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Abstract

Surveillance systems are often focused on more than one disease within a
predefined area. On those occasions when outbreaks of disease are likely to be
correlated, the use of multivariate surveillance techniques integrating informa-
tion from multiple diseases allows us to improve the sensitivity and timeliness
of outbreak detection. In this paper, we present an extension of the surveillance
conditional predictive ordinate to monitor multivariate spatial disease data. The
proposed surveillance technique, which is defined for each small area and time
period as the conditional predictive distribution of those counts of disease higher
than expected given the data observed up to the previous time period, alerts us
to both small areas of increased disease incidence and the diseases causing the
alarm within each area. We investigate its performance within the framework of
Bayesian hierarchical Poisson models using a simulation study. An application
to diseases of the respiratory system in South Carolina is finally presented.

Keywords: disease surveillance; multiple diseases; Shared component model;
conditional predictive ordinate

1 Introduction

Public health surveillance is defined as the ongoing systematic collection, anal-
ysis, and interpretation of health-related data essential to the planning, im-
plementation, and evaluation of public health practice, closely integrated with
the timely dissemination of these data to those who need to know1. Effective
surveillance is then essential to protect public health by rapidly detecting and
responding to disease epidemics.

1



Most work on surveillance methodology has evolved in temporal applica-
tions, and so numerous methods including process control charts, temporal scan
statistics, time-series methodology, and log-linear and other parametric regres-
sion models have been proposed to monitor univariate time series of counts
of disease2. Because of the growing threat of bioterrorism and an increase in
the emergence and reemergence of infectious diseases with pandemic potential,
numerous studies have recently been conducted to develop new and improved
methods for health surveillance. New statistical methods usually use informa-
tion on both the time and location of events, and so they offer an improved
ability to detect localized events that occur in small regions relative to the
surveillance of the total count across a larger region. Testing methods are widely
used to detect outbreaks of disease in space and time3,4. Recent developments
for the analysis of space-time disease surveillance data use a statistical model
to describe the behavior of disease over space and time during non-epidemic
conditions and the emphasis is placed on detection of unusual departures from
predictable patterns based on the estimated model5− 10. These model-based
approaches provide a flexible framework for the inclusion of spatial, temporal,
space-time interaction, and possible covariate effects.

Multivariate space-time surveillance data also arise naturally in many public
health applications. For instance, disease incidence data are often available by
age group, gender and race. On some occasions, a range of different diseases
are monitored simultaneously to assess the general health status of a region.
Some examples are the monitoring of smoking-related cancers, respiratory dis-
eases or gastrointestinal illnesses. In a syndromic surveillance setting, different
syndromes associated with disease are monitored simultaneously to detect out-
breaks of disease at the earliest possible time, possibly even before definitive
disease diagnoses are obtained. Common syndromes are school and work absen-
teeism, over-the-counter medication sales, emergency department visits, physi-
cian telephone calls, etc. On those occasions, the use of surveillance techniques
integrating information from the different data sets is important to achieve
higher detection power for events that are present simultaneously in more than
one data set. Kulldorff et al. 11 presented an extension of the space-time scan
statistic to jointly monitor multiple data sets. The multivariate scan statistic
is based on a combined log likelihood which is defined as the sum of the indi-
vidual log likelihoods for those data sets with more counts than expected in the
scanning window. So a signal is generated if a cluster is detected in either one
or in a combination of data sets. Further extensions, such as the Bayesian mul-
tivariate scan statistic12, have been proposed since then. Banks et al. 13 have
proposed a model-based approach to surveillance of spatial data on multiple dis-
eases. The proposed methodology, which is focused on syndromic surveillance,
uses univariate Bayesian hierarchical models to model counts of patients with
specific symptoms indicative of the same disease in the absence of an epidemic.
Indicator variables modeled as a binary Markov random field are then used to
detect the presence of disease in each spatial unit. In that study, the authors
assume that an increase in the number of cases is observed for all the symptoms
at the same time when the disease is present.
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In practice however, the different data sets under study may be influenced
by common confounding factors, and so they are likely to be correlated. This
suggests that we need to consider multivariate disease models to describe the
space-time behavior of diseases. The multivariate conditional autoregressive
(MCAR) model14 and the shared component model15,16 are the two main ap-
proaches to model disease risk correlations across both spatial units and diseases.
The main advantage of the shared component model is that it enables estimation
of shared and disease-specific spatial patterns.

In this paper a shared component model is used to describe the behavior
of diseases under non-epidemic conditions. A novelty of the proposed model
formulation is the use of indicator variables, which allow for identification of
shared and disease-specific latent spatial fields describing the risk surface for
each disease. We show then how the surveillance conditional predictive ordi-
nate (SCPO), which was introduced by Corberán-Vallet and Lawson 17 in a
univariate model-based surveillance setting to detect areas of unusual disease
aggregation, can be straightforwardly extended to incorporate information from
multiple diseases. In particular, we define the multivariate surveillance condi-
tional predictive ordinate (MSCPO) for each small area and time period as the
conditional predictive distribution of those counts higher than expected given
the data collected so far. A parallel surveillance approach across the differ-
ent areas under surveillance is then carried out, where in each area alarms are
sounded if the corresponding MSCPO value is below a specified critical value.
This surveillance technique alerts us to both spatial units of increased disease
incidence in need of further investigation and the diseases causing the alarm
within each area, and consequently it facilitates a timely and informed public
health response.

This paper is organized as follows. In Section 2, we present our modeling
framework. In Section 3, we review the surveillance conditional predictive or-
dinate and introduce its multivariate extension to multiple disease surveillance.
Section 4 shows the results obtained in a simulation study. The surveillance
technique is then applied to emergency room discharges for diseases of the respi-
ratory system in South Carolina. Finally, we conclude with a general discussion
of the proposed technique and provide directions for future research.

2 Modeling of endemic periods

2.1 The convolution model

Let yit and eit denote, respectively, the observed and expected count of disease
in area i and time period t, for i = 1, 2, . . . ,m and t = 1, 2, . . . , T . We assume
here that the observed counts are Poisson distributed

yit ∼ Po(eitθit)

where θit, which is often termed the relative risk, represents the excess risk
within area i at time t. This component is usually the focus of interest, and
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so a wide range of spatiotemporal models have been developed to estimate the
true relative risk of a disease of interest across a geographic study region. The
most common approach to relative risk modeling is to assume a logarithm link
to a linear predictor which is a function of fixed observed covariates and spatial,
temporal and space-time interaction random effects18,19.

In a surveillance context, however, the emphasis is placed on detection of
changes. To this end, Lawson 20 emphasized the need for a relatively simple
model capturing the normal historical variation in disease incidence without
absorbing changes in the model fit. In a recent study, Corberán-Vallet and Law-
son 17 have demonstrated that the use of a spatial-only model where the relative
risks are assumed to be constant over time may improve outbreak detection ca-
pability. Hence, we assume that under non-epidemic conditions θit = θi for
all t, and so unusual departures from predictable patterns based on the overall
spatial risk surface are attributable to epidemic processes. To capture spatial
correlation in disease maps, we use the convolution model originally proposed
by Besag et al. 21 . This model, denoted here by BYM model, assumes that the
logarithm of the relative risk is decomposed as

log(θi) = ρ+ ui + vi (1)

where ρ is the overall level of the relative risk in the study region, and ui and
vi represent, respectively, spatially correlated and uncorrelated random effects.
As a prior distribution for the intercept we assume a conventional zero-mean
Gaussian distribution with variance σ2

ρ. We use an improper conditional autore-
gressive (CAR) model21 as a prior distribution for the correlated heterogeneity,
that is

ui|u(i) ∼ N





1

mi

∑

j∈ni

uj ,
σ2
u

mi





where u(i) = (u1, u2, . . . , ui−1, ui+1, . . . , um)′, ni is the set of spatial neighbors
of the ith region, mi is the cardinality of ni, and σ2

u is the correlated spatial
component variance. Here the neighborhood is assumed to consist of spatially
adjacent areas, but more general definitions (using, for instance, intercentroidal
distances) are also possible. The prior distribution for the uncorrelated hetero-
geneity is the zero-mean Gaussian distribution with variance σ2

v

vi ∼ N(0, σ2
v).

2.2 The shared component model

In public health it is often appropriate to consider the analysis of spatially
aggregated data on multiple diseases. On those occasions, the use of multivari-
ate models accounting for correlations across both diseases and locations may
provide a better description of the data and enhance comprehension of disease
dynamics. Knorr-Held and Best 15 introduced a shared component model for
the joint spatial analysis of two related diseases where the underlying risk sur-
face for each disease is separated into a shared and a disease-specific component.
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These components can be interpreted as surrogates for spatially structured un-
observed covariates that are either shared by both diseases or specific to one
of the diseases. For the joint analysis of more than two diseases, Held et al. 16

proposed a generalized shared component model where latent spatial fields may
be shared by some of the diseases or may enter only in one of the diseases.
Assume that there are K diseases and a fixed study region common to all the
diseases. Let yik and eik be the observed and expected count of disease during a
fixed temporal period and θik the relative risk, where i = 1, 2, . . . ,m represents
the areal unit and k = 1, 2, . . . ,K the disease. The extended shared component
model is defined as

yik ∼ Po(eikθik)

log(θik) = ρk +
∑

j

δj,kwj,i (2)

where wj = (wj,1, wj,2, . . . , wj,m)′ denotes the jth spatial random effect, and
the scaling parameter δj,k determines the relative contribution of the spatial
random effect to disease k. For each spatial field wj , it is assumed that the
terms log(δj,1), log(δj,2), . . . , log(δj,nwj

) follow a multivariate Gaussian distribu-

tion with mean zero and marginal variance σ2
δj
, but under the restriction that

nwj
∑

l=1

log(δj,l) = 0

nwj
being the number of relevant diseases for wj . Consequently, this model for-

mulation requires the prespecification of the number of spatial random effects
and the diseases relevant for each one of them. In practice, however, this will
not always be known in advance. The number of possible shared and disease-
specific components increases rapidly with the number of diseases under study,
and so numerous model formulations become possible. MacNab 22 emphasized
the need for a careful and realistic formulation of common risk factors. Be-
cause dependencies between disease risks are given a priori in Model (2), an
inappropriate formulation of shared and disease-specific components can lead
to misspecification of the latent spatial fields, lack of model identifiability and
failure of MCMC convergence.

Different variants of the above shared component model have been used to
model correlations both between and within areal units. For instance, Ma and
Carlin 23 replace (2) with

log(θik) = δkwi + ψik (3)

where the term ρk is not included in the model because the expected counts
are age-adjusted internally. Similar to the generalized common spatial factor
model introduced by Wang and Wall 24 , a single spatial random effect is used to
model the correlation between diseases and locations. The scaling parameters
δk allow different risk gradients for different diseases. To avoid identifiability
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problems, δK is set equal to 1, while the remaining scaling parameters are
assumed to be unconstrained. The residuals ψik are originally assumed to be
independent across both areas and diseases, that is ψik ∼ N(0, σ2

ψk
), although

they can be generalized to independent CAR models. A similar model is used
in Oleson et al. 25 to investigate the spatial and temporal variation in lung, oral
and esophageal cancer rates in Iowa. In that study a latent temporal process is
incorporated into Model (3) to allow for temporal variation.

In our surveillance setting, disease maps which have an associated temporal
dimension are analyzed prospectively with the objective of detecting changes in
the risk pattern of diseases. Hence, for each area i and time period t there is
a vector of K counts of disease. As in the univariate case, we assume constant
relative risks during non-epidemic periods, and so at the first level of the hier-
archy counts of disease have a Poisson distribution with mean eitkθik. At the
second level of the hierarchy the log relative risks are modeled as

log(θik) = ρk +
L
∑

l=1

φl,k δl,k wl,i + ψik (4)

where ρk is the disease-specific overall risk; L represents the number of spatial
fields wl = (wl,1, wl,2, . . . , wl,m)′ needed to describe the correlation across both
areas and diseases; φl,k is a binary indicator variable that takes the value one
if the spatial random effect wl has an influence on disease k and the value zero
otherwise; δl,k is the scaling parameter that measures the contribution of wl to
disease k, and ψik is the uncorrelated term, which is assumed to be zero-mean
Gaussian distributed, ψik ∼ N(0, σ2

ψk
).

In general, the number of components (L) is not known, and so it must be
estimated. There are several different procedures to the estimation of L. A sim-
ple approach, which has been successfully implemented in related studies, is to
assume a large number of L components a priori. The presence of each latent
component is then determined based on the posterior mean of the associated in-
dicator variables26,27. As a prior distribution for φl,k, we consider the Bernoulli
distribution with probability pl, which can be assumed to be constant or can
have a hyperprior distribution, for instance the Beta distribution.

The latent spatial fields are assumed to be independent, with each following
a CAR prior distribution, that is

wl,i|wl,(i) ∼ N





1

mi

∑

j∈ni

wl,j ,
σ2
wl

mi



 .

In order to avoid identifiability problems, we set σ2
wl

= 1, for l = 1, 2, . . . , L, so
that the variance of δl,k wl,i is determined by δl,k

28. As a prior distribution for
the scaling parameters δl,k, which can then be assumed to be unconstrained, we
use a non-informative zero-mean Gaussian distribution.

Similar to the model proposed by Held et al. 16 , the proposed shared com-
ponent model assumes that there may be more than one latent spatial field
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which can be shared by some of the diseases or may be relevant only to one of
them. However, by using indicator variables in the model formulation, it is not
necessary to specify the structure of the multivariate model in advance.

3 Detection of epidemics: The multivariate sur-

veillance conditional predictive ordinate

The conditional predictive ordinate (CPO) was first defined by Geisser 29 as the
posterior predictive distribution of the observation yi when the model is fitted
to all data except yi. That is,

CPOi = f(yi|y(i)) =

∫

f(yi|ϕ, y(i))π(ϕ|y(i))dϕ

where y(i) = (y1, y2, . . . , yi−1, yi+1, . . . , yn) is the data vector with yi deleted.
Small CPO values, which indicate a poor fit by the model, can be used to detect
observations discrepant from the given model. The CPO has been widely used
in the statistical literature as a Bayesian model assessment tool in different
contexts30. Recently, Corberán-Vallet and Lawson 17 adapted the CPO in a
surveillance context to detect small areas of unusual disease incidence. Let
yt = (y1t, y2t, . . . , ymt)

′ be the vector of disease counts observed at time period
t, y1:t−1 = (y′1, y

′

2, . . . , y
′

t−1)
′ the vector of all the data observed up to time t−1,

and θ = (θ1, θ2, . . . , θm)′ the relative risk vector under non-epidemic conditions.
The surveillance CPO (SCPO) is defined for each small area i and time period
t as

SCPOit = f(yit|y1:t−1) =

∫

f(yit|θi, y1:t−1)π(θi|y1:t−1) dθi

≈
1

J

J
∑

j=1

Po(yit|eitθ
(j)
i ) (5)

where {θ
(j)
i }Jj=1 is a set of relative risks sampled from the posterior distribution

that corresponds to the previous time period. The main difference with respect
to the CPO is that the SCPO is calculated using only data from previous time
points. This is fundamental in a surveillance context, since the inclusion of
observations from the new time period may lead to a different model for the rel-
ative risk pattern. Hence, if no change in risk takes place at time t, the relative
risk in area i and time t, θit, is equal to θi and the observation yit is representa-
tive of the data expected under the previously fitted model. Otherwise, SCPO
values close to zero are obtained.

In order to detect as early as possible emerging outbreaks of disease, SCPO
values are calculated each time new observations become available. An alarm
is then generated for the ith small area at time t if the corresponding SCPO
value is below a specified critical value α and yit > eitθ̂i, θ̂i being the posterior
mean of the relative risk at the previous time period. Since the value of the
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SCPO depends on the mean of the Poisson distribution, it is necessary to scale
the SCPO to use the same critical value for all the areas. For the CPO, Cong-
don 31 recommends scaling the CPO values by dividing by their maximum and
considering as outliers those observations with a low CPO value, for instance
below 0.01. In the surveillance setting, a scaled SCPO can be defined as17

sSCPOit =
SCPOit

f(eitθ̂i|y1:t−1)
,

so that it takes values close to one if the observation at time t is close to the data
expected under the previously fitted model, and values close to zero otherwise.

In the multivariate surveillance setting, spatial data on multiple diseases
are observed at each time period, and a decision concerning whether a disease
incidence has increased has to be made sequentially based on the data col-
lected so far. We believe that a global increase in the incidence of a disease
in all the areas occurring at the same time point is unlikely. Similarly, dis-
ease outbreaks need not necessarily occur at the same time for all the diseases
under surveillance or affect the same spatial units. So, for each area i and
time t, let yit = (yit1, yit2, . . . , yitK) be the vector of observed counts of disease,

eit = (eit1, eit2, . . . , eitK) the vector of expected counts, θ̂i = (θ̂i1, θ̂i2, . . . , θ̂iK)
the vector of posterior relative risk estimates at the previous time point, and
yhit = (yitk1 , yitk2 , . . . , yitkn) the vector of observed counts higher than expected,

that is yitk > eitkθ̂ik. A multivariate extension of the SCPO incorporating
information from multiple diseases can be defined as

MSCPOit = f(yitk1 , yitk2 , . . . , yitkn |y1:t−1)

=

∫ ∫

. . .

∫

f(yitk1 , yitk2 , . . . , yitkn |θik1 , θik2 , . . . , θikn , y1:t−1)×

π(θik1 , θik2 , . . . , θikn |y1:t−1)dθik1 dθik2 . . . dθikn (6)

if yhit is not null, and MSCPOit equal to one otherwise. Values of the MSCPO
close to zero indicate then unusually high disease counts. Note that when yhit =
{yitk1}, the MSCPOit corresponds to the SCPOit for disease k1. When n ≥ 2,
counts of disease higher than expected are looked at in conjunction to improve
the outbreak detection capability.

The multiple integral in (6) does not have a closed form solution, and so
simulation is required. A Monte-Carlo approximation to the MSCPOit can be
obtained from a posterior sampling algorithm as

1

J

J
∑

j=1

Po(yitk1 |eitk1θ
(j)
ik1

)× Po(yitk2 |eitk2θ
(j)
ik2

)× . . .× Po(yitkn |eitknθ
(j)
ikn

) (7)

where {(θ
(j)
ik1
, θ

(j)
ik2
, . . . , θ

(j)
ikn

)}Jj=1 is a set of relative risks sampled from the pos-
terior distribution at time t− 1.

As in the univariate surveillance setting, effective measures based on the
MSCPO values have to be constructed to assess if there is any outbreak of
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disease occurring at time period t. To make MSCPO values comparable across
areas and time periods, we propose to consider the scaled MSCPO given by

sMSCPOit =
MSCPOit

f(eitk1 θ̂ik1 , eitk2 θ̂ik2 , . . . , eitkn θ̂ikn |y1:t−1)
(8)

and to perform a parallel surveillance approach across the different areas under
surveillance, where an alarm is sounded for the ith small area at time t if the
corresponding sMSCPOit is below a specified critical level α. It is important
to emphasize here that the proposed surveillance technique alerts us to both
small areas of increased disease incidence in need of further investigation and
the diseases causing the alarm within each area.

The surveillance technique described herein can be run until the first out-
break is detected and medical intervention takes place. However, it may be of
interest to continue the monitoring process to detect either further changes in
disease incidences or the end of an epidemic. Corberán-Vallet and Lawson 17

show how the first goal can be achieved by sequentially estimating the model
describing the normal behavior of disease using only the last observations. This
procedure allows the spatial effects to adapt quickly to changes in the relative
risk pattern of a disease, and so it facilitates detection of additional changes in
the disease incidence. The second goal may be more relevant in the monitoring
of infectious diseases. In order to detect the end of an epidemic, the model
describing the behavior of disease in space and time have to be estimated using
only counts of disease corresponding to non-epidemic conditions. This can be
achieved by assuming that observations detected as unusual are missing when
they become part of the history. MSCPO values close to one after consecutive
values close to zero are then indicative of the end of an epidemic.

4 Simulation study

In this section, we present a simulation study to assess the performance of the
proposed surveillance technique for outbreak detection. The development of a
realistic simulation study is important. Here we used the US state of California,
which consists ofm = 58 counties, as the base map to generate counts of diseases
at county level for T = 20 time periods andK = 3 diseases. The total number of
viral meningitis cases in California in 2010, which is available from the California
department of public health (http://www.cdph.ca.gov), was used to calculate
monthly expected counts for the mapped area and Disease 1. Viral meningitis
is a relatively common but rarely serious infection of the fluid in the spinal
cord and the fluid that surrounds the brain. There is no specific treatment
for viral meningitis, which is usually mild and clears up in about a week. It
often remains undiagnosed because its symptoms can be similar to those of the
common flu: fever, headache, stiff neck, and tiredness. A total of 2623 cases
of viral meningitis were diagnosed in California in 2010. Disease rates for the
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other two diseases were simulated as

r2 = r1 + Ga(3, 1)

r3 = r1 + Ga(1, 1)

where r1 = 0.5656 is the monthly viral meningitis rate.
True relative risks under non-epidemic conditions were simulated using two

different relative risk models. In Scenario 1 we assumed that the three diseases
shared a common spatial field, while independent diseases were assumed in Sce-
nario 2. Outbreaks of disease of different intensities were then generated using
the expected counts of disease and the simulated relative risks as detailed below.

Scenario 1 :

log(θitk) = ρk + wi + wk,i + ψik + δitk (9)

where i = 1, 2, . . . , 58 denotes the county, t = 1, 2, . . . , 20 the time, and k =
1, 2, 3 the disease; ρk ∼ N(0, σ2

ρk
) is the disease-specific overall risk; The com-

ponents w = (w1, w2, . . . , wm)′ and wk = (wk,1, wk,2, . . . , wk,m)′ represent spa-
tially correlated random effects, each one of them following a CAR model
with variance σ2

w and σ2
wk

, respectively; (ψ1k, ψ2k, . . . , ψmk)
′ is assumed to

be a realization of a multivariate Gaussian distribution with zero mean vec-
tor and covariance matrix σ2

ψk
Im, and each δik = (δi1k, δi2k, . . . , δiTk)

′ is as-
sumed to follow a random walk independently of all other counties and dis-
eases, that is δitk ∼ N(δi,t−1,k, σ

2
δk
). The values of the standard deviances were

(σρ1 , σρ2 , σρ3) = (0.01, 0.02, 0.01), (σw, σw1
, σw2

, σw3
) = (0.1, 0.02, 0.05, 0.05),

(σψ1
, σψ2

, σψ3
) = (0.2, 0.1, 0.15), and (σδ1 , σδ2 , σδ3) = (0.01, 0.02, 0.025). Note

that the simulated disease risks under non-epidemic conditions were allowed to
vary over both space and time.

At time t0 = 15, an epidemic was assumed to start in Los Angeles county
(i0 = 19) for the three diseases. Initial expected increases in disease counts due
to the epidemic were simulated as

Ii0t0k = ck ei0t0k θi0t0k (10)

where c1 = 0.3, c2 = 0.1, and c3 = 0.5; that is, at time t0 = 15, a percentage
increase in the mean of the Poisson distribution equal to 0.3 was simulated for
Disease 1 and so on. At time t1 = 17 the epidemic was assumed to spread to
seven neighboring counties (see Figure 1). Increases in disease counts at time
t1 for the affected counties were generated as those in (10)

Iit1k =

{

ck eit1k θit1k if i ∈ R1 = {15, 30, 33, 36, 37, 42, 56}
0 otherwise

Expected increases at subsequent time periods were assumed to be propor-
tional to those observed at the previous time point, that is Iitk = βikIi,t−1,k,
for t = 18, 19, 20. For simplicity, we assumed here βi1 = 1.2, βi2 = 1.1, and
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βi3 = 1.2 for all i ∈ {19, R1}. Simulation of outbreaks using realistic models of
epidemic progressions is important. However, to assess the capability of surveil-
lance techniques to outbreak detection, it is usually sufficient to use a simple
linear model with a moderate slope.

Scenario 2 :

log(θit1) = ρ1 + ψi1 + δit1 + IA1
(i) log(1.3) + IA2

(i) log(1.8)

log(θit2) = ρ2 + ψi2 + δit2 + IA3
(i) log(1.5)

log(θit3) = ρ3 + ψi3 + δit3 (11)

where parameters ρk, ψik and δitk were defined as those in (9). Spatial corre-
lation in model (11) is introduced by three disjoint sets of neighboring counties
of higher risk.

At time t0 = 15, an outbreak was generated for eight counties and Diseases
1 and 3 (see Figure 1). Expected increases in disease counts were simulated as

Iit0k = ck eit0k θit0k

Iitk = βikIi,t−1,k

for i ∈ R2 = {15, 19, 30, 33, 36, 37, 42, 56}, t = 16, 17, . . . , 20, and k = 1, 3. We
assumed (c1, c3) = (0.2, 0.5) and (βi1, βi3) = (1.2, 1.3). At time t1 = 17, an out-
break of Disease 2 was simulated in 5 different counties (R3 = {1, 41, 43, 44, 50}).
A percentage increase in the mean of the Poisson distribution of 0.3 was assumed
initially. Subsequent increases were defined as Iit3 = 1.25Ii,t−1,3, for i ∈ R3 and
t = 18, 19, 20.

Los Angeles
R1

R2
R3

Figure 1: Simulation study. Regions where outbreaks of disease were simulated.
Left: Scenario 1. Right: Scenario 2.

Once the values for the expected counts, relative risks, and expected in-
creases in disease counts due to epidemics were specified, we generated the
observed counts in the mapped area using the Poisson distribution

yitk ∼ Po(eitkθitk + Iitk)
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where Iitk = 0 for those counties and time periods that do not correspond to
epidemics waves. To allow for sampling variability, we simulated 300 data set
for each scenario.

The first step in the analysis of the data is to select the model describing the
behavior of diseases under non-epidemic conditions. Simulated data under both
scenarios were fitted to Model (4) with L = 6 latent spatial fields. Posterior
sampling was carried out using MCMC with an initial burn-in period of 50000
iterations to assess the convergence of MCMC chains. One posterior sample in
five iterations was kept after the burn-in period until a set of 5000 iterations
was obtained. A range of different hyperprior specifications of parameter pl
were experimented with. We found that priors penalizing larger values of the
number of latent spatial fields, such as the Be(a, l) or the Exp(a l) for parameter
pl/(1 − pl), provide more satisfactory results in general. The results presented
here correspond to the case where a Be(1, l) prior is used for parameter pl,
so that as l increases the distribution of pl gets more concentrated around its
mean, which in turn tends to zero. This choice is a compromise between allowing
for disaggregation of the underlying risk surface for each disease into different
latent spatial fields and searching for a parsimonious fit. Following Ma and
Carlin 23 , N(0, 100) priors were assumed for the scaling parameters. As a prior
distribution for the unknown precision parameters, we used theGa(2, 0.5), which
provides reasonable non-informativeness. Here we accept a latent component in
the model if there is at least one associated indicator variable larger than 0.5.

In Scenario 1 a large part of the variation in the data comes from disease-
specific components, specifically from the uncorrelated terms. This complicates
the detection and proper estimation of the shared latent component. Never-
theless, the selected model generally includes four spatial components, one that
is shared by the diseases and three disease-specific CAR components. Table 1
shows the mean square error (MSE) of the relative risks estimates obtained, for
each disease, with the shared component model and the overall DIC, averaged
over the 300 data sets. For comparative purposes, we also include those results
obtained when the diseases are modeled separately by using the convolution
model. As can be seen, when the diseases of interest share common risk factors,
the use of the shared component model provides more accurate risk estimates
and a better fit. In Scenario 2, three disease-specific spatial components were
selected.

Disease 1 Disease 2 Disease 3 DIC
Shared component model 0.035 0.013 0.029 6068.29
Convolution model 0.042 0.018 0.034 6084.30

Table 1: Simulation study. Mean square error of the relative risk estimates
obtained, for each disease, with both the shared component model and the
convolution model and the overall DIC. The results are averaged over the 300
data sets simulated under Scenario 1.

We next show the results obtained in the prospective analyses of the sim-
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ulated data with the proposed surveillance technique. Based on the previous
results, we used the shared component model with four spatial components to
describe the behavior of diseases under non-epidemic conditions in Scenario 1.
In Scenario 2 separate convolution models were sequentially fitted to model dis-
ease incidences. The relative risks estimates obtained at each time point with
the corresponding model were used to calculate the MSCPO values for the new
data. Because we are interested in detecting all the areas of increased disease
incidence at each time period, we consider the sensitivity, specificity and median
time to outbreak detection (MTD) as measures of performance. The sensitivity
is defined as the proportion of all the areas undergoing a change in risk that
signal an alarm at any time during the outbreak period. The specificity is given
by the proportion of in-control areas that are correctly identified as such, that
is

Sensitivity =
TA

TA+ FNA

Specificity =
TNA

FA+ TNA

where TA, FA, TNA, and FNA represent, respectively, true alarms, false
alarms, true no alarms, and false no alarms during the outbreak period. Finally,
let us define, for each small area undergoing an outbreak, the time to outbreak
detection as the number of time periods from the beginning of the outbreak until
the first alarm is sounded. An infinite time to detection is assigned if no alarm
is sounded. The MTD is then defined as the median of the times to detection
of those areas of increased disease incidence. It is worthy to emphasize here
that a MTD equal to infinite does not mean that no alarm has been sounded,
but that the surveillance technique has not detected at least half of the areas of
increased disease incidence. The decision rule used in this simulation study was
to signal an alarm for the ith area at time t if the sMSCPOit < 0.5 × 10−nit ,
nit being the number of counts higher than expected in area i and time t. So,
if there is only one count of disease higher than expected in area i and time t
the critical value is equal to 0.05; when two counts of disease are higher than
expected the critical value is 0.005, and so on. These values were chosen to
assure a specificity around 95% for all the diseases and scenarios. Tables 2 and
3 show the sensitivity and MTD of the proposed surveillance technique. Note
that one measure value is obtained for each data set. The results presented here
are averaged over the 300 data sets simulated for each scenario. For comparative
purposes, we also include the results obtained when the diseases were monitored
separately by using the SCPO. In this case, an alarm was sounded for area i at
time t if the SCPOit < 0.05.

As expected, the SCPO achieves timely detection when changes in disease
risks are substantial enough. For Disease 3, an initial percentage increase in the
mean of the Poisson distribution equal to 0.5 was simulated in both scenarios.
In this case, the outbreak detection capability of both the SCPO and MSCPO
is similar. Both surveillance techniques provide also similar results when an
outbreak is present in only one disease. This is the case of Disease 2 in Scenario
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SCPO MSCPO
Sens MTD Sens MTD

Disease 1 0.46 Inf 0.68 2
[0.13,0.75] [1,Inf) [0.38,0.94] [0,Inf)

Disease 2 0.28 Inf 0.60 2.5
[0.13,0.5] (Inf,Inf) [0.25,0.88] [0,Inf)

Disease 3 0.78 1 0.82 1
[0.5,1] [0,Inf) [0.5,1] [0,Inf)

Table 2: Simulation study, Scenario 1: Sensitivity and median time to out-
break detection (both posterior average estimates and 95% credible intervals)
of the surveillance conditional predictive ordinate (SCPO) and the multivariate
surveillance conditional predictive ordinate (MSCPO).

SCPO MSCPO
Sens MTD Sens MTD

Disease 1 0.42 Inf 0.87 2.5
[0.13,0.63] [3,Inf) [0.63,1] [1,4]

Disease 2 0.67 2 0.67 2
[0.4,1] [0,Inf) [0.4,1] [0,Inf)

Disease 3 0.96 1 0.97 1
[0.81,1] [0,2] [0.88,1] [0,2]

Table 3: Simulation study, Scenario 2: Sensitivity and median time to out-
break detection (both posterior average estimates and 95% credible intervals)
of the surveillance conditional predictive ordinate (SCPO) and the multivariate
surveillance conditional predictive ordinate (MSCPO).

2. However, by integrating information from multiple diseases, the MSCPO
improves considerably the sensitivity and timeliness of event detection when
outbreaks of disease occur simultaneously in more than one disease and the
proportional increase in disease counts during the epidemic stage relative to
the non-epidemic stage is small. For instance, a percentage increase in the
mean of the Poisson distribution equal to 0.1 was simulated for Disease 2 in
Scenario 1. Counts of disease before and at the onset of the epidemic were
then simulated, respectively, from the Po(eit2 θit2) and Po(eit2 θit2 (1 + 0.1))
distributions, which are not different enough to cause an alert when the disease
is monitored separately. Hence, only 28% of the areas undergoing an outbreak
are detected based on the SCPO. However, the MSCPO signals an alarm for
60% of those areas of increased disease incidence and reduces the MTD to 2.5
units.
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5 Case study

This section applies the MSCPO technique to emergency room discharges (ERD),
including both outpatients and those admitted as inpatients, for diseases of the
respiratory system in South Carolina. Specifically, we monitor weekly ERD for
acute upper respiratory infections (AURI), influenza, acute bronchitis, asthma,
and pneumonia in 2009. The data were obtained by county for the 46 counties
of South Carolina from the South Carolina Office of Research and Statistics.
Total weekly ERD in South Carolina are displayed in Figure 2. The right Y
axis corresponds to ERD for AURI, which are considerable larger throughout
the year. In the United States, AURI are the most common acute diseases in
the general population and one of the most common conditions for visiting a
clinician.
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Figure 2: Weekly emergency room discharges for influenza, acute bronchitis,
asthma, pneumonia, and acute upper respiratory infections (AURI, right Y
axis) in South Carolina in 2009.

AURI, influenza, acute bronchitis and pneumonia are closely related acute
diseases and, on some occasions, they are grouped together for data reporting,
especially influenza and pneumonia. Although these diseases can happen at any
time, they are most common during the fall and winter months. In the United
States, peak flu season months are December, January and February. The
unusual behavior shown in Figure 2 is due to the novel H1N1 influenza virus,
which arrived in South Carolina in April 2009. Novel H1N1 persisted throughout
the summer and the 2009-2010 influenza season, which peaked during early
October and November. Asthma, on the contrary, is a chronic lung disease
that inflames and narrows the airways. However, it is known that people with
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asthma may experience more frequent and severe asthma attacks when they
have an upper respiratory infection.

Because we are interested in detecting epidemic onsets, we confine our analy-
sis to data collected from week beginning June 28 (where all the diseases can be
assumed to be in a non-epidemic state) to week beginning December 27 (weeks
26 - 52 in Figure 2). There are 46 counties, 27 time periods (weeks), and five
diseases. Expected counts, which are assumed to be constant during the surveil-
lance exercise to properly identify emerging outbreaks, were calculated for each
disease and county by internal standardization32 using the data from the first
three weeks. These data were also used to initially estimate the multivariate
model describing the behavior of diseases under non-epidemic conditions. Model
(4) was fitted with L = 10 latent components. The results displayed are com-
puted from 10000 iterations after a burn-in of 50000 iterations. Similar to the
simulation study, the following prior distributions were assumed: pl ∼ Be(1, l),
δl,k ∼ N(0, 100), and Ga(2, 0.5) for the precision parameters. In this example,
five spatial fields are selected. The first one is common to AURI, acute bronchi-
tis, asthma and pneumonia, while the other four spatial fields are only relevant
to one disease. Namely, they are relevant to AURI, influenza, asthma, and
pneumonia, respectively. So, influenza does not share a common spatial field
with the other diseases. Figure 3 displays the estimated latent spatial fields.

Table 4 shows the DIC values (together with the PD) for the estimated
shared component model. For comparative purposes, we also include the DIC
values for the shared component model used by Ma and Carlin 23 (Equation
(3)) and those obtained when the diseases are modeled separately by using
the convolution model. To select the model that best explains the correlation
across both locations and diseases, the upper half of the table shows the results
obtained with these models when only spatially structured random effects are
incorporated into the model. The lower half of the table shows the results when
both spatially correlated random effects and disease-specific spatially uncorre-
lated terms (residuals) are included in the model. As can be seen, the joint
spatial analysis of the data with the proposed shared component model leads to
an improved goodness of fit as judged by a lower overall DIC value. The model
used by Ma and Carlin23 and our model provide a similar goodness of fit when
residuals are included in the model. However, by comparing the DIC values
in the upper half of the table, it can be seen that a single spatial field cannot
explain properly the correlation across both locations and diseases present in
the data. This can be further corroborated by examining the residuals ψik in
Equation (3). The estimated residuals (not shown) present a spatial correlation,
which violates the assumption about the independence of residuals.

In what follows, we show the results obtained in the prospective analysis of
the data using our surveillance technique. At each time point t = 4, 5, . . . , 27,
the shared component model with five spatial fields is estimated using the data
observed up to time t − 1, and the MSCPO values associated with the new
observations are analyzed to detect emerging outbreaks of diseases. An alarm
for the ith county is sounded at time t if the sMSCPOit is below 0.5×10−nit , nit
being the number of counts higher than expected in county i and time t. In order
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Figure 3: Case study. Estimated latent spatial fields from the shared compo-
nent model. The component w1 is shared by acute upper respiratory infections
(AURI), acute bronchitis, asthma and pneumonia. w2, w3, w4, and w5 are only
relevant to one disease: AURI, influenza, asthma and pneumonia, respectively.

to detect not only the onset but also the end of an epidemic, counts of disease
detected as unusual at time t are assumed to be missing when they become part
of the history. This way, the shared component model is sequentially estimated
using only data observed under non-epidemic conditions. Table 5 shows, for a
selection of twenty-eight counties in South Carolina, the time point at which an
outbreak is detected for each one of the diseases. Most of these outbreaks of
disease are also detected when the diseases are monitored separately by using
the univariate SCPO. As an example, Figures 4 and 5 show the temporal profiles
for the Charleston and Greenville counties, where highlighted points represent
time periods corresponding to epidemic stages. As can be seen, when observed
counts of disease are unusually high in comparison with the expected counts
the univariate and multivariate surveillance techniques signal an alarm at the
same time. However, by borrowing information from different diseases, the
MSCPO alerts us to unusual counts of disease which are not significant enough
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Model AURI Influ Bronch Asthma Pneum Total

Shared component 810.35 268.41 583.41 659.04 651.04 2972.26
model (38.62) (20.42) (27.99) (30.98) (26.97) (144.97)

Ma and Carlin’s 828.03 312.47 645.44 719.23 732.52 3237.69
model (29.52) (2.33) (9.97) (6.97) (4.09) (52.88)

Convolution model 815.37 271.61 590.30 663.03 659.08 2999.39
(41.97) (17.47) (34.80) (32.01) (29.64) (155.89)

Shared component 808.18 268.04 578.84 657.64 652.43 2965.13
model (39.85) (20.06) (32.07) (33.22) (32.27) (157.46)

Ma and Carlin’s 808.90 266.51 580.71 657.80 653.84 2967.75
model (39.94) (18.52) (31.20) (31.53) (31.42) (152.61)

Convolution model 810.30 268.24 584.29 659.17 656.17 2978.16
(40.80) (19.92) (33.88) (33.86) (32.62) (161.08)

Table 4: Case study. DIC (PD) values for the shared component model, Ma
and Carlin’s model, and individual convolution models. Results obtained when
the models only include spatially correlated random effects are shown in the
upper half of the table. The lower half shows the results when disease-specific
spatially uncorrelated terms (residuals) are also incorporated into the models.

to cause an alert on their own. This is the case, for instance, of the AURI,
asthma and pneumonia epidemics in Greenville at the moment of their onsets
or the pneumonia epidemic in Charleston, where only some extremely high
observations are detected in the separate analysis of the disease.

County AU In Br As Pn County AU In Br As Pn

Calhoun 9 9 10 9 9 Laurens 9 9 9 9 10
Charleston 9 5 9 9 10 Lee 10 9 10 10 10
Cherokee 7 8 8 9 12 Lexington 8 5 9 9 10
Chester 8 10 6 9 10 Marion 10 10 11 10 10
Chesterfield 10 6 9 10 10 Marlboro 8 6 9 5 5
Clarendon 9 11 - 9 13 Newberry 9 9 10 11 9
Darlington 10 10 8 10 11 Orangeburg 9 6 9 9 9
Dillon 11 8 10 10 9 Richland 9 7 7 9 9
Fairfield 9 9 10 7 9 Saluda 10 10 12 12 12
Florence 9 5 10 10 10 Spartanburg 8 8 7 8 10
Greenville 8 6 9 8 10 Sumter 9 5 9 9 9
Greenwood 5 5 9 9 8 Union 9 9 9 9 11
Kershaw 9 10 10 10 9 Williamsburg 10 10 10 10 10
Lancaster 11 6 11 6 11 York 9 9 9 9 10

Table 5: Case study. A selection of twenty-eight counties of South Carolina:
Time point at which an outbreak of disease is detected based on the multivari-
ate surveillance conditional predictive ordinate. AU: Acute upper respiratory
infections; In: Influenza; Br: Acute bronchitis; As: Asthma; Pn: Pneumonia.
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Figure 4: Temporal profile for the Charleston county. Time points correspond-
ing to epidemic stages as detected by the multivariate surveillance conditional
predictive ordinate are represented by solid points. Unusual observations based
on the univariate surveillance technique are represented by crosses.
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Figure 5: Temporal profile for the Greenville county. Time points correspond-
ing to epidemic stages as detected by the multivariate surveillance conditional
predictive ordinate are represented by solid points. Unusual observations based
on the univariate surveillance technique are represented by crosses.
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Finally, we present the results obtained with the multivariate scan statistic11

as implemented in the free SaTScanTM software33. This method is an extension
of the space-time scan statistic4 with the ability to detect clusters in either one
or in a combination of data sets. Here, the Poisson-based prospective space-
time scan statistic is used. We set the maximum spatial cluster size at 50% of
the population at risk, which is the default setting, and the maximum temporal
window size at 90% of the study period. The non-parametric spatial adjustment
provided by the software is used to adjust for purely spatial clusters. In this
example, the first alarm is sounded at time period 7. In addition to the most
likely cluster, which includes seven counties in the northwest of South Carolina, a
statistically significant secondary cluster is detected. The criterion for reporting
secondary clusters used here is that no cluster centers are included in other
clusters. Table 6 shows a summary of the results provided by the software at
this time period.

1. Most likely cluster : Spartanburg, Greenville, Cherokee, Union, Laurens,
Pickens, Anderson

Time frame: 2009/08/09 to 2009/08/15 (week 7 in the analysis)
p-value: 0.0001

Cases Expected Relative risk
AURI 354 327.25 1.09
Influenza 16 9.50 1.72
Bronchitis 136 96.00 1.47
Asthma 100 85.50 1.18
Pneumonia 121 98.25 1.25

2. Secondary cluster : Clarendon, Sumter, Williamsburg, Calhoun, Lee,
Orangeburg, Florence, Berkeley, Dorchester, Darlington, Kershaw,
Richland, Georgetown, Bamberg, Marion, Colleton, Lexington,
Charleston, Chesterfield, Dillon, Fairfield, Barnwell, Marlboro

Time frame: 2009/08/02 to 2009/08/15 (weeks 6-7 in the analysis)
p-value: 0.04

Cases Expected Relative risk
Influenza 143 108.50 1.54
Bronchitis 236 220.50 1.09

Table 6: Case study. Clusters detected by the multivariate space-time scan
statistic at time period 7.

Most of the counties included in these two clusters are also detected with the
MSCPO which, as shown in Table 5, signals the first alarm at time 5. However,
there are some differences between these two procedures that are worthy to
emphasize. The space-time scan statistic pinpoints the general time and location
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of the most likely cluster (and possible significant secondary clusters), and so
its exact boundaries remain uncertain. This cluster corresponds to the cylinder
with the maximum likelihood ratio. As a consequence, areas with no increase
in the number of cases reported can be included in the cluster if its neighbors
present an increased disease incidence. This is the case, for instance, of the
Union county, where the observed counts of disease at time 7 are similar to
those observed at previous time periods. It is also possible that the counties
included in the cluster do not undergo an outbreak of disease for all the diseases
reported in the cluster. For instance, only the number of ERD for influenza
presents an increase in the Greenville county at time 7 (see Figure 5). Finally,
because the scan statistic focuses on the detection of the most likely cluster
(secondary clusters), small outbreaks of disease may be missed or reported at
later time periods. These conclusions apply to all the time periods during the
surveillance exercise. As an example, Figure 6 compares the counties declared
as epidemic areas based on the MSCPO and the multivariate scan statistic
at six time periods. As can be seen, by detecting at each time point those
areas of increased disease incidence and the diseases within each area with more
counts than expected, our surveillance technique enables more accurate outbreak
detection and, consequently, a timelier and more informed response.

6 Discussion

The SCPO was introduced in a univariate surveillance setting to monitor spa-
tially aggregated disease incidence data. The surveillance technique generates
an alarm for the ith small area at time period t if the conditional predictive
distribution of the new count of disease given the data collected so far is below
a critical level α, which controls the trade-off between false alarms and detec-
tion delay or detection probability. To assure a low probability of false alarm,
a small value of α should be considered. Consequently, small increases in dis-
ease incidence may be missed. The results from a simulation study and the
subsequent application to emergency room discharges for five diseases of the
respiratory system demonstrate that, by integrating information from multiple
diseases, the multivariate surveillance technique proposed in this paper achieves
substantial improvements in both detection time and recovery of the true out-
break behavior when changes in disease incidence happen simultaneously for
two or more diseases.

Since the MSCPO does not depend on the model describing the behavior
of diseases under non-epidemic conditions, it can be applied in any surveillance
context where a statistical model is used to describe spatial data on multiple
diseases. We have focused here on Bayesian hierarchical Poisson models. In
particular, we have proposed a new shared component model formulation that
uses binary indicator variables to identify shared and disease-specific spatially
correlated latent fields. Joint modeling improves relative risk estimation and
goodness of fit when the diseases under study are influenced by common con-
founding factor. In practice, however, this is not always the case, and so the
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Figure 6: Case study. Counties declared as epidemic areas. Left: Areas signaling
an alarm based on the multivariate surveillance conditional predictive ordinate.
Darker shading indicates a higher number of diseases causing the alarm. Right:
Most likely cluster (MLC) and secondary clusters (SC) using the Poisson-based
prospective space-time scan statistic.
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model includes only disease-specific spatial fields when the diseases of inter-
est are independent. This is equivalent to fitting separate convolution models.
A well-known problem with latent structure models is identifiability of the la-
tent components. Empirical evidence of identification is apparent in both the
simulated data and the case study. However, additional restrictions such as
orthogonality of the latent components may be necessary on some occasions.

As mentioned before, our interest in this paper has been to propose a mul-
tivariate surveillance technique to jointly monitor multiple diseases in an effort
to detect epidemics at the very moment of their onset. Here the diseases are
assumed to be equally important. However, it may be the case that some of the
diseases under study have a special relevance. For instance, in the case study,
epidemics of more serious diseases of the respiratory system, such as bronchi-
tis and pneumonia, may be particularly important. As we have shown, these
epidemics are usually preceded by epidemics of milder diseases such as AURI
or influenza. It would be valuable to investigate how this information can be
used to predict changes in the relative risk pattern of the diseases of interest.
This line of research is particularly useful in a syndromic surveillance setting,
where information regarding syndrome-based outbreaks can be used to predict
increases in the incidence of the disease of interest.
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[21] Besag J, York J and Mollié A. Bayesian image restoration, with two appli-
cations in spatial statistics. Annals of the Institute of Statistical Mathematics

1991; 43: 1-59.

25



[22] MacNab YC. On Bayesian shared component disease mapping and eco-
logical regression with errors in covariates. Statistics in Medicine 2010; 29:
1239-1249.

[23] Ma H and Carlin BP. Bayesian Multivariate Areal Wombling for Multiple
Disease Boundary Analysis. Bayesian Analysis 2007; 2: 281-302.

[24] Wang F and Wall MM. Generalized common spatial factor model. Bio-
statistics 2003; 4: 569-582.

[25] Oleson JJ, Smith BJ and Kim H. Joint Spatio-Temporal Modeling of Low
Incidence Cancers Sharing Common Risk Factors. Journal of Data Science

2008; 6: 105-123.

[26] Lawson AB, Song HR, Cai B, Hossain MM and Huang K. Space-time latent
component modeling of geo-referenced health data. Statistics in Medicine

2010; 29: 2012-2027.
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