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Abstract  

This paper reviews the current state of point event modeling in spatial epidemiology 
from a Bayesian perspective. Point event (or case event) data arise when geo-coded 
addresses of disease events are available. Often this level of spatial resolution would 
not be accessible due to medical confidentiality constraints. However, for the 
examination of small spatial scales  it is important to be capable of examining point 
process data directly. Models for such data are usually formulated based on point 
process theory. In addition, special conditioning arguments can lead to simpler Bernoulli  
likelihoods and logistic spatial models.  Goodness-of-fit diagnostics and Bayesian 
residuals are also considered. Applications within putative health hazard risk 
assessment, cluster detection, and linkage to environmental risk fields (misalignment) 
are considered.  
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1. Introduction 

Bayesian modeling of small area count data has seen considerable advances in recent 
times (see e.g. Besag et al, 1991, Knorr-held, 2000, and Lawson, 2009 amongst 
others). This is partly due to the availability of such data and its ready application. 
However, there has been little development of equivalent modeling of geo-referenced 
address data. Address data naturally form point processes in space and the modeling of 
such data is often either prohibited due to confidentiality restrictions on health records or 
because the models are less familiar to the practitioners. A recent technical review of 
these point process models and approaches is found in Møller and Waagpeteresen 
(2007). It is the purpose of this review to examine the application of Bayesian methods 
where geo-referenced health outcome data is the natural format. Most of this paper will 
focus on spatial models and spatial data, but in a later section (Section 7) I will briefly 
examine the issues related to spatio-temporal case event data and modeling.  

The rest of the paper is laid out as follows. In the next sections I discuss the sources of 
data, the nature of geo-referenced health data and the use of control diseases to 
represent population effects. In the subsequent section I examine basic models for this 
data and define the Bayesian context for such models. In particular I examine the 
heterogeneous Poisson Process (HPP) model and its extension to a log Gaussian Cox 
Process (LGCP) and spatial cluster processes. Following that I review specific 
application areas where Bayesian model have or can be applied. Finally I summarize 
the current state of development and suggest areas for future work. An appendix with 
program code is also provided for a selection of the examples. 

2. Data Sources 

Geo-coded address data, also known as case event data, is found where a point 
location is used to represent the residential address of a case of disease. Hence a 
sample of street addresses of disease cases yields case event data. Whereas if only a   
postal code or zip code or other arbitrary area is known for  the cases then (usually) 
only a count of disease can be analyzed within that area. The distinction between case 
event and count data is blurred by the fact that counts are just a spatially-aggregated 



form of case event data. However, when point locations are available a substantially 
different form of analysis must be performed. 

Usually geo-coded address data are found where studies focus on relatively small 
spatial windows. When considering, for example, the effects of an environmental 
pollution source on surrounding communities, it may be important to consider a scale of 
analysis that is defined within a study window of only a few kilometers or miles. 
Because the scale of postal or census regions is often large by comparison it would not 
be feasible in these cases to examine the aggregated counts of disease due to the 
inherent smoothing of the risk variation. In short the risk variation would be smoothed 
out by aggregation.  

The use of such case event data has many advantages and some disadvantages. First 
of all the data is held at the individual case level and so could be augmented by 
individual covariates or predictors thought to be relevant in the analysis. On the other 
hand the use of a residential address may be questioned in that it is used to represent 
the assumed point at which exposure has taken place. How appropriate this location is 
will depend on prior understanding of the exposure process and disease etiology. 

Case event data can be obtained from local departments of health but are usually 
subject to stringent confidentiality restrictions. Usually individual level data requests 
from health departments are subject to concerns about identification of patients. Hence 
address data must be handled with care. A map at a fine level of resolution could lead 
to identification of individual patients (even when individual identifiers are not held in the 
data set). Hence the mapping of such data and its public presentation may also be 
subject to restrictions in addition to de-identification of patients before analysis.  

3. Control Diseases 

As in the analysis of count data in aggregate spatial units, it is important to account for 
the population underlying the case event data. All disease events occur within a 
population which has a spatially varying density and also varies from place to place in 
its demographic composition. Because some population groups have greater or lesser 
susceptibility to disease than others it could be important to account for this variation so 
that apparent concentration of disease are not mistaken for population peaks. In 
essence, larger/denser populations give rise to greater disease incidence and this effect 
is a fundamental feature of a linear model of disease risk. Figure 1 displays the spatial 
distribution of case events (larynx cancer) and controls (respiratory cancer) for a well 
known example: larynx cancer incidence in Lancashire NW England 1973-1984 
(Diggle,1990). 

4. Models 



Some basic notation that will be useful in the rest of this paper follows. Define a study 
window as a bounded area within which we observe events. The window is denoted by 
T and its area by A . A realization of cases of disease is found within the window T. 
Unlike a random sample, a realization is a complete enumeration of all events (cases) 
within an area (in this case T). Assume that there are m observed cases. This set of 
events has locations defined by 1: { ,....., }mS s s . Here, s represents the two dimensional 

geographic coordinate of the case. This is usually a residential address as we usually 
associate exposure with residence, unless an occupational etiology were to be the 
focus. In veterinary studies, the set S might be siting locations for diseased animals, for 
example. 

We also assume that we observe within T a set of n control locations: 1: { ,....., }nC c c . 

This set consists of a geographical control for the case outcomes. This could be another 
disease or the non-diseased portion of the population at risk. For example we could 
observe maternal residences of babies born with abnormalities and as control we could 
examine all normal birth locations for the same time period and area.  

It is often useful to derive a composite binary variable from the concatenation of case 

and control realizations. Define the N m n   set of locations where the first m are 

cases and the next n are controls as:  1: { } { ,......, }c c cNS S C s s  . Define a binary vector 

 1, ,...,iy i N  where the first m are cases and the last n are controls thus 

1  i 1

0

{ ,..., }
i

if m
y

otherwise


 


. 

This vector is now a binary outcome variable, associated with the cS locations, and can 

be considered as the outcome of choice and modeled within a logistic formulation (as 
will be discussed in detail in the next section). 

5. Bayesian approach   

Bayesian modeling has as a fundamental ingredient the specification of a likelihood for 
the observed data. In addition it requires that parameters in models are regarded as 
stochastic and are assigned prior distributions. The product of the likelihood and prior 
distributions for parameters yields a posterior distribution for the parameters after 
suitable normalization. Inference about models is largely based on this posterior 
distribution. By modelling both the observed data and any unknown parameter or other 
unobserved effects as random variables, the hierarchical Bayesian approach to 
statistical analysis provides a cohesive framework for combining complex data models 
and external knowledge or expert opinion (Lawson and Banerjee, 2009). In general, the 
data model, which is used in the likelihood, can be denoted ( | )p y θ  for observation y 



and a set of parameters θ , and then the likelihood for N observations is given by 

1

( | ) ( | )
N

i
i

L p y


y θ θ , for a sample of  1{ ,......., }Ny y y of size N . The assumption is made 

that given the parameters then the data are conditionally independent. 

Modeling event locations: the Heterogeneous Poisson Process Likelihood 

In our application, the random quantity is the address locations of cases. Hence we 

need to define our likelihood as  
1

( | ) ( | )
m

i
i

L p s


s θ θ  for a suitably defined ( | )p s θ . Once a 

choice is made for ( | )p s θ  then suitable prior distributions must be chosen for the 

parameters θ . It is conventional in the analysis of case events to assume that the 
events form a realization from a heterogeneous Poisson process (HePP) . This process 
describes the distribution of points within a spatial region and the process is governed 
by an intensity function which is defined for any location s as ( | )s θ . This function is 

strictly positive and yields a local ‘rate’ of events anywhere within the study area. It is 
this function that can be modeled via a likelihood. Formal properties of these processes 
are described in Diggle (2003), ch  5. Two forms of likelihood are associated with this 
process: conditional and unconditional. Here I only consider the likelihood conditional on 
m events being found in a study area. In this case the probability of an event at a 
specific location s is just  

  where 
( | )

( | ) ( ) ( | )
( ) T

T T

s
p s u du

   
 

θ
θ θ θ

θ
.  Note that ( )T θ  is just a normalizing 

constant and it is the integral over the study area of the intensity function ( | )s θ . Hence 

in this situation we have the log likelihood:  

1

     (m1)( | ) log( ( | )) log ( )
m

i T
i

l s m


  s θ θ θ .  

This likelihood can be used for inference within a Bayesian modeling framework, 
assuming that ( | )s θ  is suitably specified.  Usually when we consider spatial 

epidemiological examples we need to consider the population at risk in relation to the 
case density and it is common for the intensity function to have 2 parts: a model part 
and a background part. 

For example, we can define 0 1( | ) ( ). ( | )s s s  θ θ  where 0( )s represents background 

population variation and 1( | )s θ  is the model component.  If we assume that there are 

no parameters to estimate within  0( )s  (ie that it is fixed or given) then in that case we 

have  



0 1
1 1

1
1

=         (m2).

( | ) log( ( )) log( ( | )) log ( )

log( ( | )) log ( )

m m

i i T
i i

m

i T
i

l s s m

s m

 



 



   

 

 



s θ θ θ

θ θ

 

These likelihoods (m1, or m2) are not based on standard distributions and to use them 
for inference one would have to evaluate the spatial integral ( )T θ .  This of course is 

not difficult as it is 2 dimensional, and it can be evaluated by using Monte Carlo 
integration, or even numerical integration schemes if the area were regular such as 
rectangular, for example. Note that attempts have been made to allow the fitting of 
these likelihoods in standard software packages, via the use of a Poisson distribution, 
which has a likelihood similar to that of the HePP form (Berman and Turner,1992; 
Lawson, 1992). By choosing a numerical integration scheme the likelihood m1 can be 
written  

1

1

      (m3)

as   

[ log( ( | )) ( | )]

( ) ( | ) ( | )

m

i i i i
i

m

T i i
iT

w I s s

u du w s

 

 







  





θ θ

θ θ θ

 

and the likelihood m3 is a weighted Poisson likelihood for indicator variable iI with mean 

( | )is θ  and with integration weights { }iw and an indicator vector where 1 /i iI w . The 

weights could be Dirichlet tile areas around the case event locations, for example. The 
choice of weights is really crucial for the accuracy of the integral approximation. Usually, 
the accuracy of this approximation is not good unless extra dummy weights are added 
to the sum. Note that m3 can be programmed using the zeroes or ones trick in 
WInBUGS as an arbitrary likelihood and so a Bayesian hierarchical model can be based 
on m3 (see Appendix 1). Of course outside of WinBUGS it is possible to simply evaluate 

m2 with a suitable integration scheme where 
1

( ) ( | )
m

T i i
i

w s


 θ θ . Once a likelihood is 

specified within WInBUGS it is then possible to extend our model to include covariates 
(via linear or spline functions), random effects, both spatially correlated and 
uncorrelated simply by suitable specification of ( | )is θ  or log( ( | ))is θ . 

The above discussion  assumes that 0( )s  is known or given of course. An early 

solution to the problem when 0( )s  is unknown was to use a nonparametric intensity 

estimator of the control data to yield 0
ˆ ( )s  and to use that as a ‘plug in’ within m2, with 

0 1
ˆ( | ) ( ) ( | )i i is s s  θ θ  and therefore a profile likelihood would result. The resulting 



inference was found to be sensitive to the smoothing employed to estimate 0
ˆ ( )is  

(Lawson and Williams, 1994). Another approach to this problem is to change the 
outcome data that is used and to convert the problem into a simpler binary regression. 
This is discussed in a later section. 

5.1 Intensity specification  

A fundamental part of the modeling process is the specification of the intensity to be 
modeled. In spatial epidemiology we are mainly interested in focusing on the 
specification of 1 1 or ( | ) log( ( | ))i is s θ θ . How this is achieved will in part depend on the 

application. However one can in general consider the generalized mixed model 
formulation where 

 1 1 1 2       I1log( ( | )) ( )i i i is x f x z     θ β γ . 

Here the first term is a linear predictor for covariates ( 1x ), the second term consists of 

potentially non-linear functions (splines) of covariates ( 2x ) and finally the third term is a 

collection of random effects ( z ) with inclusion vector γ . The covariates in the first term 

could include the spatial coordinates of the i th location or functions such as distance or 
direction from a known location (as is used in putative health hazard detection). In 
addition personal covariates could be included such as age, or gender of the case. The 
choice of which covariates to include in the non-linear term depends on application. It 
may be that a 2D field of measurements are to be related to the events and this must be 
smoothed over space. In that case, a 2D spline might be considered. An example would 
be pollution measurements at spatial sites that must be interpolated to the point 
locations of events. Finally we may consider that additional random variation in the case 
outcomes occurs. This may possibly be due to unobserved confounding. The 
confounders could be unknown or unmeasured.  First an individual level frailty term 
could be considered whereby individual differences in disease response is allowed. 
Second, we could consider spatial random heterogeneity which could modulate the 
intensity. This could be uncorrelated or correlated (spatially structured). We use the 
acronyms UH and CH to distinguish these effects. Hence within a hierarchical modeling 
framework we would have a hierarchy of effects specified via prior distributions just as 
in conventional Bayesian models. 

 A more concrete example would be useful. In a study of sources of air pollution risk on 
respiratory asthma cases, we are concerned with the distance effect from a putative 
pollution source (incinerator), we are also concerned to make allowance for the age of 
the cases, as well as for the spatial distribution of a competing risk (PM2.5 measured at 
a network of sites). We want to allow for confounding also. We assume that 
confounding could be spatially correlated. 



A possible formulation would be  

1 0 3

1 2

        I2

 1

log( ( | )) ( )

log[ exp( )]
i i i i i

i i

s G age f pm u

where G d

  
 
    

 
θ

 

Here, the link to the source is via distance ( id ) in an additive-multiplicative form, with 

covariate iage  and 2d spline on ipm  (interpolated to the case sites), and finally iu  which 

is a spatially correlated random effect. This example of course would require the 
addition of prior distributions for all parameters and effects ( 0 1 2 3, , , ,     parameters in 

(.), if u ) to complete the Bayesian specification. We consider the full Bayesian 

specification in a later section. 

5.2 Modeling the binary outcome vector 

In the above we assumed that 0( ) s  is known or can be estimated to provide a profile 

likelihood. However this is often not available or could lead to smoothing problems. 

An alternative formation of the point process model is to consider instead, the joint 
realization of cases and controls and to model the binary label on the joint vector. 
Hence instead of directly modeling the locations, we model the binary labels (

 1, ,...,iy i N ) on the locations. It is known form Point process theory that the joint 

distribution of cases and controls is a HePP also with intensity 0 0 1 θ( ) ( ) ( | )  s s s , 

assuming that the controls are HePP with intensity 0( ) s . From this definition, then we 

can define the conditional probability of a case ( 1iy ) at a given location as  

0 1 1

0 0 1 1

θ θ
1

θ 1 θ

( ) ( | ) ( | )
Pr( )

( ) ( ) ( | ) ( | )
  

   
  

 
         (Pr1)i

s s s
y

s s s s
. 

 This is just a logistic probability for a binary outcome variable. In the process of 
derivation we have removed the nuisance term ( 0( ) s ) and so don’t have to estimate it 

now, and we have derived a conventional probability model (Bernoulli). Niote that 
spatial dependience can appear in the model but it is addressing the labeling rather 
than the locations themselves. Diggle and Rowlingson ( 1994) first proposed this 
approach and its extensions into semi-parametric modeling (Kelsall and Diggle, 1998). 
Under a Bernoulli data model the binary outcome variable can be treated as any other 
binary variable and so a hierarchical model can be constructed which in this case can 
be termed a Bayesian spatial logistic model. Hence we have  

1 2 θ

( )

) ( | , , , )   


logit(
i i

i i i i i

y Bern p

p s x x z
. 



 Hence a logistic linear spatial model would arise if 1 2 θ( | , , , )   i i i is x x z  is defined by a 

linear predictor in covariates and random effects. Instead a logistic spline spatial model 
arises when 1 2 2θ( | , , , ) ( )    i i i i is x x z f x .  Appendix 2 provides an example of  WinBUGS 

code for a logistic linear spatial model with 

 

1 2 1 0 2 1

1

θ 1( | , , , ) ( exp{ }).exp{ }           

 is distance to a putative point source

x  is age of the individual

v  is an uncorrelated (UH) random effect

 is a spatially correlated (

i i i i i i i i

i

i

i

i

s x x z d x v w

where

d

w CH) random effect

 

The focus in the analysis is to make inference about the distance effect ( 1 ) making 

allowance for individual age ( 1ix ) and unobserved confounders ( i iv w ). The choice of 

random effect and their prior distributions here could be important as we have individual 
locations where the labels are observed. An  uncorrelated effect at the individual level 
maybe straightforward to model but correlated (CH) effects may not be. Correlation 
between fixed locations in this case must be considered. There are two basic 
approaches that could be adopted for this CH specification: 1) a full MVN covariance 
model where the spatial covariance between locations is a function of their distance 
separation, and 2) conditional autoregressive (CAR) model whereby a neighborhood 
relations are assumed between locations.  In the first case, the proper prior distribution  

is defined as  

1

w μ

μ 0

  

where the covariance is and  is the distance between the  th and

  th locations  and 

( , )

( ),

.

m

ij w ij ij

N

f d d i

j

 



 




  

Usually,  has parameters  that must be estimated in the model. For example, a 

common simple model is the exponential covariance where 1 exp( )ij w ijd     so that 

the variability is modeled by 1
w
 and the distance dependence is modeled by  .  

The second approach attempts to avoid the computational burden of estimation of 
covariance parameters and instead considers a CAR alternative. CAR models require a  
simple neighborhood specification for their spatial structure and if such can be found for 
a set of locations then this could be a possible model. There are a number of ways one 
could define neighboring points to a given point: an arbitrary distance threshold could be 
used for example. An alternative known as ‘natural neighbor hoods’ (Sibson, 1981; 



Preparata and Shamos, 1988)  uses a tiling of the points and assumes that any 
adjacencies contain neighboring points. Often a Dirichlet  tessellation is specified as this 
has the property that all locations within a tile are closer to the tile point than to any 
other point. Hence the tessellation defines ‘territories’ for the point set. Figure 2 displays 
the tessellation of a set of arbitrary points. This was created by the R function DELDIR 
which is designed to compute such tessellations and triangulations. One disadvantage 
of the tessellation is that it does not have support at the edges of the study region. 
Instead it is always possible to compute the dual of the tessellation, the Delauney 
triangulation. This is also shown on Figure 2 and is formed by joining the points with a 
common boundary. In this example the Delauney neighbors (points joined by a triangle) 
are given by the coordinates X: 0.1 0.2 0.4 0.45 0.6 0.3; and Y: 0.1 0.3 0.7 0.2 0.7 0.4, with 
the number of neighbors defined as   2, 4, 3, 4, 3, 4. In this way it is possible to define 
an adjancy matrix and hence a CAR random effect could be assumed. Note that no 
knowledge of the exact location of the points is required, only the labels of the adjacent 
points. Appendix 2 displays the WinBUGS code for this model for the larynx cancer 
dataset (1036 case-control locations) and the dataset is available as detailed in the 
Appendix. 

5.3 Prior Distributional Choices 

So far I have only considered a small range of data types and approaches to likelihood 
definition. Once a likelihood is assumed, whether it is (m1) - (m3) or based on (Pr1), 
with the intensity specified, then it is important to specify prior distributions for all 
parameters and random effects. It is one of the great advantages of a Bayesian 
modeling approach that it is possible to place model structure at different levels of 
model hierarchy and in this way can avoid complicated likelihood specification. In fact in 
spatial statistics a major concern is the introduction of spatial correlation into a model. 
By allowing correlation to be placed in prior distributions a Bayesian model can exploit 
conditional independence down the hierarchy to allow independent likelihood 
contributions.  

Assuming we have the general form 1 1 1 2log( ( | )) ( )i i i is x f x z     θ β γ , then the different 

parameters and effects can be treated as follows. First, we usually try to choose non-
informative prior distributions if possible. For regression parameters ( 1β ) within linear 

predictors it is commonly assumed that they can each be independently assigned a 

zero mean Gaussian distribution with precision  *  i.e. 10( , ).N    The precision is just 

the inverse of the variance and it measures how concentrated the distribution is. It is 
conventional to use the precision (rather than the variance) for Gaussian distributions 
within Bayesian analyses. For uncorrelated random effects a similar specification is 

made with zero mean and specified precision: 10 ( , )i vv N    . It is conventional to 



consider the combined specification of parameter prior distribution and precision hyper-
prior distribution. It is important to specify a prior distribution for a precision parameter 
(especially for random effects) as 

1

 with E(

so that
* *

*

( , ) ) /

( , ),

Ga a b a b

IG a b

 

 





 

where IG(.) stands for inverse gamma distribution. Often a reasonably non-informative 
Gamma with large variance is chosen for the precision with a=0.001,b=0.001 or even an 
exponential specification  such as Ga(1,0.026) (Wakefield, 2007). Other specifications 
can be considered as well, such as ‘close-to’ exponential: a=2.0, b=0.5. Unfortunately 
while gamma prior distributions are a natural choice for precisions they can sometimes 
lead to singularities at zero and also can be difficult to sample within McMC samplers. 
As an alternative, Gelman (2006) suggested using half Cauchy prior distributions and 

sd-uniform variants. For example, the specification 1 2 0/
* ( , )U c    has been 

recommended and used extensively in WinBUGS help examples. The choice of c is 
usually in the range c= 5 to c=10. However, even a value of 5 leads to a very liberal 
range for the variance parameter and so small values of c are sometimes utilized to 
ensure convergence, especially in models with random effects.  

5.4 Cox Process formulation  

A Cox process results when the intensity specified is regarded as stochastic. This lends 
itself to a hierarchical formulation as within a Bayesian formalism the conditioning 
occurs within a hierarchy and at lower levels of the hierarchy conditional independence 
results. Hence, in the Cox process we have an intensity that has spatial stochastic 
variation but conditional on the intensity the cases are distributed independently as a 
HePP.   Conditional on the realization of the intensity function then data under this 
process can be modeled via the HePP likelihood. A variety of models result from this 
formulation. 

First, a special case is where a spatial Gaussian process ( )G s is assumed and 

1 0( | ) exp{ ( )}  s G sθ where 0 is an intercept. A spatial Gaussian process defines a 

random field which has both long range variation (trend) and short range covariation 
(spatial covariation or correlation).  In this way both correlation and trend can be built 
into the intensity process. Note that the process with  1 0log( ( | )) ( )  s G sθ is often  

termed a log Gaussian Cox Process (LGCP). A Gaussian process has marginal 
distributions that are multivariate normal with mean  μ  and covariance  . Often the 

covariance is specified by a specific function which measures the covariation at given 
distances between locations.  An example of a commonly used covariance function is 



the exponential where exp( )ij ijd    and ij  is th ij th element of  . Note that this 

specification is close to that discussed 5.2 with respect to the linear logistic spatial 
model except that here we do not assume a transformation from point process to 
conditional specification of the case-control logistic model for the point labels. To 
directly utilize a LGCP model with a Hierarchical context would require the normalization 

of the overall intensity via 0 0( | ) exp{ }. ( )exp{ ( )}   A s G s dsθ  over the study region. This 

integral could be evaluated via Monte Carlo integration within a sampler if required, if 
the background intensity were known. It could also be approximated via the Berman-

Turner method if need be with the assumption that 0 0
1

( )exp{ ( )} exp{ } 



N

j j j
j

s G s ds w G . 

Approximation of the 0( ) s  with piecewise constant 0 j could be achieved in a number 

of ways.  Of course the linear logistic formulation in 5.2 avoids the complication of 
evaluating such integrals, or estimating 0( ) s , but makes inference conditional in the 

locations observed. This still allows the use of spatial information in the modeling but it 
does not directly model the locations of events per se.       

5.5 Cluster formulation 

Cox processes can also be specified with different types of stochastic driving 
processes. For example, a clustered process could be conceived where 

1
1

 where we assume that there are k=1,...,K clusters and  is 

the distance from the  th center, and  is a cluster distribution function.

( | ) . ( )

(.)

K

i ik ik
k

s h d d

k h

  


   

The cluster distribution function can be a 2D density such as a bivariate normal if 
required, but the assumption of a density is not necessary as in the full PP model the 
intensity is integrated for normalization. The cluster distribution function depends on a 
variance or precision parameter which controls the spread of the clusters. Note that the 
clusters are unobserved and usually the number K is unknown as well. This kind of 
model may be favored when a LGCP is regarded as too regular a process for the spatial 
distribution of cases of disease. If irregular clustering is more common then a process 
where cluster centers must be estimated could be more appropriate. Special cases of 
this process arise with specific assumptions such as Poisson cluster processes and the 
Neyman-Scott process (see Møller and Waagpeteresen,2007 for details). 

Shot noise process  



Cluster processes which admit a random effect for each cluster center are often called 

shot-noise processes so that 1
1

( | ) exp( ). ( )
K

i k ik
k

s h d   


  where k is assumed to be zero 

mean Gaussian distributed. Of course extension to covariate models is straightforward 
when a multiplicative link is assumed so that 

1
1

*log( ( | )) ( ) log( exp( ). ( ))
K

i i k ik
k

s x s h d    


    . This yields a hierarchical model for 

parameters γ  and centers, , . Of course a logistic spatial model could be assumed in 

this case, but the appearance of centers of unknown number complicates the problem. 
As centers must be sampled within McMC iterations there is a need to recomputed 
distances from data to new sampled centers as well as sampling different values of K. 
Reversible jump McMC is often proposed for these situations. Lawson (2006) section 
6.5.2, and 6.5.3 gives examples of the posterior estimates of risk under these types of 
models. This type of problem is difficult to implement in conventional software such as 
WinBUGS/JAGS and resort must be made to R functions such as MCMCpack or 
bespoke programming.  

5.5.2 Cluster approximation: exceedence estimation 

One common approach to clustering is to model relative disease risk and examine 
posterior information that provides evidence for clustering in the risk, rather than specify 
a parametric cluster model. One such approach is to consider a posterior sample of 

1( | )is  values and to examine how many in the sample display elevated values. 

Assuming that elevated risk values may suggest clustering of risk, we could formalize 

this approach by assuming the set of G posterior sample values 1 1,...,{ ( | )}g
i g Gs   and 

declaring a threshold for the ‘elevated’ risk, say c, and compute a posterior functional 
such as  

1 1
1

1
Pr( ( ) ) ( ( | ) )

G
g

i i i
g

Q s c I s c
G

  


     

This computation yields an estimate of the exceedence probability (Qi) at a location and 
large values of this quantity suggest ‘unusually’ elevated risk. The choice of two 
different thresholds have to be made here. First c must be specified. Second the level of 
probability deemed ‘unusual’ must be decided. The choice of c essentially amounts to 
consideration of ‘null’ or ‘no effect’ value of the intensity . One choice might be c = 1 in 
that this absorbs the intensity into the background. Another possibility is to assume 

( )c s , an average level of risk, and this would be appropriate if the intensity of the 

case disease was overall higher than the control (i.e. a mis-specified control disease). 



The choice of threshold for Qi  may be as a conventional p-value eg 090 095 or . .iQ  . 

There is some trade-off between choice of c and probability level of Qi. In fact different 
spatial effects might appear when different combinations of these are assumed. 
Richardson et al (2004) have suggested using a Bayesian decision rule based on a 
relative risk threshold of c = 1 for aggregated count data. Using this exceedence 
approach has the advantage of allowing clustering to appear without making strong 
clustering assumptions. On the other hand the exceedences can be highly dependent 
on the model that is assumed for 1( | )is  . In fact patterns of exceedence tend to mimic 

the overall model form i.e. when a spatial trend is assumed then the exceedences will 
be trended, while if a more heterogeneous spatial distribution is assumed then the 
exceedences will be heterogeneous (even for the same dataset!). This model 
dependence means that there must be a sensitivity analysis carried out among 
candidate models and prior distributions to make sure that the final inference is robust. 

6 Multivariate Extensions  

Often it is necessary to examine a range of diseases and their spatial distributions. 
When we have multi-type processes we can still examine Bayesian hierarchical models         
with the additional possibility of examining correlation between diseases. Define 

0 1( | ) ( ). ( | )k k ks s s      for the intensity of the k th disease. Once again we can 

assume that the background intensity is nuisance but could be different for each 
disease i.e. 10 20 30( ) ( ) ( ).....s s s     We can proceed initially by assuming that the 

diseases could be modeled independently and simply estimate the intensity parameters 
separately. However there are interesting and useful ways of incorporating relations 
between diseases that can be pursued.  

6.1 Competing Risk Models 

If you consider that each case could have arisen from one or other of the diseases of 
interest then it may be important to consider the relative probability of having one 
disease over another. Hence we could consider the discrete probability  

1

Pr( | , ) ( | ) / ( | )
K

i k
k

k i s s s    


    and then the conditional likelihood as 

11 1
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It is straightforward to fit such an unordered categorical model, especially if the 

background intensities are the same. When the background intensities are different, as 



would more usually be the case, then they must be estimated from control diseases or 

further assumptions must be made.  An example of this competing risk formulation is 

given in Lawson and Williams (2000). 

6.2 Unconditional Models 
  

If it is not possible to condition, then the joint occurrence of the diseases must be 
modeled jointly. If each disease can be assumed to have a conditional likelihood that is 
of the heterogeneous Poisson process form (i.e. either HPP or Cox process) then a joint 
model could assume at the data level: 

1 1
θ( | ) [ ( | ) / ( )]kK n

k i Tkk i
L s s  

 
   .  

The normalization is for each disease, but this does not preclude the use of common 
components of the intensity functions linking the diseases. This is again where a 
Bayesian approach allows for flexible modeling: by moving correlation between 
diseases up the hierarchy we thereby avoid having to specify complex models for the 
joint data likelihood. For example, we could consider a shared component model 
whereby we assume: 
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and c  are common components or parameters whereas elements of θare disease 

specific.  An example of this might be  
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The neighborhood of each point can be defined using natural neighbors, as discussed 
above. Here the uncorrelated random effects * iv  are disease specific and the common 

effect ciu is spatially correlated with a CAR model and appears in all the disease models. 

 

Of course if one were to condition on a joint realization of cases and controls for each of 
a set of multiple diseases then our joint model would convert to a multivariate binary 
model where iy  is an integer label for the disease type at the i th location. 

The probability of a case at the I th location for any disease is  

0

0 1 0 0  and 

/ { }

( ) ( | ) ( )

i li li li
l l l

li l i l i li l i

p

where s s s

  

     

 

 

  
.  

If the background controls are all the same then this simplifies to 1 1/ { }i li li
l l

p L    . 

Denote the binary case-control indicator as iz . Conditional on there being a case at the 

i th location then the probability it is from the k th disease is 0/ { }ik ki li li
l l

q      , 

and this simplifies also when the controls are common. Finally the joint probability of a 
case of disease k at the ith location is 

01 1Pr( | )Pr( ) / { }i i i ik i ki li li
l l

y k z z q p          . We then simply model the 

probability vectors ( ,ik iq p ) at each location. 

 

7 Space-Time Bayesian Modeling 

A natural extension to spatial case event modeling is when disease cases have 
attached a date or time of diagnosis so that for the i th person we have ( , ).i is t  

In principle, it is possible to simply extend the notion of an intensity to the time 
dimension and to specify 

 0 1 θ( , ) ( , ) ( , | ),s t s t s t    

where the background is now time dependent and the modeled intensity ( 1 ) alos 

contains temporal effects. The main complication arises when the temporal dimension is 
random (ie times of events). Then effects must be scaled by the time gap between 
occurrences. While there is a large range of potential topics that could be discussed  



under this heading, space limitations  for this review preclude any further examination. 
Further examples of the application of space-time models within case event survival and 
general modeling applications can be found in Lawson (2006) ch8,  and  ch 10.  

  

8 Examples 

Putative Hazard Example  

As an example of a putative hazard analysis I will examine the larynx cancer data for 
NW England. There are 58 cases and 1036 in the superposition of cases and controls. 
The location of a waste product incinerator is known and the distance from this location 
is precomputed (disi). In this example we have added a simulated covariate. For all 
cases and controls we have simulated age from an age distribution matched to larynx 
cancer incidence within age strata for the UK. This is denoted agei  The case-control 
indicator variable is indi which takes values. Appendix 2 displays the code for WInBUGS 
for this example. The regression parameters in this log linear model are gam0, gam1, 
gam2, with gam1 the coefficient for distance and gam2, the coefficient for age. gam0 is 
the log-scale intercept. In addition there is an uncorrelated individual level random effect 
(vi) and also a spatially correlated random effect (wi). This latter effect is assumed to 
have a conditional CAR specification (car.normal). and is based on neighborhoods 
defined by Delauney triangulation.derived from the DELDIR R  package. All precisions 
are given sd-uniform prior distributions on the range 0 to 5. 

  Convergence is reached with mutiple chains by 10000 iterations, A sample of 4000 
was taken and yielded the following parameter estimates (Table 1):  

Table 1 Posterior average parameter estimates for the larynx cancer example 

parameter Mean SD 2.5% 97.5% 

Gam0 -10.15 1.222 -12.21 -7.603 

Gam1 21.45 20.58 -9.35 71.06 

Gam2 0.0386 0.0141 0.0118 0.0651 

 

Figure 3 displays the posterior sample density for gam1 and gam2 . It is clear that while 
the intercept is well estimated, the distance coefficient has a large range and crosses 
zero in the posterior sample. This suggests there is a lack of significant relationship with 
distance, whereas the 95% credible limits for the age effect are both positive and so 



suggests a significant though weak relationship with age. Of course this model could 
easily be extended to include other features of the data or alternative predictor links or 
forms. We could, for example, include directional effects around the putative source, or 
offset a deprivation index available at locations or contextually via census units. We 
could employ a non-linear or spline link function with covariates without altering the 
hierarchical model construction (see for example .Crainiceanu et al, 2007).  

Cluster Detection Example 

 In the larynx cancer example above we might be tempted to consider a general cluster 
detection approach to assess whether there is in fact any support for an unusual 
aggregation of cases at any locale within the study region. This could be achieved by 
employing a cluster model such as Cox process or shot noise process described above 
and estimation of cluster centers. An alternative is to examine the exceedences within a 
posterior sample from a standard trend or random effect model. Figure 4 displays the 
posterior expected exceedence field for the intensity ( 1  ) for the Berman Turner 
integral approximation method applied to the larynx cancer example with the log-linear  
intensity specified as in Appendix 1, including a spatial trend. Figure 5 display the 
posterior expected exceedence field for the same model but with the spatial trend 

removed and an uncorrelated random effect added ( 1 1 20 0 5 /( , ); ( , )i v vv N U    ). 

Contours delimiting higher  levels of exceedence probability can represent areas of 
clustered risk. A threshold can be assumed for these p-value surface. It is noticeable 
however that areas of excess risk shift depending on the underlying model: The spatail 
trend model suggest trending of risk into the south-west whereas the frailty model 
suggest an area in the mid central southern area. In fact the incinerator location is 
(3.545,4.140) and this lies within the 0.95 contour of risk for the frailty model but lies 
outside the 0.95 contour for the trend model. Clearly the goodness of fit of any putative 
model must be addressed when considering these highly sensitive clustering indicators. 

Environmental risk field misalignment 

A classic problem in environmental epidemiology is the assignment of appropriate 
exposures to case locations when the exposure is measured at other locations. 
Specifically, often pollution measures are made in networks of sample sites and these 
measures have to be interpolated or extrapolated to the locations of cases. As case 
locations are fixed points and monitoring sites are fixed networks of points then this 
amounts to an interpolation from one grid to another. A variety of methods can be used 
to achieve this. For example Bayesian Kriging could be used to provide estimates and 
these estimates would have associated estimation errors. The R package spBayes can 

be used for this purpose. Once these estimates are obtained they can be used in a 
variety of estimation procedures. However separately estimating these exposures can 



lead to estimation errors in the case event models. Usually we would assume a model 
where the true pollutant concentration is related to the health outcome and so the use of 
a joint likelihood for both health outcome and observed pollutant might be proposed. 
This leads to a classical measurement error (ME) model formulation. Examples exist of 
using a conditional spatial logistic model for  case event outcomes with this type of ME 
model (see e.g. Kim et al., 2010). In principle, this could be applied to an unconditional 
point process model with intensity  

0

1 1   measurement sites,

 { } are the observed pollutant values, and S(.) denotes a predictor link (e.g. spline) .

( , ) exp{ ( ) ......}

( , ) ,..,

t
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t
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 The interpolation to the case event locations is effected by using the predictive 
distribution for the pollutants. This has a known form when a Gaussian distribution is 
assumed for  jx  (see e.g. Banerjee et al, 2004). As the true value of the pollutant also 

appears in the health model a joint model is usually assumed so that the true value is 
estimated under both models. Alternatives are to use ‘plug-in’ (Kriged) estimates or 

Berkson error for t
ix .  

9 Approximate Likelihood Inference 

A number of approximations can be made to components in the likelihood of Bayesian 
models and these can lead to simplifications in the case event situation. One 
approximation is to use a fine mesh over the study region and to bin points from case 
and control disease into the grid cells. The resulting counts can be assumed to be 
Poisson distributed as the arbitrary segmentation of a Poisson process yield 
independent Poison distributed counts. Hence both the cases and controls would be 
Poisson and a superposition of the counts would lead to a relative binomial model. 

 For instance, if the counts of case and control in the k th cell is ,ca co
k ky y then the ca

ky  is 

binomial distributed with order  ca co
k k kn y y  . This allows the cell counts to be modeled 

via a logistic model. The relevance of this model depends on the grid cell size chosen. 
For other mesh approximation examples see Hossain and Lawson (2009).  

Alternative approximations arise when the likelihood or posterior is replaced by an 
approximation. INLA (Rue et al, 2009) attempts to approximate posterior distributions by 
Gaussian mixtures matched to the form of the density. As far as I am aware this has not 
been applied to point process likelihoods but could be a potential tool for faster 
approximate inference. 



10 Conclusions 

In the above I have attempted to summarize the current state of Bayesian modeling for 
point event data in spatial and environmental epidemiology. While much has been 
focused on the derivation of likelihoods and their approximation, it is important to realize 
that once a suitable data model is specified then via conditional independence we can 
formulate hierarchical models as in the more common count data situation. The main 
differences are 1) the evaluation of a normalizing constant integral in likelihoods; and 2) 
the specification of spatial correlation for events at fixed locations (rather than areas). 
Solutions to the first problem lie in using integral approximation /estimation methods or 
conditioning and label modeling, while for the second I propose the use of either full 
MVN correlation prior distributions or natural neighborhoods which allow the use of 
Markov random field (CAR) models. 

 

 

 

Appendix 1 

WinBUGS code for zeroes trick for a heterogeneous Poisson Process Bayesian model. 
This will invoke a Metropolis Hastings sampler as it is an arbitrary likelihood. The model 
is a putative source formulation where a distance variable (d[i]) is modeled via and 
additive link  1 exp( )  i if d and a spatial trend 0 2 3.exp{ }i i i if x y      . The 

weights (w[i]) kernel density estimate of background (den[i]) and indicator function (I[i]) 
are read input.  

model{ 

C <- 10000 #  large enough to ensure all phi[i]'s > 0 

for (i in 1:N) { 

f[i]<-1.+exp(-bet1*d[i]) 

zeros[i] <- 0 

log(lam[i])<-bet0+log(f[i])+bet2*x[i]+bet3*y[i] 

log(L[i])<-I[i]*log(lam[i])-w[i]*den[i]*lam[i] 

phi[i] <- -log(L[i]) + C 



zeros[i] ~ dpois(phi[i])} 

bet0~dnorm(0,0.001) 

bet1~dnorm(0,0.001) 

bet2~dnorm(0,0.001)  

bet3~dnorm(0,0.001) }  

Appendix 2 

WinBUGS code for a logistic spatial model with binary outcome (ind[i]) with a Bernoulli  
1st level data distribution and a logit link to the probability of being a case. Here a 
distance model is fitted using the additive-multiplicative link (as in Appendix 1) and a 
linear model with intercept, age covariate (age[i]), and two random effects (v[i] and W[i]). 
In this case the individual frailty effect is defined as a zero mean Gaussian prior 
distribution:   v[i]~dnorm(0,tauv), while the correlated effect  is defined as an intrinsic  
CAR model based on Dirichlet tile neighbor adjacencies (W[1:N]~car.normal) with adj[j] 
and num[i] defined from the neighborhoods of a Dirichlet tesselation of the complete 
superposition of cases and controls (using R package DELDIR).  

model { 
for (i in 1:N){ 
ind[i]~dbern(p[i]) 
f[i]<-(1+exp(-gam1*dis[i]))*exp(gam0+gam2*age[i]+v[i]+W[i])          
logit(p[i])<-log(f[i])          
 
v[i]~dnorm(0,tauv) 
res[i]<-(ind[i]-p[i])/sqrt(p[i]*(1-p[i])) 
x1[i]<-x[i] 
y1[i]<-y[i] 
} 
 for(k in 1:sumNumNeigh) 
            W[1:N] ~ car.normal(adj[],wei[],num[],tauW) 
tauW<-pow(sdW,-2) 
sdW~dunif(0,10) 
gam0~dnorm(0,0.001) 
gam1~dnorm(0,0.001) 
gam2~dnorm(0,0.001) 
tauv<-1/pow(sdv,2) 



sdv~dunif(0,100)} 
 
 
 
Dataset: 
Available from 
http://www.musc.edu/biometry/people/lawsonab/Data%20and%20Progra
ms.html 
For full ODC files contact the author directly. 
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Figures 

 



 

Figure 1 Larynx cancer (left panel) and respiratory cancer (right panel) incidence in a study region in Lancashire NW England 

 

Figure 2 Tesellation/ triangulation of an arbitrary set of 6 points: Dirichlet tessellation dashed line; Delauney triangulation 
solid lines. 

 

 



 

Figure 3  Posterior sample average marginal density estimates for the parameters gam1 and gam2 for the larynx cancer 
example. 

 

Figure 4 Average intensity exceedence probability for a BT model with spatial  

trend with 1Pr( ( ) )s   estimated from posterior sample of 2000 size. 



 

Figure 5  Average intensity exceedence probability for a BT model with no trend but with a 
uncorrelated frailty effect  with 1Pr( ( ) )s   estimated from posterior sample of 2000 size. 
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