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Worldwide, pyrethroid pesticides have been widely used in the control of agricultural pests and 

indoor pesticides, so they have an important impact on human daily life. The acute toxicity 

studies of pyrethroid pesticides have gotten many achievements and progress, but there is still 

no clear demonstration of its long-term chronic effects. This review presented the collection of 

published experiments, population surveys and laboratory tests on the long-term and chronic 

effects of pyrethroid pesticides. Typical research papers, and screened out the research pro-

gress in neurotoxicity, reproductive developmental toxicity, immunotoxicity and tumor re-

search of pyrethroid pesticides. It can provide reference ideas for further research and devel-

opment of harmless pesticides and pesticides. 
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Introduction 

IMILAR to the natural pyrethrins in the genus Pyrethrum, 

pyrethroids are a class of organic chemical compounds 

that were developed by modifying the structure of natural 

pyrethrins and were developed in the 1970s (1). It has evolved 

into a new type of pesticide that has largely replaced 

organochlorine pesticides. Over 80 pyrethroid pesticide products 

have been registered, and pyrethroid pesticides have become the 

second most widely used insecticide pesticide. The 

photostability of pyrethroid pesticides is greater and they can 

retain the insecticidal activity of natural pyrethroids (2). The 

acute toxicity of pyrethroids to mammals is comparatively low 

(3). Ester pesticides have the advantages of high selectivity, high 

efficiency, low toxicity, rapid insecticidal, and less residue on 

crops and various insect pests, and they hold a significant mar-

ket share in contemporary agricultural production (4). The 

structure and mode of action are comparable to those of 

pyrethroids. They are toxic substances that disrupt axonal ion 

channels and impair nerve function (5). According to the pres-

ence of cyano groups in their structures, two types of 

pyrethroids can be categorized. Type I pyrethroid pesticides lack 

a cyano group in their molecular structure, whereas Type II 

pyrethroid pesticides contain a cyano group (6). Type II prepara-

tions are more stable in the environment (light, atmosphere and 

water) than Type I preparations. Consequently, preparations of 

type II pyrethroids, such as cypermethrin, deltamethrin, and 

fenvalerate are predominantly used as pesticides (7, 8). 

However, as the overall use of pyrethroid pesticides has 

increased, more health issues have begun to emerge. As early as 

the 1990s, some Americans children were found to be exposed 
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to pesticides may be at risk for developing health issues. There-

fore, the U.S. Environmental Protection Agency considered the 

cumulative exposure risk of infants and children when deter-

mining the maximum detectable level of pesticides in food (9). 

Acute symptoms of pyrethroid insecticide exposure in humans 

include dyspnea, cough, bronchospasm, nausea and vomiting, 

headache, as well as skin allergies (10, 11). Although exposure 

to pyrethroid pesticides has been linked to an increased risk of 

cancer, the long-term effects of pyrethroids are unknown, and 

studies have demonstrated that pyrethroid pesticides are neuro-

toxins, and neonatal and adult exposure to these pesticides may 

result in developmental neurotoxicity, reproductive toxicity, and 

immune toxicity (12-16). 

 
Neurotoxicity 
The fundamental mechanism of action of pyrethroid pesticides 

involves voltage-sensitive sodium ion channels (17). To com-

prehend the function of pyrethroid-sensitive voltage-sensitive 

sodium ion channels in the neural development process, the 

duration and location of gene expression are helpful in under-

standing and explaining the developmental effects of exposure 

to the pesticide (18). In nerve cells, pyrethroids affect calcium, 

inositol phospholipid systems, and ion channels. Channel tox-

icity is characterized by low-dose activation and high-dose inhi-

bition; the effect on Ca2+ channels are also characterized by 

low-dose activation and high-dose inhibition, but the activation 

effect is weak, and the inhibition effect is prominent (19). Con-

cerning whether the neurotoxic effects of pyrethroid pesticides 

are age-dependent, studies have demonstrated that toxicokinetics 

and non-toxic effect kinetics are significant factors in the differ-

ential susceptibility of young and elderly animals to this pesti-

cide (20). 

Studies have documented long-lasting behavioral and 

neurochemical alterations in animals exposed to pyrethroids. 

Godinho et al. showed that perinatal exposure to selected type I 

(d-allethrin) and type II (cypermethrin) pyrethroids resulted in 

physical and sensory-motor changes in weaned pups and persis-

tent behavioral effects during offspring development, indicating 

that Cyp has a significant capacity to cause neurotoxicity over 

time (21). Another study found that rats exposed to cyhalothrin 

exhibited potential hyperactivity to avoid learning (22), whereas 

rats treated with deltamethrin did not exhibit hyperactivity (23). 

One study used a biologically based dose-response model to 

examine the relationship between high hydrochloric acid and 

developmental neurotoxicity, and they believed that, applied 

models can enhance the credibility of studies from animals to 

humans and can test whether the mode of action of a poison in 

animals is relevant to humans (24). In addition to studies con-

ducted on rodents, pyrethroid pesticides are also neurotoxic to 

fish demonstrating that zebrafish contaminated with be-

ta-cypermethrin displayed a curved body axis with some devel-

oping cyclops and erratic swimming behavior (25, 26). Farag et 

al. provided a summary of the toxic effects of pyrethroid pesti-

cides on aquatic ecosystems and noted that cold water fish are 

more sensitive to this insecticide than warm water fish (27). As 

reviewed that aquatic insects' (both vector and non-vector) vul-

nerability is influenced by the biochemical and physiological 

conditions unique to aquatic habitats (28). 

Cumulating evidence indicated that women whose chil-

dren were exposed to pyrethroid pesticides before or during the 

first trimester of pregnancy were more likely to have children 

with autism spectrum disorder (29, 30). A case-control study 

showed that holoprosencephaly risk may be increased by expo-

sure to personal, home, and agricultural pesticides during preg-

nancy (31). It is therefore plausible that pyrethroid pesticides 

pose a risk for neurodevelopmental disorders. 

Not only are pyrethroid pesticides neurotoxic to animals, 

resulting in abnormal behavior and motor skills, but they also 

cause neurological disorders in neonates, making it difficult for 

adults to live and learn (32). Potential pesticide combination 

exposure revealed pesticide correlations with behavior disorders 

examined longitudinally into adolescence and young adulthood 

(33-35). Thus, it may be proven beyond a reasonable doubt that 

pyrethroid pesticides cause neurotoxicity since they interfere 

with brain development from an early age and persist into old 

age. 

 
Reproductive and Developmental Toxicity 
Reproductive toxicity is associated with chemically hazardous 

substances that interfere with normal reproductive function. 

These harmful factors affect the reproductive system of adult 

men and pregnant women, causing developmental toxicity in 

themselves and their offspring (36). According to studies, 

pyrethroid ester pesticides may be endocrine disruptors (37), 

which can impair the endocrine function of animals and have 

estrogenic effects on the environment (38). Toxic substances can 

kill embryos prior to and after implantation, or malformations of 

various organs (39). The use of pyrethroid pesticides causes 

DNA damage, leading to an increase in the number of sperma-

tozoa with deformed heads, followed by degeneration and death 

(40). 

Cypermethrin and beta-cypermethrin have estrogenic ef-

fects on the environment (41). After entering the bodies of hu-

mans and animals, they mimic estrogenic effects or alter andro-

genic activity. Experiments on animals indicated that 

cypermethrin and beta-cypermethrin are toxic to male reproduc-

tion. For instance, adult male rats treated with varying doses of 

cypermethrin had reduced sperm counts in their semen or testes 

and decreased fertility, leading to a reduction in the litter size of 

female rats (42). Male mice exposed to cypermethrin had a de-

crease in testicular weight (43). There is a dose-response rela-

tionship between abnormal sperm heads and cypermethrin ad-

ministration in mice (44). In female mice in the cypermethrin 

gavage test, it was discovered that the chemical can alter the 

reproductive organs of female mice, increase the weight of the 

ovary and uterus, and advance the vaginal opening (45, 46). 

Pyrethroid pesticides are not only toxic to rodents' repro-

ductive systems, but also to some fish. Beta-cypermethrin pesti-

cides were found to have effects on zebrafish embryos when the 

gradient concentrations of beta-cypermethrin solutions were 

used to poison them (47). After pyrethroid pesticides were me-

tabolized in vivo, biomarkers and sperm parameters were also 

strongly correlated (48).  

The urine TCP (sodium 3,5,6-trichloropyridine-2-olate) 

was detected and found that it was not significantly correlated 

with sperm concentration and motility (49). However, a growing 



https://bonoi.org/index.php/si SI | November 30, 2022 | vol. 41 | no. 6 735 

body of evidence indicates that pyrethroid exposure in the envi-

ronment is harmful to the quality of sperm in reproductive-aged 

men (50-54). Meeker demonstrated a correlation between 

pyrethroid insecticide urine metabolites [3-phenoxybenzoic acid 

(3PBA) and cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl- 

cyclopropyl carboxylic acid (CDCCA and TDCCA)] and de-

creased sperm DNA integrity (55). It was discovered that there 

are different concentrations of pyrethroid pesticide residues in 

the hair of pregnant women and the meconium of the unborn 

fetus when using the biomarker method to detect pregnant 

women exposed to pyrethroid pesticides (56). 

Even while pyrethroid pesticides have low acute toxicity 

to mammals, long-term usage will nevertheless impair the re-

productive systems of animals and humans to variable degrees, 

resulting in a loss in fertility, and some may pose a threat to 

offspring health. 

 
Immunotoxicity and Tumors 
Accordingly, pyrethroid pesticides are immune system-resistant 

and may cause harm to the lymph nodes and spleen (16). The 

activation of the immune system by a rise in the number of gen-

erating cells and an increase in the activity of natural killer cells 

(NK) is also related with a decrease in the mass of the thymus 

and an increase in the mass of the mesenteric lymph nodes (57). 

Immune system circadian rhythm and cytokines play a role in 

the relationship between pyrethroid pesticides and tumors at the 

cellular level (58). Given the close relationship between gap 

junctions and intercellular communication and cancer (59), and 

there is evidence that the loss of intercellular communication 

between gap junctions is a crucial step in the development of 

cancer because of pyrethroid exposure (60). The chemical char-

acteristics of pyrethroid pesticides disrupt gap junctions in cells 

(mouse embryonic fibroblast Balb/c3T3), which can result in 

liver cancer (61) and breast cancer (62). 

Nagarjuna and Jacob Doss subjected rats to 41 mg/kg of 

cypermethrin and conducted toxicological experiments on the 

immune system at single, double, and repeated doses, and found 

that rats' duodenum, lungs, and testicles exhibited varying de-

grees of mild to severe pathological alterations (63). George and 

Shukla examined the influence of short exposure to deltamethrin 

on early protein expression alterations associated with neoplastic 

development in mouse skin, and found that five proteins 

(calcyclin, superoxide dismutase [Cu-Zn], carbonic anhydrase 

III, peroxiredoxin-2, and ubiquitin) may be involved in the neo-

plastic transformation of mouse skin epidermal cells and HaCaT 

cells by deltamethrin suggesting that the accumulation of 

ubiquitinated-calcyclin, which regulates deltamethrin-induced 

neoplastic alterations in skin, is caused by the suppression of 

proteasome activator protein (64). 

Children are vulnerable to harmful environmental factors, 

including pesticides and pesticides, which increases the risk of 

childhood tumors (65). Acute lymphoblastic leukemia (ALL) is 

one of the most common types of childhood cancer (66). In a 

case-control study, 176 children aged 0 to 14 years with ALL 

were matched with 180 control children, and the urine metabo-

lites (3-PBA, cis- and trans-DCCA) were analyzed, and 5 

non-specific pyrethroid insecticide metabolites were detected in 

the urine (67), which raised the possibility that pyrethroid pesti-

cide may increase the risk of ALL in children. 

Although exposure to pyrethroid pesticide may increase 

the risk of immune system diseases and tumors, data on human 

cancer and pyrethroid insecticide exposure are limited as 

showed by a systematic analysis (68). 

 
Conclusion 
The use of pyrethroid pesticides has become increasingly preva-

lent and has steadily permeated all aspects of human existence, 

beginning with agricultural production. How to properly deal 

with the migration and degradation of pyrethroid pesticides in 

the environment, as well as their effects on beneficial creatures 

and human health, is a crucial problem that modern medicine 

must address. 

From the published data, we may infer that the long-term 

usage of pyrethroid pesticides will have a significant negative 

impact on human health. These pesticides are capable of enter-

ing the human body by direct contact and inhalation. It impairs 

the function of tissues and organs by acting on various tissues 

and organs. Children and women of childbearing age are both 

vulnerable groups; therefore, we must also address the problem 

of protecting these populations. In addition, evidence has indi-

cated that vitamin E supplementation is advantageous for pre-

venting the negative impact due to the exposure (69, 70), and it 

is efficacious against pyrethroid-induced endocrine problems 

and embryonic death (71). However, the aforementioned publi-

cations do not adequately demonstrate the development of re-

search methodologies. Current study on human exposure to 

pyrethroid pesticides has uncovered that using biomarkers is the 

primary way for determining the relationship between pesticides 

and health effects. However, because the biomarkers themselves 

can be influenced by other substances within and outside the 

human body, it is required to establish a precise description of 

why pyrethroid pesticides are damaging to human health. 

Regarding the safety of pesticide use, the overuse of pes-

ticides should be avoided, pesticides should be used in accord-

ance with the recommended methods to reduce residues, and 

agricultural producers and vulnerable groups should engage in 

early preventive measures to ensure environmental safety and 

human health.■ 
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