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1. Introduction 

 

Phase II studies in oncology have evolved over the previous several decades. Currently, the 

number of drugs in phase II development has increased, and patient eligibility has narrowed due 

to targeted agents, competing trials and curative therapies in the first-line setting. As a result of 

these changes, more attention needs to be focused toward conducting more efficient phase II 

trials. Given the increased difficulty in accruing patients to phase II studies and the ethical 

concern of treating patients with agents that are ineffective, there is significant motivation to stop 

a single arm trial early when the investigational agent shows evidence of a low response rate.  

 

Many single arm phase II trials in oncology continue to be developed using tumor response, or 

another binary measure of clinical efficacy, as the primary outcome. Unlike comparative trials, 

which are often designed to stop early if there is convincing evidence that one treatment 

regimen is superior to the other, single arm studies usually only stop for futility.  The most 

popular phase II design in oncology clinical trials has been the Simon two-stage design [1] 

which allows one early look to stop for futility and maintains overall type I and type II errors while 

increasing the sample size only modestly when compared to a single stage design. This design 

is easy to perform in practice and is simple to design using commonly available software and 

web-based programs. For any given set of study parameters (null and alternative response 

rates and type I and type II errors), there are many designs that can be performed with one 

early look. Simon defined several criteria for choosing the best design. The “optimal” design has 

the smallest expected sample size under the null hypothesis, while the “minimax” design has 

the smallest sample size at the end of the second stage of the trial [1].  

 



The Simon two-stage design only allows stopping at one point during the trial. Using other 

design approaches, it is possible to consider multiple stopping times, which provide higher 

chances of stopping the trial if the treatment is ineffective. A related extension of the Simon two-

stage design is the three-stage design [2]. Both the two- and three-stage designs mentioned 

thus far are frequentist in nature and measure evidence for early stopping and for rejecting 

hypotheses using p-values. In addition to the two- and three-stage designs mentioned, there are 

others proposed, mostly varying in their optimization criteria [3-6].  Due to the very nature of p-

values and the problems with accumulating type I errors by repeated hypothesis testing in the 

frequentist setting, a number of other early stopping criteria for single arm phase II studies with 

binary endpoints have been proposed.  

 

We propose a likelihood-based stopping design that follows the evidential paradigm and relies 

on the likelihood principle [7]. The observed data is evaluated under the null and alternative 

hypotheses and the resulting likelihood ratio is used for making inferences. This approach does 

not rely on prior information and the evidence can be quantified in a relatively simple way. 

Unlike frequentist designs in which type I error rates at successive interim looks can accumulate 

to unacceptable levels, the evidential paradigm relies on the universal bound, which limits the 

probability of misleading evidence in favor of the incorrect hypothesis. As a result, likelihood-

based designs can look at the data early and often and terminate a trial if there is sufficiently 

strong evidence, and the probability of making an incorrect conclusion can be relatively small.  

Blume clarified some potential misconceptions about the evidential paradigm [8]. It is true that 

more frequent looks at the data will lead to higher chances of selecting an incorrect hypothesis 

in the evidential paradigm: we do not contend that our approach will lead to the same error rates 

as looking at the data only once or twice. The probability of misleading evidence is bounded 

regardless of the number of interim looks and the bound can be controlled.  

 



There is a large literature selection on the design of single arm phase II trials [9-11]. Even so, in 

cancer research, the Simon two-stage design is the most commonly adopted when clinical 

response is the outcome of interest. Lee and Liu proposed a predictive probability design, 

described in more detail in section 3.2 [12] and similar to an earlier version by Herson [13]. They 

convincingly argue that multi-stage frequentist designs can be challenging to implement and 

analyze. Frequentist inferences condition on the study design, so that if an early look is 

implemented earlier or later than originally planned, the stopping rules and statistical properties 

are then undefined and inference becomes challenging. Other authors have described this in 

more detail and proposed some design and inference solutions [14, 15]. Bayesian and likelihood 

approaches do not suffer from this complication; both approaches rely on the likelihood principle 

which uses all data collected and does not depend on the design from which the data arose. A 

number of other Bayesian approaches exist in this setting but have not been widely adopted 

[16-24]. There are several reasons that might explain this. First, the inclusion of a prior 

distribution may be unacceptable to some.  Second, Bayesian designs are often assumed to be 

more computationally challenging. For some Bayesian approaches, these assertions are not 

well-founded because priors can be selected that have little influence on the inferences (i.e., 

weak priors), and calculations for early stopping can often be done prior to the implementation 

of the trial.  But arguably the most challenging problem to overcome by using a non-frequentist 

design approach is describing the resulting evidence. Medical researchers have become 

accustomed to the interpretation of p-values such that other forms of evidence become hard to 

interpret. A similar phenomenon exists with power calculations. Non-frequentist design 

proponents have been required to translate their design properties into type I and II errors so 

that the research community can interpret findings in the frequentist paradigm. The likelihood 

approach allows for this type of conversion due to the universal bound and by quantifying the 

probability of misleading and weak evidence as will be described in the following sections. 

 



2. Methods 

2.1. The likelihood approach 

 

Historically, the dominating design approach has been frequentist, based on theories developed 

by Neyman & Pearson and by R.A. Fisher, and we refer to this approach as significance testing, 

where null and alternative hypotheses are defined, acceptable type I and II errors are chosen, 

and a decision is made at the end of the trial via the p-value regarding the null hypothesis [25, 

26].  Royall [7] describes some of the flaws in using this approach for interpreting its results as 

evidence. It is beyond the scope of this manuscript to discuss these details, but chief among 

them is the requirement to choose between two hypotheses at the end of the trial; i.e., the 

choice to reject or fail to reject the null hypothesis. There is no allowance made for “weak” 

evidence in favor of one or the other hypothesis or even strong evidence in favor of the null 

hypothesis. Royall [7] and Blume [27] argue for likelihood-based approaches in clinical trial 

design and regard likelihood-based approaches as the evidential paradigm. 

 

The Neyman-Pearson theory and the evidential paradigm are both based on the likelihood ratio, 

but each uses it in a different way. The Neyman-Pearson theory bases inferences on the 

probability that the likelihood ratio will be larger than some value, k, if the null hypothesis is true. 

The evidential paradigm is based on the value of the likelihood ratio itself and more specifically, 

on the law of likelihood: 

 

If hypothesis A implies that the probability of observing some data X is PA(X), and 

hypothesis B implies that the probability of observing some data X is PB(X), then the 

observation X = x is evidence supporting A over B if PA(x) > PB(x). Further, the likelihood 

ratio, PA(x)/PB(x), measures the strength of that evidence [7, 28].  

 



The evidential paradigm uses the likelihood function, evaluated at the observed data, to quantify 

evidence regarding a particular hypothesized value of a parameter (see Blume [27] for more 

detail on interval construction). The likelihood ratio (LR) is constructed by comparing the 

likelihood function, evaluated at different parameter values, based on the observed data. 

Suppose we observe 16 responses in 45 patients in a trial (an observed response rate of 0.36) 

where our null hypothesis is a response rate of 0.20, and our alternative hypothesis is a 

response rate of 0.40. The LR comparing the alternative to the null hypothesis is 15.7 and was 

obtained by taking the ratio of the likelihood function at 0.40 to the height at 0.20 (0.83/0.053 = 

15.7). A standard frequentist approach would calculate the p-value, which in this case is 0.014, 

suggesting strong evidence against the null hypothesized response rate of 0.20.  

 

2.2. A key difference in likelihood versus significance-testing approaches 

 

The significance-testing paradigm and the evidential paradigm have similarities, and often the 

inferences reached at the end of a trial would lead to the same conclusions regarding the 

success of the trial. However, statistically, there is a critical philosophical difference that should 

be considered when deciding which approach is more sensible. In the significance-testing 

paradigm, inferences are based on p-values which are calculated ignoring the alternative 

hypothesis. The question posed is thus “Is there sufficient evidence to conclude that the null 

hypothesis is not true?” The evidential paradigm uses the LR which compares evidence for the 

null versus the alternative hypotheses.  In essence, the question posed is “Which of these two 

hypotheses is more consistent with the observed data?”   

 

Reconsidering our example of an observed response rate of 0.36 in 45 patients, suppose our 

null and alternative hypotheses were 0.20 and 0.50, respectively (instead of 0.20 and 0.40). The 

observed response rate of 0.36 is almost equally between 0.20 and 0.50, suggesting that the 



data do not appear to strongly favor either hypothesis. The p-value remains unchanged at 0.014 

because the null hypothesis is the same. The LR is now only 2.80 (LR = 0.15/0.053), implying 

rather weak evidence in favor of the alternative hypothesis. The evidential paradigm provides a 

result that is consistent with our expectations, but the significance-testing paradigm does not. 

This difference in inference is because they ask two different questions.  

 

2.3. Inference in the evidential paradigm 

 

At the end of a study, in the evidential paradigm, a LR is calculated and then interpreted as 

evidence. There are three possible types of evidence that are observed: (1) weak evidence, (2) 

strong evidence in favor of the correct hypothesis, (3) strong evidence in favor of the incorrect 

hypothesis. (This is a bit of a simplification because it presumes that one of the two hypotheses 

posed is correct.) Weak evidence arises when there is not sufficiently strong evidence in favor 

of either hypothesis. In theory, this can be controlled by increasing the sample size; however, if 

neither hypothesis is correct and the true value of the parameter lies somewhere between, then 

weak evidence may arise even with a relatively large sample size. Second, strong evidence in 

favor of the correct hypothesis can be observed. This is, of course, the goal--to obtain 

convincing correct evidence. Lastly, strong evidence in favor of the incorrect hypothesis is 

considered misleading evidence (similar to type I and II errors). A trial should terminate early for 

futility and rarely terminate when the treatment is effective. The probability of misleading 

evidence should be controlled through proper study design and an appropriate choice of K. 

 

The universal bound states that the probability that the LR exceeds k in favor of the wrong 

hypothesis can be no larger than 1/k [29, 30]. That is, under the null hypothesis, 
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where L1 is the likelihood under the alternative and L0 is the likelihood under the null hypothesis. 

An even lower bound applies in some cases (e.g., difference between normal means; large 

sample size), but no bound has been shown for the binomial likelihood with relatively small 

sample size [31]. 

 

Importantly, this bound holds for a sequence of independent observations which allows 

repeated estimation of the LR with the bound being maintained [32]. In other words, unlike the 

significance-testing paradigm where multiple looks at the data are penalized by increasing type I 

error rates, the accumulating data in a clinical trial can be evaluated in a fully sequential fashion, 

and the overall rate of misleading evidence will be bounded by 1/K. For a single arm trial with 

response as the outcome and K = k, we could estimate the LR after every patient’s response (or 

lack of response) had been observed. We would stop the trial if the LR in favor of the null 

hypothesis was greater than k, and the probability that we would mistakenly stop the trial early 

would be less than 1/k.  

 

Royall proposed guidelines for “strength of evidence” with thresholds of 8 and 32 for classifying 

LRs into three levels of evidence [7]. When comparing hypothesis 1 (numerator) to hypothesis 2 

(denominator), LRs in the ranges 1-8, 8-32 and >32 would correspond to weak, moderate and 

strong evidence regions in favor of hypothesis 1, respectively.  However, in exploring the 

appropriate values of K in the phase II oncology clinical trial setting, it must be recognized that 

weaker evidence is usually acceptable. That is, while phase III comparative trials usually specify 

two-sided alpha of 0.05 or one-sided alpha of 0.025, phase II trials very often specify one-sided 



alpha of 0.05 or 0.10. As a result, the suggested value of K=8 as a guideline for choosing a 

hypothesis may be too high in our application.   

 

2.4. Likelihood-based stopping in single arm phase II studies with binary endpoints 

 

There is strong motivation in oncology research (and other medical research) to terminate single 

arm studies as soon as there is convincing evidence that the treatment regimen under study will 

not be as effective as desired. The universal bound allows sequential estimation and evaluation 

of the LR where early stopping for futility can be enacted when the LR is greater than k in favor 

of the null hypothesis. The computational requirement for estimation is trivial: on the log scale, 

we would stop the trial at time t, when yt responses had been observed out of Nt patients, if the 

following were true:  
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Note that p0 and p1 are determined prior to the start of the trial so that estimating the likelihood 

function at time t simply involves plugging in the number of responses (yt) and the number of 

patients (Nt). If LRt is greater than or equal to 1/k, then the trial would continue.  

 

LRt can be calculated after each patient’s response has been observed, and the stopping 

criteria can be calculated prior to the start of the trial, simplifying implementation and 

computational needs during the trial. Similar to Simon’s two-stage design, we enumerate the 

stopping boundaries as part of the trial protocol. Table 1 displays the stopping boundaries 

where the null and alternative hypothesized response rates are 0.20 and 0.40, and our 



maximum sample size is chosen to be 37 assuming a fully sequential implementation of the trial 

where K is chosen to be 8. Each of the thresholds for yt that are listed correspond to the 

scenarios under which the likelihood ratio LRt is less than 1/K where K=8.  

 

2.5. The choice of K 

 

Much of the debate in the use of the evidential paradigm has focused on the “correct” choice of 

K. In frequentist designs, the clinical trials community is accustomed to alpha of 0.05 or 0.10 

and power in the range of 0.80 to 0.90 in phase II trials. As many statisticians will attest, these 

choices are somewhat arbitrary, but have become the convention. As a result, we explore 

values of K that we would consider appropriate based on previous research but also values of K 

that provide similar operating characteristics (acceptance/rejection of hypotheses) to the Simon 

designs [7, 8]. In this exploration, we have found that separate values of K for early stopping 

and for making a final decision are appropriate to provide similar operating characteristics and 

to improve performance in terms of early stopping and decreasing expected sample size under 

the null hypothesis. We refer to K for early stopping as interim K, denoted Ki, and K for final 

inference (if the study reaches its maximum allowed sample size) is referred to as end K, 

denoted Ke.  

 

The probability of misleading evidence is bounded by ))log(2( k regardless of the choice of 

sample size [7, 8]. This bound allows us to determine the relationship between values of K and 

type I and II errors by equating the probability of misleading evidence to the probability of 

rejecting the null when it is true (or, similarly, the probability of failing to reject the null when it is 

false). This approach leads to the relationship between alpha and K (Figure 1) which led to the 

selection of K=8 for denoting strong evidence (i.e., it corresponds closely to two-sided alpha of 



0.05) [7]. However, in our setting, testing is usually one-sided, and the alpha level is often higher 

than 0.05. Simon two-stage designs are commonly implemented with an alpha of 0.10 and a 

one-sided test, suggesting a lower value of K may be more appropriate in the phase II setting 

and, referring to Figure 1, K=2.3 may provide similar operating characteristics to a Simon two-

stage design with type I and II errors of 0.10. However, there is an asymmetry in the evaluation 

of the hypotheses in a futility stopping design: the trial has many opportunities for selecting the 

null hypothesis (i.e., failing to reject the alternative), but the alternative hypothesis can only be 

selected at the end of the trial. Trials that do not stop early are unlikely to accept the null 

hypothesis at the trial’s end and will instead result in weak evidence or strong evidence in favor 

of the alternative. Therefore, Ke should be chosen to limit the number of trials that lead to weak 

evidence when the alternative hypothesis is true.  

 

3. Results 

 
3.1. Performance of likelihood stopping design compared to Simon’s two-stage 

designs 

 

To determine the performance characteristics of the likelihood stopping design (LSD), we 

performed simulations of trials and compared the LSD to Simon’s optimal two-stage design 

(O2SD) and Simon’s minimax two-stage design (M2SD). In our simulations, the null (H0) is 

considered an ineffective level of response, and the alternative (H1) is a response rate that is 

sufficiently high to warrant further study of the treatment. The following performance 

characteristics were considered: 

 expected value of the sample size under the null hypothesis 

 probability of stopping under the null hypothesis 

 probability of acceptance of H1 under H1 (similar to power) 



 probability of acceptance of H0 under H0 (similar to 1-alpha). 

Although theoretically the properties of a design can be estimated exactly, the computational 

burden is significant and increases with the number of possible stopping thresholds. As a result, 

simulations were performed (simulating 10,000 trials for each set of conditions) to estimate 

performance characteristics.  

 

A scenario is defined by its null (p0) and alternative (p1) response rates.  We chose type I and II 

errors to be 10% and then identified the optimal and minimax designs for the scenario. We 

compared the Simon designs to likelihood designs: one with the maximum sample size of the 

optimal design and one with the maximum sample size of the minimax design.  We are 

consistent with Simon’s notation for his designs:  N1 is the stage 1 sample size, N is the total 

possible sample size, the trial stops at stage 1 if ≤ r1 responses are seen, we fail to reject the 

null if ≤ r responses occur in N patients.  We explored different values of K for early stopping 

and for final inference and compared the design operating characteristics to the Simon designs 

in terms of the probabilities of acceptance and rejection of hypotheses, probability of early 

stopping, and expected final sample sizes.  Three of our design scenarios are shown here, 

although many more were considered. 

 

3.1.1. Scenario 1: p0 = 0.20, p1 = 0.40, Ki =8, Ke =2.3, N=37 (O2SD), N=36 (M2SD) 

 

The O2SD is characterized by N1=17, r1= 3, N=37, and r=9 and the M2SD by N1=22, r1= 4, 

N=36, and r=9.   LSDs with maximum N of both 37 and 36 were considered to show 

comparability to the Simon designs. Table 1 shows the stopping boundaries for the likelihood 

designs with Ki=8.  Ke=2.3 was chosen to allow comparability to a type I or type II error of 0.10.  

Choosing Ki=8 and Ke=2.3, we achieve similar performance under the null as the Simon designs 

(Figures 2A and 2B); however, the performance is not directly comparable in the sense that 



there are three inferential categories in the likelihood design (strong evidence for H0, strong 

evidence for H1, and weak evidence) versus only two categories in the frequentist approach 

(reject or fail to reject H0). Figure 2A displays, for the range of true response rates, the 

inferential probabilities for each design with a total possible sample size of 37 compared to 

O2SD. For a true response rate of 20%, we have strong evidence in favor of the null 91% of the 

time, weak evidence 4.4% of the time, and in only 4.3% of trials do we conclude that the 

alternative is true (i.e., reject the null). This is almost identical to the O2SD which has a 91% 

chance of failing to reject the null and a 9% chance of a type I error.  The likelihood design 

performs slightly worse under Ki =8 and Ke =2.3 when the alternative is true. For a true 

response rate of 40%, the chance of correctly accepting the alternative is 84%, weak evidence 

is 5%, and falsely accepting the null is 11%. This is similar to the Simon design which rejects 

the null 90% of time and falsely fails to reject only 10% of the time.  

 

When the true response rate is 0.30 (midway between the null and alternative), the LSD has an 

88% chance of selecting one of the two hypotheses but 12% of the time will find weak evidence 

(LR is between 1/2.3 and 2.3). The O2SD will reject the null 54% of the time and fail to reject 

46% of the time. The level of weak evidence for the O2SD may seem low when the true 

response rate is 0.30, but there is a relatively low threshold for Ke. Figure 2B shows the 

corresponding results for the minimax design, which are quite similar.  

 

Figures 2C and 2D compare expected sample size and probability of early stopping in the 

likelihood and Simon designs. Under the null hypothesis, the probability of early stopping with 

the likelihood design is 0.82 for both N=37 and N=36, compared with 0.55 and 0.54 for the 

Simon optimal and minimax designs, respectively. Under the alternative, the likelihood and 

Simon designs have similar early stopping probabilities. One of the most attractive features of 

LSDs is the increased chance of early stopping under the null hypothesis which exposes fewer 



patients to an ineffective therapy as demonstrated in Figure 2D where the expected sample size 

under the null hypothesis is 20 for the likelihood designs and 26 and 28 for the O2SD and 

M2SD, respectively. Under the alternative, the expected samples sizes are close: E(N|H1) = 35 

in the likelihood design and E(N|H1) = 36 in the Simon designs, both designs continuing to the 

maximum sample size in the large majority of trials. 

 

3.1.2. Scenario 2: p0 = 0.20, p1 = 0.40, Ki=8, Ke=1, N=37 (O2SD), N=36 (M2SD). 

 

In the previous scenario, the chance of weak evidence could be lowered, suggesting that for 

comparison to the Simon designs, Ke=2.3 may be too high and choosing a lower value for Ke 

may improve relative performance.  

 

To address this, scenario 2 implements that same early stopping rule (Ki=8); however, for trials 

reaching the final sample size, a likelihood ratio threshold is set to 1 (Ke=1). This is the lowest 

reasonable bound in the evidential paradigm and eliminates the weak evidence category. 

Comparing the likelihood designs in Figures 2A and 2B to those in 3A and 3B (i.e., Ke=2.3 vs. 

Ke=1), we see improved operating characteristics in relation to acceptance of the correct 

hypothesis at the null and alternative probabilities. Briefly, compared to the scenario with N=37 

and Ke=2.3, choosing Ke=1 leads to the same chance of choosing the null when it is true, but 

only a relatively small increase in the chance of choosing the alternative (9% vs. 4%) when the 

null is true. Operating characteristics under the alternative are also improved when Ke=1 relative 

to the case when Ke=2.3. However, the behavior for other true response rates should be 

considered. In the previous scenario, when p=0.30, the probability of weak evidence was 0.12. 

With Ke=1, when p=0.30 the probability of selecting the null is 0.48, and the chance of selecting 

that alternative is 0.52 which are very similar to scenario 1. 

 



Comparing the design with Ki=8, Ke=1 to the Simon designs (Figures 3A and 3B), Simon’s and 

the likelihood designs give us almost identical properties under the null and only a relatively 

small difference under the alternative. Despite comparable rejection/acceptance of hypotheses, 

the early stopping probabilities and expected sample size (Figures 3C and 3D) vary 

substantially when comparing the likelihood to the Simon designs. Given that the Ki is the same 

as in Scenario 1, the early stopping probabilities and expected sample sizes are the same in 

Scenarios 1 and 2. The results in Figure 3 suggest that we can obtain properties as good as the 

Simon designs (in terms of rejecting/accepting/failing to reject the correct hypotheses), yet we 

will treat fewer patients when the null hypothesis is true. 

 

3.1.3. Scenario 3: p0 = 0.05, p1 = 0.20, Ki=8, Ke=1, N=37 (O2SD), N=32 (M2SD). 

  

A common situation arises in phase II oncology trials when a new treatment is to be tested in a 

patient population for which there is no curative therapy. In this case, we may assume a low null 

response rate of 5%, and the alternative usually ranges anywhere from 15% to 35% with a 20% 

response rate being a fairly common choice for the alternative. This yields an O2SD with N1=12, 

r1= 0, N=37, and r=3 and M2SD with N1=18, r1= 1, N=32, and r=3.  The likelihood designs have 

few opportunities to stop in a situation with a low expected response rate. When choosing Ki=8, 

there are only three early stopping opportunities shown in Table 2: 0 responses in 13 patients, 1 

response in 22 patients, and 2 responses in 31 patients. It would be expected that with fewer 

opportunities for stopping, the likelihood and Simon designs would be more similar in 

performance.  

 

 Ke was chosen to be 1 for comparability to the Simon designs. The acceptance/rejection of 

hypotheses probabilities are similar in pattern to scenario 1: under the alternative hypothesis, 

the likelihood designs have a lower chance of choosing the alternative as compared to the 



Simon designs (Figure 4A). However, the performance of the likelihood design under the null is 

better in the optimal LSD than the O2SD.  Figure 4B demonstrates that the M2SD and the LSD 

with N=32 are almost identical. In Figures 4C and 4D, the LSDs perform better under the null in 

terms of expected sample sizes and early stopping probabilities, although the improvement in 

expected number of patients under the null is not as dramatic as in the previous scenarios given 

that there are fewer opportunities for stopping.  The chance of early stopping under the null in 

the likelihood designs is much greater (84%) than in the O2SD (54%), and an even greater 

difference exists when comparing the M2SD (84% for the LSD vs. 40% for M2SD). Under the 

null, the likelihood designs have expected sample sizes of 21 and 20 with maximum possible 

sample sizes of N=37 and N=32, respectively, while the Simon designs have expected sample 

sizes of 23 and 26. When comparing the likelihood design to the optimal design with the same 

sample size, the difference in expected sample size under the null is only 2, but when 

comparing the likelihood design to the minimax design, the expected difference is 6, which is 

substantial given that the maximum sample size is only 32. The probabilities of early stopping 

under the alternative in the likelihood designs are 9% and 10% for N=37 and N=32 as compared 

to 7% and 2% in the Simon designs. However, the expected sample sizes are almost identical 

under the alternative (Figure 4D).  

 

3.1.4. Other situations 

 

There are infinitely many possibilities to consider, but due to space limitations, we have only 

shown a few here. Additional scenarios are described in section 4. As it turns out, the larger the 

null hypothesized response rate, the greater advantage the likelihood design will have on the 

expected sample size and on the probability of early stopping when the true response rate is 

less than or equal to the null. This is not surprising given the increased number of opportunities 

for early looks at the data.   



 

3.2. Comparison to the predictive probability approach 

 

Comparisons have focused on the Simon design because it is most present in oncology trials. 

Lee and Liu’s predictive probability design (PPD) may be a more natural comparison due to its 

increased number of looks [12]. Despite being Bayesian, the PPD is similar regarding its 

treatment of the alternative hypothesis to Simon designs. It relies on the probability that the 

response rate is larger than p0, regardless of the proposed alternative. Specifically, early 

stopping is based on the probability that the treatment will be deemed efficacious (i.e. p>p0) by 

the end of the study (if the study were to be completed) given the data observed at an interim 

look. Lee and Liu chose to estimate the predictive probability beginning with the 10th patient in a 

trial and to then monitor continuously, although they also explored other non-sequential designs.  

 

Lee and Liu compared PPDs with type I and II levels less than 0.10 to Simon designs with type I 

and II error levels less than 0.10 [12]. We have selected a subset of the designs proposed by 

Lee and Liu; specifically, the ones with the same sample sizes as the O2SD and M2SD (Table 

3). The PPD shows improvements relative to the Simon designs in regards to probability of early 

stopping and smaller expected sample sizes under the null. We have added LSDs with the 

same maximum sample sizes and Ki=8 and Ke=1 to the comparisons. Table 3 shows type I 

errors of less than 0.10 for all LSDS and type II errors ranging from 0.091 to 0.133. Most of the 

type II errors are not less than 0.10, but all are negligibly different. Under the null, the expected 

sample size is smaller for all LSDs compared to PPDs and Simon designs. Probability of early 

termination (PET0) is smallest under the Simon designs and highest under the PPDs, with the 

LSDs having stopping probabilities close to but smaller than the PPDs. These results suggest 

that the PPDs stop early more often but stop later in the trials given that their expected sample 

sizes tend to be larger. We argue that with the primary goal of sparing patients ineffective 



treatments, having a smaller expected sample size under the null is the more important 

characteristic. 

 

3.3. Sample size calculations for designing likelihood early stopping designs. 

 

A common approach for study design in a frequentist setting is to graph sample size versus 

power for a fixed level of alpha and effect size. A similar approach in the likelihood setting for 

single arm studies with a binary response is to plot acceptance probabilities of both null and 

alternative hypotheses for fixed values of Ki and Ke and fixed p0 and p1. An additional quantity 

that can be included is the probability of early stopping under the null (and/or alternative). In the 

previous section, we explored study designs with Ki=8 and with Ke values of 2.3 and 1 with null 

and alternative hypothesized response rates of 0.20 and 0.40. In Figure 5, four combinations of 

Ki and Ke are considered: (A) Ki=8, Ke=8; (B) Ki=8, Ke=2.3; (C) Ki=8, Ke=1; (D) Ki=4, Ke=2.3.  In 

each panel, sample size is plotted versus the probability of acceptance of a hypothesis and 

early stopping under each hypothesis (i.e., p0 = 0.20; p1 = 0.40).  Figure 5A suggests that if 

proposing Ki = Ke = 8, the sample size should be 50 to ensure at least an 80% chance of 

accepting the alternative when it is true and 90% chance of accepting the null when it is true. 

This sample size will also yield a very high probability of early stopping under the null (0.90). 

Decreasing the K for the final look to Ke=2.3, a required sample size of 38 will provide >90% and 

>85% chance of accepting the null and alternative hypotheses (Figure 5B), respectively, when 

they are true and >80% chance of early stopping under the null. If the stringency of futility 

stopping is decreased to Ki=4 with a final Ke=2.3 (Figure 5D), even increasing the sample size 

to N=80 will not provide a sufficiently high probability of accepting the alternative when it is true 

due to the high chance of early stopping with somewhat weak evidence. For large sample sizes 

(N>60) in Figure 5D, the probability of accepting the null when it is true is greater than 0.98, 

implying an imbalance in the likelihood of strong misleading evidence. These sample size 



figures help us choose reasonable values for Ki and Ke that lead to acceptable and appealing 

design performance characteristics for a range of sample sizes. As an example, inspection of 

Figure 5D clearly demonstrates that regardless of sample size, the choice of Ki=4 and Ke=2.3 

has poor operating characteristics.   

4. Examples 

 

4.1. Clinical trial in patients with non-small cell lung cancer (NSCLC). 

 

A clinical trial has been proposed (and submitted to the NCI) to test the hypothesis that 

treatment of advanced stage and refractory NSCLC patients with a novel agent that is FDA-

approved for multiple sclerosis will improve the tumor response rate via activation of ceramide-

PP2A tumor suppressor signaling by binding/targeting I2PP2A oncoprotein leading to c-Myc 

degradation, telomerase inhibition, and consequent tumor suppression. The primary endpoint is 

disease-control rate (DCR; i.e., the proportion of patients with complete response, partial 

response and stable disease) at 8 weeks.  Our null hypothesis is that the DCR is 0.30 and our 

alternative is 0.50.  A likelihood stopping design has been proposed with a likelihood ratio of 8 

favoring the null versus the alternative and, at the end of the study, the hypothesis is chosen 

which the likelihood ratio favors (i.e., Ke = 1).  With a total possible sample size of 46, the 

selected design has a 94% chance of accepting the null when it is true and 87% chance of 

accepting the alternative when it is true.   These are comparable to alpha of 0.06 and power of 

87% in the O2SD.  However, the expected sample size under the null is 29 in the O2SD versus 

22.7 using the LSD. 

 

4.2. Vitamin D3 supplementation in African American adults  

 



A randomized study has been planned in African American adults to determine (1) if 4,000 IU of 

Vitamin D3 daily is safe, and (2) if supplementation is able to improve health-related measures, 

such as blood pressure and lipids (e.g., cholesterol levels). One-hundred and fifty patients will 

be randomized to the supplementation arm and 75 to the placebo arm. The safety endpoint (i.e., 

toxicity) is defined as the incidence of any grade II, III, or IV toxicity (as defined by CTCAE v 4.0) 

within the first 16 weeks of treatment in the supplementation arm. The null hypothesis is that 

85% of patients will not experience a toxicity and the alternative is that 95% of patients will not 

have a toxicity.  (This is analogous to a null toxicity rate of 15% and an alternative toxicity rate of 

5%).   Using a likelihood early stopping approach with these presumed hypotheses, choosing 

Ki=8 and Ke=2.3,  the probability of accepting the null when it is true is 0.98; the probability of 

accepting the null when the alternative is true is 0.07; and the probability of weak evidence is 

<0.01 regardless of whether the null or alternative is true.  If the null is true (i.e., toxicity rate of 

0.15), the probability of early stopping is 0.98 and the expected sample size in the 

supplementation arm is only 38. Under the alternative hypothesis (i.e., toxicity rate of 0.05), the 

chance of early stopping is only 7% and the expected sample size is 142.  If, for practical 

implementation, it is decided to evaluate the data after every tenth patient has reached 16 

weeks of follow-up, the expected sample sizes under the null and alternative are 45 and 145, 

respectively; and the probabilities of accepting the null when it is true and when the alternative 

is true are 0.98 and 0.09, respectively.   With the same total sample size, the Simon optimal 

design can be performed with a type I error of 3.5%, power of 95% and expected sample size 

under the null of 69.   

 

5. Discussion 

 

The evidential paradigm provides a natural framework for early stopping in single arm phase II 

studies using the likelihood principle and taking advantage of the universal bound which limits 



the probability of misleading evidence. The examples shown in Section 3 illustrate that it is 

possible to achieve similar acceptance and rejection of proposed hypotheses while improving 

upon the early stopping probabilities under the null hypothesis. Implementation of two different 

thresholds for evidence - one threshold for early stopping and another threshold for hypothesis 

selection at the trial’s end allow us to control the probability of weak and misleading evidence 

while increasing the chance of early stopping under the null. Choices of Ki=8 and Ke=1 or 2.3 

appear to be reasonable choices. The combination of Ki=8 and Ke=8 yielded weak evidence 

relatively frequently. The combination of Ki=4 and Ke=2.3 caused an imbalance in the likelihood 

of acceptance of the null when it is true (high probability) versus the alternative when it is true 

(low probability). This is due to the asymmetry in the design (which can stop early only for 

futility) and to the low threshold for early stopping resulting in 20% or more of trials stopping 

early when the treatment is effective. 

 

Although it was not emphasized in our illustrative examples, Figure 2 shows that when the true 

response rate is even lower than the null response rate, the chance of early stopping will be 

even higher. This is also true of the Simon designs, but because of the increased number of 

looks in the likelihood approach, the expected sample size comparisons between the Simon 

designs and the likelihood designs tend to more strongly favor the likelihood designs.  

 

Single arm phase II clinical trials with binary endpoints can be designed allowing for more 

frequent looks at the data while preserving operating characteristics (i.e., probability of 

accepting the correct hypothesis) and improving others (i.e., probability of stopping early under 

the null hypothesis). Fewer patients are exposed to ineffective agents, and resources are 

preserved by stopping futile trials earlier. Comparisons to the PPD and Simon designs suggest 

that LSDs allow earlier stopping (although not necessarily more frequent stopping) and subject 

fewer patients to ineffective therapies with little or no increase in error rates. The methods 



proposed have been developed into an R library, allowing users to compare the likelihood-

based design to the Simon designs, and to design future trials using sample size graphics.  
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Table 1: Early stopping thresholds for p0 = 0.20, p1 = 0.40 with Ki=8 and a maximum 
sample size of N=37. Stopping occurs if 1/LRt < 0.125 

Number of 
responses (yt) 

Number of 
patients (Nt) 

Estimated 
response rate 

1/LRt 

0 8 0 0.10 
1 11 0.09 0.11 
2 15 0.13 0.095 
3 18 0.17 0.11 
4 21 0.19 0.12 
5 25 0.20 0.10 
6 28 0.21 0.11 
7 32 0.22 0.096 
8 35 0.23 0.11 

 
 
Table 2: Stopping thresholds for p0 = 0.05, p1 = 0.20 with Ki=8 and a maximum sample 
size of N=37. Stopping occurs if 1/LRt < 0.125 

Number of 
responses (yt) 

Number of 
patients (Nt) 

Estimated 
response rate 

1/LRt 

0 13 0 0.11 
1 22 0.045 0.11 
2 31 0.065 0.11 

 



Table 3: Comparison of three designs, based on probability of early termination under the null hypothesis (PET0), expected value of 
the sample size under the null (E(N0)), and the final decision rule for accepting the null (or failing to reject the null). If there are r or 
fewer responses in N patients, the null will be accepted (or fail to be rejected).  For each null and alternative hypothesis pair, the first 
row represents the sample size selected based on the Simon Minimax Design with α = β = 0.10. The second row corresponds to the 
sample size for the Simon Optimal Design with α = β = 0.10. The PPD and LSD were derived using the same maximum sample size. 
 
  Simon Two-Stage Design 

α = β = 0.10 
Predictive Probability Design

α = β = 0.10 
Likelihood Stopping Design 

Ki = 8, Ke = 1 
 Max N* PET0 E(N0) α β PET0 E(N0) α β PET0 E(N0) α β 
0.10 vs. 0.30 25 0.52 20.4 0.095 0.097 0.79 20.0 0.096 0.095 0.73 15.8 0.091 0.125
 35 0.66 19.8 0.098 0.099 0.86 22.0 0.062 0.099 0.87 17.1 0.046 0.114
0.20 vs. 0.40 36 0.46 28.3 0.086 0.098 0.86 27.7 0.088 0.094 0.82 20.4 0.082 0.125
 37 0.55 26.0 0.095 0.097 0.85 25.1 0.100 0.084 0.82 20.4 0.089 0.109
0.30 vs. 0.50 39 0.37 35.0 0.094 0.100 0.86 32.5 0.096 0.083 0.79 22.1 0.078 0.129
 46 0.67 29.9 0.097 0.095 0.88 33.5 0.081 0.088 0.85 22.9 0.058 0.127
0.40 vs. 0.60 41 0.55 33.8 0.095 0.099 0.87 31.1 0.096 0.098 0.78 24.0 0.090 0.118
 46 0.56 30.2 0.095 0.100 0.88 32.1 0.091 0.093 0.81 24.8 0.058 0.133
0.50 vs. 0.70 39 0.50 31.0 0.098 0.099 0.87 29.2 0.100 0.095 0.80 21.4 0.084 0.118
 45 0.67 29.0 0.096 0.098 0.88 25.4 0.100 0.091 0.85 22.3 0.054 0.126
0.60 vs. 0.80 35 0.82 28.5 0.097 0.100 0.89 25.5 0.090 0.089 0.82 17.8 0.093 0.113
 38 0.47 25.4 0.097 0.096 0.88 21.6 0.099 0.081 0.85 18.4 0.088 0.105
0.70 vs. 0.90 25 0.55 20.0 0.091 0.092 0.89 16.4 0.091 0.098 0.80 13.0 0.083 0.123
 28 0.54 17.8 0.099 0.090 0.88 15.7 0.100 0.077 0.84 13.4 0.088 0.091
* Max N refers to the maximum sample size the trial would enroll using the Minimax Design sample size and the Optimal Design 
sample size. 
 
 



Figure Captions: 
 
Figure 1: The relationship between K and the significance level (alpha) for one- and two-
sided hypothesis testing based on the limiting frequency of observing strong misleading 
evidence. Specifically, the probability of strong misleading evidence (i.e., a type I or II 

error in the frequentist paradigm) is limited by ))log(2( k  in the evidential paradigm. 

 
Figure 2: Comparison of operating characteristics of Simon designs and LSDs assuming 
H0: p=0.20, H1: p=0.40, Ki=8 and Ke=2.3. (A) Probabilities of accepting or rejecting null 
and alternative hypotheses and weak evidence based on true response rates; Simon 
optimal design versus LSD (max N=37). (B) Probabilities of accepting or rejecting null 
and alternative hypotheses and weak evidence based on true response rates; Simon 
mimimax design versus LSD (max N=36). (C) Probability of early stopping versus true 
response rates for Simon designs and LSDs. (D) Expected sample size versus true 
response rates for Simon designs and LSDs. 
 
Figure 3: Comparison of operating characteristics of Simon designs and LSDs assuming 
H0: p=0.20, H1: p=0.40, Ki=8 and Ke=1. (A) Probabilities of accepting or rejecting null and 
alternative hypotheses and weak evidence based on true response rates; Simon optimal 
design versus LSD (max N=37). (B) Probabilities of accepting or rejecting null and 
alternative hypotheses and weak evidence based on true response rates; Simon 
mimimax design versus LSD (max N=36). (C) Probability of early stopping versus true 
response rates for Simon designs and LSDs. (D) Expected sample size versus true 
response rates for Simon designs and LSDs. 
 
Figure 4: Comparison of operating characteristics of Simon designs and LSDs assuming 
H0: p=0.05, H1: p=0.20, Ki=8 and Ke=1. (A) Probabilities of accepting or rejecting null and 
alternative hypotheses and weak evidence based on true response rates; Simon optimal 
design versus LSD (max N=37). (B) Probabilities of accepting or rejecting null and 
alternative hypotheses and weak evidence based on true response rates; Simon 
mimimax design versus LSD (max N=32). (C) Probability of early stopping versus true 
response rates for Simon designs and LSDs. (D) Expected sample size versus true 
response rates for Simon designs and LSDs. 
 
Figure 5: Sample size plots for various choices of Ki and Ke assuming H0: p=0.20, H1: 
p=0.40 for LSDs. P(Hi| Hi) = probability of accepting Hi when it is true, P(stop| Hi) is the 
probability of early stopping under Hi. (A) Ki=8 and Ke=8; (B) Ki=8 and Ke=2.3.; (C) Ki=8 
and Ke=1; (D) Ki=4 and Ke=2.3.  
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