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Abstract

Health outcomes are linked to air pollution, demographic, or socioeconomic factors

which vary across space and time. Thus, it is often found that relative risks in spatial

health data have locally different patterns. In such cases, latent modeling is useful

in the disaggregation of risk profiles. In particular, spatial-temporal mixture models

can help to isolate spatial clusters each of which has a homogeneous temporal pattern

in relative risks. Mixture models are assumed as they have various weight structures

and considered in two situations: the number of underlying components is known or

unknown. In this paper, we compare spatial-temporal mixture models with different

weight structures in both situations. For comparison, we propose a set of spatial cluster

detection diagnostics which are based on the posterior distribution of weights. We also

develop new accuracy measures to assess the recovery of true relative risk. Based on

the simulation study, we examine the performance of various spatial-temporal mixture
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models in terms of proposed methods and goodness-of-fit measures. We examine two

real data sets: low birth weight data and chronic obstructive pulmonary disease data.

Key words: Spatial cluster; diagnostic; Spatial temporal mixture model; latent

model; small area health
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1 Introduction

The analysis of relative risk over space and time has received much attention in epidemiology

studies over the last decades. Many studies often assume that relative risk is decomposed

into several random components and these components explain different risk variations such

as temporal effect and spatial effect (Bernardinelli et al., 1995; Xia et al., 1997; Knorr-Held

and Besag, 1998; Knorr-Held, 2000; Mugglin et al., 2002; Dreassi et al., 2005; Richardson

et al., 2006; Martinez-Beneito et al., 2008; Tzala and Best, 2008). In general, such com-

ponents describe global effects not local effects within their spatial and temporal domains.

For instance, a spatial random component explains the overall spatial pattern over time pe-

riods, and a temporal random component explains the overall temporal pattern over areas.

However, it is often found that spatial-temporal health data have several different temporal

patterns in risk within their spatial-temporal domain and have a homogeneous temporal

profile within subset of geographical areas. Global models do not allow such disaggregation

and they are not appropriate for the estimation of local behaviors in risk. Therefore, it

is important to develop a statistical model to disaggregate risk profiles in spatial-temporal

health data and then estimate temporal patterns in relative risks and identify the spatial

clusters each of which has a homogeneous temporal pattern.

Mixture models provide a flexible way to model heterogeneous risk profiles. Recently,

Lawson et al. (2010) proposed a Bayesian spatial-temporal mixture (STM) model to es-

timate the underlying temporal patterns of relative risks in spatial-temporal disease data.

They also described STM models with entry parameters when the number of temporal com-
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ponents is unknown. They developed STM models with various types of weight priors for

the latent components and compared these models for ambulatory case sensitive asthma

data in the 159 counties of Georgia by using goodness-of-fit measures. In mixture models,

identifying clusters as well as estimation of latent components could be a major interest, and

different weight structures could provide different results in identifying clusters. However,

Lawson et al. (2010) did not consider the allocation of components in STM models and

the performance of STM models in terms of clustering methods. Thus the comparison of

STM models with various weight structures by using cluster detection methods is not only

challenging but also essential for their evaluation.

There are several studies on the development of spatial cluster diagnostics in spatial health

data analysis. For example, Hossain and Lawson (2006) introduced the cluster diagnostic

methods for spatial models based on the residuals and the posterior output. Hossain and

Lawson (2010) then extended these spatial diagnostics to the spatial-temporal methods,

which are based on the estimated relative risks. However, these cluster methods are used

to detect the unusual behaviour of relative risks so the use of these methods may not be

appropriate in STM models.

In this paper, we evaluate various STM models in terms of spatial cluster detection and

goodness-of-fit criteria in order to investigate the effects of different weight structures. We

propose a collection of spatial cluster detection diagnostics based on the posterior distri-

bution of weights. The spatial detection methods proposed here include individual region

diagnostics and group of regions diagnostics based on neighborhood information. The use of
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these spatial methods is appropriate for the evaluation of spatial-temporal models that have

spatial clusters which have distant temporal profiles. We present risk accuracy measures

to assess the closeness of posterior estimates of relative risks to the true values. Similarly,

in the case when the number of components is unknown, we explore the performance of

STM models with entry parameters by using these measures. We also study how well these

models estimate the true number of components.

The remainder of the paper is organized as follow. In Section 2 we describe STM models

with different weight structures. Section 3 introduces spatial cluster detection methods

for spatial-temporal mixture models, risk accuracy measures, and goodness-of-fit measures.

Section 4 presents a simulation study and Section 5 gives the real data analysis and the

results. We offer a general discussion in Section 6.

2 Models

We assume that the observed count data are available within I small areas and J time

periods. Denote the count of disease in the ith area at the jth time period as yij, where

i = 1, · · · , I and j = 1, · · · , J . We make the conventional assumption that yij follows a

Poisson distribution as

yij ∼ Pois(eijθij),
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where eij is the observed expected count and θij is the relative risk. The log relative risk is

defined as

log θij = x′
ijβj + Λij, (1)

where x′
ij is the vector of covariates of area i at time j with the corresponding parameter

vector βj which is time dependent. The mixture component Λij accounts for the spatial-

temporal variation in the model, and in this paper, we focus on this mixture component.

In order to disaggregate the spatial clusters each of which has a homogeneous temporal

pattern in relative risk, we model Λij as a linear combination of the underlying temporal

components with the spatial weights,

Λij = α0 +
L∑
l=1

wilχlj, (2)

where α0 is the intercept and L is the number of the temporal components. For the lth

component, χlj represents the underlying temporal pattern in relative risk and wil represents

the corresponding weight at the ith area. Each area has a temporal pattern in relative risks

expressed by the mixture of temporal components. The weight wil is the proportion of

lth component contribution for area i. Thus, weights have two conditions: wil ≥ 0 and∑L
l=1wil = 1. Here, weights can generally be spatial-temporal random effects, but in this

study we focus on the spatially dependent weights because of the identification problem of

temporal components.

The temporal components χlj can be defined by various temporal dependency structures.
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In this paper, we use a Gaussian autoregressive model with order 1 for each component,

which is a commonly-used temporal structure,

χlj ∼ N(ρlχlj−1, σ
2
χl
),

where the temporal parameter ρl (0 < ρl < 1) and the variance σ2
χl
change with components.

2.1 Specification for the weights when the number of components

is known

We consider four different structures for weights when the number of components is known.

We first have continuous prior distributions for weights. Due to the additive constraint on

the weights, we express wil as

wil =
w∗

il∑L
l=1w

∗
il

, (3)

where w∗
il > 0 is the un-normalized weight. We model a Dirichlet prior distribution for the

weights wil by using a Gamma distribution in the un-normalized weights w∗
il,

w∗
il ∼ Gamma(1, 1).

This model has no spatial dependency structure and is denoted as Model 1.

We extend Model 1 by adding a spatial dependency structure in the weights. Model 2

assumes that the un-normalized weight w∗
il has a log-normal distribution with the spatially
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correlated mean αil and the variance σ2
w∗

l
,

w∗
il ∼ LN(αil, σ

2
w∗

l
).

To account for the spatial dependency structure of the weights, the multivariate condi-

tional autoregressive (MCAR) distribution would be appropriate for αil (Mardia et al.,

1988; Banerjee et al., 2004). In this study, for convenience, we use a multivariate intrinsic

autoregressive distribution (Gelfand and Vounatsou, 2003) defined as

αil|αi′l, i′ ̸=i ∼ N
( 1

ni

∑
i′ ̸=i

Bii′αi′l,
1

ni

Σα

)
,

where Bii′ has the neighbor information: Bii′ = 1 if area i is adjacent to area i′, and

Bii′ = 0 otherwise. The number of “neighbors” (adjacent areas) of ith area is defined as

ni =
∑

i′ ̸=iBii′ . The L × L positive definite matrix Σα represents the cross-covariance

relationships between the different weights. This specification is denoted as MCAR(Σα).

As an alternative to continuous prior distributions for the weights, a discrete prior dis-

tribution that assigns one latent component to a region can be assumed. For example, a

singular multinomial distribution directly allocates one temporal component among all the

components based on the probabilities. This distribution easily allows a flat classification of

regions into components and the selected component represents the dominant latent com-

ponent of each region. While the previous models include all temporal components with

different weight values, STM models with a singular multinomial distribution for weights
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include one temporal pattern in relative risks for a region. We model wil as a singular

multinomial distribution,

wil = w∗
il ∼ Multi(1, pil),

L∑
l=1

pil = 1

pil =
p∗il∑L
l=1 p

∗
il

,

where wil has a value of 0 or 1. Model 3 also has a Dirichlet prior distribution for pil by

assigning a Gamma distribution for p∗il,

p∗il ∼ Gamma(1, 1),

where p∗il does not involve any spatial dependency.

To enable the spatial dependency effects to p∗il, we model a log-normal distribution for p∗il

with the spatial mean αil and the variance σ2
p∗l
,

p∗il ∼ LN(αil, σ
2
p∗l
)

αil ∼ MCAR(Σα),

where αil has a MCAR distribution. This is denoted as Model 4.
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2.2 Specification for the weights when the number of components

is unknown

In the previous section, we proposed four STM models with the fixed and known number

of components. In general, if L is unknown, the number of components in the mixture

model must be considered to be a parameter and should be estimated. In Bayesian mixture

modeling, there are many approaches for the estimation of the number of components. One

common approach is to use several Bayesian goodness-of-fit criteria such as the deviance

information criterion (DIC; Spiegelhalter et al., 2002), the Bayesian information criterion

(BIC), or the Bayes factor when comparing models with different fixed number of compo-

nents. Based on these criteria, the best model is selected and the number of components is

automatically estimated. This method is simple, but defining the range of the number of

components considered can be difficult. An alternative approach is to use reversible jump

MCMC (RJMCMC; Green, 1995) which estimates the number of components based on the

posterior distribution. RJMCMC is more effective than the previous approaches, but it has

the problem of computational cost and complexity.

Lawson et al. (2010) proposed an alternative approach that avoids fixing the number of

components and is simply implemented. By using entry parameters (e.g. Dellaportas et al.,

2002; Choi et al., 2009), the weight is modeled as

wil =
ψlw

∗
il∑L

l=1 ψlw∗
il

,
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where L is assumed to be large enough to find the true model and ψl is the entry parameter

that has a value of 0 or 1. When ψl = 0, the lth latent component is not included in the

model, and when ψl = 1, the lth component is included in the model. Following Kuo and

Mallick (1998), the entry parameter has a Bernoulli distribution

ψl ∼ Bern(pl),

where the probability pl could have a hyperprior distribution or could be a constant. In this

study, we assume pl = 0.5 as this is a non-informative value.

2.3 Allocation methods

A post hoc method can be used to provide the allocation of components based on weight

prior distributions. In the STM models with continuous prior distributions for the weights

(Model 1 and 2), we can use an allocation method for the estimation of the spatial clusters

each of which has a homogeneous temporal pattern in risk, by defining the cluster indicator

Zi ∈ N as

Zi = argmax
l

{wil},

where Zi(= 1, · · · , L) becomes the label index of the temporal component having the highest

weight value in the ith area. This suggests that the temporal component with the highest

weight value in the ith area is the primary temporal trend of the area. With these Zi values,

we can easily identify the spatial groups.
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Since a singular multinomial prior distribution for the weights in the STM model directly

selects the primary component, the cluster indicator Zi in Model 3 and 4 becomes the label

index of the component with wil = 1.

2.4 Bayesian Estimation

In order to conduct Bayesian inference, we first derive the distribution for the observed

count data y as

p(y|·) = ΠI
i=1Π

J
j=1Pois(yij|eij, α0, wil, χlj).

The prior distributions of the intercept parameter and variance parameters in the model are

specified as

α0 ∼ N(0, σ2
α0
), σα0 , σχl

, σw∗
l
, σp∗l ∼ Unif(0, d)

where σ2
α0

is the variance and d is a constant (Gelman, 2006). We use a Beta prior dis-

tribution, Beta(1,1), for the temporal parameter ρl which is uniform on (0,1). For the

L × L covariance of the MCAR Σα, we use an inverse Wishart prior distribution, Inv-

Wishart((0.01IL)
−1, L), where IL is the identity matrix of size L.

For Model 2, the posterior distribution for all the parameters Θ based on the likelihood
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and the prior distributions is defined as

p(Θ|y) = p(y|·)p(α0|σα0)p(w|σw∗ ,Σα)p(χ|σχ,ρ)p(σα0)p(σw∗)p(σχ)p(ρ)p(Σα),

ρ = (ρ1, · · · , ρL)T , w = (w11, · · · , wIL)
T , χ = (χ11, · · · , χLJ)

T

σw∗ = (σw∗
1
, · · · , σw∗

L
)T , and σχ = (σχ1 , · · · , σχL

)T .

Posterior distributions of the other models can be easily obtained. The estimation of the

parameters is implemented by hybrid Gibbs and Metropolis-Hasting sampling algorithms.

Estimates for all the parameters except Zi are the posterior means as the posteior mean

is the Bayes estimator under quadratic loss. Since the cluster indicator Zi is the nominal

value, the posterior mode is used for the estimation of Zi.

3 Comparison methods

The comparison of Bayesian STM models can be conducted using a variety of criteria. In

order to assess the performance of the models in recovering spatial clusters, we propose a

range of spatial cluster detection diagnostics which are based on the estimates of cluster

indicators. We also develop several accuracy measures based on the posterior distributions

of relative risks to examine the capability of recovery of true risks. These proposed measures

can be used for simulated data. In addition, we present a number of goodness-of-fit measures

and prediction measures in Bayesian models, which can be used for both real data and

simulated data.

13



3.1 Cluster diagnostics

We suppose that ZT
i is the true spatial cluster indicator for the ith area and Ẑik is the

estimated cluster indicator for the ith area at the kth sample, where k = 1, · · · , K, and K

is the number of simulated data sets. The first criteria we consider is the cluster accuracy

rate of the ith area over simulations which is given by

Ai =

∑K
k=1 I(Z

T
i = Ẑik)

K
.

This measure explains how well each model recovers the true spatial cluster of an individual

area. The overall cluster accuracy rate is then computed by A =
∑I

i=1Ai/I, which can be

used as the measure of the cluster accuracy for each model. We extend this measure to

incorporate spatial neighborhood information. The accuracy rate for the neighbor clusters

of the ith area is defined as

NAi =

∑K
k=1

∑
i′∈δi I(Z

T
i′ = Ẑi′k)

K · ni

,

where δi is the set of neighbors of the ith area. This measure examines the performance of

the cluster detection for neighbors. In a similar way, the overall neighborhood accuracy rate

is calculated by NA =
∑I

i=1NAi/I. Both Ai and NAi measures show the spatial variation

of cluster accuracy rates for individual areas or neighbors.

We also propose new cluster diagnostics for pairwise areas to check the ability of each

model in detecting spatial clusters. We consider a binary classification test where the spatial
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cluster indicators of two different areas are checked for equality. Using both the true pairwise

cluster outputs and the estimated pairwise cluster outputs, the pairwise accuracy rate is

PA =

∑K
k=1

∑I
i<i′

[
I(ZT

i = ZT
i′ )I(Ẑik = Ẑi′k) + I(ZT

i ̸= ZT
i′ )I(Ẑik ̸= Ẑi′k)

]
KI(I − 1)/2

.

In the binary classification test, the pairwise sensitivity is obtained by

PSen =

∑K
k=1

∑I
i<i′ I(Z

T
i = ZT

i′ )I(Ẑik = Ẑi′k)

K
∑I

i<i′ I(Z
T
i = ZT

i′ )
,

and the pairwise specificity is computed by

PSpe =

∑K
k=1

∑I
i<i′ I(Z

T
i ̸= ZT

i′ )I(Ẑik ̸= Ẑi′k)

K
∑I

i<i′ I(Z
T
i ̸= ZT

i′ )
.

The pairwise sensitivity and the pairwise specificity are calculated based on the assumption

that true clusters of pairwise areas are equal and they are unequal, respectively. Thus, these

measures are useful tools to investigate the performance of cluster recovering for pairwise

areas under the assumption that the true clusters of areas are equal or not. The pairwise

accuracy rate is the overall accuracy measure for the pairwise areas.

3.2 Risk accuracy measures

In order to examine the closeness of posterior estimates for relative risks to true values,

several accuracy measures are proposed here. We define the difference of a true relative risk
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and its estimate as dijk = θ̂ijk − θTijk, where θ
T
ijk is the true relative risk of the ith area and

the jth time at the kth sample and its corresponding estimate is θ̂ijk. A simple measure is

the average of absolute errors for the relative risks defined as AAERR = 1
KIJ

∑
k

∑
i,j |dijk|.

The mean square error for the relative risks is MSERR = 1
KIJ

∑
k

∑
i,j d

2
ijk. Another common

measure is the average of absolute relative errors, defined as AARERR = 1
KIJ

∑
k

∑
i,j |

dijk
θTijk

| =

1
KIJ

∑
k

∑
i,j |

θ̂ijk−θTijk
θTijk

|. We introduce an alternative measure to investigate the closeness of

the estimated relative risk values to the true values by using a threshold value c,

C
(c)
ij =

1

K

K∑
k=1

I
(∣∣∣ θ̂ijk − θTijk

θTijk

∣∣∣ < c
)
.

This measure is a function of the threshold value c and it shows the proportion that the

absolute relative errors are less than a given value c for the ith area and the jth time. Thus,

this measure increases with increasing value of c and the measure with the smaller values

of c is more useful to evaluate the performance of models. The overall measure over space

and time is C
(c)

=
∑

(i,j)C
(c)
ij /(IJ) which depends on a threshold value of c. For a fixed

threshold value c, the model with larger C
(c)

is considered better. Especially, for a small

value c, the model with large C
(c)

performs well in estimating relative risks.
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3.3 Goodness-of-fit measures to data

In this section, we present a range of measures to assess how well a model fits the data and

predicts. Deviance is defined as

D(Θ) = −2 log p(y|Θ),

where p(y|Θ) is the likelihood function for the data given the parameters Θ. The posterior

mean of the deviance is D(Θ) = EΘ[D(Θ)] and the deviance of the posterior means is D(Θ̂).

Based on the deviance the standard DIC is defined as

DIC = D(Θ) + pD,

where pD = D(Θ) − D(Θ̂) represents the effective number of parameters. Here, D(Θ)

measures the model fit and pD measures the model complexity. The standard DIC is a

widely used model assessment criteria but it may not be easy to obtain the correct pD in

mixture models. Thus, we use an alternative DIC measure, DIC3 suggested by Celeux et

al. (2006), which performs well in mixture models. This measure uses a posterior estimate

of likelihood instead of D(θ̂). We have DIC3 = D(Θ) + [D(Θ) + 2 log p̂(y|Θ)], which is

easily computed by Markov Chain Monte Carlo (MCMC) algorithms and provides stable

and reliable evaluations.

To compare models in terms of the prediction performance, we consider the Marginal

Predictive-likelihood (MPL), which is obtained by using the Conditional Predictive Ordinate
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(CPO) (Dey et al., 1997)

MPL =
∑
i,j

log (CPOij),

where CPOij is the marginal posterior predictive density of yij given the data excluding yij.

The CPO represents a cross-validation measure for each observation given the remainder of

the data. Thus, the MPL explains a predictive measure for a future replication of the given

data. The model with a larger value of MPL provides better model fit (Ibrahim et al, 2001;

Congdon, 2005).

Another criterion is the mean square prediction error (MSPE) given by

MSPE =
1

IJ

∑
i,j

(yij − ŷij)
2,

where yij is the observed value and ŷij is a value of yij for the posterior predictive distribu-

tion.

4 Simulation Study

We conduct a simulation study to explore the performance of STM models with various

weight structures in terms of a range of clustering detection methods and goodness-of-fit

measures presented in the previous section. We examine STM models when the number of

components is both known and unknown.

In the simulation study, we have used the 159 counties of the state of Georgia as a
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spatial domain. Georgia state has a fair number of counties and and is a common spatial

layout so diverse designs for spatial clusters can be considered. This spatial domain is

also used in our Section 5 data sets. Based on the ambulatory case sensitive asthma data

analyzed by Lawson et al. (2010), we have used the period from 1999 to 2006 (8 years) as a

temporal domain and computed the expected counts of this asthma data from the statewide

population-based rates by age and gender. The expected counts ranged from 0.05 to 49.73,

with a mean of 2.89. Given the spatial-temporal domain and the expected count data, we

conducted simulation experiments to compare the four STM models (Model 1 - Model 4)

introduced in Section 2.

4.1 Situation 1: the known number of components

In order to investigate the performance of STM models with spatial clusters of different

sizes and shapes, we consider four spatial designs for the cluster indicator Zi and different

number of components (Figure 1). Design 1 has L = 2 components. The spatial pattern

of the cluster indicator Zi is defined by the population density. The first group (Zi = 1)

is made of the counties of high population density (> 100 per square mile) and the second

group (Zi = 2) is made of the counties of low population density (≤ 100 per square mile).

Design 2 and 3 assume the number of components is L = 4, but they have different spatial

patterns for the cluster. Design 3 has the clusters with the distant areas. In Design 4, the

number of components is assumed to be 6.

For all the designs except Design 3, we generate simulated count yijk for county i and
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time j of the kth simulated set from

yijk ∼ Pois(eijθijk), k = 1, · · · , K,

where i = 1, · · · , I(= 159), j = 1, · · · , J(= 8), and K is the number of simulated data sets.

The true relative risk θijk is modeled as a function of a temporal component,

log (θijk) = α0k + χzi,j,k, zi = 1, · · · , l, · · · , L,

where α0k is the intercept parameter that is chosen as an appropriate value in order to guar-

antee that the average of relative risks is 1 and its range is between 0 and 3.5. Each spatial

cluster has the homogeneous temporal component χljk, which is generated independently

from a normal distribution with N(ρlkχl,(j−1),k, 1). The temporal parameter ρlk is generated

independently from a uniform distribution with the range [0, 1].

To examine the ability of recovering the true relative risks, Design 3 assumes that simu-

lated data sets have the same relative risk values over simulations but have different counts.

yijk ∼ Pois(eijθij), k = 1, · · · , K

log (θij) = α0 + χzi,j,

where α0 and χzi,j are constant over simulations and generated from the same scheme as

the previous one. Figure 2 shows the maps of the true relative risks for the simulated data
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in Design 3.

For each design we generate 500(= K) data sets and fit the different models (Model 1-4)

of Section 2 with the same number of components with simulated data. To implement this

study, two softwares R (http://www.r-project.org/) and WinBUGS (http://www.mrc-bsu.

cam.ac.uk/bugs) are used. For the estimation of the posterior distributions of the parameters

we discard the first 20000 iterations as burn-in and collect every 10th iteration to obtain

5000 final samples.

To investigate the recovery performance of the models, we need to identify the estimated

temporal components χ̂l′j with the true temporal components χlj. Label switching can

cause change to the allocation of components and their labels (e.g., Stephens, 2000; Jasra

et al., 2005). We re-label estimated components by using the mean square error

Ĝ = argmin
l′

L∑
l=1

J∑
j=1

(χ̂l′j − χlj)
2,

where Ĝ is the label set for the estimated temporal components corresponding to the true

components.

Table 1 shows the performance of different models in 4 designs in terms of the proposed

cluster detection methods and risk accuracy measures. In all designs except Design 3 the

spatial models (Model 2 and 4) have higher cluster accuracy rates than the non-spatial

models (Model 1 and 3) and cluster measures in Model 4 are slightly higher than Model 2.

In Design 3, Model 2 has quite lower cluster accuracy values. In Model 2, the variation of
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the estimated weight values is smooth because of spatial priors, so the allocation method

proposed in Section 2.3 could not perform well in the spatial design with isolated spatial

clusters like Design 3. Thus, Model 1 provides better performance than Model 2. On the

other hand, Model 4 has a singular multinomial prior distribution for the weights even

though a spatial prior distribution is considered. Thus, the variation of the estimated

weights is not smooth and Model 4 performs well in this case. In terms of the risk accuracy

measures, the spatial models have lower values than the non-spatial models and estimate

the true relative risks well. We can see no difference for both Model 2 and Model 4 in terms

of recovering the relative risk. In addition, as the number of components increases, all the

cluster detection measures except PA and PSpe decrease and all risk accuracy measures

increase. However, PA and PSpe are stable over different number of components so it seems

that the pairwise specificity is not influenced by the number of components. Overall, the

spatial models are better than the non-spatial models and Model 4 is marginally better than

Model 2 in some situations in terms of the cluster detection methods and the risk accuracy

measures.

The maps of Ai from Model 4 in all the designs are displayed in Figure 3. In these maps,

north-west areas and south-east areas in Georgia have high accuracy rates. The maps for

NAi (not presented here) have similar spatial patterns as Ai.

Figure 4 presents the temporal plots of the true latent components and the estimated

components with 95% credible intervals from Model 4 in Design 3. This suggests that

Model 4 fits the true latent components well.
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In Figure 5, we show the plots of C
(c)

against the threshold value c for the models. As a

threshold value c increases, the plots of C
(c)

in all the models tend to be similar, but when

c is small, C
(c)

measure has quite different values depending on the models. For all the

designs, Model 2 and 4 have almost same plots of C
(c)

and larger values of C
(c)

than the

other models when c is small. In particular, Model 1 has the lowest C
(c)

values when c is

small. These results also demonstrate that the spatial models are better than the non-spatial

models in terms of the risk accuracy measure.

Table 2 summarizes the model comparison results of model fitting by the average DIC(ADIC),

the average DIC3 (ADIC3), the average MPL (AMPL), and the average MSPE (AMSPE)

over the simulations. For the calculation of the pD in the standard DIC, we used two

different ways in WinBUGS and R. In WinBUGS, the pD is computed by the difference

between the posterior mean of the deviance and the deviance of the posterior means of the

parameters, but, in R, the pD is computed by the variance of deviance (pD*=var(D)/2).

Thus, the average DIC with the former pD is denoted as ADIC and the average DIC with

the latter pD* is denoted as ADIC*. When comparing the models, a model with smaller

ADIC, ADIC*, ADIC3 and AMSPE is better, but a model with larger AMPL is better. For

all the designs, Model 2 are slightly better than Model 4 in terms of DIC and MSPE, but

Model 4 has small ADIC* and ADIC3 and large AMPL. Overall, the spatial models are

better than the non-spatial models in model fitting. Model 4 performs well in terms of the

goodness-of-fit measures to the data.
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4.2 Situation 2: the unknown number of components

We also consider the situation when the exact number of components is unknown. In this

case, we use the entry parameters proposed in Section 2.2. We compare the performance

of the STM models with entry parameters by using the estimated number of components

included in the model, the risk accuracy measures and the goodness-of-fit measures to the

data. We also investigate the clustering detection diagnostics when the estimated number

of components are the same as the true number of components. To produce simulated data

sets, we use Design 2 for the cluster indicator Zi with 4 latent components and define the

temporal parameter of the components as ρ = (1, 0.7, 0.4, 0.1) to distinguish the components.

When fitting the models, we use 10 entry parameters which follow an independent Bernoulli

distribution with probability 0.5.

For the comparison, we perform 200 simulations and include a component in the model

if the estimated entry parameter is larger than 0.5. In Table 3, we can see that the spatial

models perform well based on the estimation of the number of components. For Model

1, 9.5% of the simulations only estimates the true number of components exactly and, for

Model 3, none of the simulations estimate the true number of components exactly. It is

shown that Model 2 and 4 have 90.5% and 73% of the simulations estimate the exact true

number of components, respectively. In estimating the exact number of components, the

spatial models are much better than the non-spatial models and Model 2 is better than

Model 4.

In Table 4 we consider a variety of the risk accuracy measures and the goodness-of-fit
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measures to compare the models. For all the measures except AMSPE, the spatial models

are better than the non-spatial models. Since Model 1 and 3 estimate the more number of

components than the true number of components, they seem to be overfitting to the data

and they have small AMSPE. Model 4 is marginally better than Model 2 in terms of model

fitting, but Model 2 and Model 4 have similar results for these measures.

Finally, we explore the performance of spatial clustering in the models only using the out-

put when the estimated number of components is equal to the true number of components.

Table 5 presents how well the entry parameter models detect the clusters. Model 3 has 0%

for the estimation of the true number of components, and we have no results here. It indi-

cates that the spatial models have higher accuracy rates for the cluster detection measures

than Model 1. Also, Model 2 and 4 provide similar results.

5 Data Analysis

For the assessment of the performance of STM models with real data, we analyze two

health data sets in the state of Georgia: low birth weight (LBW, < 2500gm) data and

chronic obstructive pulmonary disease (COPD) data. LBW is one of important child’s health

problems and is affected by demographic and socioeconomic factors which vary with space

and time. COPD is one of the most common lung diseases and is linked with particulates and

indoor air contaminants which also vary with space and time. Thus, these data sets could

show spatial-temporal variation, which can allow relative risks to have different temporal

patterns over space. With these real data sets it is interesting to estimate several STM
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models and evaluate their performance by using various criteria. In addition, we conduct a

comparison of the allocation estimates from different models. In real data analysis, we do

not know the true spatial clusters and true relative risks so the cluster detection methods

and the risk accuracy measures proposed in Section 3 can not be employed here. However,

we can compare four different STM models in terms of a range of goodness-of-fit measures

and their allocation results. To see the performance of the STM models in the situation

when the number of temporal components is known or unknown, we apply STM models

with fixed L to LBW data and STM models with entry parameters to COPD data.

5.1 Georgia low birth weight data (fixed L)

We apply STM models to LBW data for the years 1994 to 2007 in Georgia, which were ob-

tained from the state health information system OASIS (Georgia Division of Public Health:

http://oasis.state.ga.us/). There are 159 counties and 14 years of data. The expected

counts were calculated by using the internal standardization method (Banerjee et al., 2004),

where the population is the number of infants. Figure 6 presents a selection of standard-

ized incidence maps for low birth weight births and shows the spatial-temporal variation of

standardized incidence ratios. South-west areas have high standardized incidence ratios of

LBW for the year 2007. It is an evidence that relative risks have locally different temporal

patterns so this data set is appropriate in this study.

Using this LBW data, we first fitted four STM models with 10 entry parameters to de-

termine the number of components. Model 1 and 2 estimate 2 temporal components among
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10 components. But, Model 3 and 4 estimate 8 components among which 6 components

look negligible and redundant even though they are included in the model. We conclude

that two temporal components in relative risks are sufficient in this data. We again fit STM

models with 2 components and compare them by using goodness-of-fit measures (Table 6).

All measures favor Model 2 so Model 2 is the best model. In this example, Model 3 and 4

provide poor fitting. We also fitted STM models with up to 8 components and found that

Model 2 is overall the best model.

Figure 7 shows the temporal plots of 2 components from Model 2 and 4. As you can

see, component values for both models are different but the temporal patterns look similar.

Figure 8 displays the maps of the estimated allocation indicator Zi from Model 2 and 4.

These maps indicate that Model 2 and 4 have similar allocation results. The percentage

that two models have the same component is 89.31%. South-west areas have Component 1

that tends to increase after the year 2004.

5.2 Georgia chronic obstructive pulmonary disease data (unknown

L)

To investigate the performance of STM models when the number of components is unknown,

we analyze county-level COPD data for a period of 9 years (1999-2007) in Georgia, which

were obtained from OASIS. The expected counts were computed by using the internal

standardization method. Figure 9 displays the maps of the standardized incidence ratios

for each year and we can see the spatial and temporal variation. Especially, north areas
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and south-east areas in Georgia have high standardized incidence ratios of COPD over the

years of study.

In this example, we assume that the number of latent components is unknown and fit

four STM models with L = 10 entry parameters. Table 7 reports the estimated number of

components and the results of goodness-of-fit measures. While Model 1 and 2 estimate 2

components among 10 components, Model 3 and 4 estimate 9 components and they seem

to be overfitting the data. It appears that Model 2 is the best fit model in terms of several

DICs and MPL. MSPE measure favors Model 1 but Model 2 also has small MSPE. Overall,

Model 2 fits the data well and provide good prediction performance.

Figure 10 presents the temporal plots for the components included in the model 2 based

on the entry parameters. Component 1 has a decreasing pattern and Component 2 has a

quite stable pattern. To examine the spatial variation of the weights in this case, the maps

of the weights corresponding with the components are presented in the left two maps in

Figure 11. Using our allocation method, we can identify the spatial clusters. The right map

in Figure 11 shows the map of the cluster indicator Zi from Model 2 and atlanta areas have

Component 1 and south-east areas have Component 2.

6 Conclusion

In this paper, we evaluated spatial-temporal mixture models with different weight structures.

We considered mixture models with entry parameters when the number of components was
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unknown. For the comparison of these models, we developed a range of spatial cluster

detection methods based on the posterior distribution of the weights. We also proposed

several risk accuracy measures to examine the recovery of true risk. We used a variety of

goodness-of-fit measures to the data in order to compare different mixture models.

The simulation study showed that spatial models perform better than non-spatial models.

When the number of components is known, the STM models with different spatial prior

distributions for weights have similar results. When the exact number of components is

unknown, the mixture model with a non-spatial singular multinomial prior distribution for

weights could be overfitting the data. The STM model with a spatial continuous prior

distribution for weights estimates the true number of components well. In our real data

analysis, the STM model with a spatial continuous distribution for weights performs well

when the number of components is both known and unknown. However, the STM models

with a singular multinomial distribution for weights tend to be overfitting the data when

the number of latent components is unknown. From our simulation study and real data

analysis, we found that the STM model with a spatial continuous distribution for weights

works well in terms of various criteria. The STM model with a spatial singular multinomial

distribution for weights performs well in the simulation study but does not work well in real

data analysis.

Our spatial cluster detection measures and risk accuracy measures can be only used for a

simulation study. In real data analysis, a comparison of the estimated allocation indicator

and the estimated latent components is an alternative way. By adding covariates in spatial-
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temporal mixture models, we could investigate the performance of STM models with several

criteria. We could also study the performance of multivariate STM models.
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Table 1: Diagnostics using cluster detection measures and risk accuracy measures.
Cluster detection measures Risk accuracy measures

Design Model A NA PA PSen PSpe AAERR MSERR AARERR

1 1 0.879 0.854 0.763 0.738 0.799 0.222 0.134 0.213
(L = 2) 2 0.906 0.881 0.804 0.781 0.836 0.166 0.091 0.168

3 0.894 0.868 0.787 0.764 0.819 0.162 0.095 0.173
4 0.910 0.884 0.809 0.787 0.840 0.154 0.087 0.162

2 1 0.772 0.780 0.816 0.640 0.877 0.332 0.228 0.423
(L = 4) 2 0.804 0.805 0.865 0.839 0.875 0.201 0.095 0.227

3 0.799 0.807 0.828 0.658 0.888 0.248 0.170 0.331
4 0.861 0.865 0.879 0.777 0.915 0.199 0.117 0.259

3 1 0.746 0.753 0.755 0.519 0.867 0.317 0.215 0.355
(L = 4) 2 0.575 0.582 0.712 0.588 0.770 0.238 0.128 0.261

3 0.783 0.792 0.782 0.588 0.874 0.260 0.178 0.295
4 0.833 0.840 0.820 0.690 0.882 0.232 0.152 0.261

4 1 0.585 0.592 0.807 0.524 0.870 0.393 0.299 0.526
(L = 6) 2 0.585 0.590 0.806 0.674 0.836 0.304 0.194 0.378

3 0.688 0.697 0.837 0.540 0.904 0.314 0.232 0.424
4 0.711 0.720 0.839 0.602 0.892 0.300 0.216 0.408

Table 2: Model fitting.
Design Model ApD ADIC ApD* ADIC* ADIC3 AMPL AMSPE

1 1 110.396 3732.444 144.765 3766.813 3705.581 -1877.034 6.459
(L = 2) 2 43.580 3663.441 92.401 3712.261 3678.456 -1855.111 6.473

3 61.622 3689.709 61.622 3689.709 3677.046 -1854.524 6.540
4 60.808 3689.305 60.808 3689.305 3675.433 -1852.001 6.539

2 1 165.646 3824.385 387.219 4045.959 3806.081 -1963.502 7.325
(L = 4) 2 51.620 3678.755 215.859 3842.993 3721.737 -1886.486 7.299

3 162.918 3817.006 162.918 3817.006 3746.266 -1907.680 7.466
4 124.924 3769.504 124.924 3769.504 3721.195 -1884.251 7.460

3 1 200.055 3832.518 376.761 4009.224 3783.352 -1947.835 6.288
(L = 4) 2 116.010 3729.698 235.753 3849.441 3720.598 -1888.835 6.258

3 168.628 3801.892 168.628 3801.892 3732.270 -1902.656 6.394
4 140.842 3765.994 140.842 3765.994 3714.058 -1887.202 6.371

4 1 -110.885 3560.379 578.534 4249.798 3851.909 -2012.938 6.961
(L = 6) 2 117.530 3760.724 403.916 4047.111 3780.235 -1937.141 6.950

3 251.651 3909.611 251.651 3909.611 3784.418 -1943.686 7.175
4 235.966 3889.429 235.966 3889.429 3773.440 -1933.226 7.173
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Table 3: Frequency table of the number of components included in the model. The true
number of components is 4 and 200 simulated data sets are used.
Model 1 2 3 4 5 6 7 8 9 10

1 1 19 101 70 9
2 3 13 181 3
3 2 2 5 20 37 134
4 3 146 39 11 1

Table 4: Diagnostics using risk accuracy measures and model fitting for the entry parameter
models.
Model AAERR MSERR AARERR ApD ADIC ApD* ADIC* ADIC3 AMPL AMSPE

1 0.338 0.233 0.425 459.728 4093.090 459.728 4093.090 3790.593 -1963.247 7.217
2 0.180 0.084 0.213 456.188 4076.694 456.188 4076.694 3706.834 -1879.265 7.396
3 0.290 0.195 0.384 426.390 4024.191 426.390 4024.191 3739.544 -1925.120 7.167
4 0.177 0.087 0.216 177.054 3789.762 177.054 3789.762 3697.751 -1868.999 7.405

Table 5: Cluster diagnostics only when the estimated number of components is equal to the
true number of components.
Model A NA PA PSen PSpe

1 0.743 0.754 0.793 0.597 0.861
2 0.931 0.933 0.937 0.886 0.955
3
4 0.938 0.939 0.941 0.885 0.961

Table 6: Diagnostic results for LBW data.
Model ApD ADIC ApD* ADIC* ADIC3 AMPL AMSPE

1 176.395 15141.400 304.032 15269.037 15212.922 -7632.256 244.710
2 177.180 15078.100 202.147 15103.067 15142.573 -7598.050 243.817
3 44.280 16576.106 44.280 16576.106 16688.370 -8355.617 297.236
4 48.113 16580.343 48.113 16580.343 16686.765 -8354.261 299.955

Table 7: Diagnostic results with 10 entry parameters for COPD data.

Model L̂ ApD ADIC ApD* ADIC* ADIC3 AMPL AMSPE
1 2 218.850 12578.637 218.850 12578.637 12788.335 -6456.497 436.830
2 2 193.130 12534.080 193.130 12534.080 12763.503 -6447.497 437.864
3 9 132.882 13201.955 132.882 13201.955 13550.268 -6872.754 492.641
4 9 138.852 13224.942 138.852 13224.942 13595.930 -6891.754 488.464
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Figure 1: Spatial designs of the cluster indicator (Zi) in the simulation study.
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Figure 2: Maps of the true relative risks in Design 3.
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Figure 3: Maps of Ai for Model 4.
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Figure 4: Plots of the true temporal components and estimates from Model 4 in Design
3. The solid line is the true component, the dashed line is the average of the posterior
estimated component, and the dotted lines are 95% intervals for the posterior estimated
component.
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Figure 5: Plots of C
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against the threshold value c.
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Figure 6: A selection of four years of standardized incidence maps for county-level LBW
data in Georgia (1994, 1998, 2003, and 2007).
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Figure 7: Temporal plots for 2 components from Model 2 and Model 4 in LBW data.
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Figure 8: Maps of the allocations from Model 2 and 4 with 2 components in LBW data.
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Figure 9: Standardized incidence maps of county-level COPD data in Georgia.
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Figure 10: Temporal plots for 2 estimated components from Model 2 in COPD data.
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Figure 11: Maps of the estimated weights corresponding with the components from Model
2 and allocation results.
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