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Bayesian 2-stage space-time mixture modeling with

spatial misalignment of the exposure in small area

health data

Abstract

We develop a new Bayesian two-stage space-time mixture model to investigate the effects of

air pollution on asthma. The two-stage mixture model proposed allows for the identification

of temporal latent structure as well as the estimation of the effects of covariates on health

outcomes. In the paper, we also consider spatial misalignment of exposure and health data.

A simulation study is conducted to assess the performance of the 2-stage mixture model.

We apply our statistical framework to a county-level ambulatory care asthma data set in the

US state of Georgia for the years 1999-2008.

Key words: Space-time mixture model; air pollution; covariate adjustment; asthma;

Bayesian modeling
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1 Introduction

Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and

bronchitis are important health problems in the United States. In 2008, it was estimated

that more than 23 million Americans have asthma and approximately 13 million adults

have COPD (Centers for Disease Control and Prevention, 2008; Pleis et al., 2009). In

addition, respiratory diseases have a high cost in medical expenses. For example, the annual

cost of asthma associated with medical expenses was estimated at about $50.1 billion in

2007 (Centers for Disease Control and Prevention, 2011). Thus, finding the risk factors of

respiratory diseases is important to policy-makers and program planners wishing to reduce

incidence.

Numerous epidemiologic studies have found the risk factors that showed significant associa-

tion with asthma, which is a common chronic disease in the US, about 1% of all ambulatory

visits (Dockery and Pope, 1994; Ponka and Virtanen, 1996; Eisner et al., 2001; Ellison-

Loschmann et al., 2007). For example, socioeconomic and ethnic characteristics such as

income and African-American race have been linked with greater risks of asthma (Eisner et

al., 2001; Ellison-Loschmann et al., 2007). Elevated concentrations of air pollutants (e.g.

particulate matter and ozone) have been shown to be associated with increased incidence of

asthma (Stieb et al., 1996; Lin et al., 2002; Sheppard, 2003; Lin et al., 2008).

Recently, the study of the association between PM2.5 known as fine PM (ambient particles

less than or equal to 2.5µm in diameter) and asthma has received much attention in public

health studies (e.g. Freidman et al., 2001; Sheppard, 2003). However, most researches

have been conducted using time-series analysis in specific locations because PM2.5 data are

available only in the limited locations. In addition, PM2.5 concentrations and asthma data are

collected over space and time so the relative risks of asthma may have space-time dependence

structures and the association between PM2.5 exposure and asthma may vary across space

and time. Thus, spatiotemporal analysis of the association between PM2.5 exposure and
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asthma is important and necessary.

In most environmental health effects studies, relative risk within the fixed space and time

period is modeled using a linear function of air pollutants and covariates as well as space-time

random effects. The coefficients of risk factors are constructed in various ways depending

on the modeling approach (e.g. constant, space-varying, or space-time varying coefficients).

Along with this coefficient structure, the relative risk model includes a function of space-time

random effects (Bernardinelli et al., 1995; Xia et al., 1997; Knorr-Held and Besag, 1998;

Knorr-Held, 2000; Mugglin, et al. 2002; Richardson et al., 2006; Tzala and Best, 2008).

A commonly-used approach (global modeling) has space, time, and space-time interaction

random components in risk, and each random component explains the overall risk effect over

their space-time domain (Knorr-Held, 2000). However, temporal risk effects, for instance,

can vary within the space-time domain, and a subset of spatial areas can have a homogeneous

temporal profile in risk. In this situation, global modeling is not appropriate because it has

the restrictive assumption of common risk effects across all areas.

Recently, Lawson et al. (2010) developed Bayesian space-time latent models using mixture

structures in order to capture the heterogeneous temporal profiles of relative risks in space-

time health data. They also proposed the use of entry parameters in the space-time mixture

(STM) model for the estimation of the number of the underlying temporal risk patterns.

Choi et al. (2011) evaluated the performance of STM models in terms of a range of measures

and also compared space-time Dirichlet process mixture models with the STM models. They

found that STM models are better than Dirichlet process mixture models in terms of recovery

of spatial clustering of temporal profiles and how well they estimate the true number of latent

temporal components.

When incorporating space-time varying risk factors such as air pollution and socioeco-

nomic factors in space-time health modeling where space-time random effects are included,

confounding bias problems may arise (Reich et al., 2006; Ma et al., 2007; Hodges and Reich,
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2010; Paciorek, 2010). For example, air pollution varying spatiotemporally may be corre-

lated with the space-time random effects so the confounding bias in estimating the effects

of air pollution on health outcomes can appear in the model. However, there are a few sta-

tistical studies related to this bias problem in spatial models (Clayton et al., 1993; Hodges

and Reich, 2010; Paciorek, 2010). In the STM models, space-time varying risk factors on

health outcomes may be correlated with the locally varying temporal risk patterns so it can

be difficult to exactly estimate both the effects of the risk factors on the outcomes and the

underlying temporal components.

In this paper, we introduce a Bayesian 2-stage space-time mixture model to reduce con-

founding bias, which provides better estimates of the association between exposure to fine

PM and health outcomes as well as the underlying temporal components. This method first

obtains Poisson residuals from the covariates-only model and then using these residuals as

inputs, a space-time mixture structure is fitted to find the locally different temporal compo-

nents. From the estimation of the mixture structure and covariate information, the effects

of covariates on health outcomes are finally estimated. We evaluate this approach using a

simulation study in terms of recovering the coefficients of covariates and latent components.

We also compare the 2-stage mixture model with the full space-time mixture model where

relative risk is expressed as both a function of covariates and a space-time structure, in or-

der to investigate how they bias the estimated health risks and they estimate the number

of latent component. We conduct an analysis of the relationship between ambulatory care

visits for asthma and exposure to PM2.5 and socioeconomic factors. Since we have differ-

ent sources of PM and health data, a “change of support”problem needs to be considered

(Gotway and Young 2002; Banerjee et al., 2004; Fuentes et al., 2006). Thus, we consider

a space-time model for PM2.5 to provide county-level estimates of PM2.5, which allows for

the estimation of the effects of fine PM on asthma outcomes. This work presented here

is the first attempt to consider confounding bias problems in space-time models and then

gain better estimates of the coefficients of space-time varying covariates and the true latent
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components, by introducing a 2-stage mixture model.

The remainder of this paper is organized as follows. In Section 2, we describe the asthma

data, air pollution data, and socioeconomic data used in this study. In Section 3 we present

the space-time PM2.5 model and the 2-stage space-time mixture model. In Section 4 a

simulation study is performed to verify the performance of the 2-stage space-time mixture

model in comparison with the full space-time mixture model. In Section 5, the data analysis

results from the 2-stage mixture model proposed are provided. Finally, a general discussion

of our approach is provided in Section 6.

2 Data Description

In the paper, we use county-level counts of ambulatory case sensitive asthma in the state of

Georgia USA, for the year 1999 to 2008, which were obtained from the Georgia health infor-

mation system OASIS (http://oasis.state.ga.us/), Georgia Division of Public Health.

There are 159 counties and 10 time periods (years) in the available data. We used standard-

ization to provide expected counts within counties for each time period. The expected count

was calculated by using the internal standardization method (Banerjee et al., 2004) based

on the statewide population-based rate. Figure 1 displays the standardized incidence ratios

for asthma for each year where the standardized incidence ratio is defined as the count of

asthma divided by the expected count. Overall, the standardized incidence ratios are high

in the south-east areas of Georgia over years.

We use a PM2.5 data set where PM2.5 is the air quality standard set by the U.S. Environ-

mental Protection Agency (EPA). The PM2.5 data set from the Federal Reference Method

(FRM) monitoring network was used. There are 31 monitoring stations in Georgia for the

period 1999-2008. Originally, PM2.5 concentrations were measured either every day, every

third day, or every sixth day and the yearly averaged PM2.5 values at each station were

used in this study. Figure 2 (a) presents the map of PM stations and Figure 2 (b) shows
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the temporal plots of PM2.5 for the selected two stations. Two stations have the decreasing

temporal patterns of PM2.5, but the station located in the urban area (A) has high PM2.5

concentrations over time. As covariates in PM modeling, we also consider yearly-averaged

weather variables such as temperature (◦F), dew point temperature (◦F), and wind speed

(miles per hour to tenths) from the U.S. National Climate Data Center. The coverage of th

monitoring stations reflects the population concentrations and is relatively sparse in the more

rural areas. This means that interpolation of effects will lead to less variation in estimated

mean level in such areas.

County-level socioeconomic census data for year 2000 and estimated data for the other

years are obtained from the Area Resource File (ARF) from the U.S. Department of Health

and Human Services (http://arf.hrsa.gov). The ARF is a collection of county-level data

sets from more than 50 sources such as American Hospital Association, American Medical

Association, National Center for Health Statistics, and US Census Bureau. It contains a

wide range of information and includes county level geographic information, socioeconomic,

and environmental characteristics. Based on previous study and considering the availability

of county-level data, the variables we considered as relevant predictors are: the proportion of

black people (the black or African American population divided by total population), median

household income (unit: $1000), and unemployment rate, as covariates in the health model

(Castro et al., 2001; Eisner et al., 2001; Ellison-Loschmann et al., 2007). Unemployment

rate data is also available at the US Bureau of Labor Statistics (http://www.bls.gov).

3 Models

Our environmental health framework has two main parts due to a “change of support”problem.

In the first part, we estimate the county-level PM2.5 concentrations using a space-time PM2.5

model, which are used as the inputs for the health model in the next part. In the second

part, we introduce a 2-stage space-time mixture modeling for asthma and air pollution,
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along with socioeconomic covariates in order to investigate the association between asthma

and exposure to PM2.5 as well as the estimation of temporal risk profiles. This approach is

the type of ‘Directional’ Bayesian approach (Gelman, 2004), mainly used for computational

reasons. Gelman (2004) presented the computational and practical benefits for this plug-in

approach in comparison to a joint model. Unike a joint model, the approach does not allow

the health data to influence the air pollution modeling, which might be seen to be a reason-

able approach. Therefore, the posterior distributions are obtained separately at each stage.

Of course, measurement error in the plug-in estimates can accommodate some of the biases.

3.1 Spatio-temporal model of exposure

We consider a space-time model of PM2.5 introduced by Fuentes et al. (2006) and Choi et al.

(2009). We assume that PM2.5(sm, tj) is the yearly-averaged PM2.5 concentration at station

sm (m = 1, · · · ,M) and time tj (j = 1, · · · , J) and is not the “true” PM value because of

measurement error. Thus, the PM2.5 model is given by

PM2.5(sm, tj) = Z(sm, tj) + ϵ1(sm, tj),

where Z(sm, tj) is the unobserved “true” PM process at space sm and time tj and ϵ1(sm, tj) ∼

N(0, σ2
1) is the measurement error. We model the true process Z(sm, tj) as

Z(sm, tj) = µz(sm, tj) + ϵ2(sm, tj),

where µz(sm, tj) is the mean function and ϵ2
T = (ϵT2 (s1), · · · , ϵT2 (sM)), where ϵT2 (sm) =

(ϵ2(sm, t1), · · · , ϵ2(sm, tJ)), has a multivariate normal distribution with mean zero and space-

time covariance function ΣZ . The mean function µz(sm, tj) can be modeled with coordinates

or meteorological variables. In this study, the mean function is assumed to be µz(sm, tj) =

WT (sm, tj)ηZ , where W(sm, tj) is a vector of coordinates (longitude and latitude) and mete-
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orological variables (temperature, dew point temperature, and wind speed) with correspond-

ing coefficient vector η. Based on exploratory analysis and previous research (Choi et al.,

2009), we use the separable space-time covarianceΣZ = σ2
eHs(ϕ)⊗Ht(ρ) where⊗ denotes the

Kronecker product. The matrixHs(ϕ) isM×M with (Hs(ϕ))mm′ = exp (−ϕ||sm − sm′||) and

Ht(ρ) is J×J with (Ht(ρ))jj′ = ρ|tj−tj′ |/(1−ρ2), where ϕ ∼ Unif(0.01, 20) and ρ ∼ Beta(1, 1),

that is uniform on (0,1).

The posterior estimate of true PM2.5 at unobserved site s0 and time tj is calculated using

Markov Chain Monte Carlo (MCMC) algorithms from the posterior predictive distribution

of Z(s0, tj) given the observed information,

p(Z(s0, tj)) =

∫
p(Z(s0, tj)|PM2.5,M,Θz)p(Θz|PM2.5,M)dΘz,

where Θz is a set of all parameters included in the PM model, and σ2
1 and σ2

e have uniform

prior distributions (Gelman, 2006). The “true” PM2.5 of county i at time tj of interest (Zij)

is defined as

Zij =
1

|Bi|

∫
Bi

Z(sm, tj)ds (1)

where Bi is the spatial domain within a county i. The estimate of Zij (Z
∗
ij) is the average of

estimates of true PM2.5 at several locations randomly selected within a county i at time tj.

We could consider block Kriging or MC integration for estimation of Zij.We have chosen the

latter for convenience as this can be achieved by averaging simulated point level predictions

at random locations within each county. We have found this approach to be reasonably

accurate compared to block Kriging in preliminary evaluation studies.

3.2 Health model: 2-stage space-time mixture modeling

In space-time epidemiological studies, little is known about the impact of space-time random

effects on the health effect of spatiotemporally varying covariates. Commonly-used approach
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to the space-time association between covariates and human health outcomes is a Poisson

regression model where risk is modeled as a linear function of covariates and space-time

random effects. However, this full space-time modeling may cause confounding problems,

not distinguishing the effects of covariates from unmeasured space-time random effects. In

space-time mixture modeling, it is important to estimate the effects of covariates as well as

the space-time mixture structure. Thus, we propose a 2-stage space-time mixture model.

The value of this model lies in the ability to provide estimates of spatial disaggregation of

risk while also providing good overall description of risk variation (Lawson et al., 2010).

Denote the count of disease in the ith area at the tjth time period as yij, where i =

1, · · · , I and j = 1, · · · , J . We make the conventional assumption that yij follows a Poisson

distribution as

yij ∼ Pois(eijθij),

where eij is the observed expected count and θij is the relative risk.

In the first-stage, the effects of covariates (PM2.5 and socioeconomic factors) are only

considered in the log-relative risk model:

log θij = α0 + Z∗
ijγij +XT

ijβij, (2)

where α0 is the intercept parameter. The value Z∗
ij is the estimate of the “true” unobserved

county-level PM2.5 from the exposure model presented in Section 3.1 and the corresponding

parameter γij can be considered in various dependence structures. The vector Xij includes

p socioeconomic covariates of area i at time tj with the corresponding parameter vector

βij = (βij1, · · · , βijp)T . The parameters γij and βij, for example, can be assumed to be

space-time dependent structures as follows:

γij = γ0 + γ1i + γ2j

βijp = β0p + β1
ip + β2

jp, (3)
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where γ0 and β0p are the overall mean parameters of the coefficients over space and time, γ1i

and β1
ip are the spatially correlated components, and γ2j and β

2
jp are the temporally correlated

components.

This covariates-only model provides the estimated relative risk θ̂ij from the posterior dis-

tribution using a Bayesian approach. The Poisson residuals using these estimates and the

data are calculated as

r̂ij = log (yij/eij)− log θ̂ij.

These residuals are used for the estimation of space-time mixture structures.

In the second-stage, we assume that the Poisson residual model is

r̂ij|θ̂ij, yij, eij ∼ N(αr + Λij, σ
2
rij
), (4)

where σ2
rij

is the variance and αr is the intercept to explain the overall difference between the

log(yij/eij) and the estimated log relative risk. The component Λij represents a space-time

random effect. Following Lawson et al. (2010) and Choi et al. (2011), the Λij is modeled as

a space-time mixture structure:

Λij =
L∑
l=1

wilχlj,

wil =
ψlw

∗
il∑

l ψlw∗
il

, w∗
il ≥ 0,

where L is assumed to be a large value to estimate the “true” number of latent components.

The latent component χlj represents the underlying temporal profile in relative risk by

specifying a time-dependent structure, and wil is the corresponding weight at area i. The

weight wil ≥ 0 is the proportion of component l at area i so the sum of all weights for each

area should be one and the weight wil is expressed using unstandardized weight w∗
il ≥ 0. We
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model w∗
il as a log-normal distribution with spatially dependent mean ξil and variance σ2

wl

w∗
il ∼ LN(ξil, σ

2
wl
),

ξil ∼ MIAR(Σξ).

The mean ξil has a multivariate intrinsic autoregressive (MIAR) distribution (Gelfand and

Vounatsou, 2002) with cross-covariance function Σξ, which is a relatively smooth spatial

process:

ξil|ξi′l, i′ ̸=i ∼ N
( 1

Ni

∑
i′ ̸=i

Gii′ξi′l,
1

Ni

Σξ

)
,

where Gii′ = 1 if area i is adjacent to area i′, and Gii′ = 0 otherwise. Also, Ni =
∑

i′ ̸=iGii′

is the number of neighbors of area i. This multivariate spatial process allows for both

the spatial dependence structure of the weights and the dependence structure between the

different weights given neighboring sites.

The entry parameter ψl has a value of 0 or 1 and controls whether the lth temporal

component is included in the model or not. If ψl = 1, then the lth temporal component

is involved in the model. Otherwise, the lth temporal component is not involved in the

model. In this study, the entry parameter is assumed to have a Bernoulli distribution,

ψl ∼ Bern(0.5), where 0.5 is a non-informative value.

By fitting the residual model in Equation (4) the estimated temporal components and

weights (χ̂lj and ŵil) are obtained. We adjust the temporal components using the intercept

αr, χ̂
∗
lj = α̂r + χ̂lj, to improve the estimation performance. These estimates along with

covariate information are used as the inputs in the final model expressed as

log (θij) = α0 + Z∗
ijγij + xT

ijβij +
L∑
l=1

ŵilχ̂
∗
lj + ηij, (5)

where α0, γij, and βij are parameters for estimation and have the same structures as those

of the covariates-only model in Equation (2) . The random component ηij ∼ N(0, σ2
η) is the
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uncorrelated space-time interaction term. This restricted Poisson regression model provides

the final estimates for α0, γij, and βij, which are our main focus.

To conduct the spatial allocation of the temporal components in the 2-stage space-time

mixture model, a post-processing method based on the posterior distributions of the weights

is considered. The spatial cluster indicator Ci (= 1, · · · , L) is defined as

Ci = argmax
l

{wil}. (6)

This indicator Ci has the label index of the temporal component with the largest weight

value in area i. Thus, a subset of areas within the space-time domain is assigned to one

of the temporal components included in the model, which represents the principal temporal

profile of the area in relative risk.

In the covariates-only model in Equation (2) and the restricted regression model in Equa-

tion (5), the prior distributions of the intercept and the overall mean parameters in the

coefficients are specified as α0 ∼ N(0, σ2
α0
), γ0 ∼ N(0, σ2

γ0
), and β0p ∼ N(0, σ2

β0p
). We use an

intrinsic autoregressive (IAR) distribution for the spatial components γ1i and β1
ip (Besag et

al., 1991), that corresponds to a univariate spatial process (L = 1) in the MIAR distribution.

The temporal components γ2j and β2
jp are assigned to be random walk Gaussian distribu-

tions. All the standard deviation parameters in the models have uniform prior distributions

(Gelman, 2006). For both models, the likelihoods are defined as

p(y|Θ1) =
I∏

i=1

J∏
j=1

Pois(yij|eij, α0, γij,βij),

p(y|Θ3) =
I∏

i=1

J∏
j=1

Pois(yij|eij, α0, γij,βij, ηij, ŵil, χ̂
∗
lj),

where Θ1 and Θ3 are the sets of the parameters in the covariates-only model and the restricted

regression model, respectively. Based on the likelihood and the prior distributions, the
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posterior distributions of the parameters Θ1 and Θ3 are obtained.

For the Poisson residual model in Equation (4), the likelihood is derived as

p(r̂ij|Θ2) =
I∏

i=1

J∏
j=1

N(r̂ij|αr, wil, χlj, σ
2
rij
)

where αr ∼ N(0, σ2
αr
) and σrij is assigned to be a uniform distribution. The covariance

matrix of the MIAR distribution (Σξ) is specified as an inverse Wishart prior distribution,

Inv-Wishart((0.01IL)
−1, L) and IL is the L × L identity matrix. In this study, the tem-

poral component χlj has an AR(1) model and each temporal parameter has a beta prior

distribution, Beta(1,1), that is uniform on (0,1). Similarly, the posterior distribution of all

the parameters Θ2 is obtained based on the likelihood and the prior distributions. For the

estimation of all the parameters in these models, the Gibbs sampling algorithm and the

Metropolis adaptive rejection sampling algorithm are implemented. The posterior means

are used for the estimation of all the parameters except the cluster indicator Ci while the

posterior mode is used for the estimation of Ci because Ci is the nominal value.

An identifiability problem of components in Bayesian space-time mixture modeling can

appear because of the invariance of the likelihood under the permutation of the component

labels (Stephens, 2000; Jasra et al., 2005). We assume that the latent components in the

proposed model follow temporally correlated structures while the corresponding weights

follow spatially correlated structures. Moreover, during MCMC simulation, it could be

possible that the components switch labels if multiple chains are used (Choi et al., 2011). In

this study, a single chain is used to avoid the label switching problem.

4 Simulation Study

In this section we perform a simulation study to compare the 2-stage space-time mixture

model proposed in the previous section with the full mixture model where risk is modeled
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as a linear function of covariates and a space-time mixture structure. We examine the

performance of the 2-stage mixture model by investigating the capability of recovering the

true coefficients and the true space-time mixture structure.

We simulate data under three designs. In all the designs, the 159 counties of the state of

Georgia are used as a space domain because there are many counties with similar spatial

shapes in Georgia and we conduct real data analysis within this spatial domain in Section

5. As the time domain, J = 10 time points are used. All the designs have L = 3 temporal

components and the spatial design of the cluster indicator (Ci) created in Georgia (Figure

3 (a)). Each spatial cluster is assigned to one temporal component χlj that has an AR(1)

structure with the temporal parameter ρl and the standard deviance 0.1. To make the

components different, the temporal parameters are specified as ρ = (0.9, 0.7, 0.5) and the

true temporal profiles are presented in Figure 3 (b).

In Design 1, two covariates (X1ijk and X2ijk) for county i and time j of the kth simulation

data (k = 1, · · · , K) are considered, where X1ijk is generated as X1ijk ∼ N(0, 1), independent

over space, time, and simulation, and X2ijk is generated from the IAR prior distribution with

the overall variance 1, independent over time and simulation. Thus, X2ijk has a spatial de-

pendence structure while X1ijk has no spatial dependence structure. We generate simulated

count yijk as follows:

yijk ∼ Pois(eijkθijk), k = 1, · · · , K,

log (θijk) = β0 + β1X1ijk + β2X2ijk + χCi,j + ηijk,

where β0 = 1, β1 = 0.05, and β2 = 0.1. The expected count eijk is generated independently

from the uniform distribution, Unif(15, 20), and the random effect ηijk is generated as

ηijk ∼ N(0, 0.012).

For Designs 2 and 3, the true relative risks are assumed to be constant over simulations
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but the simulated counts are different

yijk ∼ Pois(eijθij), k = 1, · · · , K,

log (θij) = β0 + β1X1ij + β2X2ij + χCi,j + ηij,

where β’s have the same values with the Design 1, and X1ij and ηij are generated from the

same scheme as the Design 1. Here, we assume the second covariate X2ij varies over space

and time, and X2ij is generated from the normal distribution with mean 0 and space-time

covariance ΣX2 = 0.1ΣS⊗ΣT , where ΣS and ΣT are the covariance matrices of the IAR prior

distribution and the AR(1) distribution. Designs 2 and 3 have values of 0.8 and 0.2 for the

temporal parameter in ΣT , respectively.

For each design we generate K = 200 data sets. For each simulated data, we fit two

models: the full space-time mixture model and the 2-stage mixture model. We use L = 6

entry parameters in fitting the models because the true number of components is 3 and L = 6

is enough to estimate the true number of components. After fitting the models, we determine

whether a temporal component is included in the model using the estimated corresponding

entry parameter. If the estimated entry parameter is larger than 0.5, then the component

is included in the model. Thus, the estimated number of components included in the model

is computed. In addition, the identification of the estimated temporal components with the

true temporal components is required when the estimated number of components is three,

because the label switching problem can arise (Stephens, 2000; Jasra et al., 2005). For the

allocation of the estimated components and their labels, the mean square error method is

used

Ĉ = argmin
l′

L∑
l=1

J∑
j=1

(χ̂l′j − χlj)
2,

where Ĉ includes the labels of the estimated components corresponding to the true compo-

nents.
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For each simulated data set and each model we compute posterior means as point estimates

and 95% intervals for β0, β1, and β2. For the comparison, we use mean squared error (MSE)

and mean absolute error (MAE). Mean squared error and mean absolute error for βp (p=0,

1, 2) are calculated as

MSE =
1

KIJ

k∑
k=1

I∑
i=1

J∑
j=1

(
β̂p

(k)
− βp

)2

MAE =
1

KIJ

k∑
k=1

I∑
i=1

J∑
j=1

∣∣∣β̂p(k) − βp

∣∣∣
where β̂p

(k)
is the estimate of the true βp for the kth simulation.

Table 1 presents the results for the coefficients: the average of the estimates over simula-

tion (mean), the 2.5th and 97.5th percentiles of the estimates, the averaged widths of 95%

intervals over simulation, MSE and MAE. Both models have similar results of β1 associated

with no space-time varying covariate. Overall, the averages of the estimates for β0 and β2 in

the 2-stage mixture model are closer to the true values in comparison with the full mixture

model. Also, the 2-stage models have the smallest MSE and MAE, which justifies that the

2-stage mixture models estimate the true coefficients very well. In some cases, the 2.5th and

97.5th percentiles of the estimates in the 2-stage model do not include the true coefficient

values, but the averaged widths of 95% intervals for the coefficients in the 2-stage model are

much smaller than those in the full mixture model. Thus, these results suggest that the 2-

stage mixture models are better than the full mixture models in terms of recovering the true

coefficients. Especially, the 2-stage mixture models dramatically improve the performance of

the estimates of the intercept and coefficients associated with space (or space-time) varying

covariates.

Table 2 summarizes the estimated number of components included in the models by using

a percentage table. Clearly, the 2-stage mixture models estimate the true number of compo-

nents very well while the full mixture models estimate the small number of components. It is
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shown that 93%, 87%, and 94.5% of the simulations in the 2-stage models estimate the exact

true number of components in Designs 1-3, respectively. However, the full mixture models

estimate the true number of components with less than 25% of the simulations (10.5% of

the simulations in Designs 1 and 3, 23.0% in Design 2). In estimating the true number of

temporal components, the 2-stage mixture models are much better than the full mixture

models.

In Figure 4, the plots of the true temporal components and their estimates with 95%

credible intervals in Designs 1 and 2 are displayed using only the output when the models

estimate the exact true number of components. As you can see the plots, all the intervals of

the estimated temporal components from the 2-stage models contain the true profiles while

the intervals for Component 2 from the full models do not include the true ones. Overall,

the widths of the intervals in the 2-stage models are smaller than those in the full mixture

models. Design 3 also has similar results. This suggest that the 2-stage mixture models fit

the true temporal components well.

Finally, we examine the performance of spatial clustering in both models with the outputs

when the estimated number of components is equal to the true number of components. To

check the ability of the models in detecting the spatial clusters, we use the accuracy cluster

rate, A =
∑I

i=1Ai/I and Ai =
∑K

k=1 I(C
T
i = Ĉik)/K, where I(·) is the indicator function,

CT
i is the true spatial cluster indicator for county i and Ĉik is the estimated cluster indicator

for the ith county at the kth simulation. This accuracy measure explains how well the model

recovers the true spatial clusters over space and simulation. In Design 1, the 2-stage mixture

models (0.59) provide higher A value than the full mixture model (0.55). In Designs 2 and

3, the full mixture models have a little bit higher A values than the 2-stage models, but a

quite small output from the full mixture models is only used to compute the accuracy rate

in comparison with the 2-stage mixture models. Thus, there is no big difference between

both models in terms of recovering the true spatial clusters.
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5 Real data analysis

We apply our statistical framework to data in Georgia for the years 1999-2008 described in

Section 2. We first analyze monitored PM2.5 data using the space-time PM model proposed

in Section 3.1 to produce the estimated county-level PM2.5 concentrations. Using these PM2.5

estimates and asthma data, the 2-stage mixture model is fitted to investigate the effects of

air pollution on asthma and examine the space-time mixture structure.

For the PM model and the health model we use a single chain with a total of 70,000

iterations to satisfy convergence criteria. The number of iterations for the burnin period

is 20,000, and the thinning rate is 10 so the number of samples used for the estimation

of the parameters is 5000. MCMC convergence diagnostics using the Geweke convergence

diagnostic (Geweke, 1992), autocorrelation functions, and trace plots are conducted. The

deviance and several representative parameters meet acceptable MCMC convergence.

Figure 5 presents the maps of the estimated county-level PM2.5 concentrations for the

years 1999-2008. The estimated PM2.5 concentrations for the first two years (1999 and 2000)

are the highest values over the state of Georgia. For almost areas, PM2.5 concentrations

tend to decrease from 1999 to 2008 (on average, the PM2.5 concentration was 18.33µg/m3

for 1999 and 13.08µg/m3 for 2008). Also, the estimated PM2.5 concentrations in the Atlanta

areas were higher than the other areas for the years 2001-2006.

To evaluate the prediction performance of the proposed PM2.5 model, we compare the

observed PM2.5 values with the estimated PM2.5 at the monitoring locations. The percentage

of the observations that are outside the 95% prediction intervals is 1.09% This suggests that

the PM2.5 model considered here performs well in terms of the prediction.

To examine the performance of the 2-stage mixture model as the health model, we fit four

different models:

1) Model 1: simple linear Poisson model in Equation (2)
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2) Model 2: space-time random effect model proposed by Knorr-Held (2000)

log θij = α0 + Z∗
ijγij +X′

ijβij + ui + vi + ξj + δj + ηij,

where ui has an IAR distribution with the variance σ2
u, ξj has an AR(1) with the

temporal paramter ρξ ∼Beta(1,1), vi ∼ N(0, σ2
v), δj ∼ N(0, σ2

δ ), and ηij ∼ N(0, σ2
η). All

the standard deviances have uniform prior distributions.

3) Model 3: full space-time mixture model

log θij = α0 + Z∗
ijγij +X′

ijβij +
L∑
l=1

wilχlj + ηij,

where wil, χlj,and ηij have the same structures as in Section 3.2.

4) Model 4: 2-stage space-time mixture model proposed in Section 3.2.

For Models 3 and 4, we use L = 10 entry parameters because it seems to be large enough

to find the true number of latent components. For all the models, we also consider three

different structures for the coefficients (γij and βij) in Equation (3):

(i) Constant: The coefficients are constant over space and time (γij = γ0 and βijp = β0p).

(ii) Space-varying: The coefficients are constant over time but vary over space (γij = γ0+γ
1
i

and βijp = β0p + β1
ip).

(iii) Space-time varying: The coefficients vary over space and time, presented in Equation

(3).

To assess how well the models considered fit the data and predicts, we use the DIC3 measure

proposed by Celeux et al. (2006) that uses a posterior estimate of likelihood in computing

the effective number of parameters, pD. This measure is defined as DIC3 = D(Θ) + pD3 =

D(Θ) + [D(Θ) + 2 log p̂(y|Θ)], where D(Θ) is the posterior mean of the deviance. We
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use this DIC3 measure instead of the standard DIC measure (Spiegelhalter et al., 2002)

because DIC3 is easily calculated by MCMC and it performs well in mixture models. It

also provides stable and reliable evaluations. For the prediction performance, we consider

the Marginal Predictive-likelihood (MPL) and the mean square prediction error (MSPE).

The MPL computed using the Conditional Predictive Ordinate (CPO) (Dey et al., 1997)

is specified as MPL =
∑

i,j log (CPOij), where CPOij is the marginal posterior predictive

density of yij given the data omitting yij. Thus, the CPO represents a cross-validation

measure, and the MPL explains a predictive measure for a future replication of the given

data. The model with a larger value of MPL is better (Ibrahim et al., 2001; Congdon, 2005).

The MSPE is given by MSPE = 1
IJ

∑
i,j(yij − ŷij)

2, where ŷij is the predicted value of the

observed value yij from the posterior predictive distribution.

Table 3 reports these measures for the models considered and the estimated number of

latent temporal components for Models 3 and 4. For each coefficient structure, the simple

linear Poisson model (Model 1) has much larger DIC3 and MSPE values and lower MPL

values than the other models. Therefore, the simple linear Poisson model is not appropriate

for this data set, and this implies that space, time, or space-time random effect needs to

be considered in the model. In terms of DIC3, MPL and MSPE, the constant coefficient

structure over space and time in the space-time random effect model (Model 2) is much better

than the other coefficient structures for that Model. Similarly, the 2-stage space-time mixture

model (Model 4) with constant coefficients over space and time is better than the model with

the other coefficient structures in terms of DIC3 and MPL. The 2-stage mixture models with

different coefficient structures provide similar MSPE values. In contrast, the full space-time

mixture model (Model 3) with spatiotemporally varying coefficients has smaller DIC3 and

MPL than those with constant (or space-varying) coefficients. From these results, we can

see that the 2-stage mixture model (Model 4) with constant coefficients over space and time

has the smallest DIC3 and MPL overall. Thus, this model is the best fit model among these

models. Also, it appears that the 2-stage mixture models estimate 4 components included
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in the models while the full mixture models estimate the small number of components (1 or

2), which is consistent with the results obtained from the simulation study.

In Table 4 the posterior means and 95% credible intervals for the model parameters in

the 2-stage mixture model with constant coefficients over space and time are presented.

The proportion of black population and the unemployment rate are significant positive risk

factors of the asthma while the PM2.5 and the household median income are significant

negative risk factors. For example, a higher proportion of black people or the unemployment

rate is associated with increased risk of the asthma. The lower income is associated with

increased risk of the asthma. For PM2.5 a slightly surprising result was found. The PM2.5

parameter posterior mean is negative (-0.028) with a small 95% credible interval (-0.034,-

0.022). Our results for PM2.5 are inconsistent with some air pollution-related time series

studies (Tolbert et al., 2000; Sheppard et al., 2003). However, all the other models (Models

1-3) also provide negative estimates for the PM2.5 coefficient, adjusting for the socioeconomic

covariates. This seems to imply that the estimates of PM2.5 are smoother, since PM2.5 data

in some areas are sparsely sampled. This may lead to less spatial variation in areas with

high disease risk and may tend to produce the negative effects of PM2.5 while controlling for

the non-PM covariates and space-time mixture structures.

Figure 6 shows the plots for the temporal components included in the 2-stage mixture

model after adjusting for the covariates. Component 1 has a stable increasing pattern and

component 4 increases dramatically over year. On the other way, component 3 has a de-

creasing pattern. Component 2 tends to increase until 2002 and then decrease. In addition,

component 2 has the largest relative risks over time while component 3 has the smallest rel-

ative risks. The maps of the estimated weights corresponding to the temporal components

are displayed in Figure 7 (a). Based on the allocation approach presented in Equation (6),

the map of the spatial cluster indicator (Ci) is also displayed in Figure 7 (b). Overall, the

Atlanta areas and some of south areas are assigned to component 2 (increasing and then

decreasing from the year 2002) and some of center areas and south-east areas are assigned
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to component 1 or 4. North areas and a few east or south areas are assigned to component

3.

As mentioned previously, it is possible to consider PM2.5 estimated in counties with added

measurement error. This could hope to partially address the issue of bias induced by using

plug-in estimates. To explore the impact of adding PM2.5 measurement error in the health

model, we re-fit the full mixture model and the 2-stage mixture model with constant coef-

ficients over space and time, with measure error added to the PM2.5. We assume Berkson

measurement error (Berkson, 1950) in the PM2.5 with (Z∗
ij + ϵij) and (Z∗

ij + se(Z∗
ij) ∗ ϵij) re-

placing Z∗
ij, where ϵij ∼ N(0, σ2

ϵ ). The value of se(Z∗
ij) was computed from the set of county

prediction values used to estimate Z∗
ij. Table 5 displays the comparison of results from the

2-stage model with measurement error. As compared to the results from the 2-stage model

without measurement error in Table 3, including the measurement error has an effect of

reducing DIC3 values and increasing MPL values. The models both including measurement

error or not, have similar MSPE values. The DIC3 and MPL measures favor the 2-stage

mixture model with (Z∗
ij +se(Z∗

ij) ∗ ϵij) among these measurement error models. This model

has DIC3 =10352 and MPL = -5432 although the MSPE is similar to that for the non

measurement error version of this model. These results suggest that the measurement error

models do provide a better fit overall to these data. However, the posterior mean estimate

of PM2.5 is -0.031 with 95% interval (-0.038, -0.023) and the estimated number of temporal

components is 4, which is close to that for the 2-stage mixture model without measurement

error. Thus, the models with measurement errors have little effect on the estimate of PM

and the estimated number of components.

6 Discussion

We have presented a novel approach to the incorporation of covariates within a space-time

modeling framework. In particular, we have examined the use of space-time mixture models
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where covariates are to be introduced. A 2-stage procedure was proposed and applied both

in simulations and real data. In simulated comparisons, the 2-stage model yielded lower

error in the estimation of predictor parameters and also yielded much greater accuracy in

the estimation of latent component numbers than other models. There was little difference in

the ability to detect spatial grouping or clustering of risk. In application to the ambulatory

asthma data for 1999-2008 we found that we could model the data well with the 2 stage model

approach and found 4 components to be optimal. In this case, we also found a small but

negative posterior mean for the PM2.5 parameter which is different from previously reported

results based on time series studies. The result holds across different space-time modeling

scenarios and so we have concluded that it is substantive, but that the negative association

could be partly contributed to by the smoothness of the interpolation in sparse areas.

In future analysis we would aim to consider the development of models that could combine

predictor information with temporal components so that we could directly relate temporal

effects to predictor temporal variation. We would want to consider directly modeling areas

with higher densities of monitoring stations so that a more direct link with disease outcome

could be examined
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Table 1: Comparison of the estimation results from the full space-time mixture model (M1)
and the 2-stage space-time mixture model (M2). True values: β0 = 1.00, β1 = 0.05, and
β2 = 0.10.

average width
Design Model Parameter mean 2.5% 97.5% 95% interval MSE MAE

1 M1 β0 0.929 0.600 1.116 0.340 0.01998 0.097
β1 0.050 0.042 0.056 0.016 0.00002 0.003
β2 0.101 0.091 0.113 0.014 0.00003 0.004

M2 β0 0.965 0.948 0.985 0.018 0.00129 0.035
β1 0.049 0.041 0.057 0.014 0.00002 0.003
β2 0.100 0.096 0.104 0.002 <0.00001 0.002

2 M1 β0 0.940 0.704 1.126 0.339 0.01594 0.095
β1 0.050 0.042 0.056 0.015 0.00001 0.003
β2 0.104 0.087 0.120 0.037 0.00009 0.008

M2 β0 0.960 0.947 0.975 0.016 0.00167 0.040
β1 0.050 0.043 0.056 0.014 0.00001 0.003
β2 0.106 0.102 0.109 0.004 0.00003 0.006

3 M1 β0 0.964 0.744 1.122 0.322 0.01126 0.069
β1 0.050 0.043 0.057 0.016 0.00001 0.003
β2 0.101 0.084 0.124 0.048 0.00009 0.007

M2 β0 0.964 0.951 0.977 0.015 0.00134 0.036
β1 0.050 0.043 0.057 0.014 0.00001 0.003
β2 0.100 0.095 0.106 0.007 0.00001 0.002

Table 2: Percentage table of the estimation of the number of components included in the
model over simulation (%). The true number of components is 3 and the number of simu-
lations is 200. (M1: the full space-time mixture model; M2: the 2-stage space-time mixture
model).

L
Design Model 0 1 2 3 4 5 6 Total

1 M1 0.5 51.5 36.5 10.5 1.0 0 0 100
M2 0 0 2.0 93.0 3.5 1.5 0 100

2 M1 0.5 19.0 55.5 23.0 2.0 0 0 100
M2 1.0 0.5 4.5 87.0 5.5 1.5 0 100

3 M1 0 33.5 56.0 10.5 0 0 0 100
M2 0 0 0.5 94.5 3.0 2.0 0 100
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Table 3: Comparison results from four models and three different coefficient structures for
Asthma data in Georgia.

Coefficient structure Model DIC3 pD3 MPL MSPE L̂
Constant Model 1 18977 45 -9490 708.5

Model 2 10469 427 -5624 127.9
Model 3 10551 487 -5846 127.9 1
Model 4 10451 365 -5477 128.5 4

Space-varying Model 1 11765 489 -6073 218.2
Model 2 11221 521 -5788 171.4
Model 3 10516 436 -5655 128.6 1
Model 4 10500 432 -5650 128.2 4

Space-time Model 1 11583 499 -6022 209.7
varying Model 2 11150 423 -5754 169.7

Model 3 10490 410 -5576 128.1 2
Model 4 10453 422 -5621 127.6 4

Table 4: Parameter estimation in the best-fitted model (the 2-stage mixture model with
constant coefficients over space and time).

covariates mean sd 2.50% 97.5%
intercept 0.197 0.0058 0.185 0.208
PM2.5 -0.028 0.0031 -0.034 -0.022

black proportion 0.004 0.0004 0.003 0.005
income -0.019 0.0005 -0.020 -0.018

unemployment rate 0.024 0.0039 0.017 0.032

Table 5: Comparison results from the 2-stage mixture model with constant coefficients over
space and time and two different measurement error structures in the PM2.5 for Asthma data
in Georgia.

Measurement error structure DIC3 pD3 MPL MSPE L̂
Z∗

ij + ϵij 10366 399 -5463 128.4 4
Z∗

ij + se(Z∗
ij) ∗ ϵij 10352 378 -5432 128.7 4
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Figure 1: Standardized incidence maps for county-level ambulatory sensitive asthma in Geor-
gia for individual year.
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Figure 2: (a) Map of PM2.5 monitoring stations. (b) Temporal trends of PM2.5 for the
selected locations (A and B).
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Figure 3: (a) Map of the spatial cluster indicator for simulation study. (b) Temporal plots
of the true components for simulation study.

33



2 4 6 8 10

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Component 1

time

true components
estimated components
95% quantiles

2 4 6 8 10

−1
.5

−1
.0

−0
.5

0.
0

0.
5

Component 2

time

2 4 6 8 10

−1
.0

−0
.5

0.
0

0.
5

1.
0

Component 3

time

(a)

2 4 6 8 10

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Component 1

time

true components
estimated components
95% quantiles

2 4 6 8 10

−1
.5

−1
.0

−0
.5

0.
0

0.
5

Component 2

time

2 4 6 8 10

−1
.0

−0
.5

0.
0

0.
5

1.
0

Component 3

time

(b)

2 4 6 8 10

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Component 1

time

true components
estimated components
95% quantiles

2 4 6 8 10

−1
.5

−1
.0

−0
.5

0.
0

0.
5

Component 2

time

2 4 6 8 10

−1
.0

−0
.5

0.
0

0.
5

1.
0

Component 3

time

(c)

2 4 6 8 10

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Component 1

time

true components
estimated components
95% quantiles

2 4 6 8 10

−1
.5

−1
.0

−0
.5

0.
0

0.
5

Component 2

time

2 4 6 8 10

−1
.0

−0
.5

0.
0

0.
5

1.
0

Component 3

time

(d)

Figure 4: (a) Temporal plots from the full mixture model in Design 1. (b) Temporal plots
from the 2-stage mixture model in Design 1. (c) Temporal plots from the full mixture model
in Design 2. (d) Temporal plots from the 2-stage mixture model in Design 2.
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Figure 5: Maps of the estimated PM2.5 concentrations for the years 1999-2008 in Georgia.
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Figure 6: Temporal plots for four estimated components from the 2-stage mixture model.
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Figure 7: (a) Maps of the estimated weights corresponding with the temporal components.
(b) Map of the allocation using the weights.
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