



**Research article** 

# Photocatalytic Activity of LaTi<sub>1-x</sub>Fe<sub>x</sub>O<sub>3</sub> Perovskite-Type Oxides Under UV and Visible Light

Maria João Nunes<sup>1\*</sup>, André Rodrigues<sup>2</sup>, Paulo Fiadeiro<sup>3</sup>, Ana Lopes<sup>1</sup>, Maria José Pacheco<sup>1</sup>, and Lurdes Ciríaco<sup>1</sup>

<sup>1</sup>FibEnTech-UBI and Departament of Chemistry, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal

<sup>2</sup>Departament of Chemistry, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal

<sup>3</sup>FibEnTech-UBI and Departament of Physics, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal

#### Abstract.

LaTi<sub>1-x</sub>Fe<sub>x</sub>O<sub>3</sub> (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) perovskite-type oxide samples were synthesized by the solid state reaction method and characterized, and their photocatalytic activity was tested in the degradation of Acid Orange 7 under ultraviolet and visible light. The oxides were successfully synthesized and the XRD results showed a phase change from monoclinic to orthorhombic, with an increase in Fe content (x), with LaTi<sub>0.8</sub>Fe<sub>0.2</sub>O<sub>3</sub> and LaTi<sub>0.6</sub>Fe<sub>0.4</sub>O<sub>3</sub> samples presenting both phases. All samples presented low photocatalytic activity under visible light radiation, with a maximum Abs<sub>484nm</sub> removal of 2.9% for LaFeO<sub>3</sub> after one hour. The best results were obtained under ultraviolet radiation, for all samples, with the best photocatalytic activity exhibited by the La<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> perovskite, with 44.6% Abs<sub>484nm</sub> removal after one hour.

**Keywords:** perovskites, LaTi<sub>1-x</sub>Fe<sub>x</sub>O<sub>3</sub>, photocatalysis, Acid Orange 7

#### 1. Introduction

Perovskite-type oxides belong to a family of ceramic compounds with a general formula ABO<sub>3</sub>, where A and B are metallic inorganic cations, with  $r_A > r_B$  [1,2]. They can occur in many structures, from triclinic to cubic, and are well-known for their versatile and flexible structure, capable of accommodating many cationic combinations without collapsing. This characteristic results in a large variety of properties and applications, such as photocatalysts in the degradation of organic pollutants [3]. The partial substitution of the metallic cations in the LaFeO<sub>3</sub> structure, with other elements, was found to improve its photocatalytic activity [4,5]. Hou et al [4] tested the influence of the partial substitution of La with Li, on the photocatalytic activity degradation of Methyl Blue under UV-Vis radiation. The substitution was found to increase the degradation rate of the dye, with

Corresponding Author: Maria João Nunes; email: maria.nunes@ubi.pt

Published 10 August 2022

Publishing services provided by Knowledge E

© Maria João Nunes et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Selection and Peer-review under the responsibility of the FibEnTech21 Conference Committee.

#### 



an optimum amount of Li of  $La_{0.97}Li_{0.03}FeO_3$ . Similarly, the presence of Ti, in the doubleperovskite  $La_2FeTiO_6$  was assumed to be responsible for the higher p-chlorophenol degradation under visible light, when compared with the results obtained with  $LaFeO_3$ [5]. The aim of this work was to synthesize  $LaTi_{1-x}Fe_xO_3$  perovskite-type oxides and test their photocatalytic activity in the degradation of the dye Acid Orange 7 (AO7), under UV and visible light.

#### 2. Material and methods

 $LaTi_{1-x}Fe_xO_3$  (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) sample powders were synthesized by solidstate reaction. Stoichiometric amounts of La<sub>2</sub>O<sub>3</sub> (Acros Organics, 99.9 %), TiO<sub>2</sub> (Aldrich, 99.5 %) and  $Fe_2O_3$  (Merck, 99 %) were mechanically grinded in an agate mortar for 30 min, and heated at 900 °C, for 24 h. Followed by intermediate regrinding and another heating procedure at 1200 °C, for 24 h. All heating procedures were performed in a tubular furnace (Carbolite, model STF) with a Carbolite 3216 temperature controller. All powder samples were structurally characterized by X-ray diffraction (XRD), on a Rigaku, model DMAX II/C with automatic data acquisition (APD Philips v3.5B), equipped with a monochromatized Cu k<sub>a</sub> radiation ( $\lambda$  = 0.15406 nm), operating at 40 mA and 30 kV. The recording conditions were  $2\theta$  between 10 and 90° at a scanning rate of 1.2°/min. The morphological characterization was performed by scanning electron microscopy (SEM), using a Hitachi S2700, operating at 20 keV. Diffuse reflectance spectra (DRS) were measured with a SPEC STD spectrometer (Sarspec), configured with a 25 µm slit, light source, reflectance probe, and reflectance standard, operating in the Ultraviolet/Visible range using a Deuterium Tungsten High Power. The band gap energies (E,) were calculated from the diffuse reflectance values through the Kubelka-Munk function.

The powders photocatalytic activity was tested under UV and visible light, on the degradation of 10 mg L<sup>-1</sup> aqueous solutions of AO7 dye (Sigma, 85 %), with radiation provided by a 7 W TUV PL-S lamp (Phillips), emitting at 254 nm, and a 300 W Ultra-Vitalux lamp (Osram), respectively. The 300 W lamp spectrum is shown in Fig.1. The AO7 dye solution volume used was of 10 mL and 160 mL for the photocatalytic assays performed under visible and UV light, respectively. The photocatalytic assays were performed with 0.5 g L<sup>-1</sup> photocatalyst powder suspensions during 1 h. Prior to both radiation type assays, all suspensions were sonicated for 15 min and stirred, in the dark, for 45 min, to achieve the adsorption-desorption equilibrium between the photocatalyst's surface and AO7 molecules. The dye concentration was monitored by UV-visible absorption spectrophotometry (Shimadzu UV-1800).

**KnE Materials Science** 



Figure 1: Emission spectrum of the 300 W Ultra-Vitalux UV-visible lamp.

### **3. Results and discussion**

The XRD patterns for all synthesized powders are presented in Fig. 2. The diffractogram corresponding to the x = 0 exhibited a well crystallized phase belonging to the  $La_2Ti_2O_7$  monoclinic structure, *P21/\** space group (ICDD file PDF#28-0517). For the x = 1 oxide a single well-crystalized phase belonging to the LaFeO<sub>3</sub> orthorhombic structure, *Pbnm* space group (ICDD file PDF#74-2203) was obtained. With the increase of Fe content (x) a phase change is observed, from a monoclinic to an orthorhombic symmetry, as it can be observed in Fig. 2, through the change of peaks intensity and position. For some samples, such as x =0.2 and 0.4, both phases were present, but no extra phases were identified.

The morphological characterization results, done by SEM, are in Fig. 3. In these, it is possible to observe a heterogeneous morphology, with the occurrence of different sizes and shapes throughout all samples, with a tendency to agglomerate. It is also evident that the samples corresponding to  $La_2Ti_2O_7$  and  $LaFeO_3$  exhibit a bigger average grain size.

The  $E_g$  values were obtained through the application of the Kubelka-Munk function on the diffuse reflectance values. This procedure is represented in Fig. 4, with the extrapolation of the linear region of the  $(F_{KM}hV)^2$  vs. hV plot to the abscissa axis for the



Figure 2: XRD patterns for the LaTi<sub>1-x</sub>Fe<sub>x</sub>O<sub>3</sub> oxides.

 $La_2Ti_2O_7$  sample, obtaining the  $E_g$  value of 3.97 eV. The same procedure was applied for all samples, and all  $E_g$  values were obtained (Table 1). For the  $LaTi_{0.8}Fe_{0.2}O_3$  and  $LaTi_{0.6}Fe_{0.4}O_3$  samples two  $E_g$  values were obtained, this could be associated with the presence of two phases in both samples, one predominant, belonging to the monoclinic phase of the  $La_2Ti_2O_7$ , and one secondary, belonging to the orthorhombic phase of the  $LaFeO_3$ . For the rest of the samples, the  $E_g$  values decreases with the increase in Fe content. Regarding the color of the obtained powders, Table 1, the introduction of iron in the perovskite structure results in an orange-like coloration, that gets darker with the increase in Fe content.

The results from the photocatalytic degradation of AO7, under UV and visible light, are presented in Fig. 5. These results show that all synthesized samples do not exhibit favorable photocatalytic activity under visible light, with the best results obtained by the LaFeO<sub>3</sub> (x = 1) sample, with an Abs<sub>484nm</sub> removal of 3%, after 1h. These results are in accordance with the high  $E_g$  values calculated, for most samples, with the best photocatalytic activity obtained for the oxide with the lowest  $E_g$  value. Regarding the results obtained under UV light irradiation, an improvement was observed for all samples, with Abs<sub>484nm</sub> removals from 8% to 45%, the latter obtained by the La<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> (x = 0) perovskite. Further increase in assay time (data not shown) resulted in an





Figure 3: SEM micrographies of all powder samples (x20000).

 $Abs_{484nm}$  removal of 71.1% after 2 h, indicating that, if enough time is employed, complete decolorization, of the AO7 dye solution, could be achieved.

### 4. Conclusions

All powder samples were successfully synthesized and displayed a phase change with the increase in Fe content, from monoclinic, at x = 0, to orthorhombic at x = 1. All partially substituted perovskite oxides exhibited smaller average grain size. With the increase in Fe content the  $E_g$  decreased, from 3.97 to 2.20 eV and the powders color darkened. All samples exhibited better photocatalytic activity under UV light, with an Abs<sub>484nm</sub> removal of 47% achieved by the La<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> sample, after 1 h.





Figure 4: UV-Vi diffuse reflectance spectrum for the  $La_2Ti_2O_7$  oxide. Inset – band gap energy determination.

| x   | Eg / eV    | Color |
|-----|------------|-------|
| 0   | 3.97       | Color |
| 0.2 | 3.42; 3.90 | Color |
| 0.4 | 3.31; 3.72 | Color |
| 0.6 | 2.65       | Color |
| 0.8 | 2.50       | Color |
| 1   | 2.20       | Color |

TABLE 1:  $E_g$  values and color of the LaTi<sub>1-x</sub>Fe<sub>x</sub>O<sub>3</sub> oxides.

## Acknowledgements

The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia, FCT, for the project UIDB/00195/2020 of the FibEnTech-UBI Research Unit and for the PhD grant awarded to Maria João Nunes (SFRH/BD/132436/2017 and COVID/BD/151965/2021).

**KnE** Materials Science



**Figure 5**: Absorbance removal of the AO7 solutions ( $C_i = 10 \text{ mg L}^{-1}$ ) obtained with the photocatalyst powder suspensions ( $C = 0.5 \text{ g L}^{-1}$ ) under UV and visible light, after 1 h.

#### References

- [1] Yang Y, Sun Y, Jiang Y. Structure and photocatalytic property of perovskite and perovskite-related compounds. Materials Chemistry and Physics. 2006;96(2-3):234-239. https://doi.org/10.1016/j.matchemphys.2005.07.007
- [2] Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J. Perovskite oxides: Preparation, characterizations, and applications in heterogeneous catalysis. ACS Catalysis. 2014;4(9):2917-2940. https://doi.org/10.1021/cs500606g
- [3] Wang W, Tadé MO, Shao Z. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews. 2004;44:5371-5408. https://doi.org/10.1039/c5cs00113g
- [4] Hou L, Sun G, Liu K, Li Y, Gao F. Preparation, characterization and investigation of catalytic activity of Li-doped LaFeO<sub>3</sub>. Journal of Sol-Gel Science and Technology. 2006;40:9-14. https://doi.org/10.1007/s10971-006-8368-9
- [5] Hu R, Li C, Wang X, Sun Y, Jia H, Su H, Zhang Y. Photocatalytic activities of LaFeO<sub>3</sub> and La<sub>2</sub>FeTiO<sub>6</sub> in p-chlorophenol degradation under visible light. Catalysis Communications. 2012;29:35-39. https://doi.org/10.1016/j.catcom.2012.09.012