity of testing its properties under different conditions and selecting the hypotheses 

consistent with good performance characteristics at each dose level.  

The evidential paradigm is an ideal setting for monitoring clinical trials with likelihood 

inference. Compared to the Neyman-Pearson methodology, in this framework the strength of 

evidence is quantified solely by the likelihood-ratio and it is amenable to sequential evaluation of 

the data. Moreover, the strength of evidence is dissociated from the probability of observing 

misleading evidence. In our simulation study we presented three likelihood-ratio thresholds: k = 

1, 2, and 8. For the four sets of hypotheses considered, k = 8 is too stringent given the amount of 

evidence generated from a maximum of 6 patients per dose. In this case, the probability of weak 

evidence was over 80% and if combined with the probability of favoring 2H  it almost always 



declared a dose safe even when it was truly toxic. The choice of k = 2 appears to be the most 

reasonable one, generating operating characteristics in good agreement with the ‘3+3’ design. 

This benchmark also produces high probabilities of correctly favoring 1H  (dose is unsafe) and 

correctly favoring 2H  (dose is acceptable). These high probabilities stand especially for sets of 

hypotheses for which the unsafe DLT rate is greater than 0.30 and the acceptable DLT rate is less 

than 0.20, with a midpoint around 30%. For more extreme scenarios: low 1 2( 0.15, 0.05)p p= =  

or high toxicity 1 2( 0.50, 0.30)p p= = , both likelihood method and the ‘3+3’ design have less 

than 20% probability of identifying a toxic dose. This means that for extreme scenarios the ‘3+3’ 

algorithm has no probabilistic support and it should not be used.   

Our likelihood approach can be extended and implemented for cohorts of sizes other than 

3 and 6.  It is not uncommon for other cohort sizes to arise, either due to design or happenstance.  

In those cases, there are not commonly used rules for declaring dose safe or unsafe.  The 

likelihood-ratio method with a fixed k and pre-stated hypotheses for the DLT rates allows 

consistent inferences to be made and evidence to be quantified regardless of cohort size. Table 3 

illustrates one of these situations with a cohort of 5 patients at a dose level. For 

hypotheses 1 2( 0.40, 0.15)p p= = and k = 2 as likelihood-ratio threshold, the method declares 

toxicity for 2 or more DLTs. In the same manner, one can experiment with different cohort sizes 

and k values and have a decision rule ready for any unexpected situation. In conclusion, our 

approach offers great potential in both phase I designs for identifying the highest acceptably safe 

dose and is akin to the sequential probability ratio test (Wald 1945).  
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