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Abstract. In many papers devoted to telecommunication systems, multi-
service queueing models with heterogeneous customer arrivals are given. As

a rule, there is streaming traffic, corresponding to the audio and video con-

ference, and elastic traffic, corresponding to the data and file transmission.
Different types of traffic require different quality of service, therefore the

multi-service systems are also differentiated service systems. Such papers are

aimed at developing a framework for estimating the quality of service indica-
tors in new generation multi-service networks. This paper considers a multi-

service resource queueing system with three Poisson arrivals, one of which is

splitting. The equation for the probabilities distribution of the total resource
amounts on the system blocks is compiling by the dynamic screening method,

and using the characteristic function of the stationary distribution, the solu-
tion is obtaining. The numerical characteristics of the system performance

are obtained by the method of moments using characteristic function. A nu-

merical example shows that arrivals intensity growing increases optimal total
resource amounts on system blocks in the system with limited resources, and

the splitting arrivals affect the correlation between total resource amounts.

1. Introduction

Modern multi-service networks are packet-based networks in which packet stre-
ams are generated by conventional Internet applications (i.e., services offered on
the network). Such networks are subjected to the settings network traffic through
various mechanisms such as dynamic resource reservation, call forwarding, pri-
orities for selected call and service classes, etc. To implement the described
mechanisms, the researcher needs to have an analytical framework that will al-
low calculating the main probabilistic and numerical characteristics of the system
performance.

The study of combined models in queueing theory originates from the works of
Cohen [3, 4, 5], which devoted to the problem of repeated calls in long-distance
telephone systems. In modern scientific papers, the interest in the study of multi-
service networks is observed again. In paper [10], a multi-service model of a
queueing system with elastic and adaptive traffic presented and discussed. The
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presented model allows determining the characteristics of a multi-service queueing
system, such as drop probability or the average queueing length. The model can be
used for the analysis of modern network systems based on TCP/IP protocols, par-
ticularly the Internet. The papers [8, 9] present a multi-service resource queueing
systems (RQSs) with state-dependent resource allocation for each call type. The
proposed model allows estimating the averaged parameters of RQS for individual
customer types that are arriving in the system.

The paper [2] considers a managed RQS and finds an optimal resource man-
agement problem in the context of a splitting multi-service cellular network. The
papers [14, 15, 18] discuss models of multi-server RQSs with losses caused by a
lack of resources required to service. During the service, each customer takes a
random resource amount of several types. The random vectors describing resource
requirements do not depend on the arrivals and service time. As with the Erlang
problem, the task of calculates the drop probability of an arrival customer due to
a resource lack was considered.

An approach to the study of multi-service heterogeneous RQS is also presented
in papers [1, 16, 17]. The authors consider several variations of the RQS and
propose to study them using dynamic screening and asymptotic analysis methods.

We have a similar task to obtain the main numerical characteristics of system
performance. We consider a two-block RQS with three Poisson arrivals, one of
which is with splitting. This paper is organized as follows. In Section 2, we describe
in detail the mathematical model of the system. In Sections 3 and 4, we describe
and apply the dynamic screening method to compose the Kolmogorov equations,
then, in 5 and 6, we turn to the equation for the characteristic functions, find the
solution and write it for a stationary distribution. In Section 7, using the method
of moments, we obtain the main numerical characteristics, and in Section 8, we
give a numerical example.

2. Mathematical Model

Consider the two-block RQS with an unlimited number of servers and resources
shown in Fig. 1. Customers arrive in the system according to three Poisson pro-
cesses with constant intensities λ1, λ2 and λ. The arrivals from λi process go to
the i-th service block, i = 1, 2, and the arrivals from λ process are split and go to
both service blocks.

The service times on the i-th block are the random variables ξi with distribution
function Bi(x) = P{ξi < x}, i = 1, 2, and also taking random resources amount
νi with distribution function Gi(y) = P{νi < y}, i = 1, 2. Upon completion of
service, each customer leaves the system, frees the server, and all used resources.
The occupied resources amount and the service time are independent of each other.

The goal of this paper is to obtain the numerical characteristics of the total
volumes of occupied resources in the system blocks. We study the system using
the dynamic screening method, originally proposed in papers [12, 11], and method
of moments [6].
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Figure 1. Mathematical model

3. Dynamic Screening Method

Let us denote the total amount of occupied resource on the first and second
block at time t by V1(t) and V2(t), respectively. The goal is to find the station-
ary probability distribution of the two-dimensional random process {V1(t), V2(t)}.
However, this process is non-Markovian, therefore, we will use the dynamic screen-
ing method for its investigation.

Let the system be empty at moment t0, and let us fix a certain time moment
T > t0. The axis 0 shows all arrivals of customers (see Fig. 2). We generate
the points of the screened processes (axes 1 and 2) from the moments of arrivals.
Consider the probability that a customer arriving at time t will not finish its
service until the moment T . Let us denote the probability of screened arrivals on
axis i as Si(t) = 1 − Bi(T − t), (i = 1, 2) and on both axes as S1(t) · S2(t) =
(1−B1(T − t)) · (1−B2(T − t)).
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Figure 2. Screening of arrived of customers
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Let us denote the total resource amounts occupied by screened arrivals in the
interval [t0, t) by W1(t) and W2(t) on the first and second axes, respectively.
At the time moment t = T , the probability distributions of random variables
{V1(t), V2(t)} and {W1(t),W2(t)} coincide [13]:

P{V1(T ) < y1, V2(T ) < y2} = P{W1(T ) < y1,W2(T ) < y2},
y1 > 0, y2 > 0.

(3.1)

4. Integro-Differential Equation

We denote the cumulative distribution function (CDF) of the 2-dimensional
process {W1(t),W2(t)} by P (w1, w2, t), i.e. P{W1(t) < w1,W2(t) < w2} =
P (w1, w2, t). Then for this distribution we can write the following equality

P (w1, w2, t+ ∆t) = P (w1, w2, t)(1− λ∆t)(1− λ1∆t)(1− λ2∆t)+

λ∆tP (w1, w2, t)(1− S1(t))(1− S2(t))+

λ1∆tP (w1, w2, t)(1− S1(t)) + λ2∆tP (w1, w2, t)(1− S2(t))+

λ∆t

S1(t)(1− S2(t))

w1∫
0

P (w1 − y1, w2, t)dG1(y1)+

(1− S1(t))S2(t)

w2∫
0

P (w1, w2 − y2, t)dG2(y2)+

S1(t)S2(t)

w1∫
0

w2∫
0

P (w1 − y1, w2 − y2, t)dG1(y1)dG2(y2)

+

λ1∆tS1(t)

w1∫
0

P (w1 − y1, w2, t)dG1(y1)+

λ2∆tS2(t)

w2∫
0

P (w1, w2 − y2, t)dG2(y2) + o(∆t), w1, w2 > 0.

We divide obtained equality by ∆t and use limit condition ∆t → 0, we have
the Kolmogorov integro-differential equation in the form

∂P (w1, w2, t)

∂t
= P (w1, w2, t) [−λ1 − λ2 − λ+ λ(1− S1(t))(1− S2(t))+

λ1(1− S1(t)) + λ2(1− S2(t))] + λ

S1(t)(1− S2(t))

w1∫
0

P (w1 − y1, w2, t)dG1(y1)+
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(1− S1(t))S2(t)

w2∫
0

P (w1, w2 − y2, t)dG2(y2)+

S1(t)S2(t)

w1∫
0

w2∫
0

P (w1 − y1, w2 − y2, t)dG1(y1)dG2(y2)

+

λ1S1(t)

w1∫
0

P (w1 − y1, w2, t)dG1(y1) + λ2S2(t)

w2∫
0

P (w1, w2 − y2, t)dG2(y2),

w1, w2 > 0,

(4.1)

with the initial condition

P (w1, w2, t0) =

{
1, w1 = w2 = 0,
0, otherwise.

5. Characteristic Function

We introduce the characteristic function h(u1, u2, t) for the distribution P (w1, w2, t)
in the form

h(u1, u2, t) =

∞∫
0

∞∫
0

eju1w1eju2w2P (dw1, dw2, t), j =
√
−1.

Then, we rewrite the Equation (4.1) for the characteristic function h(u1, u2, t)

∂h(u1, u2, t)

∂t
= h(u1, u2, t) [S1(t)(λ+ λ1)(G∗1(u1)− 1)+

S2(t)(λ+ λ2)(G∗2(u2)− 1) + λS1(t)S2(t)(G∗1(u1)− 1)(G∗2(u2)− 1)] ,
(5.1)

where we introduced the notation

G∗i (ui) =

∞∫
0

ejuiydGi(y),

with the initial condition

h(u1, u2, t0) = 1. (5.2)

The Equation (5.1) is the separable differential equation, therefore, we rewrite
as

dh(u1, u2, t)

h(u1, u2, t)
= [S1(t)(λ+ λ1)(G∗1(u1)− 1) + S2(t)(λ+ λ2)(G∗2(u2)− 1)+

λS1(t)S2(t)(G∗1(u1)− 1)(G∗2(u2)− 1)] dt,
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and the solution to this equation takes the form

h(u1, u2, t) = C exp

{ t∫
t0

[
S1(τ)(λ+ λ1)(G∗1(u1)− 1)+

S2(τ)(λ+ λ2)(G∗2(u2)− 1) + λS1(τ)S2(τ)(G∗1(u1)− 1)(G∗2(u2)− 1)
]
dτ

}
.

Taking into account the Equation (5.2), we can conclude that C = 1 and

h(u1, u2, t) = exp


(λ+ λ1)(G∗1(u1)− 1)

t∫
t0

S1(τ)dτ+

(λ+ λ2)(G∗2(u2)− 1)

t∫
t0

S2(τ)dτ+

λ(G∗1(u1)− 1)(G∗2(u2)− 1)

t∫
t0

S1(τ)S2(τ)dτ

 .

6. Steady-State Regime

Further, we obtain the characteristic function of the 2D process {V1(t), V2(t)}
in the steady-state regime. To this aim, we put t0 → −∞, t = T and use the main
formula of the dynamic screening method (3.1). Thus, we obtain

h(u1, u2, T ) = exp

(λ+ λ1)(G∗1(u1)− 1)

T∫
−∞

(1−B1(T − τ))dτ+

(λ+ λ2)(G∗2(u2)− 1)

T∫
−∞

(1−B2(T − τ))dτ+

λ(G∗1(u1)− 1)(G∗2(u2)− 1)

T∫
−∞

(1−B1(T − τ))(1−B2(T − τ))dτ

 .

(6.1)

We consider the integrals that are in the exponent of (6.1)

T∫
−∞

(1−Bi(T − τ))dτ =

∞∫
0

(1−Bi(w))dw , bi, i = 1, 2,

T∫
−∞

(1−B1(T − τ))(1−B2(T − τ))dτ =

∞∫
0

(1−B1(w))(1−B2(w))dw , b12,
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therefore, we get the characteristic function h(u1, u2) in the form

h(u1, u2) = exp {(λ+ λ1)(G∗1(u1)− 1)b1+

(λ+ λ2)(G∗2(u2)− 1)b2 + λ(G∗1(u1)− 1)(G∗2(u2)− 1)b12} .

7. Method of Moments

At the next step, we find the numerical characteristics by the method of mo-

ments. According to the method of moments, we know that the means m
(i)
1 of

processes Vi(t) for i = 1, 2 can be calculate as

m
(i)
1 = −j · ∂h(u1, u2)

∂ui

∣∣∣∣
u1=u2=0

.

Primarily, we consider the following derivatives

∂h(u1, u2)

∂u1
= exp

{
(λ+ λ1)(G∗1(u1)− 1)b1 + (λ+ λ2)(G∗2(u2)− 1)b2+

λ(G∗1(u1)− 1)(G∗2(u2)− 1)b12

}
·
[
(λ+ λ1)G∗

′

1 (u1)b1+

λG∗
′

1 (u1)(G∗2(u2)− 1)b12

]
,

and similarly

∂h(u1, u2)

∂u2
= exp

{
(λ+ λ1)(G∗1(u1)− 1)b1 + (λ+ λ2)(G∗2(u2)− 1)b2+

λ(G∗1(u1)− 1)(G∗2(u2)− 1)b12

}
·
[
(λ+ λ2)G∗

′

2 (u2)b2+

λ(G∗1(u1)− 1)G∗
′

2 (u2)b12

]
,

we note, that

G∗i (ui)|ui=0 =

∞∫
0

ejuiyidGi(yi)

∣∣∣∣∣∣
ui=0

= 1,

G∗
′

i (ui)
∣∣∣
ui=0

=

∞∫
0

jyie
juiyidGi(yi)

∣∣∣∣∣∣
ui=0

=

j

∞∫
0

yidGi(yi) = ja
(i)
1 ,

where
∞∫
0

yidGi(yi) , a
(i)
1 .

103



8 BUSHKOVA, GALILEYSKAYA, LISOVSKAYA, PANKRATOVA, AND MOISEEVA

Therefore, we obtain that

m
(1)
1 = −j ∂h(u1, u2)

∂u1

∣∣∣∣
u1=u2=0

= −j · (λ+ λ1)b1ja
(1)
1 = (λ+ λ1)b1a

(1)
1 ,

and

m
(2)
1 = −j ∂h(u1, u2)

∂u2

∣∣∣∣
u1=u2=0

= −j · (λ+ λ2)b2ja
(2)
1 = (λ+ λ2)b2a

(2)
1 .

Secondly, we know that the second initial moments can be calculated as

m
(i)
2 = − ∂2h(u1, u2)

∂u2i

∣∣∣∣
u1=u2=0

,

therefore, we consider the following derivatives

∂2h(u1, u2)

∂u21
= exp

{
(λ+ λ1)(G∗1(u1)− 1)b1 + (λ+ λ2)(G∗2(u2)− 1)b2+

λ(G∗1(u1)− 1)(G∗2(u2)− 1)b12

}
·
[
(λ+ λ1)G∗

′

1 (u1)b1+

λG∗
′

1 (u1)(G∗2(u2)− 1)b12

]2
+ exp

{
(λ+ λ1)(G∗1(u1)− 1)b1+

(λ+ λ2)(G∗2(u2)− 1)b2 + λ(G∗1(u1)− 1)(G∗2(u2)− 1)b12

}
·[

(λ+ λ1)G∗
′′

1 (u1)b1 + λG∗
′′

1 (u1)(G∗2(u2)− 1)b12

]
,

and symmetrically for
∂2h(u1, u2)

∂u22
. Here, we note that

G∗
′′

i (ui) =

∞∫
0

(jyi)
2ejuiyidGi(yi)

∣∣∣∣∣∣
ui=0

= −
∞∫
0

y2i dGi(yi) = −a(i)2 ,

where
∞∫
0

y2i dGi(yi) , a
(i)
2 .

Thus, we write

m
(1)
2 = − ∂2h(u1, u2)

∂u21

∣∣∣∣
u1=u2=0

=
[
(λ+ λ1)b1a

(1)
1

]2
+ (λ+ λ1)b1a

(1)
2

and

m
(2)
2 = − ∂2h(u1, u2)

∂u22

∣∣∣∣
u1=u2=0

=
[
(λ+ λ2)b2a

(2)
1

]2
+ (λ+ λ2)b2a

(2)
2 .

Then, the variations can be calculated as σ2
i = m

(i)
2 −

(
m

(i)
1

)2
, and we obtain

σ2
1 = (λ+ λ1)a

(1)
2 b1, σ2

2 = (λ+ λ2)a
(2)
2 b2.
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Finally, consider the mixed derivative to obtain the covariance

∂2h(u1, u2)

∂u1∂u2
= exp

{
(λ+ λ1)(G∗1(u1)− 1)b1 + (λ+ λ2)(G∗2(u2)− 1)b2+

(λ+ λ2)(G∗2(u2)− 1)b2 + λ(G∗1(u1)− 1)(G∗2(u2)− 1)b12

}
·{[

(λ+ λ2)G∗
′

2 (u2)b2 + λ(G∗1(u1)− 1)G∗
′

2 (u2)b12

]
·[

(λ+ λ1)G∗
′

1 (u1)b1 + λ(G∗2(u2)− 1)G∗
′

1 (u1)b12

]
+

λG∗
′

1 (u1)G∗
′

2 (u2)b12

}
,

then,

K12 = − ∂2h(u1, u2)

∂u1∂u2

∣∣∣∣
u1=u2=0

−m(1)
1 m

(2)
1 = λa

(1)
1 a

(2)
1 b12.

Therefore, the correlation has the form:

r12 =
K12

σ1 · σ2
=

λa
(1)
1 a

(2)
1 b12√

(λ+ λ1)a
(1)
2 b1 · (λ+ λ2)a

(2)
2 b2

=

=
λ√

(λ+ λ1) · (λ+ λ2)

a
(1)
1 · a

(2)
1√

a
(1)
2 · a

(2)
2

b12√
b1 · b2

.

8. Numerical Example

8.1. About total resource amounts. Let us consider a numerical example. Let
the intensities λ1 = 2, λ2 = 5, λ ∈ [0; 50]; B1(x), B2(x) are Gamma CDFs with
parameters α1 = 2, β1 = 5 and α2 = 3, β2 = 5, respectively; and G1(y), G2(y) are
Poisson CDFs with parameters µ1 = 4, µ2 = 2, respectively.

Then, we have m
(1)
1 = 40(2 + λ) and m

(2)
1 = 30(5 + λ), σ2

1 = 200(2 + λ) and
σ2
2 = 90(5 + λ).

Using the Three Sigma Rule [7] and the obtained functions of λ, we can find
the optimal required resource amount on the system blocks for the system with
the limited resource by the formula

R
(i)
opt = m

(i)
1 + 3σi. (8.1)

Let us show the means required resource amount and their optimal values
from (8.1) for both system blocks graphically in the figure 3, as a function of
the parameter λ ∈ [0; 50]. It is clear, that with an increase in the arrival intensity,
the means of the total occupied resource amounts increases.
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Figure 3. Means and optimal values

8.2. About correlation. Obviously, the correlation value is influenced by the
parameters of service times, arrival processes and required resource amounts. The
following is an effects analysis.

The expression

a
(1)
1 · a

(2)
1√

a
(1)
2 · a

(2)
2

=
a
(1)
1 · a

(2)
1√(

σ2
1 +

(
a
(1)
1

)2)
·
(
σ2
2 +

(
a
(2)
1

)2) = C ≤ 1

is obviously taking the largest value at zero variance, i.e. for a deterministic
variable.

Figure 4 (pink line) shows the change in the correlation by the intensity λ ∈
[0; 50]. Obviously, when λ = 0, the system is a set of independently functioning
blocks and therefore r12 = 0. As the intensity increases λ� λ1, λ2, the correlation
increases and takes the greatest value

r12 =
a
(1)
1 · a

(2)
1√

a
(1)
2 · a

(2)
2

b12√
b1 · b2

and depends on the service parameters.
Let us consider the change in the correlation values by the service intensity.

For clarity, we consider the example of exponential service with the parameters
µ1, µ2. Then

r12 =
a
(1)
1 · a

(2)
1√

a
(1)
2 · a

(2)
2

λ

µ1 + µ2√
(λ+ λ1)

µ1

(λ+ λ2)

µ2

−−−−−−→
λ�λ1,λ2

C

√
µ1µ2

µ1 + µ2
.
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We denote µ2 = γµ1, where γ is an arbitrary non-negative number, then corre-
lation has the form

r12 = C

√
γµ2

1

µ1(1 + γ)
= C

√
γ

(1 + γ)
.

Let the resource parameters and arrival intensities be the same, the service times
has an exponential distribution with the parameters µ1 = 2 and µ2 = 2γ and the
intensity λ = 500. Figure 4 (blue line) shows that the greatest dependence of the
processes is achieved when γ = 1, i.e. with the same parameters of the service time,
the correlation coefficient, in this case, is 0.36. It is obvious, that with an increase
in the difference between the service times, the dependence of the processes in
blocks decreases.

by intensity λ by intensity γ
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C
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Figure 4. Change in correlation with arrival intensity λ and ser-
vice intensity γ

9. Conclusion

The paper considers a multi-service resource queueing system with three Poisson
arrivals, one of which is splitting. The equation for the probabilities distribution
of the total resource amounts on the system blocks is compiled by the dynamic
screening method. Using the equation the characteristic function of the stationary
distribution was obtained. The numerical characteristics of the system perfor-
mance were obtained by the method of moments from characteristic function. A
numerical example is presented, it shows that arrivals growing leads to increasing
the optimal total resource amounts on system blocks in the system with limited
resources, and the splitting arrivals affect the correlation between total resource
amounts.
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